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ABSTRACT

MicroRNAs (miRNAs) are considered as very important cellular constituents that control gene
expression at the post-transcriptional level and have fascinated much scientific attention. These
small non-coding RNAs play important roles by binding to their target genes and are also known
to be associated with various diseases. Computational methods that predict miRNA target sites
generally use one or more characteristics such as sequence complementation, thermodynamic
stability, evolutionary conservation among species and accessibility. In recent years, deep
recurrent neural networks (RNNs) have allowed researchers to tackle a variety of machine
learning problems in the domain of natural language processing. Less work has been done with
RNNs on what is perhaps the most natural language: the genome, a sequence of four letters
(A, C, G, T). We downloaded 19,000 experimentally validated miRNA-target pairs from
TarBaseV8, the corresponding mRNA sequences were collected from the ensemble genome
browser , and the miRNA sequences from the miRBase. And a model based on RNN, LSTM
and seq2seq architecture was used for the prediction of miRNA sequence. And also an
important feature, surface-area assecibility at binding site of miRNA at the targated mRNA
was also taken into account. After training for 100 epochs, we achieved an accuracy of 0.8
with Validation Loss = 0.0887. We verified our model using experimentally validated data
from miDerma, a manually curated database of miRNAs associated with Dermatological
Disorders. our model was able to predict on average 72% of microRNAs for each genes from
the list of 200 randomly selected genes associated with dermatological disorders. We belive
that the successful prediction miRNA may help the scientific community in the fields of

therapeutics, biomarker selection etc
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CHAPTER1 INTRODUCTION

The human genome encodes for over 2200 microRNAs (microRNAS), which are mostly 28bp
long non-coding RNA molecules which plays an important role in regulating gene expression
post-transcriptionally. As one microRNA can target multiple gene transcripts, microRNAs are
known to involve in major mechanism to regulate gene expression and mRNA translation.
Computationaly anticipating microRNA targets is a basic fundamental step in finding microRNA-
MRNA target association for lab approval. The current methods for microRNA target predictions
incorporate a scope of various computational methodologies, from the demonstrating of physical

association algorithms to the application of machine learning algorithms.

Also it has been seen that neural networks are pretty successful for generating models of predicting
biological functions, sequences, classification and other task. In ANNs particularly CNNs and
RNNs draws the attention of scientific community for their robustness in extracting feature and
generation sequences. It is now a well known fact that CNNs are used of extracting features from
datasets and are highly useful in image classification and image annotation. Today we cannot
imagine any image classification model without using CNNSs. on the other hand we are having
RNNs which are very comfortable with sequential data whether they are time series data or
sequence of string. RNNs are mostly used in natural language processing where they can be trained
for classification of phrases, generating new phrases etc. Next we have seq2seq architecture which
are used in chat-bots, they are consist of special arrangement of RNNs or LSTMs which can be

trained for text generation can be used as chat bots, machine level translation or image annotation.

So in this work we particularly tried to bring the natural language processing models to process
core language of nature i.e. A, T, G, C. Here we tried to train a chat bot model to generate
microRNA sequence from mRNA sequence and named it miR-Bot while preserving the
biological notions. We download 22,600 experimentally validated microRNA-target pairs from
TarBaseV8, The corresponding mRNA sequences are collected from the ensemble , and the

microRNA sequences from the miRBase. Then a model base on CNN, LSTM and seq2seq
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architecture is trained on these datasets for prediction of microRNA sequences based on mMRNA
sequences. During training our model acrive an accuracy of 80%. After training the model we
used RNAplfold from RNA-Vienna Package to find site accessibility of mRNAs. Site
accessibility is a measure of the ease with which a microRNA can locate and hybridize with an
MRNA target. mMRNA assumes a secondary structure which can interfere with a microRNA's
ability to bind to a target site. MicroRNA:mRNA hybridization involves a two-step process in
which a microRNA binds first to a short accessible region of the mRNA. The mRNA secondary
structure then unfolds as the microRNA completes binding to a target. Therefore, to assess the
likelihood that an mMRNA is the target of a microRNA, the predicted amount of energy required
to make a site accessible to a microRNA should be evaluated. Finally we validated our model
using experimentally verified microRNA and RNA pairs involved in skin diseases we were
retrieved from our in house developed database miDerma. Here our model was able to predict on
average 72% of microRNA from mRNA in each cases correctly. Hence we propose “mirBoT: A
MircoRNA sequence prediction tool from RNA sequence base on CNNs, LSTMs and seq2seq

architecture.
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CHAPTER 2 REVIEW OF LITERATURE
2.1 MircoRna

2.1.1 Discovery and function of microRNAs

The first microRNA was revealed over 30 years ago in the nematode Caenorhabditis elegans
as the developmental regulator lin-4[1]. Initially believed to be a typical protein coding gene, till
Ruvkun and Ambros labs made the surprising discovery that lin-4 did not code for a protein but
instead encode a 22 nucleotide regulatory RNA[2], [3]. They confirmed that the lin-4 RNA can
base pair with the mRNA of another gene in the C. elegans developmental network, lin-14, and
regulate the production of the LIN-14 protein [3]. Discovery of this microRNA would have had
little significance other than C. elegans research community, if the second microRNA, let-7, not
been discovered[4]. let-7 is conserved in many organisms, including humans, signifying that this
class of small regulatory RNAs has a more general role in biology[5]. The next spectacular
development, occurred around the same time, by the discovery of the RNAI pathway;
specifically, the ~ 21 nucleotide RNA’s role in the silencing machiner[6]. These two pathways
have since been shown to be different arms of the same gene silencing pathway[7]. Later, many
thousands of microRNAs have been revealed in many organisms, and there are currently 2588
annotated microRNAs in the human genome[8]. Since each microRNA can regulate the
expression of hundreds of target mRNA, the microRNA pathway as a whole is a critical

machinery for gene expression control[9].

2.1.2 ThemicroRNA biogenesis pathway

During the biosynthesis of all microRNAs they undergo a series of steps that convert the primary
microRNA transcript into the active, ~ 22 nucleotide mature microRNA . The mature microRNA
with the RNA induced silencing complex (RISC) target mRNAs, leading to translational
repression and target mRNA degradation. In this section we will cover the microRNA biogenesis

pathway that is followed by most microRNA families for the maturation. For ease we will limit
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our focus on the mammalian enzyme mechanisms. Although there are several exceptions from
this canonical pathway have been described for unique microRNA families those are not cover

under this topic.

pri-miRNA »]i Drosha mce
AAAAAA
H Cytoplasm

cher

precursor miRNA

mature miRNA

! -7

Ago2

"4

Ago2

AAAAAA i)
GW182 target mRNA

CCR4-NOT

Figure 1: The microRNA biogenesis pathway

2.1.2.1 Transcription

microRNA genes are present in all parts of the genome [10]. Many microRNA genes are
noncoding and whose only transcriptional product is the microRNA. In other cases the microRNA
is located within an intron or untranslated region (UTR) of a protein coding gene. Typically the
defining feature of all microRNA genes is the stem— loop precursor RNA structure, with one (or
sometimes both) strands of the stem the source of the mature microRNA [9]. In some cases like
of MCMY7 there are three clustered of microRNA stem—loops, each leads to a distinct mature
microRNA with a exclusive targeted set[11]. microRNAS are not necessary to present within

coding exons, as deletion of the microRNA would lead to loss of the protein coding transcript.
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Transcription of the microRNA coding gene is done by RNA polymerase Il results leads to the
pri-microRNA, or primary microRNA transcript [12]. The primary-microRNA is typically
spliced, capped, and polyadenylated like a protein coding mRNAs [13]. Although most
microRNA promoters have not been studied in detail, the few examples characterize as similar in

structure to protein coding gene promoters, including control histone marks and elements [14].

2.1.2.2 Processing by Drosha and Dicer

The primary-microRNA goes through processing steps by two endonuclease before it becomes a
mature, active microRNA [15]. The first processing(cleavage) step occurs during transcription of
the primary-microRNA by the enzyme Drosha [16]. The RNA binding protein DGCR8 is required
for cleavage of the primary-microRNA and associated with Drosha [17]. After cleavage by
Drosha, the stem—loop precursor from flanking primary-microRNA transcript sequences releases.
The precursor is carried out of the nucleus in a Ran-GTPase dependent manner by Exportin5 [18].
The second processing step occurs in the cytoplasm. The 2" endonuclease Dicer cleaves the loop
region of the precursor releasing the mature microRNA [19]. Like Drosha, Dicer is also
accompanied with an RNA binding protein, TRBP [20]. The result of the reaction carried by Dicer,
is a duplex RNA of approximately 21 nucleotides length. one strand of the duplex is loaded into
RISC as a mature microRNA. The other strand typically degraded. An asterisk is appended to the
microRNA name to designate this degraded strand, e.g., miR-125*. However, in some cases both
strands of the duplex may be loaded into RISC at similar frequencies. In this case, the strand from
the 5" end of the stem—loop is termed “5p” and the 3’ strand the “3p”. While RISC loading may
prefer integration of one strand, current next generation sequencing (NGS) efforts have revealed
a small fraction of star strand loaded for essentially all microRNA families [21]. So, some
microRNAs show different strand usage depending on cell type or biological state [22]. For these
reasons, 5p/3p naming schemes are being widely used rather than the arbitrary mature/star

nomenclature.

The specific nucleotide areas of Drosha and Dicer cleavage are generally barely defined,

prompting full grown microRNAs with unmistakably defined terminal closures. Some
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microRNAs, be that as it may, have heterogenous cleavage destinations, prompting numerous
"isomiRs" of the develop microRNA[23]. This heterogeneity could prompt differential target
constraint and particular natural exercises. IsomiR inclination can change by cell write and isomiR
exchanging has been recognized in infection[24]. The real mechanism for isomiR regulation is

unclear.

2.1.2.3 RISC loading and target repression

A definitive destiny of the microRNA is to be consolidated into RISC (or miRISC). The correct
arrangement of this protein complex isn't clear however contains the fundamental protein
Argonaute, of which four relatives have been identified in humans (Agol- 4) [25]. After Dicer
cleavage, the microRNA duplex is stacked into RISC and the star strand is evacuated by some of
a few conceivable actions. on the off chance that the microRNA duplex has complementarity in
the central region, the star strand can be cleaved and removed by Ago2 and further degrade by the
nuclease complex C3Po [26]. This is the system for RISC stacking for the related siRNA pathway.
Most microRNA duplexes, in any case, need central complementarity and subsequently can't take
part in star strand cleavage. These microRNA duplexes depend on strand loosening up, and a few

helicases have been portrayed to have this activity [27].

Argonaute specifically ties with the develop microRNA and looks for target mRNASs that have
complementarity to the microRNA. Specifically, nucleotides 2— 7 of the microRNA, named the
"seed" region, are essential for target binding[28]. The 3’ end of the microRNA also has a role in
target recognition, and complimentary matched targets have been found [29]. If complementarity
found in the seed region of the microRNA (nucleotides 9— 11) at that point the mRNA target can
be degrade by means of the endonuclease movement of Ago2 [30]. Most microRNA target
binding sites in human, do not have this match and are not straightforwardly degraded by Ago2.
So, Argonaute is enlisted to a complex containing GW182 (TNRC6A/B/C) inside cytoplasmic P
bodies where translational constraint occurs. The CCR4-NoT deadenylase complex is attached to
RISC and this encourages evacuation of the poly(A) tail and inevitable debasement of the mMRNA
target[31].
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2.1.3 microRNA target identification

Identifying target sets for microRNAs is essential for a various reasons. For scientists, finding the
target set of amicroRNA is critical to uncover its its critical role in biology. For biologists creating
microRNA therapeutics, validated target binding sites give the best biomarker(s) for assurance of
the efficacy of a microRNA enhencer or inhibitor. The identification of microRNA targets can be
taken after three general methodologies: bioinformatic target prediction, biochemical isolation of
microRNA/MRNA complexes, and transcriptomic/ proteomic analysis. The three methodologies

will be briefly condensed.

2.1.3.1 Bioinformatic target prediction

As it has been state that microRNAs base match with target mRNAs utilizing standard Watson—
Crick rules, this reality should make bioinformatic target identification reliable. But, the most vital
determinant of target restricting is the seed arrangement of the microRNA which is just 6
nucleotides long. This will prompt an extraordinary number of competitor targets, a significant
number of which are false negatives. In this way, all bioinformatic target expectation calculations

utilize extra factors to enhance exactness[32].

Since the best described targets are in mRNA 3’ UTRs, numerous calculations restrain target sites
to this area. Different components are utilized, including sequence conservation,flanking sequence
determinants, flanking arrangement determinants, compensatory matching outside the seed area
and target site accessibility. Current methodologies have additionally utilized machine learning
calculations that consolidate approved targets sets as learning sets[32]. Various tools have been
developed, with TargetScan, miRanda, and PicTar maybe the most prominent[33]. When all is
said in done, bioinformatic approaches are a decent beginning stage for microRNA investigation

and numerous exploration labs make utilization of them [34].

7|Page




2.1.3.2 Biochemical target identification

A few related methodologies have utilized physical relationship of microRNA/RISC edifices with
target MRNAS to separate and recognize targets. These depend on immunoprecipitation of RISC
utilizing anti-Argonaute antibodies, with or without earlier RNA crosslinking, and definition of
bound target RNAs by microarray or NGS profiling[35]. Crosslinking of IP before cell lysis is
mostly preferred since artifactual RNA hybridization have been seen at the time of cell lysis [36].
An elective approach is extraction of specific biotinylated microRNAs tand than target
identification[37]. This has the upside of catching focuses of a solitary known microRNA,
however requires ectopic introduction of the biotinylated microRNA. While these physical
methodologies have been effectively used to define target mRNA of microRNA complexes, not
all bounded mRNA targets might be repressed. Studies have shown that some target binding sites
are in coding regions of mMRNAs, and are bound to Argonaute however are not degrading targets

[35]. Like all methodologies, approval of individual targets is fundamental.

2.1.3.3 omics-based strategies for target identification

The third broad way to deal with target identification iS a proteomic or transcriptomic
investigation of cells/tissues in the nearness and nonappearance of a microRNA. Quantitative
proteomic investigation straightforwardly measures the impact of a microRNA on protein
creation, and is perhaps more reflective of the genuine target set, but at the same time is in fact
testing. Since most microRNA targets have lessened mRNA consistent state levels, the more
straightforward transcriptome research can be performed [38]. This should be possible by
microarray profiling and a few investigation devices are accessible[39]. A case of this approach is
the identification of focuses of the neutrophil-specific microRNA miR-223[40]. Neutrophils were
disengaged from wild sort and miR-223 knockout mice. Microarray and quantitative mass
spectrometry were performed, and contrasts in mMRNA and protein content was utilized to define
focuses of miR-223. It ought to be noticed that the competitor target sets will likewise contain
downstream auxiliary targets, requiring approval of individual targets.microRNA detection

methods
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microRNA recognition strategies can be partitioned into two general categorie [41] . Disclosure
strategies are intended to profile the outflow of numerous microRNAs without a moment's delay,
frequently with high throughput. These methodologies are to a great extent focused on microarray
hybridization and NGS profiling. The last is particularly great since it is conceivable to portray
novel microRNAs, while most different techniques are restricted to location of known microRNA
successions. There are a few NGS stages accessible however all start with the development of
format libraries. RNA connectors are ligated to the two finishes of little RNA portions and the
objectives are RT-PCR amplified with preliminaries coordinated at the connectors. This procedure
amplifies all RNAs in the coveted size range. The libraries would then be able to be sequenced on
a few instruments, with the lllumina stages presumably the most well-known. on the other hand,
single particle instruments are accessible that keep away from the PCR amplification step inside
and out[42]. Since current instruments are fit for 200 million or more peruses per library run, it is
conceivable to multiplex 48 libraries (or more) in a solitary run and still accomplish sufficient
grouping read profundity[42]. Sequence peruses are checked and quantitative articulation profiles
are got. As stated above, novel microRNAs and other little RNA species can be identified. While
NGS based profiling has clear points of interest and is turning into the default innovation,
nucleotide predispositions brought about amid ligation steps has been watched[43]. So, profiling

method a validation step is necessary .

While NGS stages are prepared to do high throughput profiling of the whole microRNA populace,
most clinical demonstrative methodologies depend on fast investigation of a little quality mark
set. In this way, RT-PCR and Nanostring are the focal point of current analytic stages[44].
Nanostring is a solitary particle hybridization technique that permits quantitation of ~ 500 targets,
either mRNA or microRNA, in a quick exploratory run. A case of a LDT microRNA symptomatic
is the pancreatic growth test from Asuragen. This RT-PCR based test utilizes a 7 microRNA mark

to separate between pancreatic ductal adenocarcinoma and amiable tissue.
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2.2 MircoRna Target Prediction
2.2.1 Common features of microRNA target prediction tools

There are mainly four frequently used features for microRNA target prediction algorithms: seed

match, site accessibility, free energy and conservation. These will be described in the following

3778174 15 Seed Sequence
11312, 1
GUC 7709 8 ] s
A GGUy , 5 miRNA

sections.

G:U Wobble

Figure 2: microRNA:mRNA target interaction

2.2.1.1 Seed match

The seed sequence arrangement of a microRNA is characterized as the initial 2— 8 nucleotides
beginning at the 5' end and checking toward the 3' end[45] (Figure 1). The seed sequence
arrangement of a microRNA is characterized as the initial 2— 8 nucleotides beginning at the 5' end
and checking toward the 3' end [45] (Figure 1). For most algorithms, a seed complimentary in
accordance to Watson-Crick (WC) pairing rules between a microRNA and its target site is require.
A Watson-Crick match between a microRNA and mRNA nucleotide happens when adenosine

guanine (G) sets with cytosine (C) and adenosine (A) sets with uracil (U).

There are a few kinds of seed coordinates that can be thought about relying upon the calculation.

The accompanying sorts are the fundamental kinds of seed matches are [45]-[48]:

1. 6mer: A perfect WC match between the microRNA seed and mRNA for six nucleotides.

2. 7mer-m8: A perfect WC match from nucleotides 2—8 of the microRNA seed.
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3. 7mer-Al: A perfect WC match from nucleotides 2—7 of the microRNA seed in addition to

an A across from the microRNA nucleotide 1.

4. 8mer: A perfect WC match from nucleotides 2—8 of the microRNA seed in addition to an

A across from the microRNA nucleotide 1.

2.2.1.2 Conservation

Conservation is to maintain same pattern of sequence across species. Analysis of conservation
may concentrated on regions of the 3 UTR, the 5 UTR, the microRNAS, or any amalgamation
of the three. Generally it is seen that the microRNA seed region has the higher conservation than
in the non-seed region[45]. In a small proportion of microRNA-mRNA target interactions , there
is conserved pairing at the 3* end of the microRNA which can reimburse for seed mismatches,
and these sites are called 3’ compensatory sites [49]. In the context of predicting microRNA
targets in 3 UTRSs, conservation analysis may provide evidence that a predicted microRNA
target is functional because it is being selected for. Also, there is a increasing interest in
conservation analysis of the genomic regions flanking the microRNA gene and microRNA
target genes. As examples, conservation analysis has been applied to the promoter regions of
microRNAs and their target genes [50], and to the colocalization of independently transcribed
microRNAs and flanking protein coing genes [51]. Thus, the role of conservation in microRNA
target prediction is broad and analysis may focus on regions in the 3 UTR, the 5 UTR, the
microRNA, or any combination of the three. In general, there is higher conservation in the
microRNA seed region than in the non-seed region[45]. In a small proportion of microRNA:
MRNA target interactions, there is conserved pairing at the 3’ end of the microRNA which can
compensate for seed mismatches, and these sites are called 3’ compensatory sites [49]. With
regards to anticipating microRNA focuses in 3 UTRs, preservation examination may give confirm
that an anticipated microRNA target is utilitarian since it is being chosen for. Also, there is
expanding enthusiasm for conserva-tion examination of the genomic districts flanking the

microRNA quality and microRNA target qualities. As illustrations, preservation investigation has
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been connected to the promoter areas of microRNAs and their objective qualities [50], and to the
co-confinement of independently interpreted microRNAs and flanking protein coding genes [51].

In this way, the part of conservation in microRNA target prediction is widely used

2.2.1.3 Free energy

Free vitality (or Gibbs free vitality) can be utilized as a measure of the steadiness of an biological
framework. In the event that the binding of a microRNA to a candidate target mMRNA is anticipated
to be steady, it is viewed as more prone to be a genuine target of the microRNA. Given the trouble
in estimating free vitality specifically, typically the change in free energy during a reaction is
considered (AG). Since responses with a negative AG have less energy to respond later on, they
result in frameworks with expanded solidness. By anticipating how the microRNA and its
competitor target hybridize, areas of high and low free energy can be deduced and the general AG

can be utilized as a pointer of how firmly bound they are [52].

2.2.1.4 Site accessibility

Site accessibility is a measure of the ease with which a microRNA can locate and hybridize with
an mRNA target. Following transcription , mMRNA assumes a secondary structure [53] which can
interfere with a microRNA’s ability to bind to a target site. MicroRNA mRNA hybridization
involves a two-step process in which a microRNA binds first to a short accessible region of the
MRNA. The mRNA secondary structure then unfolds as the microRNA completes bindingto a
target[54]. Therefore, to assess the likelihood that an mMRNA is the target of a microRNA, the
predicted amount of energy required to make a site accessible to a microRNA should be

evaluated .

2.2.2 Less common features of microRNA target prediction tools

The highlights talked about above are those most ordinarily joined into microRNA target
forecast apparatuses. As new advances are made in the portrayal of microRNA mRNA target

associations, extra highlights are consolidated. These may be utilized to foresee the viability of
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the objective or specifically fused into the objective forecast itself. Target-site wealth is a
measure of what number of target locales happen in a 3 UTR[55]. Local AU content alludes to the
grouping of An and U nucleotides flanking the relating seed district of the microRNA[56]. GU wobble
in the seed coordinate alludes to the stipend of a G blending with a U rather than a C. 3
compensatory blending alludes to base combine coordinating with microRNA nucleotides 12—
17. Seed matching solidness is the ascertained free vitality of the anticipated duplex. Position
commitment dissects the situation of the objective site inside the mRNA. Machine-learning
approaches utilize preparing information to build up a model of microRNA targets, and
afterward utilize the model as a major aspect of the microRNA-expectation process. Machine-
learning procedures are probably going to utilize more highlights in their expectations since they
can be prepared to decide the prescient intensity of each component on positive and negative
datasets. A machine-learning approach utilized by a few of these instruments is support vector

machines (SVM). Apparatuses that utilization SVM are noted.

2.2.3 Review of commonly used microRNA target prediction tools

In this section, we outline 10 popular microRNA target prediction tools, using the characteristics
previously described. A summary table comparing these tools is provided in the Comparison of

microRNA Target Prediction Tools section.

Table 1: Summary table of microRNA target prediction tools

FEATURES USED IN microRNA TARGET PREDICTION

Tool name Seed Conse Free Site Target- Machine Refer
match rvatio energy accessibility site learning ences
n abunda
nce
miRanda X X X [57]
miRanda- X X X X X [56]
mirSVR
TargetScan X X [55]
DIANA- X X X X X X [58]
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microT-CDS
MirTarget2 X X X X X [59]
RNA22-GUI X X [60]
TargetMiner X X X X X X [61]
SVMicrO X X X X X X [62]
PITA X X X X X [63]
RNAhybrid X X X [64]

2.3 Neural Networks

2.3.1 Machine Learning General

Machine learning methods are general-purpose approaches to learn functional relationships from
data without the need to define them a priori [65]. In computational biology, their allure is the
capacity to infer prescient models without a requirement for solid presumptions about basic
instruments, which are much of the time obscure or inadequately characterized. As a for example,
the most exact forecast of quality articulation levels is presently produced using a wide
arrangement of epigenetic highlights utilizing scanty straight models[66] or random forests ; how
the selected features determine the transcript levels remains an active research topic. Predictions
in genomics [67], proteomics [68], metabolomics [69] or sensitivity to compounds [70] all rely

on machine learning approaches as a key ingredient.

The greater part of these applications can be depicted inside the standard machine learning work
process, which includes four stages: information cleaning and pre-processing, highlight
extraction, demonstrate fitting and assessment (Figure 3). It is standard to signify one information
test, including all covariates and highlights as info x (more often than not a vector of numbers),

and mark it with its reaction variable or yield esteem y (as a rule single number) when accessible..
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Figure 3The classical machine learning workflow can be broken down into four steps: data pre-processing, feature extraction,
model learning and model evaluation.

A supervised machine learning model aims to learn a function f(x) =y from a list of training pairs
(x 1,y 1), (x 2,y 2), ... for which data are recorded. one typical application in biology is to predict
the viability of a cancer cell line when exposed to a chosen drug [70]. The input features (x) would
capture somatic sequence variants of the cell line, chemical make-up of the drug and its
concentration, which together with the measured viability (output label y) can be used to train a
support vector machine, a random forest classifier or a related method (functional relationship f).
Given a new cell line (unlabelled data sample x*) in the future, the learnt function predicts its
survival (output label y*) by calculating f(x*), even if f resembles more of a black box, and its
inner workings of why particular mutation combinations influence cell growth are not easily
interpreted. Both regression (where y is a real number) and classification (where y is a categorical
class label) can be viewed in this way. As a counterpart, unsupervised machine learning
approaches aim to discover patterns from the data samples x themselves, without the need for
output labels y. Methods such as clustering, principal component analysis and outlier detection

are typical examples of unsupervised models applied to biological data.

The inputs x, calculated from the raw data, represent what the model “sees about the world”, and
their choice is highly problem-specific. Deriving most informative features is essential for
performance, but the process can be labour-intensive and requires domain knowledge. This
bottleneck is especially limiting for high-dimensional data; even computational feature selection
methods do not scale to assess the utility of the vast number of possible input combinations. A

major recent advance in machine learning is automating this critical step by learning a suitable
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representation of the data with deep artificial neural networks [71] . Briefly, a deep neural network
takes the raw data at the lowest (input) layer and transforms them into increasingly abstract feature
representations by successively combining outputs from the preceding layer in a data-driven
manner, encapsulating highly complicated functions in the process. Deep learning is now one of
the most active fields in machine learning and has been shown to improve performance in image
and speech recognition [72], natural language understanding [73], and most recently, in

computational biology [74].

2.3.2 Artificial Neural Networks Details

An artificial neural network, initially inspired by neural networks in the brain, consists of layers
of interconnected compute units (neurons). The depth of a neural network corresponds to the
number of hidden layers, and the width to the maximum number of neurons in one of its layers.
As it became possible to train networks with larger numbers of hidden layers, artificial neural

networks were rebranded to “deep networks”.

In the canonical configuration, the network receives data in an input layer, which are then
transformed in a nonlinear way through multiple hidden layers, before final outputs are computed
in the output layer (panel A). Neurons in a hidden or output layer are connected to all neurons of
the previous layer. Each neuron computes a weighted sum of its inputs and applies a nonlinear
activation function to calculate its output f(x) (panel B). The most popular activation function is
the rectified linear unit (ReLU; panel B) that thresholds negative signals to 0 and passes through
positive signal. This type of activation function allows faster learning compared to alternatives

(e.g. sigmoid or tanh unit).

The weights w @ between neurons are free parameters that capture the model's representation of
the data and are learned from input/output samples. Learning minimizes a loss function L(w) that
measures the fit of the model output to the true label of a sample (panel A, bottom). This
minimization is challenging, since the loss function is high-dimensional and non-convex, similar
to a landscape with many hills and valleys (panel C). It took several decades before the backward
propagation algorithmwas first applied to compute a loss function gradient via chain rule for

derivatives, ultimately enabling efficient training of neural networks using stochastic gradient
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descent. During learning, the predicted label is compared with the true label to compute a loss for
the current set of model weights. The loss is then backward propagated through the network to
compute the gradients of the loss function and update (panel A). The loss function L(w) is typically
optimized using gradient-based descent. In each step, the current weight vector (red dot) is moved
along the direction of steepest descent dw (direction arrow) by learning rate n (length of vector).
Decaying the learning rate over time allows to explore different domains of the loss function by
jumping over valleys at the beginning of the training (left side) and fine-tune parameters with
smaller learning rates in later stages of the model training. While learning in deep neural networks
remains an active area of research, existing software packages can already be applied without

knowledge of the mathematical details involved.

Alternative architectures to such fully connected feedforward networks have been developed for
specific applications, which differ in the way neurons are arranged. These include convolutional
neural networks, which are widely used for modelling images, recurrent neural networks for
sequential data [75], or restricted Boltzmann machines [76] and autoencoders [77] for
unsupervised learning. The choice of network architecture and other parameters can be made in a

data-driven and objective way by assessing the model performance on a validation data set.
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Figure 4: Working of Artificial Neural Network
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2.3.3 Convolutional Neural Network

Convolutional neural systems (CNNs) were initially enlivened by intellectual neuroscience and
Hubel and Wiesel's original work on the feline's visual cortex, which was found to have basic
neurons that react to little themes in the visual field, and complex neurons that react to bigger
one[78].

CNNs are intended to display include information as multidimensional exhibits, for example, two-
dimensional pictures with three shading channels or one-dimensional genomic arrangements with
one channel for each nucleotide. The high dimensionality of these information (up to a large
number of pixels for high-resolution pictures) renders preparing a completely associated neural
system testing, as the quantity of parameters of such a model would normally surpass the quantity
of preparing information to fit them. To evade this, CNNs make extra presumptions on the

structure of the system, in this manner decreasing the powerful number of parameters to learn.

A convolutional layer consists of multiple maps of neurons, so-called feature maps or filters, with
their size being equal to the dimension of the input image (Figure 5 panel A). Two concepts allow
reducing the number of model parameters: local connectivity and parameter sharing. First, unlike
in a fully connected network, each neuron within a feature map is only connected to a local patch
of neurons in the previous layer, the so-called receptive field. Second, all neurons within a given
feature map share the same parameters. Hence, all neurons within a feature map scan for the same
feature in the previous layer, however at different locations. Different feature maps might, for
example, detect edges of different orientation in an image, or sequence motifs in a genomic
sequence. The activity of a neuron is obtained by computing a discrete convolution of its receptive
field, that is computing the weighted sum of input neurons, and applying an activation function

(Figure 5 panel B).

In most applications, the exact position and frequency of features is irrelevant for the final
prediction, such as recognizing objects in an image. Using this assumption, the pooling layer
summarizes adjacent neurons by computing, for example, the maximum or average over their
activity, resulting in a smoother representation of feature activities (Figure 5 panel C). By applying

the same pooling operation to small image patches that are shifted by more than one pixel, the
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input image is effectively down-sampled, thereby further reducing the number of model

parameters.

A CNN typically consists of multiple convolutional and pooling layers, which allows learning
more and more abstract features at increasing scales from small edges, to object parts, and finally
entire objects. one or more fully connected layers can follow the last pooling layer (Figure 5 panel
A). Model hyper-parameters such as the number of convolutional layers, number of feature maps
or the size of receptive fields are application-dependent and should be strictly selected on a

validation data set.
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Figure 5: Working CNNs
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2.3.4 Recurrent Neural network

Humans don’t start their thinking from scratch every second. Traditional neural networks can’t do
this, and it seems like a major shortcoming. For example, imagine if one want to classify what kind
of event is happening at every point in a movie. It’s unclear how a traditional neural network could

use its reasoning about previous events in the film to inform later ones.

Recurrent neural networks address this issue. They are networks with loops

in them, allowing information to persist.

L
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;
A

&

In the above diagram, a chunk of neural network, AA, looks at some input xt and outputs a value ht.

Figure 6: Recurrent Neural

Networks have loops A loop allows information to be passed from one step of the network

to the next. These loops make recurrent neural networks seem kind of
mysterious. It turns out that they aren’t all that different than a normal neural network. A recurrent
neural network can be thought of as multiple copies of the same network, each passing a message to

a successor. Consider what happens if we unroll the loop:

7 7
L»A—J = A — A
b &

Figure 7: An unrolled recurrent neural network
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This chain-like nature reveals that recurrent neural networks are intimately related to sequences and

lists. They’re the natural architecture of neural network to use for such data.
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And they certainly are used! In the last few years, there have been incredible success applying RNNs
to a variety of problems: speech recognition, language modeling, translation, image captioning...

The list goes on.

Essential to these successes is the use of “LSTMs,” a very special kind of recurrent neural network
which works, for many tasks, much much better than the standard version. Almost all exciting results

based on recurrent neural networks are achieved with them.
The Problem of Long-Term Dependencies

one of the appeals of RNNs is the idea that they might be able to connect previous information to the
present task, such as using previous video frames might inform the understanding of the present
frame.Sometimes, we only need to look at recent information to perform the present task. For
example, consider a language model trying to predict the next word based on the previous ones. If
we are trying to predict the last word in “the clouds are in the sky,” we don’t need any further context
— it’s pretty obvious the next word is going to be sky. In such cases, where the gap between the

relevant information and the place that it’s needed is small, RNNs can learn to use the past

!
:

information.
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But there are also cases where we need more context. Consider trying to predict the last word in the

h)
:
¢

Figure 8: Working of RNNs
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text “I grew up in France... | speak fluent French.” Recent information suggests that the next word
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is probably the name of a language, but if we want to narrow down which language, we need the
context of France, from further back. It’s entirely possible for the gap between the relevant

information and the point where it is needed to become very large.

Unfortunately, as that gap grows, RNNs become unable to learn to connect the information.
A — A A A A

In theory, RNNs are absolutely capable of handling such “long-term dependencies.” A human could

Figure 9: RNNs become unable to learn to connect the information

carefully pick parameters for them to solve toy problems of this form. In practice, RNNs don’t seem

to be able to learn them. LSTMSs don’t have this problem!

LSTM Networks

Long Short Term Memory networks — usually just called “LSTMs” — are a special kind of RNN,
capable of learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber
[79], and were refined and popularized by many people in following work. They work tremendously

well on a large variety of problems, and are now widely used.

LSTMs are explicitly designed to avoid the long-term dependency problem. Remembering
information for long periods of time is practically their default behavior, not something they struggle

to learn!

All recurrent neural networks have the form of a chain of repeating modules of neural network. In

standard RNNSs, this repeating module will have a very simple structure, such as a single tanh layer.
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Figure 10: The repeating module in a standard RNN contains a single layer

LSTMs also have this chain like structure, but the repeating module has a different structure. Instead

of having a single neural network layer, there are four, interacting in a very special way.
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Figure 11: The repeating module in an LSTM contains four interacting layers

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

In the above diagram, each line carries an entire vector, from the output of one node to the inputs of

others. The pink circles represent pointwise operations, like vector addition, while the yellow boxes

23|Page




are learned neural network layers. Lines merging denote concatenation, while a line forking denote

its content being copied and the copies going to different locations.

A basic sequence-to-sequence model consists of two recurrent neural networks (RNNSs):
an encoder that processes the input and a decoder that generates the output. This basic architecture
is depicted below.
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Figure 12: Typical Seq2Seq architecture

Each box in the picture above represents a cell of the RNN, most commonly a GRU cell or
an LSTM cell. Encoder and decoder can share weights or, as is more common, use a different set
of parameters. Multi-layer cells have been successfully used in sequence-to-sequence models too,

e.g. for translation.

In the basic model depicted above, every input has to be encoded into a fixed-size state vector, as
that is the only thing passed to the decoder. To allow the decoder more direct access to the input,
an attention mechanism was introduced in [80]. It allows the decoder to peek into the input at
every decoding step. A multi-layer sequence-to-sequence network with LSTM cells and attention

mechanism in the decoder looks like this.
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Figure 13: Multi-layer seg2seq network with LSTM cells and attention mechanism
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2.3.5 Principles of using neural networks for predicting

sequence
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Figure 14: Principles of using neural networks for predicting molecular traits from DNA sequence

(A) DNA sequence and the molecular response variable along the genome for three individuals.

Conventional approaches in regulatory genomics consider variations between individuals,

whereas deep learning allows exploiting intra-individual variations by tiling the genome into

sequence DNA windows centred on individual traits, resulting in large training data sets from a

single sample.

(B) one-dimensional convolutional neural network for predicting a molecular trait from the raw

DNA sequence in a window. Filters of the first convolutional layer (example shown on the edge)

scan for motifs in the input sequence. Subsequent pooling reduces the input dimension, and

additional convolutional layers can model interactions between motifs in the previous layer.
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(C) Response variable predicted by the neural network shown in (B) for a wild-type and mutant
sequence is used as input to an additional neural network that predicts a variant score and allows

to discriminate normal from deleterious variants.

(D) Visualization of a convolutional filter by aligning genetic sequences that maximally activate

the filter and creating a sequence motif.

(E) Mutation map of a sequence window. Rows correspond to the four possible base pair
substitutions, columns to sequence positions. The predicted impact of any sequence change is
colour-coded. Letters on top denote the wild-type sequence with the height of each nucleotide

denoting the maximum effect across mutations (figure panel adapted from [81]).
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CHAPTER3 METHODOLOGY
3.1 Data Curation

. Here we intended to use CNN and LSTM network in the form of seq2seq architecture to predict
the matching sequence of microRNA from mRNA. For seq2seq architecture we require sequence

of microRNAs and their corresponding binding target sites in a mRNA.

microRNA sequence were retrieve from miRBase release 22, march 2018[82]. miRBase provides

the following services:

e The miRBase database is a searchable database of published microRNA sequences and
annotation. Each entry in the miRBase Sequence database represents a predicted hairpin
portion of a microRNA transcript (termed mir in the database), with information on the
location and sequence of the mature microRNA sequence (termed miR). Both hairpin and
mature sequences are available for searching and browsing, and entries can also be
retrieved by name, keyword, references and annotation. All sequence and annotation data
are also available for download.

e The miRBase Registry provides microRNA gene hunters with unique names for novel
microRNA genes prior to publication of results. Visit the help pages for more information

about the naming service.

The corresponding microRNA target site sequence were curated from DIANA-TarBase
v8[83].

DIANA-TarBase v8 (http://www.microrna.gr/tarbase) is a reference database devoted to the
indexing of experimentally supported microRNA (microRNA) targets. Its eighth version is the
first database indexing >1 million entries, corresponding to ~670 000 unique microRNA-
target pairs. The interactions are supported by >33 experimental methodologies, applied to
~600 cell types/tissues under ~451 experimental conditions. It integrates information on cell-
type specific microRNA-gene regulation, while hundreds of thousands of microRNA-binding

locations are reported. TarBase is coming of age, with more than a decade of continuous
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support in the non-coding RNA field. A new module has been implemented that enables the
browsing of interactions through different filtering combinations. It permits easy retrieval of
positive and negative microRNA targets per species, methodology, cell type and tissue. An
incorporated ranking system is utilized for the display of interactions based on the robustness
of their supporting methodologies. Statistics, pie-charts and interactive bar-plots depicting the
database content are available through a dedicated result page. An intuitive interface is

introduced, providing a user-friendly application with flexible options to different queries.

For retrieving data we created a web crawler for TarBase v8 in python using package
Beautifulshoup. our crawler takes microRNA name as input and finds its target sites form
every entry in TarBase v8. It gives output CSV file containing microRNA Name, Gene
Symbol, Chromosome location of the target binning site according to Ensemble Human

(GRCh38.p12) annotation. The code for this web crawler can be found in Appendix I.

High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-
CLIP, also known as CLIP-Seq) is a genome-wide means of mapping protein—~RNA binding
sites or RNA modification sites in vivo[84][85]. HITS-CLIP was originally used to generate
genome-wide protein-RNA interaction maps for the neuron-specific RNA-binding protein and
splicing factor NoVA1 and NoVA2; since then a number of other splicing factor maps have
been generated, including those for PTB, RbFox2, SFRS1, hnRNP C, and even NG6-
Methyladenosine (m6A) mRNA modifications.
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Figure 15: Screenshot of result page of TarBase v.8

HITS-CLIP of the RNA-binding protein Argonaute has been performed for the identification
of microRNA targets[86] by decoding microRNA-mRNA and protein-RNA interaction maps

in mouse brain[87], and subsequently in Caenorhabditis elegans, embryonic stem cells and

tissue culture cells.

A sample of retrieve data can be found below.

Table 2: Sample of Retrieve data for training

microRNA microRNA_sequence Chromosome mRNA_Sequence Gene
_nhame Location Symbol
hsa-let-7a- | UGAGGUAGUAGGUUG 15:98960051-

5p UAUAGUU 98960068 ACUCCAUCUAUUUACAAA | IGFIR
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hsa-let-7a-| UGAGGUAGUAGGUUG 13:48480030- ACUCCAUAGGUACGAUAG RB1

5p UAUAGUU 48480053 UAAGUA

hsa-let-7a- | UGAGGUAGUAGGUUG 1:205602438-

5p UAUAGUU 205602456 ACUCCAUCCCAUCCAUGAA| MFSD4
hsa-let-7a-| UGAGGUAGUAGGUUG 1:38863569- ACUCCAUCCGUAGUGCCUG MYCRBP
5p UAUAGUU 38863589 UA

hsa-let-7a- | UGAGGUAGUAGGUUG 1:35853829- ACUCCAUUUUUAAGUCAG AGO4
5p UAUAGUU 35853851 GUCAC

hsa-let-7a- | UGAGGUAGUAGGUUG 17:49051062- ACUCCAUCAAAUGAAGCG IGE2BP1
5p UAUAGUU 49051083 UGUG

hsa-let-7a- | UGAGGUAGUAGGUUG 1:207048984- ACUCCAUCAUCCGAAGUUG YOD1
5p UAUAGUU 207049003 G

hsa-let-7a- | UGAGGUAGUAGGUUG 3:47736093- ACUCCAUCUACAACCCAGA| SMARCC
5p UAUAGUU 47736115 CCAG 1
hsa-let-7a- | UGAGGUAGUAGGUUG 15:52065475- ACUCCAUCUAUUGUGUAC MAPK6
5p UAUAGUU 52065494 AC

hsa-let-7a- | UGAGGUAGUAGGUUG 14:52642082-

5p UAUAGUU 52642099 ACUCCAUAUAUCGAAGAA | EROILL
hsa-let-7a- | UGAGGUAGUAGGUUG 9:124522310- ACUCCAUCAGUAGAAACA NR6AL
5p UAUAGUU 124522334 GUUGUAA

hsa-let-7a- | UGAGGUAGUAGGUUG 5:41921316- AUUCCAUCUUUCUCUUUUC C5orf51
5p UAUAGUU 41921344 UCCGUUCGUU
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hsa-let-7a-| UGAGGUAGUAGGUUG 5:154475055-

5p UAUAGUU 154475073 ACUCCAUCUUUUCCCAACC| HAND1

3.2 Data Preparation
3.2.1 Data Cleaning

As data were scraped with crawler all, all sequences are manually checked to see the polarity of
the strands. All microRNA sequence strands were in polarity 3’ to 5’ and all mMRNA strands are in
polarity of 5’ to 3” here by conserving the seed pair features of 3’ end and 5’ end of microRNA
and mRNA respectively.

microRNA - 3> UGAGGUAGUAGGUUGUAUAGUU 5’

SRR
MRNA- 5" ACUCCAUCAGUAGAAACAGUUGUAA 3

To bring a uniformity in length of sequences and difference in length of sequence so that our
model could able to extract features based on patterns in the sequence not the length of sequences,

we decided to set some threshold values. The threshold values are as follows:

e The difference between the length of pairs of microRNA and mRNA were varying from
0 to 18, which was very divorced, so we looked in to the distribution of the pair sequence
length difference. We saw that the distribution was left side skewed with having around
90% of the difference in length pair of sequences between 0 to 6. So we took threshold as

6. After doing that we are left with 19300 data sets.

3.2.2 DNA sequence one-hot encoded as binary vectors using codes

Categorical features such as mRNA and microRNA nucleotides first need to be encoded
numerically. They are typically represented as binary vectors with all but one entry set to zero,
which indicates the category (one-4ot coding). For example, DNA nucleotides (categories) are

commonly encoded as A=(1000),G=(0100),C=(0010)andU=(0001). ADNA
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sequence can then be represented as a binary string by concatenating the encoding nucleotides,

and treating each nucleotide as an independent input feature of a feedforward neural network.

Binary coded strings as input of a neural network should be of same length, i.e. all microRNAs
will be of same length and all mRNA target site sequence should be of same length which is not
the scenario of real world. So. We took the lengthiest sequence among the microRNA sequence
as a default length of all microRNAs by filling any blank places with zeros in any microRNA
sequence whose length is less than the default length which turns to be 28. In the same way we

treat the mRNASs sequences and their default length turns to be 29.

For mRNA we encoded the sequences in binary strings by making matrix of 29 X 4. Where we
put A as[1,0,0,0], Cas|[0,1,0,0], G as[0,0,1,0] and U as [0,0,0,1].

Table 3 Binary matrix representing mRNA binding site sequence 'UUGUGUAGUAACGUGUAAUGUCG'

oclo|l@|O|IC|O®|C|P|P|IC|IO|IC|lO|O>|>|IC|lO|>|IC|lO|IC|O®|C|C
olo|o|lolo]lo|lolr]|r]|olo]lo]lo]lolr]r]|o]lolr]|o]lo]lo]lo]lo]le
o|lololr|o|lo|o]lo]lo]lo]lo]lololr]|o]lo]lo]lololo|olo]o]lo]e
o|lolr|o|lo|r]|ololo]lo]lr]lolr]olo]lo]lolr]ololr]|lo]lr]o]lo
o|lololo|r|olr]o]lo]lr]o]lr]o]lo]lo]lolr]|ololr]|olr]o]r]r+
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ojojo]o
ojojo]o
ojojo]o

0 0
0 0
0 0
0 0

on the other hand as we have to predict microRNAs from mRNA sequence using Seq2Seq
architecture, so we require to provide a starting and ending token. So we used \t’ as starling token
and ‘\n’ and ending token. So resultant microRNA sequences are in the from of target_microRNA
="\t' + target_text + '\n'. For microRNA we encoded the sequences in binary strings by making
matrix of 28 X 6. Where we put A as [1,0,0,0,0,0] , C as [0,1,0,0,0,0], G as [0,0,1,0,0,0], U as
[0,0,0,1,0,0], \t’ as [0,0,0,0,1,0] and lastly ‘\n” as [0,0,0,0,0,1]

Than we shuffled the data for introducing randomness in every batch during training. Python code
for reading the data from file and hot-encoded the input mRNA sequences and microRNA

sequences are given in APPENDIX II.

3.3 Building mirBoT model
3.3.1 Proposed model

Input mMRNA
" CGUCGUAACGAAAUGUCGU "

Y
CNN Layer
and J

Dense Layer

\

Feature INPUT from

CNN Through Dense "[START]AGCAGCAUUGU" =
v v Reinject
LSTM | f LSTM prediction until
( encoder 'L decoder ‘ we generate
Internal LSTM l [STOP]
v states (h, c)

"AGCAGCAUUGU [STOP]"
Output miRNA

Figure 16: Proposed Seg2Seq model using CNNs and LSTMs for microRNA sequence prediction
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Above given figure is our proposed model for prediction of microRNA sequences from mRNA
sequences. In python we used Keras library of deep learning using Tensorflow in background for
building and training our model.

TensorFlow is an open-source programming library for dataflow programming over a scope of
undertakings. It is a representative math library, and is likewise utilized for machine learning
applications, for example, neural systems. It is utilized for both research and generation at Google.

Keras is a high-level neural networks API, written in Python and capable of running on top of
TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.
Being able to go from idea to result with the least possible delay is key to doing good research.
Keras offers easy and fast prototyping (through user friendliness, modularity, and extensibility).
Supports both convolutional networks and recurrent networks, as well as combinations of the
two. Runs seamlessly on CPU and GPU.

3.3.2 Developing the model

First step was to extract feature using CNN from mRNA sequence. We had use a window size of
8 for extracting 128 features. The method of feature extraction by CNNs is explained in point
2.3.3 of this report.

Window size 8

—
Input
Input
npu features
k_I_,J
Extracted
patch
i Dot product
*‘ with weights
Outout Output
P features

Figure 17: Feature extraction using CNN on mRNA sequence.
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Then we used a dense layer of 128 neurons for adjusting weight of 128 features which were
extracted from mRNA sequence which were than feed into LSTM networks.

Building Seq2Seq LSTM Network:

mRNA : AUCGUGGUUGUAAAAGCGACA
miRNA : UAGCACCAUCUGAAAUCGGUUA

miRNA: A U C G
I | !
I | ]
_’_._’_’ _”-‘ }90‘4’"E*’ Egz‘ ......
! ! ! ! t , ,\
mRNA: U A G C \t A o .
® ® ©
h e 4‘ t-.
A 1t r‘lJ_‘ A

Figure 18: Seq2Seq LSTM model

A RNN layer (or stack thereof) goes about as "encoder": it forms the information succession and
returns its own particular interior state. Note that we dispose of the yields of the encoder RNN,
just recouping the state. This state will fill in as the "specific circumstance”, or "molding", of the

decoder in the subsequent stage (Figure 15).

Another RNN layer (or stack thereof) goes about as "decoder": it is prepared to foresee the
following characters of the objective grouping, given past characters of the objective succession.
In particular, it is prepared to transform the objective successions into similar arrangements yet
counterbalance by one timestep later on, a preparation procedure called "educator constraining"
in this specific situation. Essentially, the encoder utilizes as starting state the state vectors from
the encoder, which is the means by which the decoder gets data about what it should create.

Adequately, the decoder figures out how to create targets[t+1...] given targets|...t], molded on the
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information grouping (Figure 15).In prediction mode mode, i.e. when we want to decode

unknown input sequences, we go through a slightly different process:

1) Encode the input sequence into state vectors.

2) Start with a target sequence of size 1 (just the start-of-sequence character).

3) Feed the state vectors and 1-char target sequence to the decoder to produce predictions for the

next character.

4) Sample the next character using these predictions (we simply use argmax).

5) Append the sampled character to the target sequence

6) Repeat until we generate the end-of-sequence character or we hit the character limit.

input_1: InputLayer

input:

(None, None, 4)

output:

(None, None, 4)

l

convld_l: ConvlD

input:

(None, None, 4)

output:

(None, None, 128)

l

input: | (None, None, 128) input: | (None, None, 6)
dense_l: Dense input_2: InputLayer -
output: | (None, None, 128) output: | (None, None, 6)
l Y
input: (None, None, 128) input: (None, None, 6)
Istm_1: LSTM dense_2: Dense
output: | [(None, 512), (None, 512), (None, 512)] output: | (None, None, 128)

/

Istm_2: LSTM

input:

[(None, None, 128), (None, 512), (None, 512)]

output:

[(None, None, 512), (None, 512), (None, 512)]

dense_3: Dense

input:

(None, None, 512)

output:

(None, None, 6)

Figure 19: Final Model of mirBoT constitute of Conv1D, Dense and LSTMs layers.

The python code for the model development training and prediction is shown in APPENDIX I11
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3.4 Training of mirBoT

TRAINING Train 4
model
o ode ~— \\\ p— 8 ” | :
Repeat \ \ rates g ot Ovomumgg
= 2 - ' '
N @ Low 1< ——
Evaluate” Selected 3 \\ g // ~ \ O
model model S / .
i / e = / Validat ! Point of \/
TEST Test final e : i S ) §
k 30% , performance Good i 2 %

Epoch Epoch

Figure 20: Typical process for training a neutral network model

The goal of model training is to find parameters w that minimize an objective function L(w), which
measures the fit between the predictions the model parameterized by w and the actual
observations. The most common objective functions are the cross-entropy for classification and
mean-squared error for regression. Minimizing L(w) is challenging since it is high-dimensional

and non-convex (Figure 19 A); see also2.3.2 section.

3.4.1 Determining the number of neurons in a network

The optimal number of hidden layers and hidden units is problem-dependent and should be
optimized on a validation set. one common heuristic is to maximize the number of layers and
units without overfitting the data. More layers and units increase the number of representable
functions and local optima, and empirical evidence shows that it makes finding a good local
optimum less sensitive to weight initialization. Here we used various numbers of neurons
combinations in all layers, and found 128 neurons for Dense layers and 512 neurons for LSTMs

as optimum.

3.4.2 Partitioning data into Training and Validation sets

Machine learning models need to be trained, validation and tested on independent data sets to
avoid overfitting and assure that the model will generalize to unseen data. For proper training
partitioning the data into a training, validation and test sets, is the standard for deep neural

networks. The training set is used by the models to learn with different hyper-parameters, which
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are later evaluated on the validation set. The model with best performance, for example prediction
accuracy or mean-squared error, is selected and further evaluated on the test set to quantify the
performance on unseen data and for comparison to other methods. out of 19300 data sets we used
80% of the data for training and 20% for validation. And for further testing we used data of
microRNA associated with skin diseases from for in house developed database miDerma. It

consists of microRNA and mRNA pairs which as associated with dermatological disorders.

3.4.3 Learning Rate and Batch size

The learning rate and clump size of stochastic inclination plunge should be picked with mind,
since they can emphatically affect preparing rate and model execution. Diverse learning rates are
typically investigated on a logarithmic scale, for example, 0.1, 0.01 or 0.001, with 0.01 as the
prescribed default esteem. A clump size of 128 preparing tests is reasonable for generally
applications. The group size can be expanded to accelerate preparing or diminished to lessen
memory utilization, which can be vital for preparing complex models on memory-limited GPUs.
The ideal learning rate and bunch measure are associated, with bigger group sizes regularly
requiring littler learning rates.In our work we used a default learning rate of 0.01 and batch size
of 50.

3.4.4 Avoiding overfitting

Profound neural systems are famously hard to prepare, and overfitting to information is a
noteworthy test, since they are nonlinear and have numerous parameters. overfitting comes about
because of an excessively complex model relative, making it impossible to the span of the
preparation set, and would thus be able to be diminished by diminishing the model many-sided
quality, for instance the quantity of hidden layers and units, or by expanding the measure of the
preparation set, for instance by means of information expansion. We have taken the following
precautions for avoiding overfitting:

e We had used a dropout rate of 0.5 in LSTM layers.
e We had put L2 regularization penalty of 0.001 in every Dense layers.

Finally we trained our model in floydhub cloud computing instance having 32GB RAM, 11GB
NVIDIA Tesla K80 GPU and Intel Xeon 8 Cores CPU for 100 epochs.
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Command floyd run --gpu --env keras 'python rnn_lstm.py’

v System Metrics

3 weeks ago (Metrics collected every min)

CPU Utilization 28.2% Memory Utilization (60 GB) 2.4% Disk Utilization (202 GB) 0.1%
W‘MMWF-
GPU Utilization 86% GPU Memaory Utilization (11 GB) 95.6%
~  Training Metrics
Accuracy 0.7902 Loss 0.1283
0.9 1.25
0.8
1
0.7
0.75
0.6
0.5
0.5
0.4
0.25
0.3
0.2 [}
04:00 05:00 06:00 07:00 08:00 09:00 10:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Time Time
Validation Accuracy 0.8003 Validation Loss 0.0877
0.9 1.2
0.8 1
0.7 0.8
0.6 0.6
0.5 0.4
0.4 0.2
0.3
0710 07:20 07:30 07:40 07:50 08:00 0710 07:20 07:30 07:40 07:50 08:00
Time Time

Figure 21: Training setup for mirBot
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3.5 Obtaining Surface Area accessibility Regions as target binding site of
microRNA in 3’ UTR of mRNAs

our mirBoT requires a gene symbol for predicting respective microRNAs. Sequences of all

protein coding transcripts of a query gene and their 3’UTRs are retrieve using ensemble REST

API. As ensemble REST API accept transcript ID so a local SQL.ite database was developed for

mapping Gene Symbols with all respective protein coding ensemble transcript IDs.

Site accessibility is a measure of the ease with which a microRNA can locate and hybridize with
an mRNA target. Following transcription, mMRNA assumes a secondary structure [53] which can
interfere with a microRNA’s ability to bind to a target site. MicroRNA:mRNA hybridization
involves a two-step process in which a microRNA binds first to a short accessible region of the
MRNA. The mRNA secondary structure then unfolds as the microRNA completes binding to a
target[54]. Therefore, to assess the likelihood that an mRNA is the target of a microRNA, the

predicted amount of energy required to make a site accessible to a microRNA should be evaluated.

So we used RNAplfold program from ViennaRNA Package 2.0 [88] to compute calculate locally
stable secondary structure — pair probabilities. This package has python wapper and computes
local pair probabilities for base pairs with a maximal span of L. The probabilities are averaged

over all windows of size L that contain the base pair.

The output is a plain tuple of matrix containing on each line a position x followed by the
probability that x is unpaired, [x-1..x] is unpaired [x-2..X] is unpaired and so on to the probability

that [x-i+1..x] is unpaired.

We had set the total accessibility (with RNAplfold). Total accessibility means the sum of Psree ’s
(Probapility of 4-mers being unpaired) over all accessible 4-mers contained in all complementary
sites. If Psee >=0.2 than those 4-mers are said to be accessible. We used local
folding: W =80, L =40 as referred in [89] and feed sequences of all protein coding transcripts of
a query gene to RNAplfold for finding accessibility region or accessible 4-mers. After that we use
accessible 4-mers in 3’UTR region for finding the microRNA binding site in respective mMRNA

i.e. these 4-mers and next 22-mers total 26-mers.
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Full python code for finding accessibility region in 3’UTR of a gene’s transcript can be found in
APPENDIX IV

3.6 Developing Final package

M, Fe ™, e ™,
Gene Symbol mapped Sequence of respective
e e T with all respective Protein transcripts and position of
coding ensemble 3'UTR are retrieve from
transcript ID ensemble REST API
“ s . S

Sequence of target site is
feed to trained model for
prediction of miRNA

Sequence of transcripts
are feed to RNApIFold for
finding accessible region

miRNA target sites in
transcripti.e. mRNA are
retrieve

sequence in 3’'UTR
\ re ,
Predicted miRNA Hence retrieving a list of
sequence are mapped predicted miRNA for a
with miRNA IDs. Gene Symbol

Figure 22: Workflow of mirBoT

When running the program the user will prompt to enter a Gene symbol. Then the Gene symbol
will be used to retrieve all associated protein coding ensemble transcript IDs. RNA sequence of
these transcript IDs and location of 3°UTR will be retrieve using ensemble REST API. These
sequence will be feed to RNAplfold package of ViennaRNA package for finding accessibility
region or accessible 4-mers. After that we select accessible 4-mers in 3°UTR region using location
of 3’UTRs for finding the microRNA binding site in respective mRNA i.e. these 4-mers and

previous 22-mers total 26-mers which are in polarity 3’ to 5°. Then these mMRNA segments are
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feed to our trained model for predicting respective microRNA sequences. Then these predicted
microRNA sequences will be mapped to their microRNA IDs using a local SQLite database
containing microRNA ID and respective sequence retrieve from mirBase Release 22, March 2018.

Hence giving output a list of predicted microRNA 1Ds. Whole flowchart is shown in figure 22.
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CHAPTER 4 RESULTS

mirBoT, a package for predicting microRNA associated with a gene has been developed using
neural networks particularly CNN and LSTMs which are according to a well-known seq2seq
architecture which are used for prediction of sequence based on sequence. our model are trained
on data set containing sequences of microRNA and their respective target binding sites in mMRNA

which are retrieve from TarBase v8. The model was trained for 100 epochs.

4.1 Accuracy

~ Training Metrics

Accuracy 0.7902 Loss 0.1283

09 1.25

Time Time

Validation Accuracy 0.8003 Validation Loss 0.0877

0.9

Time Time

Figure 23: Training Matrices of Model
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After training for 100 epochs we found that the training accuracy of our model for predicting
microRNA sequence base on its binding site in mMRNA is around 79% i.e. accuracy in training set,
while in validation set we got an 1% increase in accuracy i.e. around 80%. As training accuracy
is less than validation accuracy we can state that out model is not overfitted. Also there is a
decrease in validation loss than training loss i.e. training loss is 0.128 where validation loss in
0.087 which also implies the same. From training matrices it can be seen that microRNA sequence

can be predicted with upto 80% similarity using its target binding segment in mRNA (figure 23).

4.2 Validation

To test our package with experimentally validated list of microRNAs associated with Gene
symbol. 200 Genes we randomly selected from our in house developed database miDerma which
contains microRNA and Gene pair associated with dermatological disorders. microRNAs
associated with individual genes were retrieved. Also those genes were feed to our package and

microRNASs were predicted.

Here our model was able to predict on average 72% of microRNA for each Genes from the list of

200 Genes correctly and also predicted some noble microRNA  sequences.
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Figure 24: Violin plot showing distribution showing % of accurately predicted microRNAs from 200 Gene Symbols
associated with Dermatological disorders among known microRNAS.

Figure above is a violin distribution for percentage of microRNAs predicted accurately among
known experimentally validated microRNAs for individual genes in test set of 200 genes. It can
be noted that width of the plot is more in the range of 95% to 75%. Also our model was able to

predict some noble microRNA sequence for targeted genes.

Table 4: Some of the well predictions done through our mirBoT.

No. of Experimentally No. of. microR!\lAs Percentage of accurately
Gene . . accurately predicted . .
Symbol valldgted mlc?roRNAs among the validated predlct'ed mlcro.RNAs among
associated with Gene ) the validated microRNAs (%)
microRNAs
ABCC1 26 26 100
ADAMTS1 13 13 100
ELK3 14 14 100
EPB41L3 20 19 95
BMPR2 51 48 94.11764706
ITSN2 17 16 94.11764706
FGF10 26 24 92.30769231
NT5C3A 12 11 91.66666667
EIF2S2 24 22 91.66666667
CCNE1 34 31 91.17647059
ABCG2 30 27 90
DNMT1 39 35 89.74358974
HOXD11 37 33 89.18918919
DSC3 18 16 88.88888889
GPI 27 24 88.88888889
JAG1 27 24 88.88888889
CUL5 17 15 88.23529412
ESRRA 8 7 87.5
FN1 8 7 87.5
CDK6 188 164 87.23404255
CD28 46 40 86.95652174
ARRDC3 23 20 86.95652174
CADM1 46 40 86.95652174
BAX 15 13 86.66666667
CYP24A1 15 13 86.66666667
FHL2 87 75 86.20689655
IGFBP5 144 124 86.11111111
AKAP12 21 18 85.71428571
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DNMT3A 34 29 85.29411765
HOXB13 20 17 85
E2F1 59 50 84.74576271
KMT2D 168 141 83.92857143
ABCB1 12 10 83.33333333
CENPF 12 10 83.33333333
ENO1 12 10 83.33333333
FGFR1 60 50 83.33333333
FOXQ1 42 35 83.33333333
BRIP1 29 24 82.75862069
ESR1 72 59 81.94444444
EZH2 44 36 81.81818182
GUCY1A2 11 9 81.81818182
JAG2 22 18 81.81818182
DKK1 16 13 81.25
FBXW?7 58 47 81.03448276
FTO 31 25 80.64516129
HADHB 36 29 80.55555556
ALDOA 190 152 80
APRT 5 4 80
BARD1 10 8 80
CD109 10 8 80
CXCL12 20 16 80
CXCL3 5 4 80
DAP3 5 4 80
CDH5 28 22 78.57142857
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CHAPTERS5 DISCUSSION AND CONCLUSION

The miRNA are small generally 28 bp long non-coding RNAs that are comprehensively involved
in various physiological and disease processes. one of the major challenge in microRNA studies
is the identification of MRNA targeted by miRNAs. Most researchers depends on computational
programs to initially finding the target candidates for subsequent validation. Although many
advancement has been made in recent years for prediction of targets computationally, but there is

still a significant scope for algorithmic improvement.

We have seen that neural networks are categories as a very efficient class of machine learning and
are applicable in solving almost every kind of problem starting from classification, clustering,
regression, Natural language processing, sequence prediction etc. The fundamental way of
learning of a neural network is by adjusting input weights of every neuron. CNNs are a class of
ANNSs which are used for feature extraction or selection. They are widely used in image
recognition for finding unique features from images. They can be also utilizing in extraction of
features or recognize specific patterns from sequences which very difficult to de consider by
humans. 1D ConvNet can be using for selecting features from a 1D data i.e. a text sequence. RNNs
are another class of ANNs which are efficient in learning from a sequence data. They basically
use their internal state (memory) to process sequences of inputs which enable them to remember
some instant of previous input data which is very helpful in dealing with sequence data. RNNs are
used sequence classification and sequence prediction. But RNNs are tend to have a problem of
vanishing gradient where it tends to forget instance from very initial states. For overcoming this
problem researcher have come up with a up gradation in RNNs i.e. LSTMs. LSTMs tackle the
vanishing gradient by adding another memory unit which takes accounts of all necessary states

and stores them.

Looking for an improved algorithm, in this work we used sequence pair data of miRNAs and
corresponding bound target mMRNA from TarBase v8 to trained a ANN network for prediction of
MIiRNA from their bounded target segment in mRNA. We particularly used CNNs for recognizing

patterns in mMRNA segments and extraction of features. We further used Two LSTMs in seq2seq
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architecture for predicting sequences of miRNA. Also two layers of dense network were stacked
between CNN and LSTML1, another between input_2 and LSTM1 (ref Figure 19). We trained this
model on 19000 experimentally validated and cleaned pair of mMRNA and miRNA sequences

archiving accuracy of 80%.

As we know that surface area accessibility is a crucial feature for binding of a miRNA with
targeted mRNA segment. Atleast 4-mers should be exposed and unbounded in a 3D structure of
MRNA for bounded by a miRNA. So we used RNAplfold from RNA vienna package for finding
the probability of 4-mers unpaired in mMRNA 3D structure. From the regions where those unpaired
are located we select segment which can be targeted by miRNAs. Then those segments are feed

into our trained model of prediction of possible miRNA which can bind with that target segment.

While running this package the used will prompt to enter a gene symbol, using the gene symbol
all the protein coding transcript’s sequence will be retrieve from the ensemble rest API. Then these
MRNA are processed for predicting a list of miRNAs. Finally we validated our model using
experimentally verified microRNA and RNA pairs involved in skin diseases we were retrieved
from our in house developed database miDerma. Here our model was able to predict on average
72% of microRNA from mRNA in each cases correctly. We named our package “mirBoT: A
MircoRNA sequence prediction tool from RNA sequence base on CNNs, LSTMs and seq2seq
architecture, as the neural network model is in the form of seq2seq architecture which are often
used in developing chatbots. It this way we particularly tried to bring the natural language
processing models to process core language of nature i.e. A, T, G, C. This study, we mainly focus
on identifying miRNA target sites which can be bounded by the miRNA. However, subsequent
improvement can be achieved by including more features which are stated in section 2.2. Knowing
the target of a miRNA is one approach for discovering the role of the miRNA in normal or aberrant
biological processes. Perhaps a huge number of targets exist, for any single miRNA. In the course
of the most recent 17 years, several tools have been developed to solve this complex issue. Each
of these projects has contributed to our understanding of the relationship between miRNA and
MRNA targets and how that relationship can be used to make accurate predictions. Prediction

miRNA may help the scientific community in the field of therapeutics, biomarker selection etc.
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CHAPTER 7 APPENDIX

7.1 APPENDIX I: Code for fetching miRNA and mRNA sequences from
TarBase V8.

from bs4 import BeautifulSoup
import requests
import re

def deleteContent(pfile):
pfile.seek(0)
pfile.truncate()

mirna_file=open('mirna_list.txt")
mirna_list = mirna_file.read().split()
result = open("Mirna_batch_last_remain.csv","w+")
deleteContent(result)
result.write("Gene Symbol,miRNA_name,Sequence,Location"+'\n")
count = o
list_not =[]
for mirna in mirna_list:
print(mirna)
page=0
#pagination loop
try:
for page no in range(151):
page = page+1
if page>151:
break
source = requests.get("http://carolina.imis.athena-
innovation.gr/diana_tools/web/index.php?r=tarbasev8%:2Findex&miRNAs%5B%5D=&miR
NAs%5B%5D={}&genes%5B%5D=&species%5B%5D=1&methods%5B%5D=8&sources%5B
%5D=1&sources%5B%5D=7&sources%5B%5D=9&publication_year=&prediction_score=0.7
5&sort_field=&sort_type=&query=1&page={}".format(mirna,page))
soup = BeautifulSoup(source.text,'Ixml")

try:
if int(soup.find('li',class_="active').text) < page: #last page check
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break
except:
page = 160

main = soup.find('tbody")

for tds in main.find_all('div"):
try:
td = tds.find_all('td',class_="first-level-block-bold")
gene = td[o].text.strip()
mirna = td[1].text.strip()

except:
continue
tr = tds.find('a’, attrs={"href":
re.compile(" *http://www.ensembl.org/Homo_sapiens/Location")})

if tr:
link_temp = tr.get('href")
link contain=link_temp.split(';")

g = link_contain[1].split('=")[1]

r = link_contain[2].split('=")[1]
# print (r)
#print(page)

seq_fasta =
requests.get('http://asia.ensembl.org/Homo_sapiens/Export/Output/Location?db=core;flank
3_display=o0;flanks_display=0;g={};output=fasta;r={};strand=feature;genomic=unmasked;p
eptide=yes;intron=yes;exon=yes;cdna=yes;coding=yes;utrs=yes;utr3=yes;_format=Text'.for
mat(g,r))

seq = seq_fasta.text.split('\n")[1].replace('T','U")[::-1].replace('\n',")

result.write("{},{},{},{}".format(seq,gene,mirna,r))

#print("wrote")

count=count+i1
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print(count)

else:
continue
except:

list_not.append(mirna)

continue
mirna_file.close()
result.close()

# -*- coding: utf-8 -*-
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7.2 APPENDIX II: Code for one-hotencoding of mRNA sequences

input_texts =[]
target_texts =[]
input_characters = set()
target_characters = set()
with open(data_path, 'r', encoding="utf-8') as f:
lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
target_text, input_text = line.split(’,")
# We use "tab™ as the "start sequence™ character
# for the targets, and "\n" as "end sequence" character.
target_text ="\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
print('Number of samples:', len(input_texts))
print(‘'Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print(‘Max sequence length for inputs:’, max_encoder_seq_length)
print('Max sequence length for outputs:’, max_decoder_seq_length)
input_token_index = {'/A" 0,'C" 1,'G" 2,'U" 3}
target_token_index = {'\t: 4, \n" 5,'A: 0,'C" 1,'G" 2,'U": 3}
encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32")
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
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dtype='float32")
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32")
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, char in enumerate(input_text):
encoder_input_data[i, t, input_token_index[char]] = 1.
for t, char in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep
decoder_input_datal[i, t, target_token_index[char]] = 1.
if t>0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target data[i, t - 1, target_token_index[char]] = 1.
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7.3 APPENDIX I11: Code for traing ANN Model.

from __future__ import print_function

import keras

from keras.models import Model

from keras.layers import Input, LSTM, Dense, ConviD

from keras import regularizers

from keras.utils import plot_model

import numpy as np

batch_size = 50 # Batch size for training.

epochs = 100 # Number of epochs to train for.

latent_dim = 512 # Latent dimensionality of the encoding space.
num_samples = 19000

encoder_inputs = Input(shape=(None, num_encoder_tokens))

cnn = ConviD(128,8, activation="relu")

cnn_output =cnn(encoder_inputs)

#dropout_layer = Dropout(0.5)

#decoder_outputs = dropout_layer(decoder_outputs)

encoder_dense_1 = Dense(128, activation="relu',kernel_regularizer=regularizers.12(0.001))
encoder_dense_output = encoder_dense_1(cnn_output)

encoder = LSTM(latent_dim, return_state=True,recurrent_dropout=0.4, dropout = 0.1)
encoder_outputs, state_h, state_c = encoder(encoder_dense_output)

# We discard "encoder_outputs™ and only keep the states.
encoder_states = [state_h, state_c]

# Set up the decoder, using "encoder_states" as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
#cnn_decoder = ConviD(128,8, activation="relu")

#cnn_decode_output =cnn_decoder(decoder_inputs)

#dropout_layer = Dropout(0.5)

#decoder_outputs = dropout_layer(decoder_outputs)

decoder_dense_1 = Dense(128, activation='relu',kernel_regularizer=regularizers.12(0.001))
decoder_dense_output = decoder_dense_1(decoder_inputs)

# We set up our decoder to return full output sequences,

# and to return internal states as well. We don't use the

# return states in the training model, but we will use them in inference.
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decoder_lstm = LSTM(latent_dim, return_sequences=True,
return_state=True,recurrent_dropout=0.4, dropout = 0.1)
decoder_outputs, _, _ = decoder_lstm(decoder_dense_output,
initial_state=encoder_states)
#dropout_layer = Dropout(0.5)
#decoder_outputs = dropout_layer(decoder_outputs)
#decoder_dense_1 = Dense(256, activation="relu’ kernel_regularizer=regularizers.12(0.001))
#decoder_outputs = decoder_dense_1(decoder_outputs)
decoder_dense = Dense(num_decoder_tokens,
activation='softmax',kernel_regularizer=regularizers.12(0.001))
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# “encoder_input_data® & “decoder_input_data” into “decoder_target_data’
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
plot_model(model,show_shapes=True, to_file = '/output/model.png")
print(model.summary())
# Run training
model.compile(optimizer="rmsprop', loss="categorical_crossentropy',metrics=['mae’, 'acc'])
callbacks = [keras.callbacks.TensorBoard(log_dir="'/output/my_log_dir")]
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
batch_size=Dbatch_size,
epochs=epochs,
validation_split=0.2, callbacks=callbacks)
model.load_weights('s2s_batch_50.h5")
# Save model
model.save('/output/s2s_batch_50_cnn_encoder_dense_dim.hs'")
# Next: inference mode (sampling).
# Here's the drill:
# 1) encode input and retrieve initial decoder state
# 2) run one step of decoder with this initial state
# and a "start of sequence" token as target.
# Output will be the next target token
# 3) Repeat with the current target token and current states
# Define sampling models
cnn_output = cnn(encoder_inputs)
encoder_dense_output = encoder_dense_1(cnn_output)
encoder_outputs, state_h, state_c = encoder(encoder_dense_output)
encoder_states = [state_h, state_c]
encoder_model = Model(encoder_inputs, encoder_states)
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#cnn_decode_output =cnn_decoder(decoder_inputs)
#decoder_dense_output = decoder_dense_1(cnn_decode_output)
decoder_dense_output = decoder_dense_1(decoder_inputs)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
decoder_dense_output, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
#decoder_outputs = dropout_layer(decoder_outputs)
#decoder_outputs = decoder_dense_1(decoder_outputs)
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[o, 0, target_token_index['\t']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence ="
while not stop_condition:
output_tokens, h, ¢ = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[o, -1, :])
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
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# Exit condition: either hit max length
# or find stop character.
if (sampled_char == "\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[o, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
for seq_index in range(100):
# Take one sequence (part of the training set)
# for trying out decoding.
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-")
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)
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7.4 APPENDIX IV: Code for finding surface area accessibility
# -*- coding: utf-8 -*-

import RNA

import requests, sys

from bs4 import BeautifulSoup

import sqlite3

conn = sqlite3.connect('linker.db")

¢ = conn.cursor()

def get_seq_by_GeneSymbol(GeneSymbol):

c.execute("SELECT * FROM link WHERE
Gene_symbol=:Gene_symbol",{'Gene_symbol':GeneSymbol})

return c.fetchall()

def get_seq_to_predict(GeneSymbol):
GeneSymbol = GeneSymbol.upper()
seq_to_predict=[]
linker = get_seq_by_GeneSymbol(GeneSymbol)
if linker is None:

print("no match gene found")

else:
for line in linker:

id_e = line[2]

server = "https://rest.ensembl.org"
ext = "/sequence/id/{}?".format(id_e)

r = requests.get(server+ext, headers={ "Content-Type" : "text/plain"})

if not r.ok:
r.raise_for_status()
sys.exit()

link = ("https://asia.ensembl.org/Homo_sapiens/Export/Output/Gene?db=core;"
+"flank3_display=o0;flanks_display=10;t={};output=fasta;".format(id_e)
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+"strand=feature;param=utr3;genomic=unmasked;_format=HTML")
utr = requests.get(link)

soup = BeautifulSoup(utr.text, "htmlslib")
utr_split= soup.find('pre').text
utr_split=utr_split.split('>")[1]

utr_split = utr_split.split('\n")

utr_seq=""

for fasta in utr_split[1:]:
utr_seq=utr_seq+fasta

seq=r.text.replace('T','U")# | in negative(-1)

if len(seq) > len(utr_seq)*1.5:
l=len(seq)-int(len(utr_seq)*1.5)
else:
1= len(seq)-len(utr_seq)

# compute minimum free energy (MFE) and corresponding structure
n= RNA.pfl_fold_up(seq,16,40,80)
for i in range(l,len(seq)):
if n[i][4]>0.2:
s = seq[i-24:i]

seq_to_predict.append(s[::-1])
return list(set(seq_to_predict))
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