DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, (Saurabh Tayal, 2K16/HFE/15 Student of M.tech (Hydraulics and fluid engineering),hereby declare that the project Dissertation titled 2D Flood Modeling using HEC RAS which is submitted by me to the department of civil engineering, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of master in technology is original and not copied from any source without proper citation. This work has not previously formed the basis for the award of any degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: New Delhi Date: SAURABH TAYAL

CIVIL ENGINEERING DEPARTMENT DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project Dissertation Titled "2D FLOOD MODELING USING HECRAS" by Saurabh Tayal, 2k16/HFE/15, Civil Engineering Department, Delhi Technological University in partial fulfillment of the requirement for the award of degree in Master in Technology, is a record of the project carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part or full for any degree or diploma to this university or elsewhere.

Place: Delhi

Date:

Mr. Rakesh Mehrotra (Associate professor) Department of civil engineering Delhi Technological University

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ACKNOWLEDGEMENT

The success of the project is not an individual effort. This section is a vote of thanks and gratitude towards all those who have directly or indirectly contributed in their own special way towards the successful completion of this project. I would like to thank Vice Chancellor of Delhi Technological University, Prof. Yogesh Singh and Prof. Nirendra Dev (Head of Department, Civil Engineering, Delhi Technological University) for providing all the facilities and equipment in the college to carry out this project work. I would like to express my special appreciation and gratitude to my supervisor Associate Professor Mr. Rakesh Mehrotra of Department of Civil Engineering, Delhi Technological University, you have been excellent mentor for me throughout my work. I would like to express my thank you for constantly encouraging me throughout my journey. Your guidance on both researches as well as on my career have been priceless. I feel extremely exhibit a express sincere gratitude to him, who right from inception constantly guided me with his pastoral care, vision, vigilance and encouragement without which this project would not have been possible. My profound thanks are due to him. I would like to thank you all the faculty members for their sheer guidance and advice. I express my special thanks to the staff members associated with the hydraulics laboratory and design laboratory of civil engineering department for their help and support throughout the project work. I would also like to thank all the teaching and non-teaching staff associated directly and indirectly with this research work. I am thankful to all my M.tech. Friends who gave us moral support at several stages of our work. Above all we thank the almighty who gave us all the courage and strength to carry out this project work.

ABSTRACT

Floods caused by over flowing river can have devastating effect on life and property resulting in economic loss. Modeling of floods is very important for planning, of mitigative measures and protection works. High intensity rainfall for Continous period in the catchment of the river can result in floods. Number of river basins in the Indian subcontinent regularly face floods in the monsoon seasons(80% of the annual rainfall happens in just 60 days time). To cope with such wide spread flood events affecting habitats and life of tens of crores of people flood prediction and the areas prone to flooding need to be identified for planning of damage control measures. Hydrological studies are the basic inputs for the calculation of the river flows. Protection works can be designed after consideration of the historical flows of 15, 25, 50, 100 year frequency. The spread of the flood caused by the overflowing river depends on the terrain of the flood plain this requires the contour maps/Digital Elevation Models of the area. Inundation mapping using contour maps and river flow data at the time floods/theoretical flood values can help in creating maps of terrains going to get affected by all kind of flood frequencies. Certain modern softwaresmake it very convenient to carry out inundation modeling using area DEM and differ river flow rainfall scenarios .Digital elevation models can be prepared from field survey data/contour maps on even remote sensed aerial data/satellite composite pictures of the terrain.

In this study, it is aimed to construct flood inundation maps for flooding caused due to North American River (wolf) and its two tributaries .Topographic data of the study area is defined for hydraulic model by sectioning along the river on digital terrain model (DTM) which is created by ArcGIS, a geographical Information System (GIS) software.

Data migration between ArcGIS and HEC RAS is provided by using an intermediate module, HEC GeoRAS After required geometrical and hydraulic structure data are constituted, flood inundation maps are obtained by inputing flow data into the model. The hydraulic simulation was performed under a subcritical steady flow regime for 100-year recurrence period for two downstream boundary conditions i.e for Normal depth and for known water surface elevation at downstream point.

Flood hydrograph is made for both river and tributaries at specific location for recurrence interval of 100 year. Hydrograph is made for month of December for 3 days for hydraulic

modeling as rainfall is more in month of December. As a result of hydraulic modelingmaximum flood depth, maximum velocity and area extent of submergence are found.

This present work deploys HEC-RAS software on wolf river system on a Pre-Processed Digital terrain model (DTM) of wolf river system basin of North America which was obtained from published source at (<u>www.hydrosheds.cr.usgs.gov.in</u>)The objective is to find extent of flooding and water surface elevation along the river for flood protection works.

CONTENTS

Candidates Declaration	i
Certificate	ii
Acknowledgement	iii
Abstract	iv
Contents	vi
List of Tables	xii
List of Figures	xiii
List of Symbols, Abbreviations	

CONTENTS

	Candidate Declaration	Ι
	CERTIFICATE	II
	ACKNOWLEDGEMENT	III
	ABSTRACT	IV
	LIST OF TABLE	XII
	LIST OF FIGURES	XIII
	LIST OF ABBREVIATIONS AND SYMBOLS	XV
CHAPTER 1	CHAPTER 1	
	1.1 Introduction	1
	1.2 Flow chart for flood mapping using ARCGIS and HEC RAS	4

1.3 Site o	description	5
1.4 Digit	al terrain model source	5
1.5HEC	RAS	5
1.5.1 1D	river analysis components	
1.6 Hydr	raulic capabilities of HEC RAS	5
1.6.1 St	eady flow water surface profiles	5
1.6.2 Ap	plications of finding water surface profiles	6
1.6.3 Spe	ecial features	6
1.7 Unst	teady flow simulation	6
1.8 Sedir	nent transport	6
1.8.1 Ap	plications of sediment transport system	7
1.9.1 Wa	ter quality analysis	7
1.10.Bas	ic equations used in HEC RAS	8
1.10.1 E	quation for basic profile calculations	8
1.102 C	Cross section subdivision for Conveyance Calculation	9

	1.10.3 Composite Mannings n for the main channel	10
	1.10.4 Evaluation of the mean kinetic energy head	10
	1.10.5 Friction Loss Evaluation	10
	1.11 Basic Datas required	10
	1.11.1 Study limit determination	11
	1.11.3 Cross Section Geometry	12
	1.11.4 Optional Cross Section Properties	12
	1.11.5 Reach Length	12
	1.11.6 Energy Loss Coefficient	12
	1.11.7 Stream Junction Data	13
	1.12 Steady Flow Data	13
	1.12.1 Flow Regime	13
	1.12.2 Boundary Conditions	13
	1.11.3 Discharge Information	
CHAPTER 2	LITERATURE REVIEW	
	2.1 Researches Abroad	15
	2.2 Flood modeling studies in India	16
CHAPTER 3	METHODLOLOGY	14

	I
 3.1 OVERVIEW	18
 3.2 BASIC CONCEPTS AND DEFINATION	18
3.3 Flow Diagram for Creating DEM	19
3.4 Unsteady Flow Data	19
3.4.1 Boundary Conditions	19
3.4.2 Initial Conditions	20
3.5 Import In HEC RAS	20
3.5.1 Starting the HECRAS Project	20
3.5.2 Establish the units and Setup	20
3.5.3 HEC RAS MAPPER	20
3.5.4 Assigning the projection	20
3.5.5 Add the terrain	20
3.5.6 Adding an Aerial photo	21
3.5.7 Adding an Aerial photo	21
3.5.8 Setting Boundary conditions (for incoming and outgoing flow)	21
3.5.9 Establish flow condition at the boundary	21
3.5.10 Re-Establish the Area Condition	22
3.6 Analysis In HECRAS	22

	3.6.1 Check boxes	22
	3.6.2 Set the simulation Time Window	22
	3.6.3 Set the computational Settings	22
CHAPTER 4	4.0 RESULTS	
	4.1 HECRAS Opening Window	26
	4.2 RAS MAPPER OPENING WINDOW	26
	4.3 Spatial Reference Projection File Window	27
	4.4 Setting the Projection File	27
	4.5 Loading Terrain Data in RAS MAPPER	28
	4.6 Setting Terrain with Precision	28
	4.7 Terrain Loading Completion Window	29
	4.8 Terrain in RAS MAPPER	30
	4.9 Image creation of the Loaded Terrain	31
	4.10 Image of Loaded Terrain In RAS Mapper	32
	4.11 Geometric Data Window	33
	4.12 Checking For Image in Geometric Data Window	34
	4.13 2D Area/ Polygon Created of Study Area	35
	4.14 Meshing of 2D Flow Area	35

	4.15 Marking of 2D Ame	26
	4.15 Meshing of 2D Area	36
	4.16 Drawn Inlet Boundary Condition Of Main River	36
	4.17 Main River and Tributary 1 Over Terrain	37
	4.18 Tributary 2 Over Terrain	37
	4.19 Upper and Lower Boundary Condition over 2D Area	38
	4.20 Adding Unsteady Flow Data	38
	4.21 Adding Boundary Condition Location and Type	39
	4.22 Flow Hydrograph Data of Main River	39
	4.23 Flow Hydrograph of Main River	40
	4.24 Flow Hydrograph of Tributary 1	41
	4.25 Flow Hydrograph Data of Tributary 2	42
	4.26 Adding Normal Depth as Lower Boundary Condition	43
	4.27 Unsteady Flow Analysis	44
	4.28 HECRAS Computations	45
	4.29 Computation Results	46
	4.30 Inundation Map	47
CHAPTER 5	5.1 Conclusions	

S.NO	LIST OF TABLES	PAGE NO.
1	Flow Data of Main River	31
2	Flow Data of Tributary 1	32
3	Flow Data of Tributary 2	33
4	River length and profiles	34
5	known Normal depth and water surface elevation at D/S	35
6	Flooding characterstics of the study area	48

S.NO.	LIST OF FIGURE	PAGE NO.
1	1.1 Flow chart	3
2	1.2 Two Geometry of compound channel	3
3	1.3 Study area DTM	4
4	1.4 Representation of terms of energy equation	8
5	1.5 Default Conveyance Sub-Division Method	9
6	1.6 Kinetic Energy Head	10
7	3.3 Flow diagram for creating DEM	25
	3.8 River profile in HEC RAS	34
8	4.1 HEC RAS opening window	36
9	4.2 RAS MAPPER opening window	36
10	4.3 Spatial reference file projection window	37
11	4.4 Setting the projection file	37
12	4.5 loading terrain data in RAS MAPPER	38
13	4.6 Setting Terrain with Precision	38
14	4.7 Terrain loading completed	39
15	4.8 Terrain in RAS MAPPER	40
16	4.9 Creating image of the loaded terrain	40
17	4.10 Image of loaded Terrain in RAS MAPPPER	41
18	4.11 Geometric data window	42
19	4.12 Checking for image in geometric data window	42
20	4.13 2D/polygon Area created of Study Area	43
21	4.14 Meshing of 2D Flow Area	43
22	4.15 Meshing of the study Area	44
23	4.16 Drawing Inlet boundary condition on Main River	45
24	4.17 Main river and Tributary 1	46
25	4.18 Tributary 2	46
26	4.19 2D Area, Inlet and Lower Boundary condition	47
27	4.20 Adding Unsteady Flow Data	47
28	4.21 Adding boundary condition, location and type	48

29	4.22 Flow Hydrograph of Main River	48
30	4.23Flow hydrograph data of main river	49
31	4.24 Flow hydrograph data of tributary 1	50
32	4.25 Flow hydrograph data of tributary 2	51
33	4.26 Adding normal depth as lower boundary conditions	52
34	4.27 Unsteady flow analysis	53
35	4.28 HEC RAS computations	54
36	4.29 Computations results	55
37	4.30 Depth of inundation map for 100 year flood	55
38	4.31Flood extent with overlay image over ground	56
39	4.32 Main river water surface elevation along river	57
40	4.33 Tributary 1water surface elevation along its reach	57
41	4.34 Max depth contour in flooded area	57
42	4.35 Main River flood on its banks	58