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ABSTRACT 

 

For the last few years machine learning algorithms have become increasingly popular for solving 

most of the real life as well as complex problems. Also the demand for tools automating such 

algorithms has been on a rise. However the difficult part of these machine learning algorithms is 

to identify the best model for solving the problem and also to identify the hyper parameters that 

play the most crucial part in getting the most efficient solution to the problem. The methods in 

present state of art are by using trial and error to identify the model and the hyper parameter. 

Neural network are the state of the art for solving most real world problems including the complex 

problems. However constructing a neural network for solving a problem requires a huge task of 

defining the hyper parameters using trial and error which is very time consuming and inefficient. 

Also, training a neural network requires forward and backward passes. Back propagation algorithm 

used for updating the weights by propagating the error variables to the subsequent layers result in 

interlocking of the initial layers till the latter layers have back propagated the error signal. This 

also results in an increased time complexity of the model. 

Genetic algorithms are inspired by the evolutionary process of organisms and are very effective in 

reducing the time complexity of computational algorithms. GA can be used for automating the 

task of feature selection of desired neural network in minimal time. Also, synthetic gradients can 

be used to do away with the problem of interlocking of layers caused by back propagation. 

Synthetic gradients decouple the layers of NN by introducing the model of future computation of 

error of the network graph. In this way errors can be computed independently without waiting for 

the error signals, thus reducing the time complexity.  

Both the techniques are used to train and test MNIST and CIFAR-10 database. A Recurrent Neural 

Network model (RNN) is used as the model which can be further extended to any type of neural 

network including CNNs, LSTM and others. 
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CHAPTER 1 

    
INTRODUCTION 

 

 
1.1 OVERVIEW 

In 2018, it's moderately simple to train neural networks, but it's still difficult to guess which 

network architectures and other hyper-parameters we should use – for example, number of 

neurons, how many layers, and which activation functions to use. In coming future, of course, 

neural networks will automatically learn how to construct themselves, without human intervention. 

Till then, the pace of developing application-optimized neural nets will remain limited by the time 

and expertise required to choose and refine hyper-parameters. This project is designed to help 

solve this problem, by constantly returning good hyper-parameters for particular datasets and 

classification problems. The code supports hyper-parameter discovery for MLPs (ie. fully 

connected networks) which can be further extended to other models as well. 

Machine learning “is the subfield of computer science that, according to Arthur Samuel in 1959, 

gives "computers the ability to learn without being explicitly programmed".  Evolved from the 

study of pattern recognition and computational learning theory in artificial intelligence, machine 

learning explores the study and construction of algorithms that can learn from and make 

predictions on data – such algorithms overcome following strictly static program instructions by 

making data-driven predictions or decisions.” 

Between 2011 and “2015, the number of self-reported data scientists more than doubled. At the 

same time, machine learning has returned to the forefront of academia, business, and government 

as data scientists discover new applications for algorithms that automatically learn and create 

actionable insights from data. Owing to this growth, there has been a big demand for on-the-shelf 

tools that make machine learning more accessible, scalable, and flexible such that they can be 

applied across a wide variety of domains by non-experts. Unfortunately, the effective application 

of many machine learning tools typically requires expert knowledge of the tool and the problem 

domain, knowledge of the assumptions involved in the analysis, and/or the use of exhaustive brute 
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force techniques. Inexperienced data scientists can easily spend most of their time exploring 

myriad pipeline configurations before settling on the best one.” 

In recent years, “we have witnessed the development of intelligent systems in the field of 

evolutionary computation that consistently surprise us with their capabilities. In computer 

science, evolutionary computation is a family of algorithms for global optimization inspired 

by biological evolution, and the subfield of artificial intelligence and soft computing studying 

these algorithms. In technical terms, they are a family of population-based trial and error problem 

solvers with a metaheuristic or stochastic optimization character. Evolutionary computation 

techniques can produce highly optimized solutions in a wide range of problem settings, making 

them popular in computer science. Many variants and extensions exist, suited to more specific 

families of problems and data structures.” 

Before fitting a “model of the data, the practitioner must prepare the data for modeling by 

performing an initial exploratory analysis (e.g., looking for missing or mislabeled data) and either 

correct or remove the missing records (i.e., data cleaning). Next, the practitioner may transform 

the data in some way to make it more suitable for modeling, e.g., by normalizing the features (i.e., 

feature preprocessing), removing features that are not useful for modeling (i.e., feature selection), 

and/or creating new features from the existing data (i.e., feature construction). Afterward, the 

practitioner must select a machine learning model to fit to the data (i.e., model selection) and 

choose the model parameters that allow the model to make the most accurate classification from 

the data (i.e., parameter optimization). Lastly, the practitioner must validate the model in some 

way to ensure that the model’s predictions generalize to data sets that it was not fitted on (i.e., 

model validation).” 

1.2  PROBLEM STATEMENT 

Building a good deep learning network includes a substantial amount of art to go with sound 

science. One way of finding the right hyper-parameters is using brute force trial and error: Try 

every possibility of sensible parameters, send them to your algorithm, go about your everyday 

routine, and come back when you got an answer. 

A normally used neural architecture comprises largely of several convolutions, pooling, and 

completely connected layers. Many recent studies emphasis on developing a unique neural 



13 
 

architecture that attains higher classification accuracy, like ResNet, GoogleNet and DensNet. 

Despite their success, designing neural architectures is still a hard task since many design 

constraints exist, like the depth of a net, the kind and parameters of every layer, and the 

connectivity of the layers. “State-of-the-art CNN architectures have become deep and complex, 

which put forward that a significant number of design constraints should be tuned to understand 

the best performance for a given dataset. Therefore, trial-and-error or adept knowledge is required 

when users build suitable architectures for their target datasets. In lieu of this situation, automatic 

design approaches for neural architectures are extremely beneficial. Neural network architecture 

design can be seen as the model selection problem in terms of machine learning. The straight-

forward method is to deal with construction design as a hyper-parameter optimization problem, 

improving hyper-parameters, such as the total number of layers and neurons, using black-box 

optimization techniques.” 

Evolutionary computation has been generally connected to outlining neural network structures. 

There are two kinds of encoding plans for network portrayal: direct and indirect coding. Direct 

coding speaks to the number and availability of neurons directly as the genotype, while indirect 

coding speaks to a generation run for network models. Albeit all customary methodologies 

advance the number and availability of low-level neurons, present day neural network structures 

for profound learning have numerous units and different kinds of units, e.g., convolution, pooling, 

and standardization. Upgrading such a significant number of parameters in a sensible measure of 

computational time might be troublesome. In this manner, the utilization of profoundly effective 

modules as a base unit is promising. 

Additionally if you think about any layer or module in a neural network, it must be updated once 

all the other modules of the network have been executed, and gradients have been back-propagated 

to it. After Layer 1 has handled the information, it must be refreshed after the output activations 

have been propagated through whatever remains of the network, created a loss, and the error 

gradients back-propagated through each layer until Layer 1 has come. This grouping of tasks 

implies that Layer 1 needs to sit tight for the forwards and backwards calculation of Layer 2 and 

Layer 3 preceding it can update. Layer 1 is locked, coupled, to whatever remains of the network. 

This is definitely a problem. Clearly for a simple feed-forward network we don’t require to fear 

about this problem. But consider a composite system of numerous networks, acting in multiple 
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environments at asynchronous and irregular timescales. Or a large distributed network ranging 

over multiple devices. Sometimes needing all modules in a system to wait for all other modules to 

execute and back-propagate gradients is excessively time consuming or sometimes intractable. 

1.3 OBJECTIVE 

Here, we try to advance upon the brute force algorithm by applying a genetic algorithm to develop 

a network with the objective of achieving ideal hyper parameters in a portion the time of a brute 

force search. We also use synthetic gradients instead of the customary back-propagation algorithm 

to do away with the problem of update locking hence improving upon time complexity in the 

designing process. We use the synthetic gradients method to help decouple the neural interfaces 

so that they become independent of each other. 

1.4  ORGANISATION OF THESIS 

The following chapters further elucidate the optimization algorithm and outcomes. Chapter 2 

clarifies the necessary research work done in the field of neural networks and evolutionary 

computation methods used in the optimizer. Chapter 3 gives a short description of the 

terminologies used and a few basic concepts in the related area. Chapter 4 discusses the overall 

methodology associated with genetic algorithm optimizer. Chapter 5 explains how the endless 

search space is abridged to allow for a substantial speed up for the optimization process. Also 

results and analysis have been explained. Chapter 6 ends with concluding notes and future research 

efforts. 
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CHAPTER 2 

    

LITERATURE SURVEY 

Neural networks and the genetic algorithm are equally powerful tools modeled upon natural 

phenomena. Neural networks are modeled after the brain; which is extremely parallel, and gives 

many advantages while solving pattern recognition and classification tasks. The GA is built on the 

model of evolution and survival of the fittest and had been used to solve a large number of  

optimization problems. Neural networks give many advantages in a range of applications, but are 

unsuccessful if they are not correctly designed. There are many varieties when designing a neural 

network (NN) but a bad selection of any one parameter can leave the NN useless. There have been 

many attempts to produce formulas or directions for designing the organization of a NN. In[6], a 

formula was developed to generate a range of the desired number of hidden neurons, h, based on 

the number of inputs and outputs of a NN: 

ℎ = √𝑛 + 𝑚 + (1~10) 

where n is the number of inputs, m is the number of outputs (square root result is rounded up). The 

formula yields a range, that is not particularly beneficial because several systems need to be trained 

and evaluated to find the best one. Additional problem with this method is that it assumes the 

number of inputs and outputs is directly correlated with the complexity of the problem, which is 

not always the case. Furthermore, this formula only applies to a network with one hidden layer. 

Since “there are no well-defined procedures for selecting the parameters of a NN for a given 

application, finding the best parameters can be a case of trial and error. There are many papers in 

which the authors arbitrarily choose the number of hidden layer neurons, activation function, and 

number of hidden layers. In[10], networks were trained with 3 to 12 hidden neurons and found that 

9 was optimal for that specific problem. The GA had to be run 10 times, one for each of the network 

architectures. Since selecting NN parameters is more of an art than a science, it is an ideal problem 

for the GA. The GA has been used in numerous different ways to select the architecture, prune, 

and train neural networks. In [4], a simple encoding scheme was used to optimize a multi-layer 

NN. The encoding scheme consisted of the number of neurons per layer, which is a key parameter 

of a neural network. Having too few neurons does not allow the neural network to reach an 
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acceptably low error, while having too many neurons limits the NN’s ability to generalize. Another 

important design consideration is deciding how many connections should exist between network 

layers. In [5], a genetic algorithm was used to determine the ideal amount of connectivity in a feed-

forward network. The three choices were 30%, 70%, or 100% (fully-connected). In general, it is 

beneficial to minimize the size of a NN to decrease learning time and allow for better 

generalization. A common process known as pruning is applied to neural networks after they have 

already been trained. Pruning a NN involves removing any unnecessary weighted synapses. A GA 

was used to prune a trained network. The genome consisted of one bit for each of the synapses in 

the network, with a ‘1’ represented keeping the synapse, while a ‘0’ represented removing the 

synapse. Each individual in the population represented a version of the original trained network 

with some of the synapses pruned (the ones with a gene of ‘0’). The GA was performed to find a 

pruned version of the trained network that had acceptable error. Even though pruning reduces the 

size of a network, it requires a previously trained network. The algorithm developed in this 

research optimizes for size and error at the same time, finding a solution with minimum error and 

minimum number of neurons.” 

Another critical design decision, “which is application-specific, is the selection of the activation 

function. Depending on the problem at hand, the selection of the correct activation function allows 

for faster learning and potentially a more accurate NN. In [8], a GA was used to  determine which 

of several activation functions (linear, logsig, and tansig) were ideal for a breast cancer diagnosis 

application.” 

Neural networks with feedback loops have also been enhanced with GA generated primary 

weights. A GA was used to optimize the initial weights of an Elman Recurrent Network (ERN)so 

as to produce short-term load forecasting model for a power system. ERNs have an input layer, 

middle layer, continue layer, and output layer, as shown in Figure 2.1. 
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Fig2.1-The Structure of an Elman Recurrent Network 

Genetic algorithms“have also been used in the training process of neural networks, as an 

alternative to the back-propagation algorithm. In [10] and [12], genes represented encoded weight 

values, with one gene for each synapse in the neural network. It is shown in [13] that training a 

network using only the back-propagation algorithm takes more CPU cycles than training using 

only GA, but in the long run back-propagation will reach a more precise solution. The Improved 

Genetic Algorithm (IGA) was used to train a NN and shown to be superior to using a simple 

genetic algorithm to find initial values of a back propagation neural network. Each weight was 

encoded using a real number instead of a binary number, which avoided lack of accuracy inherent 

in binary encoding. Crossover was only performed on a random number of genes instead of all of 

them, and mutation was performed on a random digit within a weight’s real number. Since the 

genes weren’t binary, the mutation performed a “reverse significance of 9” operation (for example 

3 mutates to 6, 4 mutates to 5, and so on). The XOR problem was studied, and the IGA was shown 

to be both faster and produce lower error.” 

Historically, “machine learning automation research (autoML for short) has primarily focused on 

optimizing subsets of the pipeline[3]. For example, grid search is the most commonly-used form 

of hyperparameter optimization that applies brute force search to explore a broad range of model 
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parameters in order to discover the parameter set that allows for the best model fit. Recent research 

has shown that randomly evaluating parameter sets within the grid search often discovers the ideal 

parameter set more efficiently than exhaustive search, which shows promise for intelligent search 

in the hyper-parameter space[4]. Bayesian optimization of model hyperparameters, in particular, 

has been effective in this realm and has even outperformed manual hyperparameter tuning by 

expert practitioners. Another focus of autoML research has been feature construction. One recent 

example of automated feature construction is the “Data Science Machine,” which automatically 

constructs features from relational databases via deep feature synthesis. In their work, Kanter et 

al. demonstrated the crucial role of automated feature construction in machine learning pipelines 

by entering their Data Science Machine in three machine learning competitions and achieving 

expert-level performance in all of them.” 

In 2015, “Zutty et al.[6] similarly demonstrated an autoML system using genetic programming 

(GP) to optimize machine learning pipelines, and found that GP is capable of designing better 

pipelines than humans for one supervised classification task. As such, GP shows considerable 

promise in the autoML domain. All of these findings point to one take-away message: Intelligent 

systems are capable of automatically designing portions of machine learning pipelines, which can 

make machine learning more accessible and save practitioners considerable amounts of time by 

automating one of the most laborious parts of machine learning.” 

Haruna et al.[12] demonstrated how “hybridization of two or more of these techniques eliminates 

such constraints and leads to a better solution. As a result of hybridization, many efficient 

intelligent systems are currently being designed. Recent studies that hybridized CI techniques in 

the search for optimal or near optimal solutions include, but are not limited to: genetic algorithm 

(GA), particle swarm optimization and ant colony optimization hybridization; fuzzy logic and 

expert system integration in [13]. The hybridization of GA and particle swarm optimization is 

considered the most reliable and promising CI techniques. Recently, NNs have proven to be a 

powerful and appropriate practical tool for modeling highly complex and nonlinear systems. The 

GA and NNs are the two CI techniques presently receiving attention from computer scientists and 

engineers. This attention is attributed to recent advancements in understanding the nature and 

dynamic behavior of these techniques. Furthermore, it is realized that hybridization of these 

techniques can be applied to solve complex and challenging problems. They are also viewed as 
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sophisticated tools for machine learning. The vast majority of literature applying NNs was found 

to heavily rely on the back-propagation gradient method algorithms developed by [14] and 

popularized in the artificial intelligence research community. GA is evolutionary algorithm that 

could be applied (1) for the selection of feature subsets as input variables for back-propagation 

NNs, (2) to simplify the topology of back-propagation NNs and (3) to minimize the time taken for 

learning [13]. Some major limitations attributed to NNs and GA are explained as follows. The 

NNs are highly sensitive to parameters [12] which can have a great influence on the NNs 

performance. Optimized NNs are mostly determined by labor intensive trial and error techniques 

which include destructive and constructive NN design [11].These techniques only search for a 

limited class of models and a significant amount of computational time is, thus, required. NNs are 

highly liable to over-fitting and different types of NN which are trained and tested on the same 

dataset can yield different results. These irregularities are responsible for undermining the 

robustness of the NN. GA performance is affected by the following: population size, parent 

selection, crossover rate, mutation rate, and the number of generations [15].The selection of 

suitable GA parameter values is through cumbersome trial and error which takes a long time [15] 

since there is no specific systematic framework for choosing the optimal values of these 

parameters. Similar to the selection of GA parameter values, the design of an NN is specific to the 

problem domain. The most valuable way to determine the initial GA parameters is to refer to the 

literature with a description of a similar problem and to adopt the parameter values of that problem 

[14].” 

In summary, the papers mentioned above studied genetic algorithms that were lacking in several 

ways: 

1. They do not allow flexibility of the number of hidden layers and neurons. 

2. They do not optimize for size. 

3. They have very large genomes and therefore search spaces. 

The GA developed in this thesis addresses all of these issues. It searches through networks with 

one through four hidden layers, with anywhere from one to eight neurons in each. Also, the 

developed algorithm optimizes for error and size concurrently. 
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CHAPTER 3 

BACKGROUND INFORMATION 

 
This chapter provides a basic explanation about how neural networks, backpropagation and genetic 

algorithms work. 

 

3.1. Neural Network Basics 

Neural“networks are easier to understand if they are broken down into their core components. This 

section explains the basics of neural networks. First, the nature of the neuron is explored (the 

elementary unit of a neural network). Next, the different ways in which neurons can be connected 

are shown. Finally, neural network training (the way in which a neural network learns) is 

examined.” 

 

3.1.1. The Neuron 

Neural“networks are made from as few as one to as many as hundreds of elementary units called 

neurons. As shown in figure 3.1, each neuron is made up of the following: inputs, synaptic weights, 

a bias, a summing junction, a local induced field, an activation function, and a single output. Each 

of the following need to be examined in order to understand how a neuron produces an output from 

its arbitrary inputs:”  

 

 



21 
 

Fig 3.1 – The components of neuron 

 

 Inputs 

A neurons can have an arbitrary number of inputs (at least one). “In figure 2.1, the three inputs are 

represented as x1, x2, and x3. Each neuron input can take on a positive,zero, or negative value. 

Since there is little restriction on the input values, neurons can be used in a broad range of 

applications. The outputs of several neurons can be connected to the inputs of another neuron, 

allowing the formation of multi-neuron networks.” 

 

 Synaptic weights(s): 

Each neuron input has a corresponding synaptic weight (or simply weight) which can also take 

on any positive, zero, or negative value. In figure 3.1, the three synaptic weights are w1, w2, and 

w3. The synaptic weights are used to scale the inputs as they enter the summing junction. 

 

 Bias, Summing Junction, and Induced Local Field: 

The summing “junction has at least two inputs (one for the bias and one for each of the neuron 

inputs). The bias (commonly represented as b) can be thought of as the weight for an input of unity. 

The summing junction therefore produces an output equal to the sum of the bias and all of the 

weighted inputs. The summing junction’s output is called the induced local field, v, and is defined 

in equation 3.1 for the general case of neuron k.” 

 

𝑽𝒌 = 𝒃𝒌 + ∑ 𝒘𝒌𝒋𝒙𝒌𝒋
𝒎𝒌
𝒋=𝟏                                                             …eq.3.1 

Where 

 

vk = induced local field of neuron k                    bk = bias of neuron k 

mk = number of inputs of neuron k          wkj = weight of synapse j of neuron k 

xkj = input j of neuron k 

 

 Activation Function and Output: 

As shown in figure 2.1, v is the input of the activation function φ(v). There are several different 

kinds of activation functions, each of which is beneficial in different situations. The unity between 
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all activation functions is that they produce the neuron output y, “which is restricted to values with 

a maximum value of 1 and a minimum value of either 0 or -1 (depending on the application). There 

are three basic activation functions that range from 0 to 1: threshold, piecewise-linear, and sigmoid. 

Another commonly used function, known as the hyperbolic tangent, is a modified version of the 

sigmoid having a range of -1 to 1. Equations 3.2 – 3.5 explicitly define them.” 

 

1. Threshold function:                                 𝜑(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 < 0

                   …eq.3.2 

 

2. Piecewise-linear function:                         𝜑(𝑣) = {

1 𝑖𝑓 𝑣 ≥ 1/2
𝑣  𝑖𝑓 1/2 > 𝑣 > −1/2

0 𝑖𝑓 𝑣 ≤ −1/2
    ...eq.3.3  

 

3. Sigmoid function:                                    𝜑(𝑣) =  
1

1+exp (−𝑎𝑣)
                   …eq.3.4 

 

4. Tanh function:                                         𝜑(𝑣) = tanh (𝑎𝑣)                        …eq.3.5 

 

3.1.2 The Back-Propagation Algorithm: 

The back-propagation algorithm is used to change the synaptic weights throughout a neural 

network so as to minimize error. It is an iterative process, which changes the network one training 

examle at a time. During each iteration the error signal journeys backwards through the network, 

starting at the output neurons and finishing at the input synapses. The derivation of the back-

propagation algorithm is not shown. Instead, a few important equations are discussed so that the 

effects of the learning rate and activation function can be shown. 

The correction for a weight is defined as 

𝛥𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑦𝑖    ...eq.3.6 

 

where η is the learning rate, 𝛥𝑤𝑗𝑖 is the change in weight connecting neuron i in layer L to neuron 

j in layer L+1, 𝛿𝑗 is the local gradient, and 𝑦𝑖  is the output of neuron i. The 

“learning rate affects how much a weight will change based on the error and can be chosen to be 

any real number. The local gradient is the error signal that travels backwards through the network 
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and is based on activation function, as well as whether the neuron in question is an output and non-

output neuron. Only the correction functions for sigmoid and tanh activation functions are shown.” 

For output neurons using the sigmoid activation function 

𝛿𝑗 = 𝑎(𝑑 − 𝑂𝑗)𝑂𝑗(1 − 𝑂𝑗)      …eq.3.7 

where a is the sigmoid parameter defined in equation, dj is desired output, and 𝑂𝑗 is the actual 

output. The correction function for output neurons using the sigmoid activation function is 

therefore 

𝛥𝑤𝑗𝑖 = 𝑎𝜂(𝑑 − 𝑂𝑗)𝑂𝑗(1 − 𝑂𝑗)𝑦𝑖    …eq. 3.8 

For non-output neurons using the sigmoid activation function 

𝛿𝑗 = 𝑎𝑦𝑗(1 − 𝑦𝑗) ∑ 𝛿𝑘𝑤𝑘,𝑗
𝑘

           …eq.3.9 

where 𝑦𝑗 is the output of neuron j, 𝛿𝑘 is the local gradient of neuron k in the next layer, and 𝑤𝑘,𝑗 

is the weight connecting neuron j with each of the neurons in the next layer. The correction function 

for non-output neurons using the sigmoid activation function is 

therefore 

𝛥𝑤𝑗𝑖 = 𝑎𝜂𝑦𝑗(1−𝑦𝑗)𝑦𝑖 ∑ 𝛿𝑘𝑤𝑘,𝑗
𝑘

      …eq. 3.10 

 

 

3.1.3 The Network Architecture: 

As “mentioned in section 3.1.1, the output of a neuron can be connected to the input of another 

neuron. In fact, one neuron’s output can be connected to any number of other neurons’ inputs, 

allowing numerous possible ways of combining neurons to form a neural network. Neural 

networks are commonly organized in a layered fashion, in which neurons are organized in the form 

of layers. There are three kinds of layers: input layer, hidden layers, and output layer. The input 

layer is made up of the input nodes of the neural network. The output layer consists of neurons 

which produce the outputs of the network. All layers which do not produce outputs, but instead 

produce intermediate signals used as inputs to other neurons, are considered hidden layers. Figure 

2.3 shows a simple neural network, which consists of an input layer and an output layer (circles 

represent neurons and arrows represent synapses). In this network, three neurons process the three 

inputs to produce three outputs.” 
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Fig 3.2- A Simple Feedforward neural network 

 

Some complex tasks require architectures that contain multiple hidden layers. 

 

3.1.4 Convolution Neural Networks: 

Neural “networks are limited with images due to the fact they required objects in a similar portion 

of the image to be classified. The image has to be generalized before it is passed to the fully 

connected layers. Most image processing is performed using convolutional kernels. Yann Lecun 

came up with the idea of convolutional layers to use a way of using feature extraction before the 

fully connected layers.” 

Each convolutional layers can have many filters per layer. The maximum amount of filter is M. 

Each convolutional kernel is k, and kernel can differ dramatically in size as well as the stride 

length. The step length controls how far each convolutional kernel achieves the convolution 

operation which changes the dimensions of the output. The _ denotes the 2D convolutional 

operator. The function u is the activation function which can vary dramatically in each application. 

The output, as the nodal layers before is yj . 
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𝒚𝒋 = 𝒖(𝒃𝒋 + ∑ 𝒌𝒊𝒋 ∗ 𝒙𝒊
𝒎
𝒊=𝟏 )   …eq. 3.11 

“Convolutional layers prove to be very beneficial in many applications. Feature extraction allow 

for networks to grow in depth without over-fitting to the data. The features extracted from 

convolutional layers are often referred to as feature maps. These feature maps allow the 

convolutional neural network to be more generalized and reducing the amount of diversity required 

for the training process.” 

 

3.1.5 Pooling 

Convolutional layers are known for their feature extraction and feature detection. “Although these 

layers do perform well they require significant computation. When convolutional layers do not 

detect any of the desired features, the output becomes mostly zeros. Pooling allows for selected 

values to be passed to the next layer while leaving the unnecessary values behind. There are a few 

pooling methods such max pooling, average pooling, and minimum pooling. Max pooling takes 

the largest value from the pooling area, average takes the average from the area and minimum 

takes the minimum. Most modern applications use max pooling. Max pooling passes the largest 

value in the given area removing most of the sparse data thus increasing generalization and 

computation efficiency.” 

 

3.1.6 Synthetic Gradients: 

The synthetic gradient model takes in the activations from a module and produces what it predicts 

will be the error gradients - the gradient of the loss of the network with respect to the activations. 

In a simple feed-forward network example, if we have a synthetic gradient model we can do the 

following: 

 

Fig. 3.3- Working of synthetic gradient model 



26 
 

 

“use the synthetic gradients (blue) to update Layer 1 before the rest of the network has even been 

executed. The synthetic gradient model itself is trained to regress target gradients - these target 

gradients could be the true gradients back-propagated from the loss or other synthetic gradients 

which have been back-propagated from a further downstream synthetic gradient model. 

Quite surprisingly, the synthetic gradient models can be very simple. For feed-forward nets, we 

actually found out that even a single linear layer works well as a synthetic gradient model. 

Consequently it is both very easy to train and so produces synthetic gradients rapidly. 

It’s important to recognise that DNI doesn’t magically allow networks to train without true 

gradient information. The true gradient information does percolate backwards through the 

network, but just slower and over many training iterations, through the losses of the synthetic 

gradient models. The synthetic gradient models approximate and smooth over the absence of true 

gradients.” 

 

3.2 Evolutionary Computation: 

Evolutionary “computation is the method of applying the concept of evolution to optimize a 

solution or solve problems. Evolutionary computation is a method of machine learning that is 

proven to be effective to many applications and also highly scalable. If a problem solution can be 

reduced to a series of values then the problem is a potential candidate for evolutionary 

computation.” 

 

3.2.1 Chromosomes 

Every potential solution to a problem is known to as a chromosome. “How each chromosome is 

defined dramatically affects how well the evolutionary computation performs. The chromosome 

definition could dramatically reduce the search space either removing redundant or incompatible 

solutions. Two problems are widely used as examples for evolutionary computation are the 

traveling salesman and the knapsack problem. The traveling salesman problem consist of a 

salesman who has to go to many cities and end back home. While there is many possible solutions 

to the problem the salesman wants to know what path will get him home the fastest. The solution 

of the problem would be a list of cities in the order in which he would visit. Therefore, to improve 

the speed of optimization, the number of potential solutions needs to be minimized. An example 
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of this minimization for the traveling salesman problem can be, not allowing solutions with repeats 

of the same city to be generated. The knapsack problem is another problem which is fairly 

common. The problem is defined as, if the knapsack has a limited amount of space, fill it with the 

greatest value. There will be many items with different sizes and values. The task is to fit the most 

items with the highest value in the bag without overfilling it. The chromosome would then be the 

items which go into the knapsack after each item is assigned a unique identifier.” 

 

3.2.2 Crossover Techniques 

In every evolutionary computation techniques there is a task called crossover.“This is the 

combination of chromosomes to produce new chromosomes. These new chromosomes are referred 

to as children and the chromosomes who generated the child is referred to as a parent. Most 

crossover techniques have two parents producing one or two children, but this varies dramatically 

on each application. A few popular techniques are n-point crossover, arithmetic crossover, and 

uniform crossover.” 

The “first discussed technique is the n-point crossover. The value n can range to many values, but 

the most common of which is a single point crossover. There will be two parents to produce two 

children. First it picks a point at random then each parent is broken in half from that point. Once 

the parents are split each half from the parents are swapped with the other half from the other 

parent. This produces two unique children. The value n for the n-point crossover points signifies 

the number of break points for each chromosome. The simplest variation of this crossover is a 

single point crossover. A single point crossover is when there is only a single point of separation 

from each parent. Figure 3.3 shows a visual depiction of a single point crossover.” 
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Fig 3.4 Single Point Crossover Technique 

Another popular one is arithmetic crossover. “The most common of which is taking two parents 

to produce a single child. This crossover adds the two parents together then dividing by two. The 

parents create the child by averaging themselves together. This method prompts much faster 

convergence, thus lacks exploitation.” 

The uniform crossover technique takes two parents and generates two children like the n point 

crossover. However instead of declaring a certain number of break points half of each parent will 

be picked at random. Yet, any part that does not make it to the first child is the part of the second 

child. This allows for exactly half of both parents to exist with each child. 

 

3.2.3 Exploration and Exploitation 

Exploration and exploitation is the biggest problem any search optimization technique run into. A 

specifically scenario is with infinite search spaces. This search space could then only contain a 

singular global minimum. This infinite search space could also have many local minimum so it 

becomes difficult to determine when the algorithm has found the global minimum. This is where 

the concept of exploration vs exploitation is important. Exploration is the process of trying samples 

scattered through a search space. Exploitation is the process of trying samples near well performing 

solutions. The best method is to explore the search space and once enough information is gathered 

the algorithm should start to exploit. When preforming the crossover techniques this usually 

promotes more exploration than exploitation. Another method exists to control the concept of 

exploration vs. exploitation The common technique for exploring the search space by randomizing 

the children created from crossover. This method is referred to as mutation. The amount of 

mutation can be controlled by limiting how often a gene mutates. This probability of mutation if 

refereed to as a mutation rate.” 

In most applications it is best to start with a higher mutation rate and lower it slowly after each 

generation. This is the primary technique to ensure adequate exploration vs. exploitation. 

 

3.2.4 Selection 

The “selection process is another key aspect of of evolutionary computation. This step chooses 

which members of the populace to keep with each generation. Common selection processes are 
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elitist selection, roulette wheel selection, and tourney selection. The selection process is important 

since it is an additional method in controlling exploration vs. exploitation. 

Elitist selection is the most common and the simplest selection technique. The method is to 

only keep the strongest chromosomes. This makes sure that no valuable chromosomes are lost. 

However, this highly promotes exploration over exploitation. This could to very fast convergence, 

but to a poor solution. 

Roulette wheel selection creates a probability distribution when selecting which chromosomes stay 

in the populace. The chromosomes with higher scores are weighted so they are selected more often. 

This is a compromise between exploration vs. exploitation. 

There are some instances where it is hard to quantitatively evaluate how a chromosome is 

performing. An example of this would be if evolutionary computation is being used to optimize a 

robot to play soccer. A robot by itself is hard to objectively assign a performance value. Instead of 

comparing a single value each chromosome will compete against each other. The winners are 

chosen by hosting a tournament against the other chromosomes with each generation. The top 

winners of the tournament are then kept in the populace.” 

 

The idea behind GA´s “is to extract optimization strategies nature uses successfully - known 

as Darwinian Evolution - and transform them for application in mathematical optimization 

theory to find the global optimum in a defined phase space.” 

One “could imagine a population of individual explorers sent into the optimization phase-space. 

Each explorer is defined by its genes, what means, its position inside the phase-space is coded in 

his genes. Every explorer has the duty to find a value of the quality of his position in the phase 

space. (Consider the phase-space being a number of variables in some technological process, the 

value of quality of any position in the phase space - in other words: any set of the variables - can 

be expressed by the yield of the desired chemical product.) Then the struggle of "life" begins. The 

three fundamental principles are” 

1. Selection 

2. Mating/Crossover 

3. Mutation 

http://www.ifs.tuwien.ac.at/~aschatt/info/ga/genetic.html#AlgoSelectionSubSec
http://www.ifs.tuwien.ac.at/~aschatt/info/ga/genetic.html#AlgoMateCrossSubSec
http://www.ifs.tuwien.ac.at/~aschatt/info/ga/genetic.html#AlgoMutationSubSec
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Only explorers (= genes) sitting on the best places will reproduce and create a new population. 

This is performed in the second step (Mating/Crossover). The "hope" behind this part of the 

algorithm is, that "good" sections of two parents will be recombined to yet better fitting children. 

In fact, many of the created children will not be successful (as in biological evolution), but a few 

children will indeed fulfill this hope. These "good" sections are named in some publications as 

building blocks. 

Now there seems a problem. “Repeating these steps, no new area will be explored. The two former 

steps would only feat the already known regions in the phase space, which could lead to untimely 

convergence of the algorithm with the result of missing the global optimum by exploiting 

some local optimum. The third step - the Mutation confirms the necessary accidental effects. One 

can visualize the new population being varied up a little bit to bring some new information into 

this set of genes. Off course this has to happen in a well-balanced way!” 

Whereas in biology a gene is labelled as a macro-molecule with four different bases to code 

the genetic information, a gene in genetic algorithms is usually defined as a bitstring (a sequence 

of b 1´s and 0´s). 
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Fig3.5- The process of genetic algorithm 
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CHAPTER 4 

 
SIMULATION DETAILS 

 
Our simulation for automatic parameter tuning of neural network was based on its performance on 

a classification problem on CIFAR10 dataset.    

 

4.1 Dataset  

We’ll use the relatively simple but not easy MNIST and CIFAR10 dataset for our experiment. 

These datasets gives us a big enough challenge that most parameters won’t do well, while also being 

easy enough for an MLP to get a decent accuracy score. A convolutional neural network is certainly 

the better choice for a 10-class image classification problem like CIFAR10. But a fully connected 

network will do just fine for illustrating the effectiveness of using a genetic algorithm for hyper-

parameter tuning. 

The MNIST database comprises 60,000 training images and 10,000 testing images. Half of the 

training set and half of the test set were taken from NIST's training dataset, while the other half of 

the training set and the other half of the test set were taken from NIST's testing dataset. 

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per 

class. There are 50000 training images and 10000 test images.  

The dataset is distributed into five training batches and one test batch, each with 10000 images. The 

test batch comprises exactly 1000 randomly-selected images from each class. The training batches 

contain the remaining images in random order, but some training batches may contain more images 

from one class than another. Between them, the training batches contain exactly 5000 images from 

each class.  

 

4.2 Process 
 

 Applying genetic algorithms to Neural Networks 

We’ll attempt to evolve a fully connected network (MLP). Our goal is to find the best parameters 

for an image classification task. 

We’ll tune four parameters: 
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 Number of layers (or the network depth) 

 Neurons per layer (or the network width) 

 Dense layer activation function 

 Network optimizer 

The steps we’ll take to evolve the network, similar to those described above, are: 

1. Initialize N random networks to create our population. 

2. Score each network. This takes some time: We have to train the weights of each network 

and then see how well it performs at classifying the test set. Since this will be an image 

classification task, we’ll use classification accuracy as our fitness function. 

3. Sort all the networks in our population by score (accuracy). We’ll keep some percentage 

of the top networks to become part of the next generation and to breed children. 

4. We’ll also randomly keep a few of the non-top networks. This helps find potentially lucky 

combinations between worse-performers and top performers, and also helps keep us from 

getting stuck in a local maximum. 

5. Now that we’ve decided which networks to keep, we randomly mutate some of the 

parameters on some of the networks. 

6. Let’s say we started with a population of 20 networks, we kept the top 25% (5 nets), 

randomly kept 3 more loser networks, and mutated a few of them. We let the other 12 

networks die. In an effort to keep our population at 20 networks, we need to fill 12 open 

spots. 

 Breeding 

Breeding is where we take two members of a population and generate one or more child, where 

that child represents a combination of its parents. 

In our neural network case, each child is a combination of a random assortment of parameters from 

its parents. For instance, one child might have the same number of layers as its mother and the rest 

of its parameters from its father. A second child of the same parents may have the opposite. You 

can see how this mirrors real-world biology and how it can lead to an optimized network quickly. 

 

Also instead of the traditional back-propogation algorithm, we use the synthetic gradients to 

approximate error gradients and hence fast converging to real values. 

 

4.3  Some python libraries used for the process 
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 NumPy – NumPy is the fundamental package for scientific computing with Python. It contains 

among other things: 

 a powerful N-dimensional array object 

 sophisticated (broadcasting) functions 

 tools for integrating C/C++ and Fortran code 

 useful linear algebra 

 Fourier transform, and random number capabilities 

“Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional 

container of generic data. Arbitrary data-types can be defined. This allows NumPy to 

seamlessly and speedily integrate with a wide variety of databases.” 

 

 Scipy – SciPy is a “collection of mathematical algorithms and convenience functions built on 

the Numpy extension of Python. It adds significant power to the interactive Python session by 

providing the user with high-level commands and classes for manipulating and visualizing 

data. With SciPy an interactive Python session becomes a data-processing and system-

prototyping environment rivaling systems such as MATLAB, IDL, Octave, R-Lab, and 

SciLab. GA1 – An incrementally learning algorithm that assesses attributes individually and 

orders them based on their relevance to the problem.” 

 

 Scikit Learn-Scikit-learn (formerly scikits.learn) is“a free software machine 

learning library for the Python programming language.It features 

various classification, regression and clustering algorithms including support vector 

machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to 

interoperate with the Python numerical and scientific libraries NumPy and SciPy.” 

 

 TensorFlow- TensorFlow is an open-source software library for dataflow programming 

across a range of tasks. It is a symbolic math library, and also used for machine 

learning applications such as neural networks. TensorFlow is an open source library for fast 

numerical computing. It was created and is maintained by Google and released under the 

Apache 2.0 open source license. “The API is nominally for the Python programming language, 

although there is access to the underlying C++ API. Unlike other numerical libraries intended 
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for use in Deep Learning like Theano, TensorFlow was designed for use both in research and 

development and in production systems, not least RankBrain in Google search and the fun 

DeepDream project. It can run on single CPU systems, GPUs as well as mobile devices and 

large scale distributed systems of hundreds of machines.” 

 

 Keras - Keras is a high-level neural networks API, written in Python and capable of running 

on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast 

experimentation. Keras is a deep learning library that: 

Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility), 

Supports both convolutional networks and recurrent networks, as well as combinations of the 

two and runs seamlessly on CPU and GPU. 
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CHAPTER 5 

 
RESULTS AND ANALYSIS 

 

5.1 MNIST DATABASE 

We’ll start by running the brute force algorithm on the relatively simple MNIST database to find 

the best network. That is, we’ll train and test every possible combination of network parameters 

we provided. 

 

Top result using brute force achieved 98.33% accuracy with the following parameters: 

 Layers: 2 

 Neurons: 512 

 Activation: relu 

 Optimizer: rmsprop 

 

This took 2hours 22 min to run. 

 

 

Table 5.1-Result of Brute Force Algo on MNIST database 

SNO OPTIMISER NB_LAYERS NB_NEURONS ACTIVATOR ACCURACY 

1 rmsprop 2 128 Relu 97.97 

2 rmsprop 2 128 Relu 97.90 

3 rmsprop 2 128 Elu 98.12 

4 Adam 3 128 Relu 98.10 

5 rmsprop 2 512 Relu 98.33 

6 Adam 2 512 Relu 98.23 

7 rmsprop 3 128 Elu 98.14 
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Fig 5.1-Accuracy measure of brute force on MNIST database 

 

Now we use Genetic Algorithm to find the best parameter for the problem: Starting with a 

population of 15 randomly initialized networks, and we’ll run it for 5 generations. 

 

Top result using GA achieved 99.02% accuracy with the following parameters: 

 Layers: 3 

 Neurons: 512 

 Activation: relu 

 Optimizer: adam 

However, the best thing is this took just 1hour 15 min to run. 

97.6
97.7
97.8
97.9

98
98.1
98.2
98.3
98.4

Relu Relu Elu Relu Relu Relu Elu

128 128 128 128 512 512 128

2 2 2 3 2 2 3

rmsprop rmsprop rmsprop Adam rmsprop Adam rmsprop

1 2 3 4 5 6 7

ACCURACY

GEN OPTIMISER NB_LAYERS NB_NEURONS ACTIVATOR ACCURACY 

1 Adam 3 128 elu 98.17 

2 Adam 2 512 elu 98.12 

3 Adam 2 128 elu 98.22 
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Table 5.2- Result of GA on MNIST database 

 

Fig 5.2-Accuracy measure of GA on MNIST database 

 

5.2 CIFAR10 DATABASE 

Now we run the brute force algorithm on CIFAR10 database. Although a CNN architecture would 

have performed better for image classification task but the MLP would do just fine to demonstrate 

our purpose. 

 

Top result using brute force achieved 51.53% accuracy with the following parameters: 

 Layers: 2 

 Neurons: 512 

 Activation: elu 

 Optimizer: adam 

 

This took 4hours 05 min to run. 
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elu elu Relu elu Relu
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3 2 2 2 3

Adam Adam Adam Adam Adam

1 2 3 4 5

ACCURACY

4 Adam 2 128 Relu 98.26 

5 Adam 3 512 Relu 99.02 
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Table 5.3-Result of brute force on CIFAR10 database 

 

 

Fig 5.3-Accuracy measure of brute force on CIFAR10 database 

 

Now we use Genetic Algorithm to find the best parameter for the problem: Starting with a 

population of 15 randomly initialized networks, and we’ll run it for 5 generations. 
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SNO OPTIMISER NB_LAYERS NB_NEURONS ACTIVATOR ACCURACY 

1 rmsprop 3 128 elu 49.46 

2 adam 2 512 elu 51.53 

3 adam 2 128 elu 48.71 

4 rmsprop 2 512 Relu 36.38 

5 rmsprop 2 128 elu 44.93 

6 rmsprop 2 512 elu 10.00 

7 adam 3 128 relu 46.03 
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Top result using GA achieved 52.15% accuracy with the following parameters: 

 Layers: 3 

 Neurons: 512 

 Activation: elu 

 Optimizer: adam 

 

However, the best thing is this took just 1hour 45 min to run. 

 

 

Table 5.4- Result of GA on Cifar10 database 

 

GEN OPTIMISER NB_LAYERS NB_NEURONS ACTIVATOR ACCURACY 

1 Adam 3 128 elu 50.89 

2 Adam 2 128 Relu 51.02 

3 Adam 3 512 Relu 51.33 

4 Adam 3 512 elu 51.41 

5 Adam 3 512 elu 52.15 
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Fig.5.4-Accuracy measure of GA on CIFAR10 database 

 

5.3 Analysis 

The genetic algorithm gave us the same result in almost less than half the time taken by brute 

force. And it’s likely that as the parameter complexity increases, the genetic algorithm provides 

exponential speed benefit. 

On the MNIST database the accuracy measured was very high due to its simplicity in design. Here 

the GA outperformed brute force in terms of accuracy and time both in just 5 generations.  

On the CIFAR10 database also we could achieve lesser accuracy due to image classification 

problem which can be more effectively done using a CNN architecture. However here also we 

demonstrated how GA outperformed brute force in just 5 generations. With more number of 

generations and added parameter possibilities we can expect more accuracy using GA. 
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Fig.5.5-A snapshot of the brute force log on MNIST database 
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Fig. 5.6- A snapshot of GA on CIFAR10 database 
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CHAPTER 6 

 
CONCLUSION 

 
We “have accomplished a number of things with our work on using genetic algorithms to train 

feedforward networks. In the field of genetic algorithms, we have demonstrated a real-world 

application of a genetic algorithm to a large and complex problem. We have also shown how 

adding domain specific knowledge into the genetic algorithm can enhance its performance. In the 

terms of neural networks, we have introduced a new type of training algorithm, the synthetic 

gradient which on our data outperforms the backpropagation algorithm. The work described here 

only touches the surface of the potential for using genetic algorithms to train neural networks. In 

the realm of feedforward networks, there are a host of other operators with which one might 

experiment. Perhaps most promising are ones which include backpropagation as all or part of their 

operation. Another problem is how to modify the genetic algorithm so that it deals with a stream 

of continually changing training data instead of fixed training data. This requires modifying the 

genetic algorithm to handle a stochastic evaluation function. Finally, as a general-purpose 

optimization tool, genetic algorithms should be applicable to any type of neural network (and not 

just feedforward networks whose nodes have smooth transfer functions) for which an evaluation 

function can be derived. The existence of genetic algorithms for training could aid in the 

development of other types of neural networks.” 

This“thesis proposes the use of a Genetic Algorithm to find the architecture of neural networks 

and the learning parameters associated for that network. This network is then customized to 

individual applications. The genetic algorithm reduces the computational complexity and increases 

the accuracy of the MLP neural network. However, the optimizer has to be better than a human 

optimizing a network to make it beneficial.” 

Test results“shows that genetic algorithms can be used to optimize a neural network. In this 

example the genetic algorithm increases the accuracy and decreases amount of computation time 

by 50% due to increasing generalization. Future efforts contain a more flexible chromosome so 

the type of layers to the solution is not predetermined. This could be applied to many preexisting 

networks and additional types of layers to increase the accuracy, increase the computational 

efficiency, and decrease development time.” 
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