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ABSTRACT 

Micr0RNAs (miRNAs) are c0nsidered as very imp0rtant cellular c0nstituents that c0ntr0l gene 

expressi0n at the p0st-transcripti0nal level and have fascinated much scientific attenti0n. These 

small n0n-c0ding RNAs play imp0rtant r0les by binding t0 their target genes and are als0 kn0wn 

t0 be ass0ciated with vari0us diseases. C0mputati0nal meth0ds that predict miRNA target sites 

generally use 0ne 0r m0re characteristics such as sequence c0mplementati0n, therm0dynamic 

stability, ev0luti0nary c0nservati0n am0ng species and accessibility. In recent years, deep 

recurrent neural netw0rks (RNNs) have all0wed researchers t0 tackle a variety 0f machine 

learning pr0blems in the d0main 0f natural language pr0cessing. Less w0rk has been d0ne with 

RNNs 0n what is perhaps the m0st natural language: the gen0me, a sequence 0f f0ur letters 

(A, C, G, T). We d0wnl0aded 19,000 experimentally validated miRNA-target pairs fr0m 

TarBaseV8, the c0rresp0nding mRNA sequences were c0llected fr0m the ensemble gen0me 

br0wser , and the miRNA sequences fr0m the miRBase. And a m0del based 0n RNN, LSTM 

and seq2seq architecture was used f0r the predicti0n 0f miRNA sequence. And als0 an 

imp0rtant feature, surface-area assecibility at binding site 0f miRNA at the targated mRNA 

was als0 taken int0 acc0unt. After training f0r 100 ep0chs, we achieved an  accuracy 0f 0.8 

with Validati0n L0ss = 0.0887. We verified 0ur m0del using experimentally validated data 

fr0m miDerma, a manually curated database 0f miRNAs ass0ciated with Dermat0l0gical 

Dis0rders. 0ur m0del was able t0 predict 0n average 72% 0f micr0RNAs f0r each genes fr0m 

the list 0f 200 rand0mly selected genes ass0ciated with dermat0l0gical dis0rders. We belive 

that the successful predicti0n miRNA may help the scientific c0mmunity in the fields 0f 

therapeutics, bi0marker selecti0n etc 
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CHAPTER 1  INTRODUCTION 

The human gen0me enc0des f0r 0ver 2200 micr0RNAs (micr0RNAs), which are m0stly 28bp 

l0ng n0n-c0ding RNA m0lecules which plays an imp0rtant r0le in regulating gene expressi0n 

p0st-transcripti0nally. As 0ne micr0RNA can target multiple gene transcripts, micr0RNAs are 

kn0wn t0 inv0lve in maj0r mechanism t0 regulate gene expressi0n and mRNA translati0n. 

C0mputati0naly anticipating micr0RNA targets is a basic fundamental step in finding micr0RNA-

mRNA target ass0ciati0n f0r lab appr0val. The current meth0ds f0r micr0RNA target predicti0ns 

inc0rp0rate a sc0pe 0f vari0us c0mputati0nal meth0d0l0gies, fr0m the dem0nstrating 0f physical 

ass0ciati0n alg0rithms t0 the applicati0n 0f machine learning alg0rithms. 

Als0 it has been seen that neural netw0rks are pretty successful f0r generating m0dels 0f predicting 

bi0l0gical functi0ns, sequences, classificati0n and 0ther task. In ANNs particularly CNNs and 

RNNs draws the attenti0n 0f scientific c0mmunity f0r their r0bustness in extracting feature and 

generati0n sequences. It is n0w a well kn0wn fact that CNNs are used 0f extracting features fr0m 

datasets and are highly useful in image classificati0n and image ann0tati0n. T0day we cann0t 

imagine any image classificati0n m0del with0ut using CNNs. 0n the 0ther hand we are having 

RNNs which are very c0mf0rtable with sequential data whether they are time series data 0r 

sequence 0f string. RNNs are m0stly used in natural language pr0cessing where they can be trained 

f0r classificati0n 0f phrases, generating new phrases etc. Next we have seq2seq architecture which 

are used in chat-b0ts, they are c0nsist 0f special arrangement 0f RNNs 0r LSTMs which can be 

trained f0r text generati0n can be used as chat b0ts, machine level translati0n 0r image ann0tati0n. 

S0 in this w0rk we particularly tried t0 bring the natural language pr0cessing m0dels t0 pr0cess 

c0re language 0f nature i.e. A, T, G, C. Here we tried t0 train a chat b0t m0del t0 generate 

micr0RNA sequence fr0m  mRNA sequence and named it miR-B0t while preserving the 

bi0l0gical n0ti0ns. We d0wnl0ad 22,600 experimentally validated micr0RNA-target pairs fr0m 

TarBaseV8, The c0rresp0nding mRNA sequences are c0llected fr0m the ensemble , and the 

micr0RNA sequences fr0m the miRBase. Then a m0del base 0n CNN, LSTM and seq2seq 
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architecture is trained 0n these datasets f0r predicti0n 0f micr0RNA sequences based 0n mRNA 

sequences. During training 0ur m0del acrive an accuracy 0f 80%. After training the m0del we 

used RNAplf0ld fr0m RNA-Vienna Package   t0 find site accessibility 0f mRNAs. Site 

accessibility is a measure 0f the ease with which a micr0RNA can l0cate and hybridize with an 

mRNA target.  mRNA assumes a sec0ndary structure which can interfere with a micr0RNA's 

ability t0 bind t0 a target site. Micr0RNA:mRNA hybridizati0n inv0lves a tw0-step pr0cess in 

which a micr0RNA binds first t0 a sh0rt accessible regi0n 0f the mRNA. The mRNA sec0ndary 

structure then unf0lds as the micr0RNA c0mpletes binding t0 a target. Theref0re, t0 assess the 

likelih00d that an mRNA is the target 0f a micr0RNA, the predicted am0unt 0f energy required 

t0 make a site accessible t0 a micr0RNA sh0uld be evaluated. Finally we validated 0ur m0del 

using experimentally verified micr0RNA and RNA pairs inv0lved in skin diseases we were 

retrieved fr0m 0ur in h0use devel0ped database miDerma. Here 0ur m0del was able t0 predict 0n 

average 72% 0f micr0RNA fr0m  mRNA in each cases c0rrectly. Hence we pr0p0se “mirB0T: A 

Mirc0RNA sequence predicti0n t00l fr0m RNA sequence base 0n CNNs, LSTMs and seq2seq 

architecture. 
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CHAPTER 2  REVIEW OF LITERATURE 

2.1 MircoRna 

 

2.1.1 Disc0very and functi0n 0f micr0RNAs 

The first micr0RNA was revealed 0ver 30 years ag0 in the nemat0de Caen0rhabditis elegans 

as the devel0pmental regulat0r lin-4[1]. Initially believed t0 be a typical pr0tein c0ding gene, till 

Ruvkun and Ambr0s labs made the surprising disc0very that lin-4 did n0t c0de f0r a pr0tein but 

instead enc0de a 22 nucle0tide regulat0ry RNA[2], [3]. They c0nfirmed that the lin-4 RNA can 

base pair with the mRNA 0f an0ther gene in the C. elegans devel0pmental netw0rk, lin-14, and 

regulate the pr0ducti0n 0f the LIN-14 pr0tein [3]. Disc0very 0f this micr0RNA w0uld have had 

little significance 0ther than C. elegans research c0mmunity, if the sec0nd micr0RNA, let-7, n0t 

been disc0vered[4]. let-7 is c0nserved in many 0rganisms, including humans, signifying that this 

class 0f small regulat0ry RNAs has a m0re general r0le in bi0l0gy[5]. The next spectacular 

devel0pment, 0ccurred ar0und the same time, by the disc0very 0f the RNAi pathway; 

specifically, the ~ 21 nucle0tide RNA’s r0le in the silencing machiner[6]. These tw0 pathways 

have since been sh0wn t0 be different arms 0f the same gene silencing pathway[7]. Later, many 

th0usands 0f micr0RNAs have been revealed in many 0rganisms, and there are currently 2588 

ann0tated micr0RNAs in the human gen0me[8]. Since each micr0RNA can regulate the 

expressi0n 0f hundreds 0f target mRNA, the micr0RNA pathway as a wh0le is a critical 

machinery f0r gene expressi0n c0ntr0l[9]. 

2.1.2 The microRNA bi0genesis pathway 

During the bi0synthesis 0f all micr0RNAs they underg0 a series 0f steps that c0nvert the primary 

micr0RNA transcript int0 the active, ~ 22 nucle0tide mature micr0RNA . The mature micr0RNA 

with the RNA induced silencing c0mplex (RISC) target mRNAs, leading t0 translati0nal 

repressi0n and target mRNA degradati0n. In this secti0n we will c0ver the micr0RNA bi0genesis 

pathway that is f0ll0wed by m0st micr0RNA families f0r the maturati0n. F0r ease we will limit 
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0ur f0cus 0n the mammalian enzyme mechanisms. Alth0ugh there are several excepti0ns fr0m 

this can0nical pathway have been described f0r unique micr0RNA families th0se are n0t c0ver 

under this t0pic. 

 

Figure 1: The microRNA biogenesis pathway 

2.1.2.1 Transcripti0n 

micr0RNA genes are present in all parts 0f the gen0me [10]. Many micr0RNA genes are 

n0nc0ding and wh0se 0nly transcripti0nal pr0duct is the micr0RNA. In 0ther cases the micr0RNA 

is l0cated within an intr0n 0r untranslated regi0n (UTR) 0f a pr0tein c0ding gene. Typically the 

defining feature 0f all micr0RNA genes is the stem– l00p precurs0r RNA structure, with 0ne (0r 

s0metimes b0th) strands 0f the stem the s0urce 0f the mature micr0RNA [9]. In s0me cases like 

0f MCM7 there are three clustered 0f micr0RNA stem–l00ps, each leads t0 a distinct mature 

micr0RNA with a exclusive targeted set[11]. micr0RNAs are n0t necessary t0 present within 

c0ding ex0ns, as deleti0n 0f the micr0RNA w0uld lead t0 l0ss 0f the pr0tein c0ding transcript. 
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Transcripti0n 0f the micr0RNA c0ding gene is d0ne by RNA p0lymerase II results leads t0 the 

pri-micr0RNA, 0r primary micr0RNA transcript [12]. The primary-micr0RNA is typically 

spliced, capped, and p0lyadenylated like a pr0tein c0ding mRNAs [13]. Alth0ugh m0st 

micr0RNA pr0m0ters have n0t been studied in detail, the few examples characterize as similar in 

structure t0 pr0tein c0ding gene pr0m0ters, including c0ntr0l hist0ne marks and elements  [14]. 

marks 

2.1.2.2 Pr0cessing by Dr0sha and Dicer 

The primary-micr0RNA g0es thr0ugh pr0cessing steps by tw0 end0nuclease bef0re it bec0mes a 

mature, active micr0RNA [15]. The first pr0cessing(cleavage) step 0ccurs during transcripti0n 0f 

the primary-micr0RNA by the enzyme Dr0sha [16]. The RNA binding pr0tein DGCR8 is required 

f0r cleavage 0f the primary-micr0RNA and ass0ciated with Dr0sha [17]. After cleavage by 

Dr0sha, the stem–l00p precurs0r fr0m flanking primary-micr0RNA transcript sequences releases. 

The precurs0r is carried 0ut 0f the nucleus in a Ran-GTPase dependent manner by Exp0rtin5 [18]. 

The sec0nd pr0cessing step 0ccurs in the cyt0plasm. The 2nd end0nuclease Dicer cleaves the l00p 

regi0n 0f the precurs0r releasing the mature micr0RNA [19]. Like Dr0sha, Dicer is als0 

acc0mpanied with an RNA binding pr0tein, TRBP [20]. The result 0f the reacti0n carried by Dicer, 

is a duplex RNA 0f appr0ximately 21 nucle0tides length. 0ne strand 0f the duplex is l0aded int0 

RISC as a mature micr0RNA. The 0ther strand typically degraded. An asterisk is appended t0 the 

micr0RNA name t0 designate this degraded strand, e.g., miR-125*. H0wever, in s0me cases b0th 

strands 0f the duplex may be l0aded int0 RISC at similar frequencies. In this case, the strand fr0m 

the 5′ end 0f the stem–l00p is termed “5p” and the 3′ strand the “3p”. While RISC l0ading may 

prefer integrati0n 0f 0ne strand, current next generati0n sequencing (NGS) eff0rts have revealed 

a small fracti0n 0f star strand l0aded f0r essentially all micr0RNA families [21]. S0, s0me 

micr0RNAs sh0w different strand usage depending 0n cell type 0r bi0l0gical state [22]. F0r these 

reas0ns, 5p/3p naming schemes are being widely used rather than the arbitrary mature/star 

n0menclature. 

The specific nucle0tide areas 0f Dr0sha and Dicer cleavage are generally barely defined, 

pr0mpting full gr0wn micr0RNAs with unmistakably defined terminal cl0sures. S0me 
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micr0RNAs, be that as it may, have heter0gen0us cleavage destinati0ns, pr0mpting numer0us 

"is0miRs" 0f the devel0p micr0RNA[23]. This heter0geneity c0uld pr0mpt differential target 

c0nstraint and particular natural exercises. Is0miR inclinati0n can change by cell write and is0miR 

exchanging has been rec0gnized in infecti0n[24]. The real mechanism f0r is0miR regulati0n is 

unclear. 

2.1.2.3 RISC l0ading and target repressi0n 

A definitive destiny 0f the micr0RNA is t0 be c0ns0lidated int0 RISC (0r miRISC). The c0rrect 

arrangement 0f this pr0tein c0mplex isn't clear h0wever c0ntains the fundamental pr0tein 

Arg0naute, 0f which f0ur relatives have been identified in humans (Ag01– 4) [25]. After Dicer 

cleavage, the micr0RNA duplex is stacked int0 RISC and the star strand is evacuated by s0me 0f 

a few c0nceivable acti0ns. 0n the 0ff chance that the micr0RNA duplex has c0mplementarity in 

the central regi0n, the star strand can be cleaved and rem0ved by Ag02 and further degrade by the 

nuclease c0mplex C3P0 [26]. This is the system f0r RISC stacking f0r the related siRNA pathway. 

M0st micr0RNA duplexes, in any case, need central c0mplementarity and subsequently can't take 

part in star strand cleavage. These micr0RNA duplexes depend 0n strand l00sening up, and a few 

helicases have been p0rtrayed t0 have this activity [27]. 

Arg0naute specifically ties with the devel0p micr0RNA and l00ks f0r target mRNAs that have 

c0mplementarity t0 the micr0RNA. Specifically, nucle0tides 2– 7 0f the micr0RNA, named the 

"seed" regi0n, are essential f0r target binding[28]. The 3′ end 0f the micr0RNA als0 has a r0le in 

target rec0gniti0n, and c0mplimentary matched targets have been f0und [29]. If c0mplementarity 

f0und in the seed regi0n 0f the micr0RNA (nucle0tides 9– 11) at that p0int the mRNA target can 

be degrade by means 0f the end0nuclease m0vement 0f Ag02 [30]. M0st micr0RNA target 

binding sites in human, d0 n0t have this match and are n0t straightf0rwardly degraded by Ag02. 

S0, Arg0naute is enlisted t0 a c0mplex c0ntaining GW182 (TNRC6A/B/C) inside cyt0plasmic P 

b0dies where translati0nal c0nstraint 0ccurs. The CCR4-N0T deadenylase c0mplex is attached t0 

RISC and this enc0urages evacuati0n 0f the p0ly(A) tail and inevitable debasement 0f the mRNA 

target[31]. 
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2.1.3 microRNA target identificati0n 

Identifying target sets f0r micr0RNAs is essential f0r a vari0us reas0ns. F0r scientists, finding the 

target set 0f a micr0RNA is critical t0 unc0ver its its critical r0le in bi0l0gy. F0r bi0l0gists creating 

micr0RNA therapeutics, validated target binding sites give the best bi0marker(s) f0r assurance 0f 

the efficacy 0f a micr0RNA enhencer 0r inhibit0r. The identificati0n 0f micr0RNA targets can be 

taken after three general meth0d0l0gies: bi0inf0rmatic target predicti0n, bi0chemical is0lati0n 0f 

micr0RNA/mRNA c0mplexes, and transcript0mic/ pr0te0mic analysis. The three meth0d0l0gies 

will be briefly c0ndensed. 

2.1.3.1 Bi0inf0rmatic target predicti0n 

As it has been state that micr0RNAs base match with target mRNAs utilizing standard Wats0n– 

Crick rules, this reality sh0uld make bi0inf0rmatic target identificati0n reliable. But, the m0st vital 

determinant 0f target restricting is the seed arrangement 0f the micr0RNA which is just 6 

nucle0tides l0ng. This will pr0mpt an extra0rdinary number 0f c0mpetit0r targets, a significant 

number 0f which are false negatives. In this way, all bi0inf0rmatic target expectati0n calculati0ns 

utilize extra fact0rs t0 enhance exactness[32]. 

Since the best described targets are in mRNA 3′ UTRs, numer0us calculati0ns restrain target sites 

t0 this area. Different c0mp0nents are utilized, including sequence c0nservati0n,flanking sequence 

determinants, flanking arrangement determinants, c0mpensat0ry matching 0utside the seed area 

and target site accessibility. Current meth0d0l0gies have additi0nally utilized machine learning 

calculati0ns that c0ns0lidate appr0ved targets sets as learning sets[32]. Vari0us t00ls have been 

devel0ped, with TargetScan, miRanda, and PicTar maybe the m0st pr0minent[33]. When all is 

said in d0ne, bi0inf0rmatic appr0aches are a decent beginning stage f0r micr0RNA investigati0n 

and numer0us expl0rati0n labs make utilizati0n 0f them [34]. 
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2.1.3.2 Bi0chemical target identificati0n 

A few related meth0d0l0gies have utilized physical relati0nship 0f micr0RNA/RISC edifices with 

target mRNAs t0 separate and rec0gnize targets. These depend 0n immun0precipitati0n 0f RISC 

utilizing anti-Arg0naute antib0dies, with 0r with0ut earlier RNA cr0sslinking, and definiti0n 0f 

b0und target RNAs by micr0array 0r NGS pr0filing[35]. Cr0sslinking 0f IP bef0re cell lysis is 

m0stly preferred since artifactual RNA hybridizati0n have been seen at the time 0f cell lysis [36]. 

An elective appr0ach is extracti0n 0f specific bi0tinylated micr0RNAs tand than target 

identificati0n[37]. This has the upside 0f catching f0cuses 0f a s0litary kn0wn micr0RNA, 

h0wever requires ect0pic intr0ducti0n  0f the bi0tinylated micr0RNA. While these physical 

meth0d0l0gies have been effectively used t0 define target mRNA 0f micr0RNA c0mplexes, n0t 

all b0unded mRNA targets might be repressed. Studies have sh0wn that s0me target binding sites 

are in c0ding regi0ns 0f mRNAs, and are b0und t0 Arg0naute h0wever are n0t degrading targets 

[35]. Like all meth0d0l0gies, appr0val 0f individual targets is fundamental. 

2.1.3.3 0mics-based strategies f0r target identificati0n 

The third br0ad way t0 deal with target identificati0n is a pr0te0mic 0r transcript0mic 

investigati0n 0f cells/tissues in the nearness and n0nappearance 0f a micr0RNA. Quantitative 

pr0te0mic investigati0n straightf0rwardly measures the impact 0f a micr0RNA 0n pr0tein 

creati0n, and is perhaps m0re reflective 0f the genuine target set, but at the same time is in fact 

testing. Since m0st micr0RNA targets have lessened mRNA c0nsistent state levels, the m0re 

straightf0rward transcript0me research can be perf0rmed [38]. This sh0uld be p0ssible by 

micr0array pr0filing and a few investigati0n devices are accessible[39]. A case 0f this appr0ach is 

the identificati0n 0f f0cuses 0f the neutr0phil-specific micr0RNA miR-223[40]. Neutr0phils were 

disengaged fr0m wild s0rt and miR-223 kn0ck0ut mice. Micr0array and quantitative mass 

spectr0metry were perf0rmed, and c0ntrasts in mRNA and pr0tein c0ntent was utilized t0 define 

f0cuses 0f miR-223. It 0ught t0 be n0ticed that the c0mpetit0r target sets will likewise c0ntain 

d0wnstream auxiliary targets, requiring appr0val 0f individual targets.micr0RNA detecti0n 

meth0ds 
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micr0RNA rec0gniti0n strategies can be partiti0ned int0 tw0 general categ0rie [41] . Discl0sure 

strategies are intended t0 pr0file the 0utfl0w 0f numer0us micr0RNAs with0ut a m0ment's delay, 

frequently with high thr0ughput. These meth0d0l0gies are t0 a great extent f0cused 0n micr0array 

hybridizati0n and NGS pr0filing. The last is particularly great since it is c0nceivable t0 p0rtray 

n0vel micr0RNAs, while m0st different techniques are restricted t0 l0cati0n 0f kn0wn micr0RNA 

successi0ns. There are a few NGS stages accessible h0wever all start with the devel0pment 0f 

f0rmat libraries. RNA c0nnect0rs are ligated t0 the tw0 finishes 0f little RNA p0rti0ns and the 

0bjectives are RT-PCR amplified with preliminaries c00rdinated at the c0nnect0rs. This pr0cedure 

amplifies all RNAs in the c0veted size range. The libraries w0uld then be able t0 be sequenced 0n 

a few instruments, with the Illumina stages presumably the m0st well-kn0wn. 0n the 0ther hand, 

single particle instruments are accessible that keep away fr0m the PCR amplificati0n step inside 

and 0ut[42]. Since current instruments are fit f0r 200 milli0n 0r m0re peruses per library run, it is 

c0nceivable t0 multiplex 48 libraries (0r m0re) in a s0litary run and still acc0mplish sufficient 

gr0uping read pr0fundity[42]. Sequence peruses are checked and quantitative articulati0n pr0files 

are g0t. As stated ab0ve, n0vel micr0RNAs and 0ther little RNA species can be identified. While 

NGS based pr0filing has clear p0ints 0f interest and is turning int0 the default inn0vati0n, 

nucle0tide predisp0siti0ns br0ught ab0ut amid ligati0n steps has been watched[43]. S0, pr0filing 

meth0d a validati0n step is necessary . 

While NGS stages are prepared t0 d0 high thr0ughput pr0filing 0f the wh0le micr0RNA p0pulace, 

m0st clinical dem0nstrative meth0d0l0gies depend 0n fast investigati0n 0f a little quality mark 

set. In this way, RT-PCR and Nan0string are the f0cal p0int 0f current analytic stages[44]. 

Nan0string is a s0litary particle hybridizati0n technique that permits quantitati0n 0f ~ 500 targets, 

either mRNA 0r micr0RNA, in a quick expl0rat0ry run. A case 0f a LDT micr0RNA sympt0matic 

is the pancreatic gr0wth test fr0m Asuragen. This RT-PCR based test utilizes a 7 micr0RNA mark 

t0 separate between pancreatic ductal aden0carcin0ma and amiable tissue.  
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2.2 MircoRna Target Prediction 

2.2.1 Common features of microRNA target prediction tools 

There are mainly f0ur frequently used features f0r micr0RNA target predicti0n alg0rithms: seed 

match, site accessibility, free energy and c0nservati0n. These will be described in the f0ll0wing 

secti0ns. 

 

Figure 2: microRNA:mRNA target interaction 

2.2.1.1 Seed match 

The seed sequence arrangement 0f a micr0RNA is characterized as the initial 2– 8 nucle0tides 

beginning at the 5' end and checking t0ward the 3' end[45] (Figure 1). The seed sequence 

arrangement 0f a micr0RNA is characterized as the initial 2– 8 nucle0tides beginning at the 5' end 

and checking t0ward the 3' end [45] (Figure 1). F0r m0st alg0rithms, a seed c0mplimentary in 

acc0rdance t0 Wats0n-Crick (WC) pairing rules between a micr0RNA and its target site is require. 

A Wats0n-Crick match between a micr0RNA and mRNA nucle0tide happens when aden0sine 

guanine (G) sets with cyt0sine (C) and aden0sine (A) sets with uracil (U).  

There are a few kinds 0f seed c00rdinates that can be th0ught ab0ut relying up0n the calculati0n. 

The acc0mpanying s0rts are the fundamental kinds 0f seed matches are [45]–[48]:  

1. 6mer: A perfect WC match between the micr0RNA seed and mRNA f0r six nucle0tides. 

2. 7mer-m8: A perfect WC match fr0m nucle0tides 2–8 0f the micr0RNA seed. 
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3. 7mer-A1: A perfect WC match fr0m nucle0tides 2–7 0f the micr0RNA seed in additi0n t0 

an A acr0ss fr0m the micr0RNA nucle0tide 1. 

4. 8mer: A perfect WC match fr0m nucle0tides 2–8 0f the micr0RNA seed in additi0n t0 an 

A acr0ss fr0m the micr0RNA nucle0tide 1. 

 

2.2.1.2 C0nservati0n 

C0nservati0n is t0 maintain same pattern 0f sequence acr0ss species. Analysis 0f c0nservati0n 

may c0ncentrated 0n regi0ns 0f the 3’ UTR, the 5’ UTR, the micr0RNAs, 0r any amalgamati0n 

0f the three. Generally it is seen that the micr0RNA seed regi0n has the higher c0nservati0n than 

in the n0n-seed regi0n[45]. In a small pr0p0rti0n 0f micr0RNA-mRNA target interacti0nsi, there 

is c0nservedg pairing at the 3’ end 0f thei micr0RNA which can reimburse f0r seed mismatches, 

and these sites are called 3’ c0mpensat0ry sites [49]. In the c0ntexte 0f predictingi micr0RNA 

targets ina 3 UTRs, c0nservati0ne analysisa may pr0vide evidence that a predictedw micr0RNA 

target is functi0naly because it is being selectede f0r. Als0, there is a increasing interest in 

c0nservati0n analysisi 0f the gen0mici regi0ns flankingl the micr0RNA genet and micr0RNA 

target genes. As examples, c0nservati0ni analysis has been appliedl t0 the pr0m0ter regi0nst 0f 

micr0RNAs and their targetj genes [50], and t0 the c0l0calizati0ni 0f independently transcribedi 

micr0RNAs and flanking pr0teinl c0ing genes [51]. Thus, the r0le 0f c0nservati0ni in micr0RNA 

target predicti0n is br0adl and analysis may f0cus 0n regi0nsi in the 3 UTR, the 5 UTR, the 

micr0RNA, 0r any c0mbinati0ni 0f the three. In general, there is higher c0nservati0nl in the 

micr0RNA seed regi0n than in the n0n-seedi regi0n[45]. In a small pr0p0rti0n 0f micr0RNA: 

mRNA target interacti0ns, there is c0nservedi pairing at the 3’ end 0f the micr0RNA whichi can 

c0mpensate f0r seed mismatches, and these sitest are called 3’ c0mpensat0ry sites [49]. With 

regards t0 anticipating micr0RNA f0cuses in 3 UTRs, preservati0n examinati0n may give c0nfirm 

that an anticipated micr0RNA target is utilitarian since it is being ch0sen f0r. Als0, there is 

expanding enthusiasm f0r c0nserva-ti0n examinati0n 0f the gen0mic districts flanking the 

micr0RNA quality and micr0RNA target qualities. As illustrati0ns, preservati0n investigati0n has 
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been c0nnected t0 the pr0m0ter areas 0f micr0RNAs and their 0bjective qualities [50], and t0 the 

c0-c0nfinement 0f independently interpreted micr0RNAs and flanking pr0tein c0ding genes [51]. 

In this way, the part 0f c0nservati0n in micr0RNA target predicti0n is widely used 

2.2.1.3  Free energy 

Free vitality (0r Gibbs free vitality) can be utilized as a measure 0f the steadiness 0f an bi0l0gical 

framew0rk. In the event that the binding 0f a micr0RNA t0 a candidate target mRNA is anticipated 

t0 be steady, it is viewed as m0re pr0ne t0 be a genuine target 0f the micr0RNA. Given the tr0uble 

in estimating free vitality specifically, typically the change in free energy during a reacti0n is 

c0nsidered (∆G). Since resp0nses with a negative ∆G have less energy t0 resp0nd later 0n, they 

result in framew0rks with expanded s0lidness. By anticipating h0w the micr0RNA and its 

c0mpetit0r target hybridize, areas 0f high and l0w free energy can be deduced and the general ∆G 

can be utilized as a p0inter 0f h0w firmly b0und they are [52]. 

2.2.1.4 Site accessibility 

Site accessibilityi is a measure 0f the easet with which a micr0RNA can l0catel and hybridize with 

an mRNA target. F0ll0wingl transcripti0ni, mRNA assumes a sec0ndaryt structure [53] which can 

interfere with a micr0RNA’s abilityi t0 bind t0 a targetl site. Micr0RNA mRNA hybridizati0n 

inv0lves a tw0-step pr0cess in which a micr0RNA binds first t0 a sh0rt accessible regi0n 0f the 

mRNA. The mRNA sec0ndaryi structure then unf0ldsl as the micr0RNA c0mpletest binding t0 a 

target[54]. Theref0re, t0 assessi the likelih00dt that an mRNA is the targeti 0f a micr0RNA, the 

predicted am0unti 0f energy required t0 make a site accessible t0 a micr0RNA sh0uld be 

evaluatedi.  

2.2.2 Less common features of microRNA target prediction tools 

 

The highlights talked ab0ut ab0ve are th0se m0st 0rdinarily j0ined int0 micr0RNA target 

f0recast apparatuses. As new advances are made in the p0rtrayal 0f micr0RNA mRNA target 

ass0ciati0ns, extra highlights are c0ns0lidated. These may be utilized t0 f0resee the viability 0f 
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the 0bjective 0r specifically fused int0 the 0bjective f0recast itself. Target-site wealth is a 

measure 0f what number 0f target l0cales happen in a 3 UTR[55]. L0cal AU c0ntent alludes t0 the 

gr0uping 0f An and U nucle0tides flanking the relating seed district 0f the micr0RNA[56]. GU w0bble 

in the seed c00rdinate alludes t0 the stipend 0f a G blending with a U rather than a C. 3 

c0mpensat0ry blending alludes t0 base c0mbine c00rdinating with micr0RNA nucle0tides 12– 

17. Seed matching s0lidness is the ascertained free vitality 0f the anticipated duplex. P0siti0n 

c0mmitment dissects the situati0n 0f the 0bjective site inside the mRNA. Machine-learning 

appr0aches utilize preparing inf0rmati0n t0 build up a m0del 0f micr0RNA targets, and 

afterward utilize the m0del as a maj0r aspect 0f the micr0RNA-expectati0n pr0cess. Machine-

learning pr0cedures are pr0bably g0ing t0 utilize m0re highlights in their expectati0ns since they 

can be prepared t0 decide the prescient intensity 0f each c0mp0nent 0n p0sitive and negative 

datasets. A machine-learning appr0ach utilized by a few 0f these instruments is supp0rt vect0r 

machines (SVM). Apparatuses that utilizati0n SVM are n0ted. 

2.2.3 Review of commonly used microRNA target prediction tools 

 

In this secti0n, we 0utline 10 p0pular micr0RNA target predicti0n t00ls, using the characteristics 

previ0usly described. A summary table c0mparing these t00ls is pr0vided in the C0mparis0n 0f 

micr0RNA Target Predicti0n T00ls secti0n. 

 

Table 1: Summary table of microRNA target prediction tools 

FEATURES USED IN microRNA TARGET PREDICTION 

Tool name Seed 

match 

Conse

rvatio

n 

Free 

energy 

Site 

accessibility 

Target-

site 

abunda

nce 

Machine 

learning 

Refer

ences 

miRanda X X X    [57] 

miRanda-

mirSVR 

X X X X  X [56] 

TargetScan X X     [55] 

DIANA- X X X X X X [58] 
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microT-CDS 

MirTarget2 X X X X  X [59] 

RNA22-GUI X  X    [60] 

TargetMiner X X X X X X [61] 

SVMicrO X X X X X X [62] 

PITA X X X X X   [63] 

RNAhybrid X  X  X  [64] 
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2.3 Neural Networks 

 

2.3.1 Machine Learning General  

Machine learning meth0ds are general‐purp0se appr0aches t0 learn functi0nal relati0nships fr0m 

data with0ut the need t0 define them a pri0ri [65]. In c0mputati0nal bi0l0gy, their allure is the 

capacity t0 infer prescient m0dels with0ut a requirement f0r s0lid presumpti0ns ab0ut basic 

instruments, which are much 0f the time 0bscure 0r inadequately characterized. As a f0r example, 

the m0st exact f0recast 0f quality articulati0n levels is presently pr0duced using a wide 

arrangement 0f epigenetic highlights utilizing scanty straight m0dels[66] 0r rand0m f0rests ; h0w 

the selected features determine the transcript levels remains an active research t0pic. Predicti0ns 

in gen0mics [67], pr0te0mics [68], metab0l0mics [69] 0r sensitivity t0 c0mp0unds [70] all rely 

0n machine learning appr0aches as a key ingredient. 

The greater part 0f these applicati0ns can be depicted inside the standard machine learning w0rk 

pr0cess, which includes f0ur stages: inf0rmati0n cleaning and pre‐pr0cessing, highlight 

extracti0n, dem0nstrate fitting and assessment (Figure 3). It is standard t0 signify 0ne inf0rmati0n 

test, including all c0variates and highlights as inf0 x (m0re 0ften than n0t a vect0r 0f numbers), 

and mark it with its reacti0n variable 0r yield esteem y (as a rule single number) when accessible.. 
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Figure 3The classical machine learning workflow can be broken down into four steps: data pre‐processing, feature extraction, 

model learning and model evaluation. 

A supervised machine learning m0del aims t0 learn a functi0n f(x) = y fr0m a list 0f training pairs 

(x 1,y 1), (x 2,y 2), … f0r which data are rec0rded. 0ne typical applicati0n in bi0l0gy is t0 predict 

the viability 0f a cancer cell line when exp0sed t0 a ch0sen drug [70]. The input features (x) w0uld 

capture s0matic sequence variants 0f the cell line, chemical make‐up 0f the drug and its 

c0ncentrati0n, which t0gether with the measured viability (0utput label y) can be used t0 train a 

supp0rt vect0r machine, a rand0m f0rest classifier 0r a related meth0d (functi0nal relati0nship f). 

Given a new cell line (unlabelled data sample x*) in the future, the learnt functi0n predicts its 

survival (0utput label y*) by calculating f(x*), even if f resembles m0re 0f a black b0x, and its 

inner w0rkings 0f why particular mutati0n c0mbinati0ns influence cell gr0wth are n0t easily 

interpreted. B0th regressi0n (where y is a real number) and classificati0n (where y is a categ0rical 

class label) can be viewed in this way. As a c0unterpart, unsupervised machine learning 

appr0aches aim t0 disc0ver patterns fr0m the data samples x themselves, with0ut the need f0r 

0utput labels y. Meth0ds such as clustering, principal c0mp0nent analysis and 0utlier detecti0n 

are typical examples 0f unsupervised m0dels applied t0 bi0l0gical data. 

 

The inputs x, calculated fr0m the raw data, represent what the m0del “sees ab0ut the w0rld”, and 

their ch0ice is highly pr0blem‐specific. Deriving m0st inf0rmative features is essential f0r 

perf0rmance, but the pr0cess can be lab0ur‐intensive and requires d0main kn0wledge. This 

b0ttleneck is especially limiting f0r high‐dimensi0nal data; even c0mputati0nal feature selecti0n 

meth0ds d0 n0t scale t0 assess the utility 0f the vast number 0f p0ssible input c0mbinati0ns. A 

maj0r recent advance in machine learning is aut0mating this critical step by learning a suitable 
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representati0n 0f the data with deep artificial neural netw0rks [71] . Briefly, a deep neural netw0rk 

takes the raw data at the l0west (input) layer and transf0rms them int0 increasingly abstract feature 

representati0ns by successively c0mbining 0utputs fr0m the preceding layer in a data‐driven 

manner, encapsulating highly c0mplicated functi0ns in the pr0cess. Deep learning is n0w 0ne 0f 

the m0st active fields in machine learning and has been sh0wn t0 impr0ve perf0rmance in image 

and speech rec0gniti0n [72], natural language understanding [73], and m0st recently, in 

c0mputati0nal bi0l0gy [74].  

2.3.2 Artificial Neural Networks Details 

An artificial neural netw0rk, initially inspired by neural netw0rks in the brain, c0nsists 0f layers 

0f interc0nnected c0mpute units (neur0ns). The depth 0f a neural netw0rk c0rresp0nds t0 the 

number 0f hidden layers, and the width t0 the maximum number 0f neur0ns in 0ne 0f its layers. 

As it became p0ssible t0 train netw0rks with larger numbers 0f hidden layers, artificial neural 

netw0rks were rebranded t0 “deep netw0rks”. 

In the can0nical c0nfigurati0n, the netw0rk receives data in an input layer, which are then 

transf0rmed in a n0nlinear way thr0ugh multiple hidden layers, bef0re final 0utputs are c0mputed 

in the 0utput layer (panel A). Neur0ns in a hidden 0r 0utput layer are c0nnected t0 all neur0ns 0f 

the previ0us layer. Each neur0n c0mputes a weighted sum 0f its inputs and applies a n0nlinear 

activati0n functi0n t0 calculate its 0utput f(x) (panel B). The m0st p0pular activati0n functi0n is 

the rectified linear unit (ReLU; panel B) that thresh0lds negative signals t0 0 and passes thr0ugh 

p0sitive signal. This type 0f activati0n functi0n all0ws faster learning c0mpared t0 alternatives 

(e.g. sigm0id 0r tanh unit). 

The weights w (i) between neur0ns are free parameters that capture the m0del's representati0n 0f 

the data and are learned fr0m input/0utput samples. Learning minimizes a l0ss functi0n L(w) that 

measures the fit 0f the m0del 0utput t0 the true label 0f a sample (panel A, b0tt0m). This 

minimizati0n is challenging, since the l0ss functi0n is high‐dimensi0nal and n0n‐c0nvex, similar 

t0 a landscape with many hills and valleys (panel C). It t00k several decades bef0re the backward 

pr0pagati0n alg0rithmwas first applied t0 c0mpute a l0ss functi0n gradient via chain rule f0r 

derivatives, ultimately enabling efficient training 0f neural netw0rks using st0chastic gradient 
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descent. During learning, the predicted label is c0mpared with the true label t0 c0mpute a l0ss f0r 

the current set 0f m0del weights. The l0ss is then backward pr0pagated thr0ugh the netw0rk t0 

c0mpute the gradients 0f the l0ss functi0n and update (panel A). The l0ss functi0n L(w) is typically 

0ptimized using gradient‐based descent. In each step, the current weight vect0r (red d0t) is m0ved 

al0ng the directi0n 0f steepest descent dw (directi0n arr0w) by learning rate η (length 0f vect0r). 

Decaying the learning rate 0ver time all0ws t0 expl0re different d0mains 0f the l0ss functi0n by 

jumping 0ver valleys at the beginning 0f the training (left side) and fine‐tune parameters with 

smaller learning rates in later stages 0f the m0del training. While learning in deep neural netw0rks 

remains an active area 0f research, existing s0ftware packages can already be applied with0ut 

kn0wledge 0f the mathematical details inv0lved. 

Alternative architectures t0 such fully c0nnected feedf0rward netw0rks have been devel0ped f0r 

specific applicati0ns, which differ in the way neur0ns are arranged. These include c0nv0luti0nal 

neural netw0rks, which are widely used f0r m0delling images, recurrent neural netw0rks f0r 

sequential data [75], 0r restricted B0ltzmann machines [76] and aut0enc0ders [77] f0r 

unsupervised learning. The ch0ice 0f netw0rk architecture and 0ther parameters can be made in a 

data‐driven and 0bjective way by assessing the m0del perf0rmance 0n a validati0n data set. 

 

Figure 4: Working of Artificial Neural Network 
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2.3.3 Convolutional Neural Network 

C0nv0luti0nal neural systems (CNNs) were initially enlivened by intellectual neur0science and 

Hubel and Wiesel's 0riginal w0rk 0n the feline's visual c0rtex, which was f0und t0 have basic 

neur0ns that react t0 little themes in the visual field, and c0mplex neur0ns that react t0 bigger 

0ne[78]. 

CNNs are intended t0 display include inf0rmati0n as multidimensi0nal exhibits, f0r example, tw0‐

dimensi0nal pictures with three shading channels 0r 0ne‐dimensi0nal gen0mic arrangements with 

0ne channel f0r each nucle0tide. The high dimensi0nality 0f these inf0rmati0n (up t0 a large 

number 0f pixels f0r high‐res0luti0n pictures) renders preparing a c0mpletely ass0ciated neural 

system testing, as the quantity 0f parameters 0f such a m0del w0uld n0rmally surpass the quantity 

0f preparing inf0rmati0n t0 fit them. T0 evade this, CNNs make extra presumpti0ns 0n the 

structure 0f the system, in this manner decreasing the p0werful number 0f parameters t0 learn.  

A c0nv0luti0nal layer c0nsists 0f multiple maps 0f neur0ns, s0‐called feature maps 0r filters, with 

their size being equal t0 the dimensi0n 0f the input image (Figure 5 panel A). Tw0 c0ncepts all0w 

reducing the number 0f m0del parameters: l0cal c0nnectivity and parameter sharing. First, unlike 

in a fully c0nnected netw0rk, each neur0n within a feature map is 0nly c0nnected t0 a l0cal patch 

0f neur0ns in the previ0us layer, the s0‐called receptive field. Sec0nd, all neur0ns within a given 

feature map share the same parameters. Hence, all neur0ns within a feature map scan f0r the same 

feature in the previ0us layer, h0wever at different l0cati0ns. Different feature maps might, f0r 

example, detect edges 0f different 0rientati0n in an image, 0r sequence m0tifs in a gen0mic 

sequence. The activity 0f a neur0n is 0btained by c0mputing a discrete c0nv0luti0n 0f its receptive 

field, that is c0mputing the weighted sum 0f input neur0ns, and applying an activati0n functi0n 

(Figure 5 panel B). 

In m0st applicati0ns, the exact p0siti0n and frequency 0f features is irrelevant f0r the final 

predicti0n, such as rec0gnizing 0bjects in an image. Using this assumpti0n, the p00ling layer 

summarizes adjacent neur0ns by c0mputing, f0r example, the maximum 0r average 0ver their 

activity, resulting in a sm00ther representati0n 0f feature activities (Figure 5 panel C). By applying 

the same p00ling 0perati0n t0 small image patches that are shifted by m0re than 0ne pixel, the 
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input image is effectively d0wn‐sampled, thereby further reducing the number 0f m0del 

parameters. 

A CNN typically c0nsists 0f multiple c0nv0luti0nal and p00ling layers, which all0ws learning 

m0re and m0re abstract features at increasing scales fr0m small edges, t0 0bject parts, and finally 

entire 0bjects. 0ne 0r m0re fully c0nnected layers can f0ll0w the last p00ling layer (Figure 5 panel 

A). M0del hyper‐parameters such as the number 0f c0nv0luti0nal layers, number 0f feature maps 

0r the size 0f receptive fields are applicati0n‐dependent and sh0uld be strictly selected 0n a 

validati0n data set. 
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Figure 5: Working CNNs 
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2.3.4 Recurrent Neural netw0rk 

Humans d0n’t start their thinking fr0m scratch every sec0nd. Traditi0nal neural netw0rks can’t d0 

this, and it seems like a maj0r sh0rtc0ming. F0r example, imagine if 0ne want t0 classify what kind 

0f event is happening at every p0int in a m0vie. It’s unclear h0w a traditi0nal neural netw0rk c0uld 

use its reas0ning ab0ut previ0us events in the film t0 inf0rm later 0nes. 

Recurrent neural netw0rks address this issue. They are netw0rks with l00ps 

in them, all0wing inf0rmati0n t0 persist. 

 

 

In the ab0ve diagram, a chunk 0f neural netw0rk, AA, l00ks at s0me input xt and 0utputs a value ht. 

A l00p all0ws inf0rmati0n t0 be passed fr0m 0ne step 0f the netw0rk 

t0 the next. These l00ps make recurrent neural netw0rks seem kind 0f 

mysteri0us. It turns 0ut that they aren’t all that different than a n0rmal neural netw0rk. A recurrent 

neural netw0rk can be th0ught 0f as multiple c0pies 0f the same netw0rk, each passing a message t0 

a success0r. C0nsider what happens if we unr0ll the l00p: 

 

Figure 7: An unrolled recurrent neural network 

. 

This chain-like nature reveals that recurrent neural netw0rks are intimately related t0 sequences and 

lists. They’re the natural architecture 0f neural netw0rk t0 use f0r such data. 

Fіgurе 6: Rеcurrеnt Nеurаl 

Nеtworks hаvе loops 
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And they certainly are used! In the last few years, there have been incredible success applying RNNs 

t0 a variety 0f pr0blems: speech rec0gniti0n, language m0deling, translati0n, image capti0ning… 

The list g0es 0n. 

Essential t0 these successes is the use 0f “LSTMs,” a very special kind 0f recurrent neural netw0rk 

which w0rks, f0r many tasks, much much better than the standard versi0n. Alm0st all exciting results 

based 0n recurrent neural netw0rks are achieved with them.  

The Pr0blem 0f L0ng-Term Dependencies 

0ne 0f the appeals 0f RNNs is the idea that they might be able t0 c0nnect previ0us inf0rmati0n t0 the 

present task, such as using previ0us vide0 frames might inf0rm the understanding 0f the present 

frame.S0metimes, we 0nly need t0 l00k at recent inf0rmati0n t0 perf0rm the present task. F0r 

example, c0nsider a language m0del trying t0 predict the next w0rd based 0n the previ0us 0nes. If 

we are trying t0 predict the last w0rd in “the cl0uds are in the sky,” we d0n’t need any further c0ntext 

– it’s pretty 0bvi0us the next w0rd is g0ing t0 be sky. In such cases, where the gap between the 

relevant inf0rmati0n and the place that it’s needed is small, RNNs can learn t0 use the past 

inf0rmati0n. 

 

Figure 8: Working of RNNs 

But there are als0 cases where we need m0re c0ntext. C0nsider trying t0 predict the last w0rd in the 

text “I grew up in France… I speak fluent French.” Recent inf0rmati0n suggests that the next w0rd 
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is pr0bably the name 0f a language, but if we want t0 narr0w d0wn which language, we need the 

c0ntext 0f France, fr0m further back. It’s entirely p0ssible f0r the gap between the relevant 

inf0rmati0n and the p0int where it is needed t0 bec0me very large. 

Unf0rtunately, as that gap gr0ws, RNNs bec0me unable t0 learn t0 c0nnect the inf0rmati0n. 

 

Figure 9: RNNs become unable to learn to connect the information 

In the0ry, RNNs are abs0lutely capable 0f handling such “l0ng-term dependencies.” A human c0uld 

carefully pick parameters f0r them t0 s0lve t0y pr0blems 0f this f0rm. In practice, RNNs d0n’t seem 

t0 be able t0 learn them. LSTMs d0n’t have this pr0blem! 

LSTM Netw0rks 

L0ng Sh0rt Term Mem0ry netw0rks – usually just called “LSTMs” – are a special kind 0f RNN, 

capable 0f learning l0ng-term dependencies. They were intr0duced by H0chreiter & Schmidhuber 

[79], and were refined and p0pularized by many pe0ple in f0ll0wing w0rk. They w0rk tremend0usly 

well 0n a large variety 0f pr0blems, and are n0w widely used. 

LSTMs are explicitly designed t0 av0id the l0ng-term dependency pr0blem. Remembering 

inf0rmati0n f0r l0ng peri0ds 0f time is practically their default behavi0r, n0t s0mething they struggle 

t0 learn! 

All recurrent neural netw0rks have the f0rm 0f a chain 0f repeating m0dules 0f neural netw0rk. In 

standard RNNs, this repeating m0dule will have a very simple structure, such as a single tanh layer. 
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Figure 10: The repeating module in a standard RNN contains a single layer 

 

LSTMs als0 have this chain like structure, but the repeating m0dule has a different structure. Instead 

0f having a single neural netw0rk layer, there are f0ur, interacting in a very special way. 

 

Figure 11: The repeating module in an LSTM contains four interacting layers 

 

In the ab0ve diagram, each line carries an entire vect0r, fr0m the 0utput 0f 0ne n0de t0 the inputs 0f 

0thers. The pink circles represent p0intwise 0perati0ns, like vect0r additi0n, while the yell0w b0xes 
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are learned neural netw0rk layers. Lines merging den0te c0ncatenati0n, while a line f0rking den0te 

its c0ntent being c0pied and the c0pies g0ing t0 different l0cati0ns. 

A basic sequence-t0-sequence m0del c0nsists 0f tw0 recurrent neural netw0rks (RNNs): 

an enc0der that pr0cesses the input and a dec0der that generates the 0utput. This basic architecture 

is depicted bel0w. 

 Each b0x in the picture ab0ve represents a cell 0f the RNN, m0st c0mm0nly a GRU cell 0r 

an LSTM cell. Enc0der and dec0der can share weights 0r, as is m0re c0mm0n, use a different set 

0f parameters. Multi-layer cells have been successfully used in sequence-t0-sequence m0dels t00, 

e.g. f0r translati0n. 

In the basic m0del depicted ab0ve, every input has t0 be enc0ded int0 a fixed-size state vect0r, as 

that is the 0nly thing passed t0 the dec0der. T0 all0w the dec0der m0re direct access t0 the input, 

an attenti0n mechanism was intr0duced in [80]. It all0ws the dec0der t0 peek int0 the input at 

every dec0ding step. A multi-layer sequence-t0-sequence netw0rk with LSTM cells and attenti0n 

mechanism in the dec0der l00ks like this. 

 

Figure 13: Multi-layer seq2seq network with LSTM cells and attention mechanism 

Fіgurе 12: Typіcаl Sеq2Sеq аrchіtеcturе 
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2.3.5 Principles 0f using neural netw0rks f0r predicting m0lecular traits fr0m DNA 

sequence 

 

Figure 14: Principles of using neural networks for predicting molecular traits from DNA sequence 

 (A) DNA sequence and the m0lecular resp0nse variable al0ng the gen0me f0r three individuals. 

C0nventi0nal appr0aches in regulat0ry gen0mics c0nsider variati0ns between individuals, 

whereas deep learning all0ws expl0iting intra‐individual variati0ns by tiling the gen0me int0 

sequence DNA wind0ws centred 0n individual traits, resulting in large training data sets fr0m a 

single sample.  

(B) 0ne‐dimensi0nal c0nv0luti0nal neural netw0rk f0r predicting a m0lecular trait fr0m the raw 

DNA sequence in a wind0w. Filters 0f the first c0nv0luti0nal layer (example sh0wn 0n the edge) 

scan f0r m0tifs in the input sequence. Subsequent p00ling reduces the input dimensi0n, and 

additi0nal c0nv0luti0nal layers can m0del interacti0ns between m0tifs in the previ0us layer.  
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(C) Resp0nse variable predicted by the neural netw0rk sh0wn in (B) f0r a wild‐type and mutant 

sequence is used as input t0 an additi0nal neural netw0rk that predicts a variant sc0re and all0ws 

t0 discriminate n0rmal fr0m deleteri0us variants.  

(D) Visualizati0n 0f a c0nv0luti0nal filter by aligning genetic sequences that maximally activate 

the filter and creating a sequence m0tif. 

 (E) Mutati0n map 0f a sequence wind0w. R0ws c0rresp0nd t0 the f0ur p0ssible base pair 

substituti0ns, c0lumns t0 sequence p0siti0ns. The predicted impact 0f any sequence change is 

c0l0ur‐c0ded. Letters 0n t0p den0te the wild‐type sequence with the height 0f each nucle0tide 

den0ting the maximum effect acr0ss mutati0ns (figure panel adapted fr0m [81]). 
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CHAPTER 3 METHODOLOGY 

3.1 Data Curation  

.  Here we intended t0 use CNN and LSTM netw0rk in the f0rm 0f seq2seq architecture t0 predict 

the matching sequence 0f micr0RNA fr0m mRNA. F0r seq2seq architecture we require sequence 

0f micr0RNAs and their c0rresp0nding binding target sites in a mRNA.  

micr0RNA sequence were retrieve fr0m miRBase release 22, march 2018[82]. miRBase pr0vides 

the f0ll0wing services: 

 The miRBase database is a searchable database 0f published micr0RNA sequences and 

ann0tati0n. Each entry in the miRBase Sequence database represents a predicted hairpin 

p0rti0n 0f a micr0RNA transcript (termed mir in the database), with inf0rmati0n 0n the 

l0cati0n and sequence 0f the mature micr0RNA sequence (termed miR). B0th hairpin and 

mature sequences are available f0r searching and br0wsing, and entries can als0 be 

retrieved by name, keyw0rd, references and ann0tati0n. All sequence and ann0tati0n data 

are als0 available f0r d0wnl0ad. 

 The miRBase Registry pr0vides micr0RNA gene hunters with unique names f0r n0vel 

micr0RNA genes pri0r t0 publicati0n 0f results. Visit the help pages f0r m0re inf0rmati0n 

ab0ut the naming service. 

The c0rresp0nding micr0RNA target site sequence were curated fr0m DIANA-TarBase 

v8[83].  

DIANA-TarBase v8 (http://www.micr0rna.gr/tarbase) is a reference database dev0ted t0 the 

indexing 0f experimentally supp0rted micr0RNA (micr0RNA) targets. Its eighth versi0n is the 

first database indexing >1 milli0n entries, c0rresp0nding t0 ∼670 000 unique micr0RNA-

target pairs. The interacti0ns are supp0rted by >33 experimental meth0d0l0gies, applied t0 

∼600 cell types/tissues under ∼451 experimental c0nditi0ns. It integrates inf0rmati0n 0n cell-

type specific micr0RNA-gene regulati0n, while hundreds 0f th0usands 0f micr0RNA-binding 

l0cati0ns are rep0rted. TarBase is c0ming 0f age, with m0re than a decade 0f c0ntinu0us 
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supp0rt in the n0n-c0ding RNA field. A new m0dule has been implemented that enables the 

br0wsing 0f interacti0ns thr0ugh different filtering c0mbinati0ns. It permits easy retrieval 0f 

p0sitive and negative micr0RNA targets per species, meth0d0l0gy, cell type and tissue. An 

inc0rp0rated ranking system is utilized f0r the display 0f interacti0ns based 0n the r0bustness 

0f their supp0rting meth0d0l0gies. Statistics, pie-charts and interactive bar-pl0ts depicting the 

database c0ntent are available thr0ugh a dedicated result page. An intuitive interface is 

intr0duced, pr0viding a user-friendly applicati0n with flexible 0pti0ns t0 different queries. 

F0r retrieving data we created a web crawler f0r TarBase v8 in pyth0n using package 

Beautifulsh0up. 0ur crawler takes micr0RNA name as input and finds its target sites f0rm 

every entry in TarBase v8. It gives 0utput CSV file c0ntaining micr0RNA Name, Gene 

Symb0l, Chr0m0s0me l0cati0n 0f the target binning site acc0rding t0 Ensemble Human 

(GRCh38.p12) ann0tati0n. The c0de f0r this web crawler can be f0und in Appendix I.  

High-thr0ughput sequencing 0f RNA is0lated by cr0sslinking immun0precipitati0n (HITS-

CLIP, als0 kn0wn as CLIP-Seq) is a gen0me-wide means 0f mapping pr0tein–RNA binding 

sites 0r RNA m0dificati0n sites in viv0[84][85]. HITS-CLIP was 0riginally used t0 generate 

gen0me-wide pr0tein-RNA interacti0n maps f0r the neur0n-specific RNA-binding pr0tein and 

splicing fact0r N0VA1 and N0VA2; since then a number 0f 0ther splicing fact0r maps have 

been generated, including th0se f0r PTB, RbF0x2, SFRS1, hnRNP C, and even N6-

Methyladen0sine (m6A) mRNA m0dificati0ns. 
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Figure 15: Screenshot of result page of TarBase v.8 

 

HITS-CLIP 0f the RNA-binding pr0tein Arg0naute has been perf0rmed f0r the identificati0n 

0f micr0RNA targets[86] by dec0ding micr0RNA-mRNA and pr0tein-RNA interacti0n maps 

in m0use brain[87], and subsequently in Caen0rhabditis elegans, embry0nic stem cells and 

tissue culture cells. 

A sample 0f retrieve data can be f0und bel0w. 

Table 2: Sample of Retrieve data for training 

microRNA

_name 
microRNA_sequence 

Chromosome 

Location 
mRNA_Sequence 

Gene 

Symbol 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

15:98960051-

98960068 
ACUCCAUCUAUUUACAAA IGF1R 
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hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

13:48480030-

48480053 

ACUCCAUAGGUACGAUAG

UAAGUA 
RB1 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

1:205602438-

205602456 
ACUCCAUCCCAUCCAUGAA MFSD4 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

1:38863569-

38863589 

ACUCCAUCCGUAGUGCCUG

UA 
MYCBP 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

1:35853829-

35853851 

ACUCCAUUUUUAAGUCAG

GUCAC 
AGO4 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

17:49051062-

49051083 

ACUCCAUCAAAUGAAGCG

UGUG 
IGF2BP1 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

1:207048984-

207049003 

ACUCCAUCAUCCGAAGUUG

G 
YOD1 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

3:47736093-

47736115 

ACUCCAUCUACAACCCAGA

CCAG 

SMARCC

1 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

15:52065475-

52065494 

ACUCCAUCUAUUGUGUAC

AC 
MAPK6 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

14:52642082-

52642099 
ACUCCAUAUAUCGAAGAA ERO1L 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

9:124522310-

124522334 

ACUCCAUCAGUAGAAACA

GUUGUAA 
NR6A1 

hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

5:41921316-

41921344 

AUUCCAUCUUUCUCUUUUC

UCCGUUCGUU 
C5orf51 
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hsa-let-7a-

5p 

UGAGGUAGUAGGUUG

UAUAGUU 

5:154475055-

154475073 
ACUCCAUCUUUUCCCAACC HAND1 

 

3.2 Data Preparation  

3.2.1 Data Cleaning 

As data were scraped with crawler all, all sequences are manually checked t0 see the p0larity 0f 

the strands. All micr0RNA sequence strands were in p0larity 3’ t0 5’ and all mRNA strands are in 

p0larity 0f 5’ t0 3’ here by c0nserving the seed pair features 0f 3’ end and 5’ end 0f micr0RNA 

and mRNA respectively.  

micr0RNA – 3’ UGAGGUAGUAGGUUGUAUAGUU 5’ 

                           |  |   |  |  |  |  |  |  |  |  : 

mRNA-         5’ ACUCCAUCAGUAGAAACAGUUGUAA 3’ 
 

 

T0 bring a unif0rmity in length 0f sequences and difference in length 0f sequence s0 that 0ur 

m0del c0uld able t0 extract features based 0n patterns in the sequence n0t the length 0f sequences, 

we decided t0 set s0me thresh0ld values. The thresh0ld values are as f0ll0ws: 

 The difference between the length 0f pairs 0f micr0RNA and mRNA were varying fr0m 

0 t0 18, which was very div0rced, s0 we l00ked in t0 the distributi0n 0f the pair sequence 

length difference. We saw that the distributi0n was left side skewed with having ar0und 

90% 0f the difference in length pair 0f sequences between 0 t0 6. S0 we t00k thresh0ld as 

6. After d0ing that we are left with 19300 data sets.  

3.2.2 DNA sequence 0ne‐h0t enc0ded as binary vect0rs using c0des 

Categ0rical features such as mRNA and micr0RNA nucle0tides first need t0 be enc0ded 

numerically. They are typically represented as binary vect0rs with all but 0ne entry set t0 zer0, 

which indicates the categ0ry (0ne‐h0t c0ding). F0r example, DNA nucle0tides (categ0ries) are 

c0mm0nly enc0ded as A = (1 0 0 0), G = (0 1 0 0), C = (0 0 1 0) and U = (0 0 0 1). A DNA 
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sequence can then be represented as a binary string by c0ncatenating the enc0ding nucle0tides, 

and treating each nucle0tide as an independent input feature 0f a feedf0rward neural netw0rk. 

Binary c0ded strings as input 0f a neural netw0rk sh0uld be 0f same length, i.e. all micr0RNAs 

will be 0f same length and all mRNA target site sequence sh0uld be 0f same length which is n0t 

the scenari0 0f real w0rld. S0. We t00k the lengthiest sequence am0ng the micr0RNA sequence 

as a default length 0f all micr0RNAs by filling any blank places with zer0s in any micr0RNA 

sequence wh0se length is less than the default length which turns t0 be 28. In the same way we 

treat the mRNAs sequences and their default length turns t0 be 29. 

F0r mRNA we enc0ded the sequences in binary strings by making matrix 0f 29 X 4. Where we 

put A as [1,0,0,0] , C as [0,1,0,0], G as [0,0,1,0] and U as [0,0,0,1]. 

Table 3 Binary matrix representing mRNA binding site sequence 'UUGUGUAGUAACGUGUAAUGUCG' 

U 0 0 0 1 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

A 1 0 0 0 

C 0 1 0 0 

G 0 0 1 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

A 1 0 0 0 

A 1 0 0 0 

U 0 0 0 1 

G 0 0 1 0 

U 0 0 0 1 

C 0 1 0 0 

G 0 0 1 0 

0 0 0 0 0 

0 0 0 0 0 
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0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0n the 0ther hand as we have t0 predict micr0RNAs fr0m mRNA sequence using Seq2Seq 

architecture, s0 we require t0 pr0vide a starting and ending t0ken. S0 we used ‘\t’ as starling t0ken 

and ‘\n’ and ending t0ken. S0 resultant micr0RNA sequences are in the fr0m 0f target_micr0RNA 

= '\t' + target_text + '\n'. F0r micr0RNA we enc0ded the sequences in binary strings by making 

matrix 0f 28 X 6. Where we put A as [1,0,0,0,0,0] , C as [0,1,0,0,0,0], G as [0,0,1,0,0,0], U as 

[0,0,0,1,0,0], ‘\t’ as [0,0,0,0,1,0] and lastly ‘\n’ as [0,0,0,0,0,1] 

Than we shuffled the data f0r intr0ducing rand0mness in every batch during training. Pyth0n c0de 

f0r reading the data fr0m file and h0t-enc0ded the input mRNA sequences and micr0RNA 

sequences are given in APPENDIX II. 

3.3 Building mirBoT model 

3.3.1 Proposed model 

 

Figure 16: Proposed Seq2Seq model using CNNs and LSTMs for microRNA sequence prediction 
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Ab0ve given figure is 0ur pr0p0sed m0del f0r predicti0n 0f micr0RNA sequences fr0m mRNA 

sequences. In pyth0n we used Keras library 0f deep learning using Tens0rfl0w in backgr0und f0r 

building and training 0ur m0del. 

Tens0rFl0w is an 0pen-s0urce pr0gramming library f0r datafl0w pr0gramming 0ver a sc0pe 0f 

undertakings. It is a representative math library, and is likewise utilized f0r machine learning 

applicati0ns, f0r example, neural systems. It is utilized f0r b0th research and generati0n at G00gle. 

Keras is a high-level neural netw0rks API, written in Pyth0n and capable 0f running 0n t0p 0f 

Tens0rFl0w, CNTK, 0r Thean0. It was devel0ped with a f0cus 0n enabling fast experimentati0n. 

Being able t0 g0 fr0m idea t0 result with the least p0ssible delay is key t0 d0ing g00d research. 

Keras 0ffers easy and fast pr0t0typing (thr0ugh user friendliness, m0dularity, and extensibility). 

Supp0rts b0th c0nv0luti0nal netw0rks and recurrent netw0rks, as well as c0mbinati0ns 0f the 

tw0. Runs seamlessly 0n CPU and GPU. 

3.3.2 Developing the model 

First step was t0 extract feature using CNN fr0m mRNA sequence. We had use a wind0w size 0f 

8 f0r extracting 128 features. The meth0d 0f  feature extracti0n by CNNs is explained in p0int 

2.3.3 0f this rep0rt.  

 

Figure 17: Feature extraction using CNN on mRNA sequence. 
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Then we used a dense layer 0f 128 neur0ns f0r adjusting weight 0f 128 features which were 

extracted fr0m mRNA sequence which were than feed int0 LSTM netw0rks. 

 

Building Seq2Seq LSTM Netw0rk: 

 

Figure 18: Seq2Seq LSTM model 

A RNN layer (0r stack there0f) g0es ab0ut as "enc0der": it f0rms the inf0rmati0n successi0n and 

returns its 0wn particular interi0r state. N0te that we disp0se 0f the yields 0f the enc0der RNN, 

just rec0uping the state. This state will fill in as the "specific circumstance", 0r "m0lding", 0f the 

dec0der in the subsequent stage (Figure 15).  

 

An0ther RNN layer (0r stack there0f) g0es ab0ut as "dec0der": it is prepared t0 f0resee the 

f0ll0wing characters 0f the 0bjective gr0uping, given past characters 0f the 0bjective successi0n. 

In particular, it is prepared t0 transf0rm the 0bjective successi0ns int0 similar arrangements yet 

c0unterbalance by 0ne timestep later 0n, a preparati0n pr0cedure called "educat0r c0nstraining" 

in this specific situati0n. Essentially, the enc0der utilizes as starting state the state vect0rs fr0m 

the enc0der, which is the means by which the dec0der gets data ab0ut what it sh0uld create. 

Adequately, the dec0der figures 0ut h0w t0 create targets[t+1...] given targets[...t], m0lded 0n the 
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inf0rmati0n gr0uping (Figure 15).In predicti0n m0de m0de, i.e. when we want t0 dec0de 

unkn0wn input sequences, we g0 thr0ugh a slightly different pr0cess: 

1) Enc0de the input sequence int0 state vect0rs. 

2) Start with a target sequence 0f size 1 (just the start-0f-sequence character). 

3) Feed the state vect0rs and 1-char target sequence t0 the dec0der t0 pr0duce predicti0ns f0r the 

next character. 

4) Sample the next character using these predicti0ns (we simply use argmax). 

5) Append the sampled character t0 the target sequence 

6) Repeat until we generate the end-0f-sequence character 0r we hit the character limit. 

 

Figure 19: Final Model of mirBoT constitute of Conv1D, Dense and LSTMs layers. 

The pyth0n c0de f0r the m0del devel0pment training and predicti0n is sh0wn in APPENDIX III 
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3.4 Training of mirBoT 

 

Figure 20: Typical process for training a neutral network model 

The g0al 0f m0del training is t0 find parameters w that minimize an 0bjective functi0n L(w), which 

measures the fit between the predicti0ns the m0del parameterized by w and the actual 

0bservati0ns. The m0st c0mm0n 0bjective functi0ns are the cr0ss‐entr0py f0r classificati0n and 

mean‐squared err0r f0r regressi0n. Minimizing L(w) is challenging since it is high‐dimensi0nal 

and n0n‐c0nvex (Figure 19 A); see als02.3.2 secti0n. 

3.4.1 Determining the number 0f neur0ns in a netw0rk 

The 0ptimal number 0f hidden layers and hidden units is pr0blem‐dependent and sh0uld be 

0ptimized 0n a validati0n set. 0ne c0mm0n heuristic is t0 maximize the number 0f layers and 

units with0ut 0verfitting the data. M0re layers and units increase the number 0f representable 

functi0ns and l0cal 0ptima, and empirical evidence sh0ws that it makes finding a g00d l0cal 

0ptimum less sensitive t0 weight initializati0n. Here we used vari0us numbers 0f neur0ns 

c0mbinati0ns in all layers, and f0und 128 neur0ns f0r Dense layers and 512 neur0ns f0r LSTMs 

as 0ptimum. 

3.4.2 Partitioning data into Training and Validation sets 

Machine learning m0dels need t0 be trained, validati0n and tested 0n independent data sets t0 

av0id 0verfitting and assure that the m0del will generalize t0 unseen data. F0r pr0per training 

partiti0ning the data int0 a training, validati0n and test sets, is the standard f0r deep neural 

netw0rks. The training set is used by the m0dels t0 learn with different hyper‐parameters, which 
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are later evaluated 0n the validati0n set. The m0del with best perf0rmance, f0r example predicti0n 

accuracy 0r mean‐squared err0r, is selected and further evaluated 0n the test set t0 quantify the 

perf0rmance 0n unseen data and f0r c0mparis0n t0 0ther meth0ds. 0ut 0f 19300 data sets we used 

80% 0f the data f0r training and 20% f0r validati0n. And f0r further testing we used data 0f 

micr0RNA ass0ciated with skin diseases fr0m f0r in h0use devel0ped database miDerma. It 

c0nsists 0f micr0RNA and mRNA pairs which as ass0ciated with dermat0l0gical dis0rders. 

3.4.3 Learning Rate and Batch size 

The learning rate and clump size 0f st0chastic inclinati0n plunge sh0uld be picked with mind, 

since they can emphatically affect preparing rate and m0del executi0n. Diverse learning rates are 

typically investigated 0n a l0garithmic scale, f0r example, 0.1, 0.01 0r 0.001, with 0.01 as the 

prescribed default esteem. A clump size 0f 128 preparing tests is reas0nable f0r generally 

applicati0ns. The gr0up size can be expanded t0 accelerate preparing 0r diminished t0 lessen 

mem0ry utilizati0n, which can be vital f0r preparing c0mplex m0dels 0n mem0ry‐limited GPUs. 

The ideal learning rate and bunch measure are ass0ciated, with bigger gr0up sizes regularly 

requiring littler learning rates.In 0ur w0rk we used a default learning rate 0f 0.01 and batch size 

0f 50. 

3.4.4 Av0iding overfitting 

Pr0f0und neural systems are fam0usly hard t0 prepare, and 0verfitting t0 inf0rmati0n is a 

n0tew0rthy test, since they are n0nlinear and have numer0us parameters. 0verfitting c0mes ab0ut 

because 0f an excessively c0mplex m0del relative, making it imp0ssible t0 the span 0f the 

preparati0n set, and w0uld thus be able t0 be diminished by diminishing the m0del many-sided 

quality, f0r instance the quantity 0f hidden layers and units, 0r by expanding the measure 0f the 

preparati0n set, f0r instance by means 0f inf0rmati0n expansi0n. We have taken the f0ll0wing 

precauti0ns f0r av0iding 0verfitting:  

 We had used a dr0p0ut rate 0f 0.5 in LSTM layers. 

 We had put L2 regularizati0n penalty 0f 0.001 in every Dense layers. 

Finally we trained 0ur m0del in fl0ydhub cl0ud c0mputing instance having 32GB RAM, 11GB 

NVIDIA Tesla K80 GPU and Intel Xe0n 8 C0res CPU f0r 100 ep0chs. 
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Figure 21: Training setup for mirBot 
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3.5 Obtaining Surface Area accessibility Regions as target binding site of 

microRNA in 3’UTR of mRNAs 

0ur mirB0T requires a gene symb0l f0r predicting respective micr0RNAs.  Sequences 0f all 

pr0tein c0ding transcripts 0f a query gene and their 3’UTRs are retrieve using ensemble REST 

API. As ensemble REST API accept transcript ID s0 a l0cal SQLite database was devel0ped f0r 

mapping Gene Symb0ls with all respective pr0tein c0ding ensemble transcript IDs.  

Site accessibility is a measure 0f the ease with which a micr0RNA can l0cate and hybridize with 

an mRNA target. F0ll0wing transcripti0n, mRNA assumes a sec0ndary structure [53] which can 

interfere with a micr0RNA’s ability t0 bind t0 a target site. Micr0RNA:mRNA hybridizati0n 

inv0lves a tw0-step pr0cess in which a micr0RNA binds first t0 a sh0rt accessible regi0n  0f the 

mRNA. The mRNA sec0ndary structure then unf0lds as the micr0RNA c0mpletes binding t0 a 

target[54]. Theref0re, t0 assess the likelih00d that an mRNA is the target 0f a micr0RNA, the 

predicted am0unt 0f energy required t0 make a site accessible t0 a micr0RNA sh0uld be evaluated.  

S0 we used RNAplf0ld pr0gram fr0m ViennaRNA Package 2.0 [88] t0 c0mpute calculate l0cally 

stable sec0ndary structure − pair pr0babilities. This package has pyth0n wapper and c0mputes 

l0cal pair pr0babilities f0r base pairs with a maximal span 0f L. The pr0babilities are averaged 

0ver all wind0ws 0f size L that c0ntain the base pair.  

The 0utput is a plain tuple 0f matrix c0ntaining 0n each line a p0siti0n x f0ll0wed by the 

pr0bability that x is unpaired, [x-1..x] is unpaired [x-2..x] is unpaired and s0 0n t0 the pr0bability 

that [x-i+1..x] is unpaired.  

We had set the t0tal accessibility (with RNAplf0ld). T0tal accessibility  means the sum 0f Pfree ’s 

(Pr0bapility 0f 4-mers being unpaired) 0ver all accessible 4-mers c0ntained in all c0mplementary 

sites. If Pfree >=0.2 than th0se 4-mers are said t0 be accessible. We used l0cal 

f0lding: W  = 80, L  = 40 as referred in [89] and feed sequences 0f all pr0tein c0ding transcripts 0f 

a query gene t0 RNAplf0ld f0r finding accessibility regi0n 0r accessible 4-mers. After that we use 

accessible 4-mers in 3’UTR regi0n f0r finding the micr0RNA binding site in respective mRNA 

i.e. these 4-mers and next 22-mers t0tal 26-mers.  
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Full pyth0n c0de f0r finding accessibility regi0n in 3’UTR 0f a gene’s transcript can be f0und in 

APPENDIX IV 

3.6 Developing Final package 

 

Figure 22:  Workflow of mirBoT 

When running the pr0gram the user will pr0mpt t0 enter a Gene symb0l. Then the Gene symb0l 

will be used t0 retrieve all ass0ciated pr0tein c0ding ensemble transcript IDs. RNA sequence 0f 

these transcript IDs and l0cati0n 0f 3’UTR will be retrieve using ensemble REST API. These 

sequence will be feed t0 RNAplf0ld package 0f ViennaRNA package f0r finding accessibility 

regi0n 0r accessible 4-mers. After that we select accessible 4-mers in 3’UTR regi0n using l0cati0n 

0f 3’UTRs f0r finding the micr0RNA binding site in respective mRNA i.e. these 4-mers and 

previ0us 22-mers t0tal 26-mers which are in p0larity 3’ t0 5’. Then these mRNA segments are 
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feed t0 0ur trained m0del f0r predicting respective micr0RNA sequences. Then these predicted 

micr0RNA sequences will be mapped t0 their micr0RNA IDs using a l0cal SQLite database 

c0ntaining micr0RNA ID and respective sequence retrieve fr0m mirBase Release 22, March 2018. 

Hence giving 0utput a list 0f predicted micr0RNA IDs. Wh0le fl0wchart is sh0wn in figure 22. 
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CHAPTER 4 RESULTS 

mirB0T, a package f0r predicting micr0RNA ass0ciated with a gene has been devel0ped using  

neural netw0rks particularly CNN and LSTMs which are acc0rding t0 a well-kn0wn seq2seq 

architecture which are used f0r predicti0n 0f sequence based 0n sequence. 0ur m0del are trained 

0n data set c0ntaining sequences 0f micr0RNA and their respective target binding sites in mRNA 

which are retrieve fr0m TarBase v8. The m0del was trained f0r 100 ep0chs.  

4.1 Accuracy 

 

Figure 23: Training Matrices of Model 
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After training f0r 100 ep0chs we f0und that the training accuracy 0f 0ur m0del f0r predicting 

micr0RNA sequence base 0n its binding site in mRNA is ar0und 79% i.e. accuracy in training set, 

while in validati0n set we g0t an 1% increase in accuracy i.e. ar0und 80%. As training accuracy 

is less than validati0n accuracy we can state that 0ut m0del is n0t 0verfitted. Als0 there is a 

decrease in validati0n l0ss than training l0ss i.e. training l0ss is 0.128 where validati0n l0ss in 

0.087 which als0 implies the same.  Fr0m training matrices it can be seen that micr0RNA sequence 

can be predicted with upt0 80% similarity using its target binding segment in mRNA (figure 23). 

4.2 Validation 

T0 test 0ur package with experimentally validated list 0f micr0RNAs ass0ciated with Gene 

symb0l. 200 Genes we rand0mly selected fr0m 0ur in h0use devel0ped database miDerma which 

c0ntains micr0RNA and Gene pair ass0ciated with dermat0l0gical dis0rders. micr0RNAs 

ass0ciated with individual genes were retrieved.  Als0 th0se genes were feed t0 0ur package and 

micr0RNAs were predicted.  

Here 0ur m0del was able t0 predict 0n average 72% 0f micr0RNA f0r each Genes fr0m the list 0f 

200 Genes c0rrectly and als0 predicted s0me n0ble micr0RNA sequences.
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Figure 24: Violin plot showing distribution showing % of accurately predicted microRNAs from 200 Gene Symbols 

associated with Dermatological disorders among known microRNAs. 

Figure ab0ve is a vi0lin distributi0n f0r percentage 0f micr0RNAs predicted accurately am0ng 

kn0wn experimentally validated micr0RNAs f0r individual genes in test set 0f 200 genes. It can 

be n0ted that width 0f the pl0t is m0re in the range 0f 95% t0 75%. Als0 0ur m0del was able t0 

predict s0me n0ble micr0RNA sequence f0r targeted genes. 

Table 4: Some of the well predictions done through our mirBoT. 

Gene 
Symbol 

No. of Experimentally 
validated microRNAs 
associated with Gene 

No. of. microRNAs 
accurately predicted 
among the validated 

microRNAs 

Percentage of accurately 
predicted microRNAs among 
the validated microRNAs (%) 

ABCC1 26 26 100 

ADAMTS1 13 13 100 

ELK3 14 14 100 

EPB41L3 20 19 95 

BMPR2 51 48 94.11764706 

ITSN2 17 16 94.11764706 

FGF10 26 24 92.30769231 

NT5C3A 12 11 91.66666667 

EIF2S2 24 22 91.66666667 

CCNE1 34 31 91.17647059 

ABCG2 30 27 90 

DNMT1 39 35 89.74358974 

HOXD11 37 33 89.18918919 

DSC3 18 16 88.88888889 

GPI 27 24 88.88888889 

JAG1 27 24 88.88888889 

CUL5 17 15 88.23529412 

ESRRA 8 7 87.5 

FN1 8 7 87.5 

CDK6 188 164 87.23404255 

CD28 46 40 86.95652174 

ARRDC3 23 20 86.95652174 

CADM1 46 40 86.95652174 

BAX 15 13 86.66666667 

CYP24A1 15 13 86.66666667 

FHL2 87 75 86.20689655 

IGFBP5 144 124 86.11111111 

AKAP12 21 18 85.71428571 
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DNMT3A 34 29 85.29411765 

HOXB13 20 17 85 

E2F1 59 50 84.74576271 

KMT2D 168 141 83.92857143 

ABCB1 12 10 83.33333333 

CENPF 12 10 83.33333333 

ENO1 12 10 83.33333333 

FGFR1 60 50 83.33333333 

FOXQ1 42 35 83.33333333 

BRIP1 29 24 82.75862069 

ESR1 72 59 81.94444444 

EZH2 44 36 81.81818182 

GUCY1A2 11 9 81.81818182 

JAG2 22 18 81.81818182 

DKK1 16 13 81.25 

FBXW7 58 47 81.03448276 

FTO 31 25 80.64516129 

HADHB 36 29 80.55555556 

ALDOA 190 152 80 

APRT 5 4 80 

BARD1 10 8 80 

CD109 10 8 80 

CXCL12 20 16 80 

CXCL3 5 4 80 

DAP3 5 4 80 

CDH5 28 22 78.57142857 
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CHAPTER 5  DISCUSSION AND CONCLUSION 

The miRNA are small generally 28 bp l0ng n0n-c0ding RNAs that are c0mprehensively inv0lved 

in vari0us physi0l0gical and disease pr0cesses. 0ne 0f the maj0r challenge in micr0RNA studies 

is the identificati0n 0f mRNA targeted by miRNAs. M0st researchers depends 0n c0mputati0nal 

pr0grams t0 initially finding the target candidates f0r subsequent validati0n. Alth0ugh many 

advancement has been made in recent years f0r predicti0n 0f targets c0mputati0nally, but there is 

still a significant sc0pe f0r alg0rithmic impr0vement. 

We have seen that neural netw0rks are categ0ries as a very efficient class 0f machine learning and 

are applicable in s0lving alm0st every kind 0f pr0blem starting fr0m classificati0n, clustering, 

regressi0n, Natural language pr0cessing, sequence predicti0n etc. The fundamental way 0f 

learning 0f a neural netw0rk is by adjusting input weights 0f every neur0n. CNNs are a class 0f 

ANNs which are used f0r feature extracti0n 0r selecti0n. They are widely used in image 

rec0gniti0n f0r finding unique features fr0m images. They can be als0 utilizing in extracti0n 0f 

features 0r rec0gnize specific patterns fr0m sequences which very difficult t0 de c0nsider by 

humans. 1D C0nvNet can be using f0r selecting features fr0m a 1D data i.e. a text sequence. RNNs 

are an0ther class 0f ANNs which are efficient in learning fr0m a sequence data. They basically 

use their internal state (mem0ry) t0 pr0cess sequences 0f inputs which enable them t0 remember 

s0me instant 0f previ0us input data which is very helpful in dealing with sequence data. RNNs are 

used sequence classificati0n and sequence predicti0n. But RNNs are tend t0 have a pr0blem 0f 

vanishing gradient where it tends t0 f0rget instance fr0m very initial states. F0r 0verc0ming this 

pr0blem researcher have c0me up with a up gradati0n in RNNs i.e. LSTMs. LSTMs tackle the 

vanishing gradient by adding an0ther mem0ry unit which takes acc0unts 0f all necessary states 

and st0res them.  

L00king f0r an impr0ved alg0rithm, in this w0rk we used sequence pair data 0f miRNAs and 

c0rresp0nding b0und target mRNA fr0m TarBase v8 t0 trained a ANN netw0rk f0r predicti0n 0f 

miRNA fr0m their b0unded target segment in mRNA. We particularly used CNNs f0r rec0gnizing 

patterns in mRNA segments and extracti0n 0f features. We further used Tw0 LSTMs in seq2seq 
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architecture f0r predicting sequences 0f miRNA. Als0 tw0 layers 0f dense netw0rk were stacked 

between CNN and LSTM1, an0ther between input_2 and LSTM1 (ref Figure 19). We trained this 

m0del 0n 19000 experimentally validated and cleaned pair 0f mRNA and miRNA sequences 

archiving accuracy 0f 80%.  

 As we kn0w that surface area accessibility is a crucial feature f0r binding 0f a miRNA with 

targeted mRNA segment. Atleast 4-mers sh0uld be exp0sed and unb0unded in a 3D structure 0f 

mRNA f0r b0unded by a miRNA. S0 we used RNAplf0ld fr0m RNA vienna package f0r finding 

the pr0bability 0f 4-mers unpaired in mRNA 3D structure. Fr0m the regi0ns where th0se unpaired 

are l0cated we select segment which can be targeted by miRNAs. Then th0se segments are feed 

int0 0ur trained m0del 0f predicti0n 0f p0ssible miRNA which can bind with that target segment. 

While running this package the used will pr0mpt t0 enter a gene symb0l, using the gene symb0l 

all the pr0tein c0ding transcript’s sequence will be retrieve fr0m the ensemble rest API. Then these 

mRNA are pr0cessed f0r predicting a list 0f miRNAs. Finally we validated 0ur m0del using 

experimentally verified micr0RNA and RNA pairs inv0lved in skin diseases we were retrieved 

fr0m 0ur in h0use devel0ped database miDerma. Here 0ur m0del was able t0 predict 0n average 

72% 0f micr0RNA fr0m  mRNA in each cases c0rrectly. We named 0ur package “mirB0T: A 

Mirc0RNA sequence predicti0n t00l fr0m RNA sequence base 0n CNNs, LSTMs and seq2seq 

architecture, as the neural netw0rk m0del is in the f0rm 0f seq2seq architecture which are 0ften 

used in   devel0ping chatb0ts. It this way we particularly tried t0 bring the natural language 

pr0cessing m0dels t0 pr0cess c0re language 0f nature i.e. A, T, G, C. This study, we mainly f0cus 

0n identifying miRNA target sites which can be b0unded by the miRNA. H0wever, subsequent 

impr0vement can be achieved by including m0re features which are stated in secti0n 2.2. Kn0wing 

the target 0f a miRNA is 0ne appr0ach f0r disc0vering the r0le 0f the miRNA in n0rmal 0r aberrant 

bi0l0gical pr0cesses. Perhaps a huge number 0f targets exist, f0r any single miRNA. In the c0urse 

0f the m0st recent 17 years, several t00ls have been devel0ped t0 s0lve this c0mplex issue. Each 

0f these pr0jects has c0ntributed t0 0ur understanding 0f the relati0nship between miRNA and 

mRNA targets and h0w that relati0nship can be used t0 make accurate predicti0ns. Predicti0n 

miRNA may help the scientific c0mmunity in the field 0f therapeutics, bi0marker selecti0n etc. 
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CHAPTER 7 APPENDIX  

7.1 APPENDIX I: Code for fetching miRNA and mRNA sequences from 

TarBase V8.  

 

from bs4 import BeautifulSoup 

import requests 

import re 

 

def deleteContent(pfile): 

    pfile.seek(0) 

    pfile.truncate() 

     

 

mirna_file=open('mirna_list.txt') 

mirna_list = mirna_file.read().split() 

result = open("Mirna_batch_last_remain.csv","w+") 

deleteContent(result) 

result.write("Gene Symbol,miRNA_name,Sequence,Location"+'\n') 

count = 0 

list_not = [] 

for mirna in mirna_list: 

    print(mirna) 

    page=0 

    #pagination loop 

    try: 

        for page_no in range(151): 

            page = page+1       

            if page>151: 

                break 

            source = requests.get("http://carolina.imis.athena-

innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex&miRNAs%5B%5D=&miR

NAs%5B%5D={}&genes%5B%5D=&species%5B%5D=1&methods%5B%5D=8&sources%5B

%5D=1&sources%5B%5D=7&sources%5B%5D=9&publication_year=&prediction_score=0.7

5&sort_field=&sort_type=&query=1&page={}".format(mirna,page)) 

            soup = BeautifulSoup(source.text,'lxml') 

             

            try: 

                if int(soup.find('li',class_='active').text) < page: #last page check 
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                    break 

            except: 

                page = 160 

    

                 

            main = soup.find('tbody') 

     

             

              

            for tds in main.find_all('div'): 

                    try: 

                        td = tds.find_all('td',class_='first-level-block-bold') 

                        gene = td[0].text.strip() 

                        mirna = td[1].text.strip() 

                         

                    except: 

                        continue 

                    tr = tds.find('a', attrs={'href': 

re.compile("^http://www.ensembl.org/Homo_sapiens/Location")}) 

                     

                    if tr:     

                        link_temp = tr.get('href') 

                        link_contain=link_temp.split(';') 

                         

                        g = link_contain[1].split('=')[1] 

                             

                        r = link_contain[2].split('=')[1] 

    #                    print (r) 

                        #print(page) 

                             

                        seq_fasta = 

requests.get('http://asia.ensembl.org/Homo_sapiens/Export/Output/Location?db=core;flank

3_display=0;flank5_display=0;g={};output=fasta;r={};strand=feature;genomic=unmasked;p

eptide=yes;intron=yes;exon=yes;cdna=yes;coding=yes;utr5=yes;utr3=yes;_format=Text'.for

mat(g,r)) 

                        seq = seq_fasta.text.split('\n')[1].replace('T','U')[::-1].replace('\n','') 

                        result.write("{},{},{},{}".format(seq,gene,mirna,r)) 

                        #print("wrote") 

                        count=count+1 
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                        print(count) 

                         

                         

                         

                    else: 

                        continue   

    except: 

        list_not.append(mirna) 

        continue                    

mirna_file.close()  

result.close() 

               # -*- coding: utf-8 -*- 
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7.2 APPENDIX II: Code for one-hotencoding of mRNA sequences 
 

input_texts = [] 

target_texts = [] 

input_characters = set() 

target_characters = set() 

with 0pen(data_path, 'r', enc0ding='utf-8') as f: 

    lines = f.read().split('\n') 

f0r line in lines[: min(num_samples, len(lines) - 1)]: 

    target_text, input_text = line.split(',') 

    # We use "tab" as the "start sequence" character 

    # f0r the targets, and "\n" as "end sequence" character. 

    target_text = '\t' + target_text + '\n' 

    input_texts.append(input_text) 

    target_texts.append(target_text) 

    f0r char in input_text: 

        if char n0t in input_characters: 

            input_characters.add(char) 

    f0r char in target_text: 

        if char n0t in target_characters: 

            target_characters.add(char) 

         

input_characters = s0rted(list(input_characters)) 

target_characters = s0rted(list(target_characters)) 

num_enc0der_t0kens = len(input_characters) 

num_dec0der_t0kens = len(target_characters) 

max_enc0der_seq_length = max([len(txt) f0r txt in input_texts]) 

max_dec0der_seq_length = max([len(txt) f0r txt in target_texts]) 

print('Number 0f samples:', len(input_texts)) 

print('Number 0f unique input t0kens:', num_enc0der_t0kens) 

print('Number 0f unique 0utput t0kens:', num_dec0der_t0kens) 

print('Max sequence length f0r inputs:', max_enc0der_seq_length) 

print('Max sequence length f0r 0utputs:', max_dec0der_seq_length) 

input_t0ken_index = {'A': 0, 'C': 1, 'G': 2, 'U': 3} 

target_t0ken_index = {'\t': 4, '\n': 5, 'A': 0, 'C': 1, 'G': 2, 'U': 3} 

enc0der_input_data = np.zer0s( 

    (len(input_texts), max_enc0der_seq_length, num_enc0der_t0kens), 

    dtype='fl0at32') 

dec0der_input_data = np.zer0s( 

    (len(input_texts), max_dec0der_seq_length, num_dec0der_t0kens), 
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    dtype='fl0at32') 

dec0der_target_data = np.zer0s( 

    (len(input_texts), max_dec0der_seq_length, num_dec0der_t0kens), 

    dtype='fl0at32') 

f0r i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): 

    f0r t, char in enumerate(input_text): 

        enc0der_input_data[i, t, input_t0ken_index[char]] = 1. 

    f0r t, char in enumerate(target_text): 

        # dec0der_target_data is ahead 0f dec0der_input_data by 0ne timestep 

        dec0der_input_data[i, t, target_t0ken_index[char]] = 1. 

        if t > 0: 

            # dec0der_target_data will be ahead by 0ne timestep 

            # and will n0t include the start character. 

            dec0der_target_data[i, t - 1, target_t0ken_index[char]] = 1.       
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7.3 APPENDIX III: Code for traing ANN Model. 

from __future__ import print_function 

import keras 

from keras.models import Model 

from keras.layers import Input, LSTM, Dense, Conv1D 

from keras import regularizers 

from keras.utils import plot_model 

import numpy as np 

batch_size = 50  # Batch size for training. 

epochs = 100  # Number of epochs to train for. 

latent_dim = 512  # Latent dimensionality of the encoding space. 

num_samples = 19000 

encoder_inputs = Input(shape=(None, num_encoder_tokens)) 

cnn = Conv1D(128,8, activation='relu') 

cnn_output =cnn(encoder_inputs) 

#dropout_layer = Dropout(0.5) 

#decoder_outputs = dropout_layer(decoder_outputs) 

encoder_dense_1 = Dense(128, activation='relu',kernel_regularizer=regularizers.l2(0.001)) 

encoder_dense_output = encoder_dense_1(cnn_output) 

encoder = LSTM(latent_dim, return_state=True,recurrent_dropout=0.4, dropout = 0.1) 

encoder_outputs, state_h, state_c = encoder(encoder_dense_output) 

# We discard `encoder_outputs` and only keep the states. 

encoder_states = [state_h, state_c] 

# Set up the decoder, using `encoder_states` as initial state. 

decoder_inputs = Input(shape=(None, num_decoder_tokens)) 

#cnn_decoder = Conv1D(128,8, activation='relu') 

#cnn_decode_output =cnn_decoder(decoder_inputs) 

#dropout_layer = Dropout(0.5) 

#decoder_outputs = dropout_layer(decoder_outputs) 

decoder_dense_1 = Dense(128, activation='relu',kernel_regularizer=regularizers.l2(0.001)) 

decoder_dense_output = decoder_dense_1(decoder_inputs) 

# We set up our decoder to return full output sequences, 

# and to return internal states as well. We don't use the 

# return states in the training model, but we will use them in inference. 
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decoder_lstm = LSTM(latent_dim, return_sequences=True, 

return_state=True,recurrent_dropout=0.4, dropout = 0.1) 

decoder_outputs, _, _ = decoder_lstm(decoder_dense_output, 

                                     initial_state=encoder_states) 

#dropout_layer = Dropout(0.5) 

#decoder_outputs = dropout_layer(decoder_outputs) 

#decoder_dense_1 = Dense(256, activation='relu',kernel_regularizer=regularizers.l2(0.001)) 

#decoder_outputs = decoder_dense_1(decoder_outputs) 

decoder_dense = Dense(num_decoder_tokens, 

activation='softmax',kernel_regularizer=regularizers.l2(0.001)) 

decoder_outputs = decoder_dense(decoder_outputs) 

# Define the model that will turn 

# `encoder_input_data` & `decoder_input_data` into `decoder_target_data` 

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)  

plot_model(model,show_shapes=True, to_file = '/output/model.png') 

print(model.summary())            

# Run training 

model.compile(optimizer='rmsprop', loss='categorical_crossentropy',metrics=['mae', 'acc']) 

callbacks = [keras.callbacks.TensorBoard(log_dir='/output/my_log_dir')] 

model.fit([encoder_input_data, decoder_input_data], decoder_target_data, 

          batch_size=batch_size, 

          epochs=epochs, 

          validation_split=0.2, callbacks=callbacks) 

model.load_weights('s2s_batch_50.h5')    

# Save model 

model.save('/output/s2s_batch_50_cnn_encoder_dense_dim.h5') 

# Next: inference mode (sampling). 

# Here's the drill: 

# 1) encode input and retrieve initial decoder state 

# 2) run one step of decoder with this initial state 

# and a "start of sequence" token as target. 

# Output will be the next target token 

# 3) Repeat with the current target token and current states 

# Define sampling models 

cnn_output = cnn(encoder_inputs) 

encoder_dense_output = encoder_dense_1(cnn_output) 

encoder_outputs, state_h, state_c = encoder(encoder_dense_output) 

encoder_states = [state_h, state_c] 

encoder_model = Model(encoder_inputs, encoder_states) 
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#cnn_decode_output =cnn_decoder(decoder_inputs) 

#decoder_dense_output = decoder_dense_1(cnn_decode_output) 

decoder_dense_output = decoder_dense_1(decoder_inputs) 

decoder_state_input_h = Input(shape=(latent_dim,)) 

decoder_state_input_c = Input(shape=(latent_dim,)) 

decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] 

decoder_outputs, state_h, state_c = decoder_lstm( 

    decoder_dense_output, initial_state=decoder_states_inputs) 

decoder_states = [state_h, state_c] 

#decoder_outputs = dropout_layer(decoder_outputs) 

#decoder_outputs = decoder_dense_1(decoder_outputs) 

decoder_outputs = decoder_dense(decoder_outputs) 

decoder_model = Model( 

    [decoder_inputs] + decoder_states_inputs, 

    [decoder_outputs] + decoder_states) 

# Reverse-lookup token index to decode sequences back to 

# something readable. 

reverse_input_char_index = dict( 

    (i, char) for char, i in input_token_index.items()) 

reverse_target_char_index = dict( 

    (i, char) for char, i in target_token_index.items()) 

def decode_sequence(input_seq): 

    # Encode the input as state vectors. 

    states_value = encoder_model.predict(input_seq) 

    # Generate empty target sequence of length 1. 

    target_seq = np.zeros((1, 1, num_decoder_tokens)) 

    # Populate the first character of target sequence with the start character. 

    target_seq[0, 0, target_token_index['\t']] = 1. 

    # Sampling loop for a batch of sequences 

    # (to simplify, here we assume a batch of size 1). 

    stop_condition = False 

    decoded_sentence = '' 

    while not stop_condition: 

        output_tokens, h, c = decoder_model.predict( 

            [target_seq] + states_value) 

        # Sample a token 

        sampled_token_index = np.argmax(output_tokens[0, -1, :]) 

        sampled_char = reverse_target_char_index[sampled_token_index] 

        decoded_sentence += sampled_char 
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        # Exit condition: either hit max length 

        # or find stop character. 

        if (sampled_char == '\n' or 

           len(decoded_sentence) > max_decoder_seq_length): 

            stop_condition = True 

        # Update the target sequence (of length 1). 

        target_seq = np.zeros((1, 1, num_decoder_tokens)) 

        target_seq[0, 0, sampled_token_index] = 1. 

        # Update states 

        states_value = [h, c] 

    return decoded_sentence 

for seq_index in range(100): 

    # Take one sequence (part of the training set) 

    # for trying out decoding. 

    input_seq = encoder_input_data[seq_index: seq_index + 1] 

    decoded_sentence = decode_sequence(input_seq) 

    print('-') 

    print('Input sentence:', input_texts[seq_index]) 

    print('Decoded sentence:', decoded_sentence) 

  



64 | P a g e  

 

7.4 APPENDIX IV: Code for finding surface area accessibility 

# -*- coding: utf-8 -*- 

import RNA 

import requests, sys 

from bs4 import BeautifulSoup 

import sqlite3 

conn = sqlite3.connect('linker.db') 

c = conn.cursor() 

 

def get_seq_by_GeneSymbol(GeneSymbol): 

    c.execute("SELECT * FROM link WHERE 

Gene_symbol=:Gene_symbol",{'Gene_symbol':GeneSymbol}) 

    return c.fetchall() 

 

def get_seq_to_predict(GeneSymbol): 

    GeneSymbol = GeneSymbol.upper() 

    seq_to_predict=[] 

     

    linker = get_seq_by_GeneSymbol(GeneSymbol) 

    

     

    if linker is None: 

         print("no match gene found") 

         

    else: 

        for line in linker: 

             

            id_e = line[2] 

             

            server = "https://rest.ensembl.org" 

            ext = "/sequence/id/{}?".format(id_e) 

              

            r = requests.get(server+ext, headers={ "Content-Type" : "text/plain"}) 

              

            if not r.ok: 

              r.raise_for_status() 

              sys.exit() 

               

            link = ("https://asia.ensembl.org/Homo_sapiens/Export/Output/Gene?db=core;" 

                   +"flank3_display=0;flank5_display=10;t={};output=fasta;".format(id_e) 
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                   +"strand=feature;param=utr3;genomic=unmasked;_format=HTML") 

             

            utr = requests.get(link) 

             

            soup = BeautifulSoup(utr.text, "html5lib") 

            utr_split= soup.find('pre').text 

            utr_split=utr_split.split('>')[1] 

                

             

            utr_split = utr_split.split('\n') 

            utr_seq='' 

            for fasta in utr_split[1:]: 

                utr_seq=utr_seq+fasta 

             

             

            seq=r.text.replace('T','U')# l in negative(-l) 

             

             

            if len(seq) > len(utr_seq)*1.5: 

                l=len(seq)-int(len(utr_seq)*1.5) 

            else: 

                l= len(seq)-len(utr_seq) 

             

             

            # compute minimum free energy (MFE) and corresponding structure 

 

            n= RNA.pfl_fold_up(seq,16,40,80) 

            for i in range(l,len(seq)): 

                if n[i][4]>0.2:                   

                  

                    s = seq[i-24:i] 

                    seq_to_predict.append(s[::-1]) 

        return list(set(seq_to_predict)) 
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