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The biomedical signal is a summarizing term for all kinds of signals that can be continu-

ally measured and monitored from biological beings. Electrocardiogram (ECG) and Elec-

troencephalogram (EEG) are most important 1-D biomedical signals as they are linked 

with activities of heart and brain respectively, the most important organs of human body.  

 Magnetic Resonance Imaging (MRI) is the most popular medical imaging tech-

nique. It has a wide range of applications in medical diagnosis and it is preferred over 

other methods for medical imaging purpose for the reason that it does not involve any 

ionizing radiation. Importance of MRI can be understood with the fact that over 50,000 

MRI scanners are estimated to be in use worldwide for biomedical imaging purpose. 

  Acquisition of a biomedical signal is not sufficient but it is required to process the 

acquired signal to get the relevant information “buried” in it. This may be due to the fact 

that the signal is affected by noise during signal acquisition and thus must be “cleaned” 

using some signal processing technique or method to minimize effects of noise and to en-

hance useful information. There are different types of noises or artifacts in biomedical 

signals. Baseline wander and ocular artifacts are the most important artifacts in case of 

ECG and EEG respectively.  

 This research is mainly focused on proposing novel methods for removal of base-

line wander and ocular artifact from ECG and EEG. A new method is proposed for base-

line wander artifact denoising from ECG using a cascaded combination of Complete En-

semble Empirical Mode Decomposition (CEEMD) and Morphological functions with 

adaptive Structure Elements (SEs). The proposed method maintains morphology of ECG 

during denoising and denoising performance is independent of heart rate in case of stress 

ECG. 

ABSTRACT 
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A new method is proposed for ocular artifact removal from EEG using Stationary Wave-

let Enhanced Independent Component Analysis (ICA) with a novel threshold technique. 

The proposed method preserves morphological information present in EEG and the novel 

threshold technique makes denoising more efficient.  

 MR image is the most important 2-D biomedical signal (Biomedical Image) and 

segmentation is one of the most important steps of MRI denoising and classification. A 

novel fuzzy energy based level set method is proposed in this research work for segmen-

tation of MR images. Proposed method deals effectively and simultaneously with intensi-

ty inhomogeneity and noise problems of medical image by integrating active contour with 

Fuzzy C-Means (FCM) clustering. Denoising of MR images is further enhanced by using 

a mean filter based spatial term with proposed FCM based energy function. 

 Performance of proposed methods is tested with various publicly available da-

tasets and compared with earlier state-of-the-art methods.  
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CHAPTER 1 

 

 

Firstly different types of biomedical signals, like Electrocardiogram (ECG), Electroen-

cephalogram (EEG) and Magnetic Resonance Imaging (MRI), are included in this chap-

ter. Thereafter, biomedical signals processing and challenges in biomedical signals pro-

cessing, which includes artifacts of ECG and EEG along with challenges in MR image 

segmentation are described. At last, the problem statement and contribution of the thesis 

is followed by the significance of the study and the thesis overview.      

1.1 Biomedical Signals 

Biomedical signals are broadly classified into two major categories as: 

 1-D Biomedical Signal:  1-D biomedical signals are further classified into three 

sub-categories as 

 Biochemical: In the form of pH changes, hormones and neurotransmitters.  

 Bioelectrical: In the form of electrical signals (Potential or Current) like 

Electrocardiogram, Electroencephalogram, Electromyogram, Electroocu-

lography, Electrogastrogram, and Magnetoencephalogram. 

 Biomechanical: In the form of pressure or temperature like Mechano-

myogram. 

 2-D Biomedical Signal:  X-Ray, Ultrasonography (USG), MRI, Computed To-

mography (CT) Scan and Nuclear Medicine are important 2-D biomedical sig-

nals/images. 

ECG and EEG are the most important 1-D bioelectrical signals as they measure elec-

trical activities of heart and brain respectively. Magnetic Resonance Imaging (MRI) is 

one of the most important 2-D biomedical signal or imaging method.   

INTRODUCTION TO BIOMEDICAL SIGNALS PROCESSING 

PROCESSIN 

https://en.wikipedia.org/wiki/Electroencephalogram
https://en.wikipedia.org/wiki/Electroencephalogram
https://en.wikipedia.org/wiki/Electroencephalogram
https://en.wikipedia.org/wiki/Magnetoencephalogram
https://en.wikipedia.org/wiki/Mechanomyogram
https://en.wikipedia.org/wiki/Mechanomyogram
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1.2 Electrocardiogram (ECG) 

ECG is a quasi-periodic signal, quantifying the electrical activities of the heart and it is 

used to measure the rate and regularity of heartbeats, as well as the size and position of 

the chambers, presence of any damage to the heart and effects of drugs or devices used to 

regulate the heart, such as a pacemaker. It includes information content mostly in the 

0.05-120 Hz range and amplitude in the range of 0.02- 5 mV. It primarily consists of P 

wave, QRS complex and ST segment [1] as shown in Fig 1.1 

 

 

 

 

1.3 Electroencephalogram (EEG) 

EEG refers to the recording of the brain's spontaneous electrical activity over a short peri-

od of time, recorded from multiple electrodes placed on the scalp with a conductive gel or 

paste. The EEG spectrum has different frequency sub-bands in the range of 0.1 Hz to 100 

Fig 1.1: Typical ECG Waveform 

https://en.wikipedia.org/wiki/Electroencephalogram
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Hz. Commonly used sub-bands are Delta (0.1 – 4.0 Hz), Theta (4.0 – 8 Hz), Alpha (8.0 - 

14.0 Hz), Beta (14.0 - 30.0 Hz) and Gamma (30.0 - 100.0 Hz) [2]. EEG sub-bands are 

shown in Fig 1.2. The x-axis shows normalized frequency with respect to maximum fre-

quency of 4 Hz, 8 Hz, 14 Hz, 30 Hz and 100 Hz for Delta, Theta, Alpha, Beta and Gam-

ma sub-bands respectively. 

 

 

(a) Delta 

 

(b) Theta 

 

(c) Alpha 

 

(d) Beta 
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(a) Gamma 

 

 

EEG has various advantages over other techniques to study the brain functions as it has 

less hardware cost and due to the absence of radiations or injections, it is considered very 

safe. 

1.4 Magnetic Resonance Imaging (MRI) 

Magnetic Resonance (MR) imaging has come up as a widely accepted and revolutionary 

innovation to provide detail and reliable information in the field of medical imaging. MRI 

is preferred over other imaging methods for medical imaging purpose because it does not 

involve any ionizing radiation and is used in non-invasively forms. Segmentation is a crit-

ical stage in the investigation of MR images [3].  

Image segmentation is a process of assigning a label to every pixel of the image 

such that pixels with the same label have certain similar characteristics. It divides a digital 

image into multiple segments, where each segment has the similar type of pixels. The 

main goal of image segmentation is to simplify and change the representation of an image 

into a more meaningful and useful form to process it for different purposes. 

Image segmentation techniques are broadly divided into two groups; Edge based 

segmentation and region based segmentation [4]. In edge-based segmentation, regions in 

an image are divided by running edge detection on the image where the edges are identi-

Fig 1.2: EEG Sub-bands 

https://en.wikipedia.org/wiki/Electroencephalogram
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fied between disjoint segments. In region-based segmentation, the image is taken as a 

single region and segmentation divides the single region into multiple regions such that 

the union of all the regions gives the original image and each region is disjoint from each 

other.       

1.5 Biomedical Signal Processing 

The biomedical signal processing technique is one of the most important visualizations 

and interpretation method to support scientific hypotheses and medical diagnoses. Bio-

medical signal processing aims at extracting significant information from biomedical sig-

nals for purposes of diagnosis and evaluating therapy. In some cases, biomedical signal 

processing techniques are used to interpret physiological signals for designing systems 

and algorithms for their manipulation.   

1.6 Challenges in Biomedical Signal Processing 

The processing of biomedical signals poses a set of problems due to the complexity of the 

biomedical signals and variety of artifacts of biomedical signals. A large number of pro-

cessing methods and algorithms are available but in order to apply the best method, the 

user must know the goal of the processing, test conditions and characteristics of the un-

derlying signal. The signal processing method of 1-D biomedical signals mainly deals 

with artifact removal from the signal. In case of 2-D biomedical signals or images (espe-

cially MR images), the focus is on image classification and denoising. Segmentation of 

MR images is the most important step of image classification and denoising.   

1.6.1   ECG Artifacts  

ECG signal captures a large number of varying noises during signal acquisition, thereby 

making proper diagnosis very difficult. Some of these artifacts are Power line interfer-

ence, Baseline wander, Electrode contact & motion artifact and Instrumentation noise [5].  
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 Source of power line interference is the presence of nearby power line or power 

supply during ECG. Power line interference has frequency component of 50/60 Hz (Fre-

quency of power supply transmission) or its harmonics. It is in the form of short spikes 

with amplitude up to 50 % of QRS amplitude.  

  Electrode metal-to-solution interference and fluctuations in skin potential due to 

skin stretch are two important sources of electrode contact & motion artifact in ECG. It 

affects more to lower frequency components (1-10 Hz) of ECG. The amplitude of elec-

trode contact & motion artifact is up to 20% of ECG.   

1.6.1.1 Baseline Wander  

Baseline wander artifact, which occurs in the low-frequency region of ECG (Generally up 

to 0.5 Hz but more in case of stress ECG), is one of the most important types of noises 

present in ECG. It takes place due to the respiration of the patient, thereby making it om-

nipresent in all ECG signals. This artifact is often found during stress ECG as patient 

breathing rate increases.  The baseline wanders artifact results in a gradual sloping of the 

ST segment and a reduced R-R duration in the ECG signal [6]. For proper diagnosis of 

ECG signal, it is necessary to remove the constituent noise while ensuring no loss of in-

formation in terms of the morphology of the ECG signal. ECG signals corrupted by vari-

ous artifacts are shown in Fig 1.3 as 

 

Fig 1.3 ECG signal corrupted by (a) Baseline wander (b) Motion artifact 

(c) Power line interference (d) Electromyographic noise  
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1.6.2  EEG Artifacts  

The EEG artifacts can be divided into classes of patient-related (physiological) artifacts 

and system artifacts. Common patient-related or internal artifacts are Electro-Myogram 

(EMG), ECG or pulsation, Electro-Oculogram (EOG) or Ocular artifact, ballistocardio-

gram and sweating. The system or external artifacts are 50/60 Hz Power supply interfer-

ence, Impedance fluctuation, Cable defects, Electrical noise from the electronic compo-

nents and unbalanced impedances of the electrodes. 

1.6.2.1 Electro-Oculogram (EOG) or Ocular Artifact 

The ocular artifact is the most common artifact in EEG. The main cause of EOG artifacts 

is eye movement and eye blinks during EEG recording. A significant potential difference 

occurs between the cornea and the retina due to blinking which affects the EEG recording 

[7]. Ocular artifact affects more to the low-frequency region (up to 16 Hz) of EEG.  

1.6.3 Challenges in MR Image Segmentation 

Image segmentation is one of the most important tasks in medical image analysis and it is 

the first and the most critical step in many clinical applications. Graph Partitioning, Re-

gion Growing, Split and Merge, 𝑘-means clustering, Thresholding, Histogram and FCM 

are commonly used for MR image segmentation [3]. FCM clustering is one of the most 

admired methods in medical image segmentation because of its fuzzy nature, where one 

pixel can belong to multiple clusters and leads to better performance than crisp methods 

[8]. Noise and intensity inhomogeneity make segmentation of images challenging, espe-

cially for medical images. 

1.7 Problem Statements  

Diagnosis of baseline wander artifact and other artifacts are performed by the presence of 

certain morphologies in the ECG signal. Thus the morphology of an ECG signal is a cru-
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cial aspect. Most of the existing ECG denoising methods generally results in loss of in-

formation due to change in morphology of an ECG signal. A new method is proposed for 

baseline wander artifact removal from ECG using cascade combination of Complete En-

semble Empirical Mode Decomposition (CEEMD) and morphological functions with 

adaptive Structure Elements (SEs). Morphological functions with adaptive Structure Ele-

ments (SEs) maintain morphology of ECG during denoising.  

A new method is proposed for ocular artifact removal from EEG using the con-

cept of Independent Component Analysis (ICA) and Stationary Wavelet Transform 

(SWT). Proposed SWT Enhanced ICA method sustains morphological information pre-

sent in EEG. A novel threshold technique is used in the proposed method to overcome 

limitations of existing threshold techniques and to make denoising more efficient.  

A novel fuzzy energy based level set method obtained by integrating active con-

tour and FCM clustering is proposed for image segmentation of MR images to deal effi-

ciently with noise and intensity inhomogeneity problems. Proposed method effectively 

deals with intensity inhomogeneity of medical image using FCM based energy function 

while noise removal from MR images is done using a proposed mean filter based spatial 

term with energy function. 

1.8 Main Contribution of the Thesis 

The main contribution of this thesis is to propose new methods for ECG and EEG de-

noising with the aim that the morphological information present in the 1-D biomedical 

signal remains preserved. Denoising performance of the proposed method for ECG is in-

dependent of heart rate and external factors, especially in the case of stress ECG. Intensity 

inhomogeneity is a big issue in the case of biomedical images and quality of these images 

is further degraded in the presence of noise. The proposed method for MR image segmen-

tation simultaneously deals with intensity inhomogeneity and noise in MR image.  
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1.9 Significance of the Study 

The core finding of this study leads to the effective denoising of important biomedical 

signals (ECG and EEG) and segmentation of biomedical images. Efficient image segmen-

tation, which is an important part of image denoising, significantly contributes to the effi-

ciency of biomedical image denoising and classification. Effective denoising of biomedi-

cal signals and images improves quality of significant information extraction from bio-

medical signals for purposes of signal analysis, diagnosis and efficient system designing. 

1.10 Thesis Overview 

In Chapter 2, the details of the earlier state-of-the-art methods with their merits and de-

merits are described. It also highlights research gaps in the concerned area and based on 

the research gaps, the objectives of the research are formulated. 

Chapter 3 includes details of the proposed method for baseline wander removal 

from ECG. The proposed method is explained in detail with results and significant find-

ings. 

 A new method for ocular artifact removal from EEG is explained in Chapter 4. 

Independent Component Analysis (ICA), Stationary Wavelet Transform, the proposed 

novel thresholding technique, results and significant findings are discussed in detail in 

this chapter.  

 Chapter 5 includes details of the proposed method for MR image segmentation.                                           

Different steps of the proposed method like local region based energy function using 

FCM, two-phase and multi-phase level set formulation, equation updation and spatial 

term for reducing noise effect, are discussed in this chapter with results and significant 

findings. Chapter 6 highlights important conclusions drawn from the research and also 

includes details of the future scope of work.                                                               .                                                                                              



  

    

 

CHAPTER 2 

 

 

This chapter contains the details of earlier work carried out for baseline wander removal 

from ECG, ocular artifact removal from EEG and MR image segmentation methods, with 

their merits and demerits.  

2.1  Baseline Wander Removal from ECG 

Earlier state-of-the-art methods for baseline wander removal from ECG can be classified 

into four categories of Adaptive Filters, Empirical Mode Decomposition (EMD), Ensem-

ble Empirical Mode Decomposition (EEMD) and Morphological Functions.   

2.1.1 Adaptive Filter 

Initial techniques of baseline wander denoising from ECG signals have used digital win-

dow based filters [9] [10] for the removal of low-frequency noise from ECG. As an im-

provement upon window based filters, different adaptive filters [11] [12] [13] are used for 

ECG denoising.  

An adaptive filter is a system with linear filter. The transfer function of the filter is 

controlled by variable parameters and it has a mean to adjust these parameters according 

to an optimization algorithm. These filters involve dynamic tracking of the signal and es-

timation of noise based on the difference between the tracked signal and the observed 

one.  

2.1.2        Empirical Mode Decomposition (EMD)       

EMD decomposes a signal into Intrinsic Mode Functions (IMF) corresponding to various 

frequency components of the signal. EMD has been found to be very effective in ECG 

LITERATURE REVIEW 
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denoising and has been extensively used in several algorithms [14] [15] [16].  However, 

most of the work using EMD has been done for the removal of high-frequency noises.  

EMD is used for the denoising of baseline wander by removing residue to correct the 

noise signal [18]. Further work in this field is done by decomposing ECG signal into 15 

IMF and the baseline wander is removed by dropping last three components [19].    

 Different wavelet-based techniques are also used for ECG denoising [20] [21] 

[22]. A combination of EMD and wavelets [23] is a very effective technique for ECG de-

noising. All these techniques are generally applied to deal with the lower IMFs or high-

frequency components present in the signal henceforth can’t be used effectively to deal 

with baseline wander [24].   

2.1.3 Ensemble Empirical Mode Decomposition (EEMD)          

To overcome limits of EMD, a system of Ensemble Empirical Mode Decomposition 

(EEMD) [25] [26] is used for denoising of ECG [27]. In case of EEMD, an ensemble of 

the original signal is taken by adding various instances of Gaussian white noise to it and 

these instances are then broken down using EMD and then average over the entire en-

semble is taken.  

2.1.4 Morphological Functions     

In case of the biomedical signal, the morphological operators are used the first time for 

denoising of EKG signal. Opening and closing operators are used first time for ECG de-

noising [28]. The opening operator is used to extract positive pulses, while the closing 

operator is used to remove the negative waves. The primary drawback of this approach is 

that an ECG like but not pure ECG signal is analyzed. Further, the use of a disk-shaped 

structuring element (SE) is a poor approximation for a real ECG [29].    
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In some more recent approaches [30] [31] for use of morphological functions to 

handle baseline wander, the morphologies present in the ECG signals are removed in two 

steps by using opening and closing operations and then by taking the average. Firstly, the 

QRS complex is removed and then P and T pulses are removed. Linear structuring ele-

ments are used in accordance with the available biological data.   

2.1.5 Research Gaps          

Digital window based filters, when used for baseline removal from ECG, introduce rip-

ples in pass band if a sharp cut-off is opted [32]. This ripple changes the morphology of 

the ECG signal, which is unacceptable from a diagnosis point of view. Furthermore, ina-

bility to effective use of Fourier Transform on ECG signal due to its non-stationary and 

non-linear property, implies uncertainty about exact frequency cut-offs requirement of 

window based filters.  

 The problem that arises while using adaptive filters for ECG denoising, begins 

with the requirement of pure input samples to obtain an estimate of the way the signal 

changes. Further issues arise due to the mean square error criterion for adaptive filters and 

also due to the fact that the reference signals are not correlated very well with the primary 

input [11]. These filters have improved performance compared to simple window-based 

filtering but still, there is a considerable scope for further improvement. 

  Problems, arise in the work related to the use of EMD for baseline removal, are 

due to the lack of a proper system to find out the number of noise affected IMFs. Noise 

sensitivity and EMD’s property of oscillation, aliasing and mode mixing, introduce error 

in signal [33]. 

 EEMD resolves most of the problems of EMD but it has insufficient denoising 

capability of baseline wander removal from ECG due to computational complexity and 

reduction in amplitude of IMF [34]. The major limitations of morphological functions, in 
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case of baseline removal from ECG, are due to the fact that the ECG signal, being a qua-

si-periodic and dynamic signal, don’t have fixed pulse widths so a more adaptive structur-

ing element is required [35]. This problem is especially observed in the case of stress 

ECG. There is an inherent baseline drift, an upward slope in the ST interval and a clear 

change in the lengths of the QRS and ST segments in case of stress ECG.  

2.2 Ocular Artifact Removal from EEG 

Earlier state-of-the-art methods for ocular artifact removal from EEG are classified in 

four categories of Discrete Wavelet Transform (DWT), Stationary Wavelet Transform 

(SWT), Independent Component Analysis (ICA) and Wavelet Enhanced ICA (wICA). 

2.2.1 Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) is used for ocular artifact removal from EEG [36] 

[37]. In these cases of ocular noise removal, hard thresholding is preferred over soft 

thresholding because ocular artifact occurs for short time duration and soft thresholding 

modifies the entire signal. Since ocular artifact has significant components in 0-16 Hz so 

thresholding is desired only to those sub-bands lying in the frequency region of 0-16 Hz. 

DWTs don’t product effective baseline denoising due to shift variance problem of DWT.   

2.2.2 Stationary Wavelet Transform 

Shift variance problem of DWT can be avoided by using un-decimated DWT, i.e. Sta-

tionary Wavelet Transform (SWT) [38]. Many SWT based methods have been proposed 

to remove ocular artifacts from EEG [39] [40]. SWT is preferred because of time invari-

ance property. In case of SWT, there is no down sampling so no time information is lost 

and it produces smoother results in low-frequency bands. Soft thresholding functions are 

not preferred in these cases as continuous derivatives are required for minimum condition 
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criteria calculation. A modified version of soft thresholding, known as soft-like threshold-

ing, is applied for optimal noise removal. 

 

2.2.3 Independent Component Analysis (ICA) 

In ICA based methods [41] [42], used for ocular artifact removal from EEG, independent 

components and mixing matrix are estimated. Thereafter, artifactual sources are identified 

using IC marker. Column corresponding to artifactual independent components are made 

zero in estimated mixing matrix and in the last step, estimated sources are mixed by mul-

tiplying them with modified estimated mixing matrix. 

2.2.4 Wavelet Enhanced Independent Component Analysis (wICA) 

In wICA based method [43], used for automatic noise removal of the ocular artifact, in-

dependent components and mixing matrix are estimated using extended infomax ICA. 

Sample entropy and kurtosis are calculated for each independent component. The thresh-

old value for sample entropy and kurtosis [44] is calculated to identify the artifactual 

source and then DWT with hard thresholding is applied on the artifactual source. De-

noised ECG signal is obtained by multiplying independent components with estimated 

mixing matrix.          

2.2.5 Research Gaps  

The efficiency of DWT based methods is restricted due to shift variance and aliasing is-

sue of DWT [45]. Shift variance perturbs wavelet coefficients in the form of oscillation 

because of the small shift in the signal. Due to discrete time decimation at each stage of 

DWT with non-ideal filters, aliasing comes into the role. Inverse DWT overcomes this 

issue only if there is no modification in wavelet coefficients. But wavelet coefficients get 

modified whenever thresholding is applied. SWT produces smoother results in low-
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frequency bands by suppression of ocular artifact but EEG signal is also suppressed, 

which results in information loss [46]. 

 To apply ICA on EEG signals some assumptions are made like cerebral signal and 

artifact signal are linearly combined and are statistically independent, the number of re-

cording channel must be greater or equal to the number of independent sources and final-

ly delay because of propagation through mixing medium is insignificant. The efficiency 

of proposed method depends upon these assumptions and it is very difficult to meet these 

assumptions for real EEG. 

 Proposed wICA method does not affect the non-artifactual region as it uses hard 

thresholding for DWT denoising but results are not optimal due to shift variance issue of 

DWT [45] and again hard thresholding makes zero to all undesired parts of the signal, 

which introduces some discontinuities. 

2.3 MR Image Segmentation  

Earlier state-of-the-art methods for MR image segmentation are classified into categories 

of active contour models, level set with active contour models and level set approach with 

FCM based methods. 

2.3.1 Active Contour Model 

Active contour models are proved to be very effective to distinguish the boundaries of 

medical images. Active contours also referred as snakes, are used to extract objects by 

applying the concept of curve evolution. The energies used in these models are such that 

they are minimized when the curves evolve at the borders of the required object. Usually, 

these energies have two main components; internal energy and external energy. Internal 

energy makes the evolving curve smooth and regularizing it and external energy guides 

the motion of the curve towards its optimal position [47] [48] [49] [50] [51]. 
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2.3.2 Integration of Level Sets Approach with Active Contour Model 

A region-based approach is proposed to approximate an image using a piecewise smooth 

model of it [52]. In this approach, energy term is minimized when the approximation con-

tains smooth regions as well as the sufficient number of edges, they can model the given 

image. In a similar model, a piecewise constant approximation of an image is obtained 

instead of the piecewise smooth approximation. The required approximation of the image 

is achieved using a level set model. The multiphase extension of it is also proposed for 

image segmentation [53].  

Many new methods [54] [55] are proposed by integration of level sets approaches 

with edge-based active contour models for image segmentation. These proposed methods 

include an energy term based on edge information into a level set model, which normally 

utilizes curvature motion.   

2.3.3 Integration of Level Sets Approach with Fuzzy C-Means 

Fuzzy C-Means clustering membership function is used to overcome initialization prob-

lem of proposed methods by integration of level set approach with active contours. The 

membership function is used to select the parameters required in the level set model. Lo-

cal intensity clustering property is used for forming a new FCM based clustering [56]. In 

a modified method [57], the concept of fuzziness has been utilized by integrating 

FCM_S1&S2 (Spatial based extensions of FCM) and level set model. This model suc-

cessfully segments images with high noise.  

2.3.4 Research Gaps 

Snake models are implemented based on parameterized approaches, which face a lot of 

complexities. The active contour models make an automatic search for their minimum 
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energy positions, but sometimes they may settle at a local minimum which makes them 

less effective [58] [59]. 

 Proposed methods for medical image segmentation by integration of level sets ap-

proaches with edge-based or region-based active contour models, suffer from limitations 

of the corresponding edge-based or region-based model. The region-based model depends 

less on initial level set but edge-based models commonly suffer from the problem of level 

set initialization. These methods give good results in case of intensity inhomogeneity 

problem of biomedical images but cannot deal efficiently with noise [56].  

 Integration of FCM clustering membership function with level sets approach deals 

efficiently with intensity inhomogeneity and noise individually but cannot effectively deal 

simultaneously with intensity inhomogeneity and noise in MR images [60]. 

2.4 Research Objectives 

The main objective of this thesis is to analyze various issues involved in biomedical sig-

nals processing techniques. It is almost impossible to cover all biomedical so two most 

important 1-D biomedical signals, ECG and EEG, are selected along with MR images 

(most important 2-D biomedical signal) for this research work. Denoising of biomedical 

signals is the very critical issue so this research work is focused on it.   

 Baseline wander is the most common artifact of ECG and ocular artifact is the 

main source of noise in EEG so they are selected for denoising purpose. Segmentation is 

a very important step in MR image analysis and denoising so it opts here for this research 

work. To fulfill these objectives, following frame of works has been performed  

 A new method is proposed for baseline wander removal from ECG  

 A new method is proposed for ocular artifact removal from EEG 

 A novel frame work is proposed for MR image segmentation.



  

 

CHAPTER 3 

 

 

This chapter includes the details of Complete Ensemble Empirical Mode Decomposition 

(CEEMD), adaptive structuring element (SE) based morphological operators, proposed 

methodology, results and comparative analysis of results.   

3.1 Introduction 

A new method using cascade combination of CEEMD and adaptive structuring elements 

based morphological functions is proposed for baseline wander artifact removal from 

ECG [61]. It is performed in two stages using CEEMD and morphological functions to 

ensure that morphological information present in the ECG signal is retained with efficient 

denoising [62]. The proposed method uses strengths of CEEMD and morphological func-

tions, which is supported by results.  

3.2 Proposed Methodology 

The workflow diagram of the proposed framework is depicted in Fig 3.1 
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Fig 3.1: Flowchart of the proposed method for baseline wander removal 
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The proposed algorithm performs denoising in two stages, initially the CEEMD on the 

noisy signal is performed and a fixed proportion of the total IMFs is subtracted. This par-

tially filtered signal is then applied to a two-step morphological operator based filter with 

adaptive structuring elements. The morphological filter has been split into two steps, one 

for QRS complex removal and other to remove ST wave. The morphological filtering is 

performed in two stages because if all the features are removed at once, it may give rise to 

severe distortion and loss of information [62]. This cascading of CEEMD and morpholog-

ical function overcomes the deficiencies of both individual methods. 

 

3.2.1 First Level Baseline Wander Removal 

The noisy ECG signal is first decomposed into ‘N’ IMFs (Intrinsic Mode Functions) us-

ing CEEMD and then noise dominant ‘m’ IMFs (starting from last/highest order IMF) are 

discarded from ECG signal. This process is performed in following steps: - 

i. Raw ECG (ECG signal with Baseline Wander artifact) is decomposed into ‘𝑁’ 

IMFs using CEEMD. IMFs are an indication of the different frequency compo-

nents present within the signal. Raw ECG signal is written in terms of IMFs as 

 𝑥𝑟(𝑛) =  ∑ 𝑐𝑖(𝑛) 𝑁
𝑖=1                     (3.1)    

Where 𝑐𝑖(𝑛) is ith order IMF. First IMF indicates highest frequency component 

and last IMF indicates lowest frequency component. 

ii. A fraction of 𝑁 (𝑝; starting from last/highest order IMF) IMFs is discarded from 

raw ECG. CEEMD filtered ECG signal after discarding last 𝑝 IMFs is calculated 

as 

 𝑥𝑐(𝑛) =  ∑ 𝑐𝑖(𝑛) 
𝑁−𝑝
𝑖=1                     (3.2) 
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iii. Signal to noise ratio (SNR) of CEEMD filtered ECG signal and Correlation Coef-

ficient (between raw ECG and CEEMD filtered ECG) are calculated using fol-

lowing equations 

𝑆𝑁𝑅 (𝑑𝐵)  = 10 ∗  log
Σ( 𝑥𝑐(𝑛))

2

Σ( 𝑥𝑐(𝑛)− 𝑥𝑟(𝑛))
2                    (3.3) 

𝑟𝑥𝑠 =  𝑐𝑜𝑣 ( 𝑥𝑐(𝑛), 𝑥𝑟(𝑛))

𝜎 𝑥𝑐
 𝜎 𝑥𝑟

                          (3.4) 

Where 𝜎 𝑥𝑐
 and 𝜎 𝑥𝑟

 are the variances of CEEMD filtered ECG and raw ECG 

signal (estimated quantities) respectively. 

iv. Now the value of discarded fraction (𝑝) is increased and this process (steps ii and 

iii) is repeated.  

 

           It is observed that, on an average, maximum SNR and correlation coefficient are 

obtained for ‘𝑚’ discarded IMFs. Value of 𝑚 is given by 

𝑚 = 𝑟𝑜𝑢𝑛𝑑 (0.38 𝑁)                    (3.5) 

Baseline wander estimation at first level is calculated as 

 𝑥𝐵𝐿𝑊1(𝑛) =  ∑ 𝑐𝑖(𝑛) 𝑁
𝑖=𝑁−𝑚+1                    (3.6) 

Partially filtered ECG signal after level 1 (�̅�1), is obtained by subtracting first lev-

el baseline wander estimated artifact from raw ECG as per following equation 

�̅�1(𝑛) =   𝑥𝑟(𝑛) −  𝑥𝐵𝐿𝑊1(𝑛)                      (3.7) 

 

3.2.1.1 Complete Ensemble Empirical Mode Decomposition (CEEMD) 

CEEMD decomposes any signal into a set of true IMFs [63] and obtained IMFs are an 

indication of the different frequency components present within the signal. In CEEMD, 

the breakup of a signal into its constituent IMFs is performed in the following manner: - 
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 Using EMD, 𝐾 realizations of the base signal (raw ECG in this case) with added 

White Gaussian noise (𝑥(𝑛) +  휀 𝑤𝑘(𝑛)) are achieved to obtain their first modes 

and thereby to create an ensemble of first IMFs  by taking average to obtain first 

true IMF, using the following formula 

𝐼𝑀𝐹1(𝑛)̃ =  
1

𝐾
∑ 𝐼𝑀𝐹1

𝑘(𝑛)𝐾
𝑘=1                    (3.8) 

Where 𝑥(𝑛) is the base signal (raw ECG signal for the first stage), 𝑤𝑘(𝑛) is 

White Gaussian noise for 𝑘𝑇ℎ realization, 𝐼𝑀𝐹1
𝑘(𝑛) is first IMF of 𝑘𝑇ℎ realization, 

휀 is weight coefficient of added noise and 𝑘 = 1,2,3,4 … … … … . . 𝐾. 

 At the first stage, the first residue is calculated by 

𝑟1(𝑛) =  𝑥(𝑛) −  𝐼𝑀𝐹1(𝑛)̃             (3.9) 

 For the second stage of CEEMD, this residue signal is considered as base signal 

and an ensemble of 𝐾 realizations of the residue with White Gaussian noise is cre-

ated. First, IMFs for each element are obtained and then they are averaged to have 

second true IMF, given as 

𝐼𝑀𝐹2(𝑛)̃ =  
1

𝐾
∑ 𝐸1(𝑟1(𝑛) +  휀1𝐸1(𝑤𝑘(𝑛) ))𝐾

𝑘=1         (3.10) 

where 𝐸1 is the mathematical expectation and 휀1 is weight coefficient of the sec-

ond stage. 

 Similar to the above-mentioned equation (3.9), the second residue is calculated 

and used for third true IMF. 

 The above-mentioned steps are continued until further decomposition is no longer 

possible and all the obtained true IMFs are subtracted from base signal to obtain 

the final residue, given as 

𝑟(𝑛) =  𝑥(𝑛) − (𝐼𝑀𝐹1(𝑛)̃ + 𝐼𝑀𝐹2(𝑛)̃ +. . . )          (3.11) 
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3.2.2 Second Level Baseline Wander Removal 

The partially filtered signal from the first level is now applied to the morphological fil-

ters. The morphological filters have been split into two steps with adaptive SEs to avoid 

distortion in waveform [62].      

 Structuring element is the most important feature of these filters and by varying 

the shape and size of the SE, it enables to obtain information from the non-linear system. 

In the proposed method, linear SEs with an adaptive data-driven length are used. Length 

of QRS complex and ST interval are used as the length of adaptive SEs for stage 1 and 2 

of morphological operators.  

 A simple algorithm [64], using a wavelet decomposition and identification of 

ECG components, is used to determine the lengths of QRS complex & ST interval and 

thereafter, lengths of structuring elements. It is a fully adaptive method in which position 

of peaks is located and then average length of QRS complex is obtained based on the 

number of samples between peaks. The length of the QRS complex is defined as the 

number of samples between the onset of the Q wave and the offset of the S wave. By ob-

taining the locations of S and T peaks, length of ST interval is calculated. The QRS com-

plex removed ECG signal, from the first stage of the morphological filter, is then applied 

to the second stage of the morphological filter to remove the ST wave.  

 Selection of QRS complex and ST interval as adaptive SE length has advantages 

especially in the case of exercise or stress ECG signals, where due to the external factors 

(High pulse rate in case of stress ECG), lengths of the QRS complex and ST interval have 

to be changed [27]. Further, a slope is observed in the ST interval, which must also be 

removed for accurate diagnosis of cardiac conditions. The data-driven nature of adaptive 

SE lengths ensure that the filtration algorithm is independent of the nature of ECG being 

taken; further, it provides far superior filtration in the case of stress ECG.  
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3.2.2.1 Morphological Operators 

Mathematical morphology is a powerful tool for the numerical analysis of geometric 

structures. It consists of numerous algorithms, designed to obtain information from a ge-

ometric object, concerning shape and size of the object. Erosion and Dilation are the fun-

damental morphological operators, upon which the more advanced processes and filtering 

techniques are based. 

 Dilation: Dilation of a point of signal/image 𝑓(𝑥) is the maximum of the points 

in its neighborhood, with that neighborhood defined by the structuring element 

𝑔(𝑥). Dilation of 𝑓(𝑥) by 𝑔(𝑥) is given by 

(𝑓 ⨁  𝑔)(𝑥) =  𝑠𝑢𝑝𝑦∈𝐵(𝑓(𝑦) + 𝑔(𝑥 + 𝑦))                 (3.12) 

Where 𝑠𝑢𝑝 denotes the supremum and 𝐵 is the space for that 𝑔(𝑥) is defined. 

 Erosion: Erosion of a point of signal/image 𝑓(𝑥) is the minimum of the points in 

its neighborhood, with that neighborhood defined by the structuring element 

𝑔(𝑥). Erosion of 𝑓(𝑥) by 𝑔(𝑥) is given by  

(𝑓 ⊝ 𝑔)(𝑥) =  𝑖𝑛𝑓𝑦∈𝐵(𝑓(𝑥 + 𝑦) − 𝑔(𝑦))                 (3.13) 

Where 𝑖𝑛𝑓 denotes the infimum. 

 

 Two important operations known as opening and closing [65], derived from the 

erosion and dilation operators, are used in the proposed method and are defined as  

𝑂𝑝𝑒𝑛𝑖𝑛𝑔 ∶  (𝑓 ∘  𝑙) (𝑛) = ((𝑓 ⊝ 𝑙) ⨁ 𝑙)(𝑛)                (3.14) 

                       𝐶𝑙𝑜𝑠𝑖𝑛𝑔 ∶  (𝑓 • 𝑙) (𝑛) = ((𝑓⨁𝑙) ⊝ 𝑙)(𝑛)                 (3.15)                                    

     Opening operation is defined as erosion followed by dilation. It is responsible for the 

removal of peaks and smoothening of the contour. Closing operation is defined as the di-

lation followed by erosion. It handles removal of pits and discontinuities. 
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The partially filtered ECG signal after level 1 (�̅�1(𝑛)), is now applied to the first 

stage of the morphological filter. Based on the length of a QRS complex, obtained from 

the real- time ECG signal, a linear structuring element (SE1) of length ‘l1’is used. QRS 

complex removed ECG signal is given by 

�̅�𝑚𝑝1(𝑛) =  {(�̅�1 ∘ 𝑙1 • 𝑙1)(𝑛) + (�̅�1 • 𝑙1 ∘ 𝑙1)(𝑛)} 2⁄             (3.16) 

The QRS complex removed ECG signal is then applied to the second stage of 

morphological function, intended to remove the ST wave. ST interval of partially filtered 

ECG signal is used as the function of the length of structuring element (SE2) for the sec-

ond morphological filter (l2). ST segment removed ECG signal is given by   

�̅�𝑚𝑝2(𝑛) =  {(�̅�𝑚𝑝1 ∘ 𝑙2 • 𝑙2)(𝑛) + (�̅�𝑚𝑝1 • 𝑙2 ∘ 𝑙2)(𝑛)} 2⁄            (3.17)                                                                

This signal does not contain any of the characteristic ECG segments. It is an esti-

mate of the total remaining baseline noise present in the original signal. This obtained 

noise signal is subtracted from partially filtered ECG signal after level 1 (�̅�1(𝑛)) to 

achieve clean or denoised ECG signal, which is given by 

𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑛) =  �̅�1(𝑛) −  �̅�𝑚𝑝2(𝑛)                  (3.18)                                                                     

3.3 Results 

The proposed method is tested over a wide range of data taken from synthesis as well as 

real-time ECG signals. The simulated ECG signal, sampled at 512 Hz and available in 

MATLAB R2011b, is used to derive the results for the synthetic ECG. In order to in-

crease similarity of synthesis ECG to real-time ECG signal, it is passed through a 9th or-

der Savitzky Golay filter to provide smoothing. Further to simulate baseline wander, dif-

ferent types of low-frequency noises components are added.  
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 Real-time signals are taken from ECG-ID databases [66] [67]. It consists of 310 

ECG recordings, obtained from 90 people. Each recording comprises 5000 samples at 500 

Hz sampling frequency with 12-bit resolution, for a range of ±10 mV. Obtained ECG 

signals are noisy signals containing low-frequency noises.  

 Performance of proposed method is analyzed in terms of Mean Square Error, Sig-

nal to Noise Ratio and Correlation Coefficient using various cascade combinations of 

EMD, EEMD and CEEMD with different types of morphological operators like static, 

partially adaptive and fully adaptive. For clean/output ECG signal, performance parame-

ters [35] are calculated as  

 Output Mean Square Error,      𝑀𝑆𝐸 = Σ(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)
2

/𝑁   (3.19) 

    Output Signal to Noise Ratio,  SNR (dB)  = 10 ∗  log
Σ(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

2

Σ(𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙−𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)
2   (3.20)             

Correlation Coefficient,   𝑟𝑥𝑜 𝑥𝑑
=  

𝑐𝑜𝑣 (𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝑥𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑)

𝜎𝑥𝑜  𝜎 𝑥𝑑
     (3.21) 

where, 𝜎𝑥𝑜
and 𝜎 𝑥𝑑

 are variance of original and denoised signal respectively. 

        The smaller value of output MSE and larger value of output SNR show better de-

noising performance. The effectiveness of any method to preserve morphological infor-

mation present in the ECG signal is verified in term of Correlation Coefficient between 

original ECG signal and denoised ECG signal. Large Correlation Coefficient shows that 

proposed method preserves morphological information present in the ECG signal.  

         Fig 3.2 - 3.4 show plots of baseline wander denoised ECG using EMD, EEMD and 

CEEMD for three different signals (Recordings). The x-axis shows the number of sam-

ples and the y-axis shows the amplitude of the signal. Tables 1-3 show corresponding re-

sults of ECG denoising using EMD, EEMD and CEEMD.  
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Table 1:  Comparison of CEEMD with EMD and EEMD for recording-1 (Input SNR  

= 16.286 dB; Input MSE = 0.041) 

 

 

Parameter 

          Method 

EMD EEMD CEEMD 

Output MSE 0.015 0.012 0.010 

Output SNR(dB) 24.504 26.958 28.541 

Correlation Coefficient 0.8582 0.9145 0.9288 

 

 

 

Fig 3.2 (a) Noisy Signal (Recording-1). Denoised signal using (b) EMD 

(c) EEMD (d) CEEMD 
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Table 2:  Comparison of CEEMD with EMD and EEMD for recording-2 (Input SNR  

= 13.176 dB; Input MSE = 0.021) 

 

 

Parameter 

Method 

EMD EEMD CEEMD 

Output MSE 0.007 0.006 0.005 

Output SNR(dB) 22.509 23.848 25.431 

Correlation Coefficient 0.8598 0.9092 0.9214 

 

 

 

 

   Fig 3.3 (a) Noisy Signal (Recording-2). Denoised signal using (b) EMD  

(c) EEMD (d) CEEMD 
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Table 3:  Comparison of CEEMD with EMD and EEMD for Recording-3 (Input SNR 

 = 12.486 dB; Input MSE = 0.041) 

 

   

Parameter 

         Method 

EMD EEMD CEEMD 

Output MSE 0.015 0.013 0.010 

Output SNR(dB) 21.219 22.462 24.741 

Correlation Coefficient 0.8658 0.8998 0.9114 

 

 

   Fig 3.4 (a) Noisy Signal (Recording-3). Denoised signal using (b) EMD  

(c) EEMD (d) CEEMD 
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Results show a clear superiority of the CEEMD method over EMD and EEMD 

and justify the selection of EEMD based filter for removal of baseline wander. Superior 

denoising efficiency is shown in terms of lower MSE and higher SNR values. Better 

morphological information retaining capability is proved by larger value of correlation 

coefficient. 

Fig 3.5 - 3.7 show plots of denoised ECG using morphological functions with var-

ious levels of adaptiveness for ECG baseline wander denoising for three different ECG 

signals. The x-axis shows number of samples and the y-axis shows the amplitude of the 

signal. Tables 4-6 show corresponding results for various levels of adaptiveness of mor-

phological operators. 
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Table 4:  Comparison between different types of morphological functions (MF) for Re-

cording-1 (Input SNR = 16.286 dB; Input MSE = 0.041) 

 

Parameter 

                                         Method 

Static MF 

 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

Fully Adaptable 

MFs (SE1 = l1; 

SE2 = l2) 

Output MSE 0.018 0.016      0.015               0.012  

Output 

SNR(dB) 
23.436 24.459      25.019            26.958  

Correlation Co-

efficient 
0.8895 0.9024       0.9015            0.9481  

 

 

Fig 3.5: (a) Noisy signal (Recording-1). Denoised signal using (b) Static Mor-

phological Operators (c) QRS Adaptive Morphological Operator (d) ST Adap-

tive Morphological Operator (e) Fully Adaptive Morphological Operators 
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Table 5:  Comparison between different types of morphological functions (MF) for Re-

cording-2 (Input SNR = 13.176 dB; Input MSE = 0.021) 

 

Parameter 

                                         Method 

Static MF 

 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

Fully Adaptable 

MFs (SE1 = l1; 

SE2 = l2) 

 

Output MSE 0.009 0.008   0.007                   0.006  

Output SNR(dB) 20.822 21.350   22.509                 24.603  

Correlation Coef-

ficient 
0.8952 

 

 

0.9176 

 

 

  0.9114                 0.9405 

 

  

Fig 3.6: (a) Noisy signal (Recording-2). Denoised signal using (b) Static Morpho-

logical Operators (c) QRS Adaptive Morphological Operator (d) ST Adaptive 

Morphological Operator (e) Fully Adaptive Morphological Operators 
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Table 6:  Comparison between different types of morphological functions (MF) for Re-

cording-3 (Input SNR = 12.486 dB; Input MSE = 0.041) 

 

Parameter 

                                         Method 

Static MF 

 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

Fully Adaptable 

MFs (SE1 = l1; 

SE2 = l2) 

 

Output MSE 0.019 0.017       0.016              0.014  

Output SNR(dB) 19.166 20.132   20.660               21.819  

Correlation Co-

efficient 
0.9012  0.9155       0.9103            0.9396 

 

 

Fig 3.7: (a) Noisy signal (Recording-3). Denoised signal using (b) Static 

Morphological Operators (c) QRS Adaptive Morphological Operator (d) 

ST Adaptive Morphological Operator (e) Fully Adaptive Morphological 

Operators 
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The filtering properties change from a static function to one in which the first 

stage is adaptive, then one in which the second stage is adaptive and finally the fully 

adaptive model. It can be clearly seen that adaptability enhances the denoising property of 

filter and fully adaptive filter gives the best results. 

  Fig 3.8 – 3.10 show plots of baseline denoised ECG using a cascaded combination 

of CEEMD with morphological functions at various levels of adaptiveness for three dif-

ferent ECG signals. The x-axis shows number of samples and the y-axis shows the ampli-

tude of the signal. Tables 7-9 show corresponding results using a cascaded combination 

of CEEMD with morphological functions at various levels of adaptiveness. 
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Table 7: Comparison between cascaded combination of CEEMD with different types of 

morphological functions (MF) for Recording-1 (Input SNR = 16.286 dB; Input MSE = 

0.041)   

 

Parameter 

                                         Method 

CEEMD 

& Static 

MF 

CEEMD & 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

CEEMD & 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

 

CEEMD & 

Fully 

Adaptable 

MFs  

(SE1 = l1; 

SE2 = l2) 

Output MSE 0.008 0.006 0.005 0.004 

Output SNR(dB) 30.479 32.978 34.562 36.501 

Correlation Coefficient 0.9354 0.9572 0.9586     0.9718 

Fig 3.8: (a) Noisy signal (Recording-1) and denoised signal using a cascaded 

combination of CEEMD with (b) Static Morphological Operators (c) QRS 

Adaptive Morphological Operators (d) ST Adaptive Morphological Operators 

(e) Fully Adaptive Morphological Operators 
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Table 8: Comparison between cascaded combination of CEEMD with different types of 

morphological functions (MF) for Recording-2 (Input SNR = 13.176 dB; Input MSE = 

0.021)   

 

Parameter 

                                         Method 

CEEMD 

& Static 

MF 

CEEMD & 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

CEEMD & 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

 

CEEMD & 

Fully 

Adaptable 

MFs  

(SE1 = l1; 

SE2 = l2) 

Output MSE 0.004 0.003 0.003 0.002 

Output SNR(dB) 27.550 30.048 30.244 33.568 

Correlation Coefficient 0.9381 0.9602 0.9592 0.9801 

Fig 3.9: (a) Noisy signal (Recording-2) and denoised signal using a cascaded 

combination of CEEMD with (b) Static Morphological Operators (c) QRS 

Adaptive Morphological Operators (d) ST Adaptive Morphological Operators 

(e) Fully Adaptive Morphological Operators 
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Table 9: Comparison between cascaded combination of CEEMD with different types of 

morphological functions (MF) for Recording-3 (Input SNR = 12.486 dB; Input MSE = 

0.041)   

 

Parameter 

                                         Method 

CEEMD & 

Static MF 

CEEMD & 

Partially 

Adaptable 

MF-1 

(SE1 = l1) 

CEEMD & 

Partially 

Adaptable 

MF-2 

(SE2 = l2) 

 

CEEMD 

& Fully 

Adaptable 

MFs  

(SE1 = l1; 

SE2 = l2) 

Output MSE 0.008 0.007 0.006 0.004 

Output SNR(dB) 26.678 27.840 28.941 32.462 

Correlation Coefficient 0.9204 0.9477 0.9528 0.9812 

 

Fig 3.10: (a) Noisy signal (Recording-3) and denoised signal using cascaded 

combination of CEEMD with (b) Static Morphological Operators (c) QRS 

Adaptive Morphological Operators (d) ST Adaptive Morphological Opera-

tors (e) Fully Adaptive Morphological Operators 
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It can be clearly seen that adaptability enhances the denoising property of filter in 

cascaded combination also and cascade combination of CEEMD and fully adaptive filter 

gives the best results. 

3.5 Significant Findings 

For first level baseline wander removal, CEEMD provides superior result than EMD and 

EEMD by properly handling oscillation, aliasing and mode mixing problems. For second 

level baseline wander removal, implementation of two stages morphological function 

with adaptive SEs provides best results. Denoising efficiency (in terms of SNR and MSE) 

and morphological information retaining capability (in term of Correlation Coefficient) is 

further improved by using CEEMD and adaptive morphological function at first and sec-

ond level respectively. Proposed method effectively removes baseline wander from ECG 

signal and properly retains morphological information of the ECG signal. 

 

This chapter is based on the following work: 

Mahipal Singh Choudhry, Rajiv Kapoor, “Removal of Baseline Wander from ECG us-

ing CEEMD and Adaptive Morphological Function”, Journal of Chemical and Pharma-

ceutical Science (ISSN: 0974-2115, Scopus index journal with SJR: 0.12), Issue 4, pp: 

31-37, October 2016 [61].                                                           . 

        



  

 

CHAPTER 4 

 

 

This chapter includes the details of Independent Component Analysis (ICA), Independent 

Component (IC), Stationary Wavelet Transform (SWT), proposed thresholding technique, 

Modified Multi-Scale Entropy (mMSE), Kurtosis, proposed methodology, results and 

comparative analysis of results.   

4.1 Introduction 

A new method, using ICA and SWT, is proposed for ocular artifact removal from EEG 

signal in such a way that morphological information present in the EEG signal remains 

preserved. Proposed method [68] incorporates strengths of SWT representation and ICA. 

Limitations of these methods are minimized by using proposed novel thresholding tech-

nique, which further increases denoising of EEG signal. Ocular artifact contaminated 

EEG signal are selected from standard EEG datasets. Ocular artifact affects more to the 

low-frequency region of EEG and it is represented by independent noise with non-

Gaussian (random) model.   

4.2 Proposed Methodology 

The workflow diagram of the proposed framework is depicted in Fig 4.1. 

 

 

 

 

A NEW METHOD FOR OCULAR ARTIFACT REMOVAL FROM EEG 
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Fig 4.1: Flowchart of the proposed method for ocular artifact removal  

The proposed method has following steps: 

 ICA decomposition of ocular artifact corrupted EEG. 

 Calculation of mMSE and Kurtosis for ICs. 

 Separation of artifactual ICs from artifact-free ICs by comparing calculated val-

ues of mMSE and kurtosis with their threshold values (Lower limit of the mMSE 

and upper limit of Kurtosis).  

Yes 

No 

mMSE > 

Threshold & 

Kurtosis < 

Threshold 
Artifact-free IC 

Raw EEG 

ICA Decomposition  

mMSE Calculation Kurtosis Calculation 

Artifactual IC 

IC restoration using SWT and proposed 

Threshold technique 

Reconstruction using Mixing Matrix 

Denoised EEG 
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 Restoration of artifactual ICs using SWT and proposed novel thresholding tech-

nique. 

 Reconstruction of the signal using artifact-free ICs, artifactual ICs after restora-

tion and mixing matrix of ICA. 

4.2.1 Independent Component Classification 

Ocular artifact corrupted EEG signal is decomposed into ICs using ICA. mMSE and Kur-

tosis are calculated for all ICs and thereafter, their threshold values are calculated.  Arti-

factual ICs are separated from artifact-free ICs by comparing mMSE and Kurtosis of in-

dividual IC with threshold values of mMSE and Kurtosis. ICs having mMSE values, less 

than the lower limit or Kurtosis value above upper limit, are considered as artifactual 

components.  

4.2.1.1  Independent Component Analysis (ICA) 

ICA is a statistical tool, used to decompose a mixed signal (of different recording chan-

nels) into independent components (ICs), corresponding to different independent sources 

[69]. Suppose that an array of channels to provide ‘𝑁’ observed signals is given by 

𝑌 =  [𝑦1, 𝑦2, … … . . . , 𝑦𝑁]𝑇                  (4.1) 

while the ICs corresponding to independent sources are  

𝑆 =  [𝑠1, 𝑠2, … . . … . , 𝑠𝑁]𝑇                   (4.2)   

Here the assumptions are made that (i) the sources have non-Gaussian distribution 

and they are mutually statistically independent and (ii) the number of recording channels 

must be greater or equal to the number of independent sources (or ICs) 

The aim of ICA is to decompose the signal into ICs by estimating a demixing ma-

trix W such that 

S= 𝑊 ×  𝑋                                      (4.3a) 
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where W is defined in such a way that the mutual information is minimized among all ICs 

in the decomposition process. The mutual information of ICs is defined as 

𝐼(𝑠1, 𝑠2, . . . , 𝑠𝑁) =  ∑  𝐻(𝑠𝑖)
𝑁
𝑖=1 − 𝐻(𝑥1, 𝑥2, … . , 𝑥𝑁) − Iog|det 𝑊| (4.3b)            

where det 𝑊 calculates the determinant of matrix 𝑊. 

Many algorithms are designed to perform ICA. For sources having super-

Gaussian distribution, infomax ICA [70] is the most efficient. The approximate model for 

raw EEG with the ocular artifact is closest to super-Gaussian distribution so, in the pro-

posed method, infomax ICA is selected among different ICA algorithms.  

4.2.1.2  Modified Multi-Scale Entropy (mMSE) 

The mMSE analysis is used to evaluate the complexity of a time series by quantifying 

its entropy over a range of temporal scales. mMSE [71] is implemented by first coarse- 

graining each IC for multiple scales and then computing the sample entropy for each 

scale. 

For each IC, which is represented by a mono-variate discrete signal 𝑋 = {𝑥1,

𝑥2, … … … . … 𝑥𝑁}, mMSE for each IC is calculated [71] as  

mMSE (𝑚, 𝑟) =  log (𝐵𝑟
𝑚

𝐴𝑟
𝑚)              (4.4)   

where 𝑚 is the length of patterns that are compared to each other and 𝑟 is tolerance. 

          𝐵𝑟 and 𝐴𝑟 are the counters to track 𝑚 and (𝑚 + 1) template match within the toler-

ance value 𝑟 respectively. In terms of template vector pairs, 𝐴𝑟 is the number of template 

vector pairs (of length 𝑚 + 1) having distance 𝑑{𝑋𝑚+1 (𝑖), 𝑋𝑚+1 (𝑗)} < 𝑟 and 𝐵𝑟 is the 

number of template vector pairs (of length 𝑚) having distance  𝑑{𝑋𝑚 (𝑖),  𝑋𝑚 (𝑗)} < 𝑟.  

As per [71] and other, 𝑚 = 2 and 𝑟 = 2 * Standard deviation of the data sequence of IC. 
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4.2.1.3 Kurtosis  

Kurtosis [72] is a fourth-order statistical parameter, which is used to study the peakedness 

of distribution of any random variable and is calculated as  

𝐾 =  𝑚4 − 3 𝑚2
2                                        (4.5) 

  and                𝑚𝑛 =  E {(𝑥 − 𝑚1 )𝑛}                                                                       (4.6) 

where, 𝑚𝑛, 𝑚1 and 𝐸 are 𝑛𝑇ℎ order moment, mean and expectation function of random 

variable 𝑥. 

4.2.1.4 Threshold values of mMSE and Kurtosis  

The ocular artifact corrupted EEG has the lower value of mMSE compared to pure EEG 

signal [71]. The signals with peak distribution have higher values of Kurtosis [71] so ocu-

lar artifact corrupted EEG has the higher value of Kurtosis compared to pure EEG signal. 

Threshold values for mMSE and Kurtosis are calculated by using two-sided 95% Confi-

dence Interval (CI) of the mean for t-distribution. The threshold value for mMSE (lower 

limit of 95% CI of the mean) [71] is calculated as  

𝐿𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  �̅� −  𝑠

√𝑁
  𝑋 𝑡𝑁−1                     (4.7) 

The threshold value for Kurtosis (upper bound of the 95% CI of the mean) is cal-

culated as 

𝑈𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  �̅� +  𝑠

√𝑁
  𝑋 𝑡𝑁−1                    (4.8) 

where, �̅�, 𝑠 and 𝑁 are samples mean, standard deviation and number of ICs respectively. 

For the two-tailed test with 95% significance level, 𝑡𝑁−1 = 2.201. 

4.2.2 Restoration of Artifactual ICs   

The artifactual ICs are restored using SWT and proposed novel thresholding technique. 

After the restoration of artifactual ICs, signal is reconstructed by applying mixing matrix 

with artifact-free ICs and restored artifactual ICs. 
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4.2.2.1 Stationary Wavelet Transform (SWT) 

SWT is also called un-decimated DWT, i.e. decimators after filters are not applied in 

SWT.  SWT is similar to the DWT except the signal is never sub-sampled and instead, the 

filters are up-sampled at each level of decomposition. SWT decomposition filter bank 

[38] is shown in Fig 4.2.      

 

 

 

 

 

 

 

Fig 4.2: 3 Level SWT filter bank 

  Filters in each level are up-sampled versions of the previous as shown in Fig 4.3.  

 

 

 

 

 

Fig 4.3: SWT filter in different levels 

DWT necessitates a decimation by a factor 2𝑁 (𝑁 stands for the level of decom-

position) of the transformed signal at each stage of the decomposition. As a result, DWT 

is not translation invariant which leads to block artifacts and aliasing during the fusion 

process between the wavelet coefficients. For the SWT scheme, the output signals at each 

stage are redundant because there is no signal down-sampling; insertion of zeros between 
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taps of the filters are used instead of decimation. Since there is no down-sampling, it does 

not lose any time information and have shift invariance property. It also does not suffer 

from aliasing because no down-sampling is done at any stage. Because of oversampling 

(up-sampling of filter coefficients by a factor of 2𝑗−1 in the 𝑗𝑡ℎ level of the algorithm), it 

has very good time resolution for low frequencies and produces smoother results in low-

frequency bands.  

In the proposed method, SWT with bior-4.4 mother wavelet is used. Decomposi-

tion is done up to 6th level and the threshold is applied from 3rd to 6th level of decomposi-

tion. 

4.2.2.2 Proposed Thresholding Technique 

The proposed novel thresholding technique is inspired from hard thresholding.  It does 

not affect the coefficients in the desired range but modifies the coefficients in undesired 

range (above a threshold value). Hard thresholding in such cases produces undesirable 

discontinuities [73], while proposed novel thresholding technique is not only suppressing 

the noise part but also maintaining the smoothness of the signal. Different steps of pro-

posed thresholding technique are as 

 The threshold is calculated using any standard risk rule. 

 Coefficients are kept unfazed below the threshold value. 

 Maxima is calculated for the intervals having values above the threshold. 

 Scaling factor for each interval is calculated as follows 

𝑆𝐹(𝑗) =
𝑑(𝑖𝑛𝑑(𝑗)−1)

𝑚𝑎𝑥𝑗
                                (4.9)                                                 

where 𝑗 denotes 𝑗𝑡ℎ interval, 𝑖𝑛𝑑(𝑗) denotes starting index of the 𝑗𝑡ℎ interval, 𝑑 

denotes interval duration and 𝑚𝑎𝑥𝑗 denotes the maxima in the 𝑗𝑡ℎ interval. 

 All values of jth interval are multiply by SF(j). 
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4.3 Results 

Fourteen channels, corresponding to ocular artifact contaminated EEG signal (10s), are 

selected from total 34 channels of EEG dataset [74] and these 14 channels are plotted in 

Fig 4.4. The x-axis shows time in seconds and the y-axis shows channel number. 

 

 

Fig 4.4: Raw (Contaminated) EEG 

 

 From Fig 4.4, it is clearly visible that channel 1 is severely affected by ocular arti-

fact around time instant 4s. After decomposition of raw signal (correspond to all 14 chan-

nels) using Infomax ICA, 14 independent components are obtained. As per second condi-

tion of ICA decomposition, the number of recording channels is equal to the number of 

independent sources (or ICs). The ICs are plotted in Fig 4.5. 
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Fig 4.5:  Independent components of raw EEG data (correspond to all 14 channels) 

      

The quantities mMSE and Kurtosis for ICs of channel 1 signal are calculated and 

plotted as shown in Fig 4.6 and Fig 4.7 respectively. The y-axis shows sample entropy or 

Kurtosis for IC and the x-axis shows IC number. 
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Fig 4.6:  Plot of mMSE 

 

 

Fig 4.7:  Plot of Kurtosis 

The threshold value (lower limit) of mMSE and threshold value (upper limit) of 

Kurtosis are calculated using equations (4.7) and (4.8) respectively. The threshold value 

of mMSE and Kurtosis are equal to 1.26 and 22.7 respectively in this case. ICs having 

mMSE values less than the lower limit or Kurtosis value above upper limit are considered 

as artifactual components. It can be noticed from Fig 4.6 and Fig 4.7 that IC 2, 5 and 8 are 

affected by the ocular artifact. Then SWT and novel thresholding technique are applied to 



Chapter 4: A New Method for Ocular Artifact Removal from EEG 

49 
  

artifactual components to suppress artifact. Finally, the artifact-free signal is reconstruct-

ed by using artifact-free ICs, artifactual ICs (after restoration) and mixing matrix of ICA. 

Final reconstructed artifact-free channel 1 signal is shown in Fig 4.8 with other channel 

signals. 

 

 

Fig 4.8: Reconstructed artifact-free signal  

It can be observed from Fig 4.8 that ocular artifact has been efficiently removed 

from artifactual channels while keeping the rest signal unfazed. The result of proposed 

novel thresholding technique is compared with the result of hard thresholding. In both 

cases, DWT with bior-4.4 mother wavelet is used. Corresponding results are shown in Fig 

4.9. In this plot, the x-axis shows the number of samples in signal and the y-axis shows 

EEG amplitude (µV). 
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It can be seen that hard thresholding introduce undesired discontinuities, while 

proposed novel thresholding technique is not only suppressing the noise part but also 

maintaining the smoothness of the signal.  

To measure the performance of the proposed method, the results are compared 

with most recent techniques in terms of Correlation Coefficient, Mutual Information and 

Coherence for 20 different EEG signals from different datasets [74]. Correlation Coeffi-

cient is used to measure the linear relationship between two random variables [75] and it 

is defined as   

𝑟𝑥𝑠 =  𝑐𝑜𝑣 (𝑥,𝑠)

𝜎𝑥 𝜎𝑠
                                          (4.10) 

where x is the raw EEG signal, s is the artifact-free EEG signal, 𝜎𝑥 is the standard devia-

tion of raw EEG signal, 𝜎𝑠 is the standard deviation of artifact-free EEG signal and ‘cov’ 

 

 
 Fig 4.9: Comparison of proposed novel thresholding technique 



Chapter 4: A New Method for Ocular Artifact Removal from EEG 

51 
  

is the covariance of x and s. Value of correlation coefficient lies between −1 to +1. A positive 

correlation indicates that as the values of one variable increase the values of the other var-

iable increase, whereas a negative correlation indicates that as the values of one variable 

increase the values of the other variable decrease. 

Mutual information (MI) of two random variables is a measure of mutual depend-

ence between the two variables [76]. More specifically, it quantifies the amount of infor-

mation obtained about one random variable, through the other random variable. If two 

random variables are closely related they will have large value of MI. According to Shan-

non information theory, MI can be calculated by Kullback-Leibler distance between the 

product of the marginal pdfs of random variable x and y and their joint pdf,  𝑓 (𝑥, 𝑦). MI 

is defined as 

𝑀𝐼 (𝑥, 𝑦) =  ∫ ∫ 𝑓 (𝑥, 𝑦) log ( 𝑓 (𝑥,𝑦)

𝑓 (𝑥)𝑓(𝑦)
)  𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞
         (4.11) 

 The marginal pdfs of random variable x and y and their joint pdf can be calculated 

by using either kernel density estimators or 2D-histogram. MI is always positive and there 

is no bound on the maximum value of MI.            

 Results of the proposed method are compared in terms of correlation coefficient 

and mutual information with latest methods. Results are shown in table 10 and table 11 

respectively for 20 different EEG signals datasets with multiple channels.   
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Table 10: Correlation coefficient for different EEG signals 

 

It can be observed that proposed method has the higher value of Correlation Coef-

ficient compared to other methods for all EEG signals. The maximum value of Correla-

tion Coefficient in case of the proposed method is 0.9991 for EEG signal 9, which is very 

close to the maximum possible value of Correlation Coefficient (+1).   

 

Signal  

Number 

Correlation Coefficient 

Zeroing ICA  wICA  Proposed Method 

1 0.4443 0.5835 0.8606 

2 0.7034 0.7936 0.9751 

3 0.7809 0.8315 0.9753 

4 0.8690 0.8957 0.9866 

5 0.8243 0.8653 0.9870 

6 0.7419 0.8150 0.9768 

7 0.7889 0.8422 0.9790 

8 0.9382 0.9520 0.9906 

9 0.8338 0.8565 0.9971 

10 0.7931 0.8487 0.9841 

11 0.8682 0.8857 0.9852 

12 0.8766 0.9015 0.9925 

13 0.8798 0.9106 0.9960 

14 0.9217 0.9371 0.9915 

15 0.7432 0.9211 0.9743 

16 0.8854 0.9436 0.9912 

17 0.9144 0.9672 0.9935 

18 0.8971 0.9554 0.9808 

19 0.9085 0.9778 0.9906 

20 0.8637 0.9296 0.9894 
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Table 11: Mutual Information for different EEG signals 

 

It can be observed that for all EEG signals, the proposed method has the higher 

value of MI compared to other methods. The maximum value of MI for the proposed 

method is 1.7097 for EEG signal 11. 

 

 

Signal  

Number 

Mutual Information 

Zeroing ICA  wICA  Proposed Method 

1 0.3043 0.4213 0.6093 

2 0.4967 0.6191 0.8159 

3 0.4991 0.6241 0.9568 

4 0.6915 0.7022 0.9784 

5 0.6407 0.7315 1.0551 

6 0.5815 0.6057 1.1179 

7 0.6008 0.7123 0.9953 

8 0.9769 1.1989 1.6181 

9 0.6134 0.9528 1.5221 

10 0.5712 0.7498 1.0794 

11 0.7344 0.8187 1.7097 

12 0.7245 0.9009 1.6661 

13 0.8090 0.9772 1.6155 

14 0.9765 1.2705 1.5738 

15 0.8573 1.1822 1.4896 

16 0.7855 0.9781 1.4027 

17 0.9468 1.2062 1.6023 

18 0.9211 1.1843 1.5971 

19 0.8855 1.1642 1.4428 

20 0.9062 1.1267 1.5115 
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To analyze the performance in the frequency domain, Coherence is measured be-

tween raw EEG data and artifact-free EEG data. Coherence measures the degree of linear 

dependency of two signals by testing for similar frequency components. Coherence func-

tion is defined as    

𝐶𝑥𝑠(𝜔) =  𝑃𝑥𝑠(𝜔)

√𝑃𝑥𝑥(𝜔)𝑃𝑠𝑠(𝜔)
                                        (4.12) 

where 𝑃𝑥𝑥(𝜔) is the power spectra of raw EEG signal,  𝑃𝑠𝑠(𝜔) is the power spectra of ar-

tifact-free EEG signal signals, 𝑃𝑥𝑠(𝜔) is the cross-power spectrum for these signals and 𝜔 

is frequency.  

If two signals match each other perfectly at a given frequency, the magnitude of 

coherence function is 1. If they are totally unrelated, the value of Coherence function will 

be 0. Coherence is plotted in Fig 4.10- 4.12 for channel-1signal of raw EEG signal of 

Fig.4.4 and channel-1 signal of artifact-free EEG signal of Fig.4.8. In these plots, the x-

axis shows the frequency and the y-axis shows the amplitude of Coherence function. 
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Fig 4.10: Coherence of zeroing ICA 
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Fig 4.12: Coherence of proposed method 
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It can be observed that value of Coherence function is less for lower frequency 

components than higher frequency components for all methods. It verifies that lower fre-

quency components are more affected by ocular artifact than higher frequency compo-

nents. The proposed method results in higher values of Coherence function for artifact 

affected lower frequency components and almost constant (approximately equal to 1) 

value of Coherence function for higher frequency components. These two facts prove the 

superiority of the proposed method over other methods.   

4.4 Significant Findings 

The proposed method effectively removes the ocular artifact from EEG signal and proper-

ly retains morphological information present in the EEG signal by using SWT and pro-

posed thresholding technique respectively. SWT improves denoising capability and mor-

phological information retaining capability by handling shift variance and aliasing issues 

of DWT. Proposed novel thresholding technique further enhances morphological infor-

mation retaining capability by properly handling discontinuities issues in case of other 

thresholding techniques.    

 

This chapter is based on the following work: 

Mahipal Singh Choudhry, Rajiv Kapoor “Ocular Artifact Removal from EEG using 

Stationary Wavelet Enhanced ICA”, International Journal of Control Theory and 

Applications (ISSN: 0974-5572, Scopus index journal with SJR: 0.53), 2016, vol: 9, no: 

10, pp: 4935-4945 [68].                             .                                                                                                    



  

 

CHAPTER 5 

 

 

This chapter includes the details of the local region based energy function, two-phase lev-

el set formulation, multi-phase level set formulation, equation updating, proposed meth-

odology, results and comparative analysis of results.   

5.1 Introduction 

A novel fuzzy energy based level set method [77] is proposed for MR image segmenta-

tion. A new region-based level set model with FCM based energy function and Distance 

Regularized Level Set Evolution (DRLSE) is proposed to deal with noise and intensity 

inhomogeneity in the medical image. In this method, FCM based energy function is used 

to overcome the local minimum problem of active contour modal and DRLSE is used to 

deal with the re-initialization problem of traditional level set method. These two modifi-

cations in level set modal effectively deals with intensity inhomogeneity of medical im-

age. A Mean filter like spatial term is also utilized with the proposed FCM based energy 

function, which makes this method advantageous for segmenting noisy medical images. 

 

5.2 Proposed Methodology 

The workflow diagram of the proposed framework is depicted in Fig 5.1. 
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Fig 5.1: Flowchart of the proposed method for MR image segmentation  
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The proposed method is implemented using following steps: - 

 Calculation of the local region based energy function for image by using the FCM.  

 Multi-phase level set formulation. 

 Equations updation. 

 Spatial term for reducing noise effect. 

In proposed research work, the median filter is used as preprocessing step for edge-

preserving smoothing of medical images.  

5.2.1 Local Region Based Energy Function using FCM   

The local region based model is used to define energy function of proposed model by us-

ing the FCM concept. Each pixel is assigned to a particular region of the image, based on 

its membership function. For the medical image, this arrangement of pixel assignment is 

more suitable instead of hard assignment and this membership function is also utilized to 

reduce the effect of noise [78]. This energy function is FCM objective function of parti-

tioning a dataset {𝑥1, 𝑥2, … … … . … 𝑥𝑀} into 𝑁 clusters and it is given by 

                          𝐽𝑚 =  ∑  𝑁
𝑖=1 ∑  𝑀

𝑘=1 𝑢𝑖𝑘
𝑚(𝑥) ‖𝑥𝑘 − 𝑣𝑖‖2           (5.1a)                                                                                                                                                                                 

where ‖ ‖ stand for the Euclidean norm, 𝑣𝑖 is the centroid of the 𝑖𝑡ℎ cluster, 𝑢𝑖𝑘 is mem-

bership function and m is the fuzzy factor. There are two purposes to be achieved using 

energy function, one is segmentation of image and other is to estimate the bias field.  

           Real world images can be represented as a multiplicative field, added by noise 

[89]. This can be written as  

                           𝐼 = 𝑏𝐽 + 𝑛                                         (5.1b) 

where 𝐼 is observed image, 𝐽 is the true image, 𝑏 represents bias field term, which repre-

sents intensity inhomogeneity and 𝑛 is the additive Gaussian noise with zero mean and 
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constant variance. It is the most common type of noise in medical images results from the 

contributions of many independent signals.  

The assumptions made in this model are: - 

 The true image 𝐽 is assumed as a piecewise constant i.e. in a given region Ω𝑖, it 

takes a constant value 𝑐𝑖. 

 Bias field 𝑏 varying very slowly, which implies that in a small neighborhood, 𝑏  is 

constant. 

     Value of bias field, in a local neighborhood region, is considered constant for given 

image [79], i.e., for a circular region 𝑂𝑦 of the image (shown in Fig 5.2), value of the bias 

field is 

                    𝑏(𝑥) ≈ 𝑏(𝑦)         for        𝑥 ∈ 𝑂𝑦           (5.2) 

where, 𝑂𝑦 ⊂ {𝑥: |𝑥 − 𝑦| ≤ 𝑟}, 𝑟 represents the radius of circular region 𝑂𝑦, 𝑦 is the center 

of 𝑂𝑦 and 𝑦 ∈ Ω (image domain).                                                                                                                                                  

 

Fig 5.2:  Representation of local region O y 

    By using equations 5.1 and 5.2, the intensity in the local region is written as 

                         𝐼(𝑥) =  𝑏(𝑦)𝐽(𝑥) +  𝑛(𝑥)           for        𝑥 ∈ 𝑂𝑦             (5.3)                                                                                                                                                                                

     By using the first postulation about J(x), I(x) given by equation 5.3 is rewritten as 

                         𝐼(𝑥) =  𝑏(𝑦)𝑐𝑖 +  𝑛(𝑥)              for      𝑥 ∈  𝑂𝑦  ⋂ Ω𝑖     (5.4)                                                                                                                                
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      The additive Gaussian noise term can be eliminated if pixels (in a region, Ω𝑖) are con-

sidered to be part of a Gaussian distribution with mean 𝑚𝑖 = 𝑏(𝑦)𝑐𝑖. The local region 𝑂𝑦 

can be divided into 𝑁 clusters, having centers at 𝑚𝑖 ≈ 𝑏(𝑦)𝑐𝑖, i vary from 1 to 𝑁.  

      The energy term of the local region is calculated using the FCM concept with the 

Chan-Vese piece-wise constant model of the image and it is given by  

                         𝐹𝑦 =  ∑  ∫ 𝑢𝑖
𝑚 

𝑂𝑦⋂Ω𝑖

𝑁
𝑖=1 (𝑥) (𝐼(𝑥) − 𝑚𝑖)

2𝑑𝑥                  (5.5)                                                                                                                           

where 𝑢𝑖 and 𝑚 are membership function and fuzzy factor respectively. The fuzzy factor 

𝑚 decides the fuzziness and normally it is taken as 2. In a local region, 𝑂𝑦, the center of 

the cluster 𝑚𝑖 can be replaced by 𝑏(𝑦)𝑐𝑖 and a window function [79]. The window func-

tion is characterized as   

                         𝑊(𝑦 − 𝑥) = 0, 𝑥 ∉  𝑂𝑦                    (5.6)                                                                                                                                 

By using equations 5.5 and 5.6, energy can be written in term of window function as 

                         𝐹𝑦 =  ∑  ∫ 𝑢𝑖
𝑚 

Ω𝑖

𝑁
𝑖=1 (𝑥)𝑊(𝑦 − 𝑥) (𝐼 − 𝑏(𝑦)𝑐𝑖)

2𝑑𝑥             (5.7)                                                                                                           

The overall energy for total image domain ( ) is given by 

   𝐹(𝑏, 𝑐, 𝑢, Ω1, Ω2 … Ω𝑁)  ≜ ∫ {∑  ∫ 𝑢𝑖
𝑚 

Ω𝑖

𝑁
𝑖=1 (𝑥)𝑊(𝑦 − 𝑥) (𝐼 − 𝑏(𝑦)𝑐𝑖)

2𝑑𝑥} 𝑑𝑦   (5.8)                                                                

where, c= {𝑐1, 𝑐2 … . 𝑐𝑁 } represents the constants.  

          The selection of window function is flexible. It should take null values outside the 

local region for a given x and y. W (z) = 0 for |𝑧| > 𝑟 and inside the region, it should have 

a sum of unity i.e. ∫ 𝑊(𝑧) = 1 [80]. W (z) used in this model is  

𝑊(𝑧) = {
1

𝑎
  𝑒−|𝑧|2 2𝜎2⁄      for   |𝑧| ≤ 𝑟

0                       otherwise
                    (5.9)                                                                                                                                         
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        Selection of the parameter 𝑎 depends on the value of 𝜎 (standard deviation) such that 

relation ∫ 𝑊(𝑧) = 1 is satisfied. The selection of 𝑟 is one of the crucial factors and the 

assumptions made on bias field are valid only when the neighbourhood is small. The bias 

field varies faster so the value of 𝑟 should be small.  

5.2.2  Level Set Formulation 

Level set formulation for the biomedical image is first implemented for two-phase and 

then for multi-phase. The concept of distance regularized level set evolution (DRLSE) 

[55] is used to deal with the re-initialization problem of the level set model. 

5.2.2.1 Two-Phase Level Set Formulation 

In two-phase level set model contour/curve, 𝐶 is represented by zero level set of the level 

set function 𝜙 (𝑥) and the image is divided into two regions Ω1 and Ω2 using a single 

level set function 𝜙 (𝑥). 

In the proposed model, the two regions are defined using the level sets  𝑀1(𝜙) and  𝑀2(𝜙) 

[81].  𝑀1(𝜙) and  𝑀2(𝜙) are given as 

i. Level set in the region 𝛀𝟏,   𝑴𝟏(𝝓) = 𝑯(𝝓) 

ii. Level set in the region Ω2,  𝑀2(𝜙) = {1 − 𝐻(𝜙)} 

 where 𝐻(𝜙) represents Heaviside function and it is defined as  

𝐻(𝑧) = {
1      if  𝑧 ≥ 0 
0      if  𝑧 < 0 

 

The energy function is modified using these definitions and equation 5.8 as 

         𝐹(𝑏, 𝑐, 𝑢, 𝜙) ≜ ∫{∑ ∫ 𝑢𝑖
𝑚2

𝑖=1 (𝑥)𝑊(𝑦 − 𝑥) (𝐼 − 𝑏(𝑦)𝑐𝑖)
2𝑀𝑖(𝜙(𝑥))𝑑𝑥}𝑑𝑦 (5.10) 

 By exchanging the order of integration, equation 5.10 becomes 

𝐹(𝑏, 𝑐, 𝑢, 𝜙)  ≜ ∫ ∑ 𝑢𝑖
𝑚2

𝑖=1 (𝑥) 𝑒𝑖(𝑥) 𝑀𝑖(𝜙(𝑥))𝑑𝑥               (5.11)                                                                                                                                                                                          
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where 𝑒𝑖(𝑥) is defined as 

                       𝑒𝑖(𝑥) =  ∫ 𝑊(𝑦 − 𝑥) (𝐼 − 𝑏(𝑦)𝑐𝑖)
2𝑑𝑦                (5.12)                                                                                                                                       

The quantity 𝑒𝑖(𝑥) is rearranged as 

                        𝑒𝑖(𝑥) =  𝐼21𝐾 − 2𝑐𝑖𝐼(𝑏 ∗ 𝑊) + 𝑐𝑖
2(𝑏2 ∗ 𝑊)             (5.13)                                                                                                                               

where * represents the convolution and  

                         1𝐾 =  ∫ 𝑊(𝑦 − 𝑥)𝑑𝑦                       (5.14)                                                                                                                                                          

        As per Chan-Vese model, energy function for the level set form is given by adding 

regularizing terms to the fitting energy [89] as 

                         𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝜙) = 𝐹(𝑏, 𝑐, 𝑢, 𝜙) + 𝑣 𝐿(𝜙) + 𝜇 𝑅𝑝(𝜙)   (5.15)                                                                                                                    

In this equation,  𝐹(𝑏, 𝑐, 𝑢, 𝜙)  is used as data term. 𝐿(𝜙) and 𝑅𝑝(𝜙) act as regularizing 

terms [89] and are defined as 

𝐿(𝜙) = Length (𝐶) = Length (𝜙 = 0) = ∫ |𝛻𝐻(𝜙)|𝑑𝑥
 

Ω
= ∫ 𝛿𝑜(𝜙)|𝛻𝜙|𝑑𝑥

 

Ω
     (5.16)                                                                                                                                                                                                                                                                                  

and                           𝑅𝑝(𝜙) = Area (Ω1) = Area (𝜙 ≥ 0) =  ∫ 𝐻(𝜙)𝑑𝑥
 

Ω
              (5.17)              

where 𝜇 and 𝑣 are constant parameters. 𝛿𝑜 represents Dirac delta function and given as   

                                                        𝛿𝑜(𝑧) =
𝑑 𝐻(𝑧)

𝑑𝑧
                 

where 𝐿(𝜙) represents the length of contour (or zero level set) and serves the purpose of 

keeping the curve smooth by regularizing the contour. The term 𝑅𝑝(𝜙) is used to avoid 

re-initialization in level set evolution[80].    

5.2.2.2 Distance Regularized Level Set Evolution (DRLSE)           

Re-initialization is one of the disadvantages of the traditional level set model. During lev-

el set evolution, they develop irregularities and leads to errors. To overcome this, formal 

approach is to stop the evolution by using a signed distance function to redesign it. It is 

quite tricky to predict suitable time to apply re-initialization. To overcome this conflict, 
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Li et al planned a term, called as distance regularized level set evolution (DRLSE) [55]. 

In level set functions, signed distance is maintained by DRLSE and gradient descent, for 

the evolution of level set function, is specified as  

                       
𝜕𝜙

𝜕𝑡
=  −

𝜕𝐹𝑐𝑣

𝜕𝜙
                                                (5.18)                                                                                                                                                                             

When energy term 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝜙) is minimized with reference to 𝜙  (𝑏, 𝑐 as constants), 

equation 5.18 result in 

 
𝜕𝜙

𝜕𝑡
= 𝛿(𝜙) {(𝑢1

𝑚𝑒1 − 𝑢2
𝑚𝑒2) + 𝑣 𝑑𝑖𝑣 (

∇𝜙

|∇𝜙|
)} +  𝜇 𝑑𝑖𝑣{𝑑𝑝(|∇𝜙|)∇𝜙}        (5.19)                                                                                                 

 where                                             𝑑𝑝(𝑧) ≜
𝑝(𝑠)

𝑠
                                                        (5.20)                                                                                                                                                     

       To achieve optimal solution using energy function along with level sets function, 

values of bias field 𝑏 and constants 𝑐 are also updated in a repetitive manner.  

5.2.2.3 Multi-Phase Level Set Formulation 

The two-phase model can be extended to multiphase model [83] for image segmentation 

using proposed energy function. In this case, k ≥ log2 N level sets are required to solve the 

𝑁-phase problem. Ω can be divided into 𝑁 regions, which are represented by 

𝑀𝑖{𝜙1(𝑥), 𝜙2(𝑥) … … … 𝜙𝑘(𝑥)} and are defined as 

                      𝑀𝑖{𝜙1(𝑥), 𝜙2(𝑥) … … … 𝜙𝑘(𝑥)} = {
1,    if 𝑥 ∈  Ω𝑖  
0, otherwise

                (5.21)                                                                                                        

where,  𝝓 = {𝜙1, 𝜙2 … … … 𝜙𝑘} represent the level set vector. 

Energy function for multiphase is written as 

                      𝐹(𝑏, 𝑐, 𝑢, 𝝓)  ≜ ∫ ∑ 𝑢𝑖
𝑚𝑁

𝑖=1 (𝑥) 𝑒𝑖(𝑥) 𝑀𝑖(𝜙(𝑥))𝑑𝑥               (5.22)                                                                                                                   

Chan-Vese energy function for level set form is given by adding regularizing terms to the 

fitting energy as 

                   𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) = 𝐹(𝑏, 𝑐, 𝑢, 𝝓) + 𝑣 ∑ 𝐿(𝜙𝑗)𝑘
𝑗=1 + 𝜇 ∑  𝑅𝑝(𝜙𝑗)𝑘

𝑗=1          (5.23) 
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The gradient descent equations are obtained in similar way to two phase set and 

they are obtained by minimizing 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) with respect to 𝝓  (𝑏, 𝑐 as constants) as                           

𝜕𝜙𝑗

𝜕𝑡
=  ∑

𝜕𝑀𝑖(𝜙)

𝜕𝜙𝑗

𝑁
𝑖=1  𝑢𝑖

𝑚(𝑥)𝑒𝑖(𝑥) + 𝛿(𝜙𝑗) 𝑣 𝑑𝑖𝑣 {
∇𝜙𝑗

|∇𝜙𝑗|
} + 𝜇 𝑑𝑖𝑣{𝑑𝑝(|∇𝜙𝑗|)∇𝜙𝑗}       (5.24)                                                                                                                                                                                

where j = 1, 2………k. 

5.2.3 Equation Updation 

The updating equations for the bias field 𝑏, membership function 𝑢 and constants 𝑐 are 

obtained by minimizing 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) with respect to 𝑏, 𝑢 or 𝑐 and by keeping other var-

iables constant.  

5.2.3.1 Equation Updation for Constants 

To get the update equation for constants,  𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) is minimized with reference to 𝑐 

by keeping 𝑏, 𝑢 and 𝜙 as constants. For derivative of 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) with respect to 𝑐𝑗 by 

taking  𝑏, 𝑢 and 𝜙 as constant, all other terms of the summation in equation 5.23 are inde-

pendent of 𝑐𝑗 , except the 𝑗𝑡ℎ  term so by putting derivative of 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) equal to zero, 

following relation is obtained 

𝜕𝐹𝑐𝑣(𝑏,𝑐,𝑢,𝜙)

𝜕𝑐𝑗
=  ∫ 𝑢𝑗

𝑚(𝑥)
𝜕𝑒𝑗(𝑥)

𝜕𝑐𝑗
𝑀𝑗(𝜙)𝑑𝑥 = 0                 (5.25)                                                                                                                          

Derivative of 𝑒𝑖(𝑥) with respect to 𝑐𝑗 (by taking 𝑏, 𝑢 and 𝜙 as constant) is 

                       
𝜕𝑒𝑗(𝑥)

𝜕𝑐𝑗
=  −2 ∫ 𝑊(𝑦 − 𝑥) (𝐼 − 𝑏(𝑦)𝑐�̂�)𝑏(𝑦)             (5.26)                                                                                                                                       

By using equations 5.25 and 5.26 

𝜕𝐹𝑐𝑣(𝑏,𝑐,𝑢,𝜙)

𝜕𝑐𝑗
= ∫ 𝑢𝑗

𝑚(𝑥) ∫ 𝑊(𝑦 − 𝑥)(𝐼(𝑥) − 𝑏(𝑦)𝑐�̂�) 𝑏(𝑦)𝑀𝑗(𝜙)𝑑𝑥 = 0              (5.27) 

       ∫ 𝑢𝑗
𝑚(𝑥)𝐼(𝑥)𝑀𝑗(𝜙)(∫ 𝑊(𝑦 − 𝑥)𝑏(𝑦)𝑑𝑦)) 𝑑𝑥 =                                   

𝑐�̂� ∫ 𝑢𝑗
𝑚(𝑥)𝑀𝑗(𝜙)(∫ 𝑊(𝑦 − 𝑥)𝑏2(𝑦)𝑑𝑦)𝑑𝑥            (5.28) 
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Hence                                                         𝑐�̂� =
∫(𝑏∗𝑊)𝐼𝑀𝑗 (𝜙)𝑑𝑥

∫(𝑏∗𝑊)𝑀𝑗(𝜙)𝑑𝑥
                                   (5.29)                                                                                                                                                     

where  𝑗 = 1, 2 … . . 𝑁                                                                        

5.2.3.2 Equation Updation for Bias Field 

Equation for bias field is updated by minimizing 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓)  with respect to 𝑏 by 

keeping 𝑐, 𝑢 and 𝜙 as constants. To minimize 𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) derivative of 

𝐹𝑐𝑣(𝑏, 𝑐, 𝑢, 𝝓) with respect to 𝑏 is set equal to zero, which result in following relation  

𝜕𝐹𝑐𝑣(𝑏,𝑐,𝑢,𝝓)

𝜕𝑏(𝑦)
=  ∑ ∫ 𝑢𝑖

𝑚(𝑥)
𝜕𝑒𝑖(𝑥)

𝜕𝑏
𝑀𝑖(𝜙)𝑑𝑥 = 0𝑁

𝑖=1                   (5.30)                                                                                                                      

Derivative of 𝑒𝑖(𝑥) with respect to 𝑏 (by taking 𝑐, 𝑢 and 𝜙 as constant) is 

𝜕𝑒𝑖(𝑥)

𝜕𝑏(𝑦)
=  −2𝑊(𝑦 − 𝑥)(𝐼(𝑥) − �̂�𝑐𝑖)𝑐𝑖                 (5.31)                                                                                                                               

By using equations 5.30 and 5.31 

𝜕𝐹𝑐𝑣(𝑏 ,𝑐,𝑢,Φ)

𝜕𝑏(𝑦)
=  ∑ 𝑢𝑖

𝑚(𝑥)𝑊(𝑦 − 𝑥)(𝐼(𝑥) − �̂� 𝑐𝑖)𝑐𝑖 𝑀𝑖(Φ)𝑑𝑥 = 0𝑁
𝑖=1   (5.32) 

 Hence                                                                                    

∫ 𝑊(𝑦 − 𝑥) {∑ 𝑢𝑖
𝑚𝐼(𝑥)𝑀𝑖(Φ)𝑐𝑖

𝑁
𝑖=1 } 𝑑𝑥 =                                                       

                                                                         �̂� {∫ 𝑊(𝑦 − 𝑥)(∑ 𝑢𝑖
𝑚𝑀𝑖(Φ)𝑐𝑖

2)𝑑𝑥}𝑁
𝑖=1      (5.33) 

�̂� =
(𝐼 𝐽(1))∗𝑊

(𝐽(2))∗𝑊
                               (5.34) 

where                                                                     𝐽(1) = ∑ 𝑀𝑖(Φ)𝑐𝑖𝑢𝑖
𝑚𝑁

𝑖=1                 (5.35)                                                                                                                                                 

                                𝐽(2) = ∑ 𝑀𝑖(Φ)𝑐𝑖
2𝑢𝑖

𝑚𝑁
𝑖=1                (5.36)    

5.2.3.3 Equation Updation for Membership Function 

To get updating equation for membership function, energy term is solved using Lagrange 

multiplier as 

𝐹𝑚 = 𝐹𝑐𝑣 + 𝜆{1 − ∑ 𝑢𝑖
𝑚(𝑥)}𝑘

𝑖=1                       (5.37)                                                                                                                                                                                                                                                                                                                                                                                                                                   
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and                                                         ∑ 𝑢𝑖
𝑚(𝑥) = 1 , ∀ 𝑥𝑘

𝑖=1                                      (5.38)                                                                                                                                                                                                                                                                                                                                                                                                                                 

These equations are updated by considering derivative of 𝐹𝑚 with reference to 𝑢𝑗  

(with 𝑐, 𝑏 and 𝜙 as constants) and equating it to zero. The estimated value of 𝑢𝑗   is  

û𝑗 = [𝜆 {𝑚𝑢𝑗
𝑚−1(𝑥)𝑒𝑗(𝑥)}⁄ ]

1

𝑚−1                       (5.39)                                                                                                                                                                                                                                                                                                                                                                                                                      

 By using equations 5.38 and 5.39 

∑ [𝜆 {𝑚𝑢𝑖
𝑚−1(𝑥) 𝑒𝑖(𝑥)}⁄ ]𝑚/(𝑚−1)𝑘

𝑖=1 = 1                 (5.40)                                                                                                                                                                                                                                                                                                                                                                                                                          

      𝜆 = [∑ {𝑚𝑢𝑖
𝑚−1(𝑥)𝑒𝑖(𝑥)}−1/(𝑚−1)]𝑘

𝑖=1

−(𝑚−1)
             (5.41)                                                                                                                                                                                                                                                                                                                                                                                                       

By substituting value of  𝜆 in equation 5.39, gives  

 û𝑗 =  
{𝑢𝑗

𝑚−1(𝑥)𝑒𝑗(𝑥)}−1/(𝑚−1)

∑ {𝑢𝑖
𝑚−1(𝑥)𝑒𝑖(𝑥)}−1/(𝑚−1)𝑘

𝑖=1

                     (5.42)                                                                                                                                                                                                                                                                                                                  

5.2.4 Spatial Term for Reducing Noise Effect 

A spatial term, for fuzzy clustering using membership function, is used in the level set 

formulation of the proposed method to subjugate noise effect. At every step, the spatial 

term is also calculated along with bias filed, constants and membership function. In the 

proposed method, the spatial term is average of membership values of neighboring pixels 

and given as 

ℎ𝑖(𝑥) = ∑ 𝑢𝑖(𝑥𝑟)𝑥𝑟∈𝑁𝑅(𝑥)


where, 𝑁𝑅(𝑥) represents set of all neighboring pixels. 

           It is like mean filter [84] applied on membership function. By taking this extra spa-

tial term into consideration, a pixel membership value is decided by the neighboring pix-

els. i.e., even if the center pixel is noisy its effect can be truncated. Using this spatial 

term, the membership function is updated as 
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𝑢𝑖(𝑥) =  
𝑢𝑖

𝑝
(𝑥)ℎ𝑖

𝑞
(𝑥)

∑ 𝑢𝑗
𝑝

(𝑥)ℎ𝑗
𝑞

(𝑥)𝑘
𝑗=1



where 𝑝 and 𝑞 represent the weight given to each term. If noisy is profound, more weight 

is given to the spatial term by considering large values for 𝑞.  

5.3 Results 

The proposed method is verified for numerous synthetic images as well as real medical 

images and corresponding results are compared with some latest methods. Fig 5.3 dis-

plays corresponding results for evaluation of proposed method on an image of the heart. 

 

Fig 5.3:  Contour evaluation using different types of initialization 

Initial contour in Fig 5.3 (a) and Fig 5.3 (f) is inside of the region of interest and in 

Fig 5.3 (e), it is completely outside of the region. In all case, the final contour is same and 

results are independent of initialization of initial contour.  In Fig 5.4 – 5.6, MRI images 

obtained from web datasets [85] [86] are used. A synthesis image, added with Gaussian 
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noise density (σ) of 0.02 is used to compare suggested method with other methods and 

corresponding outcomes are publicized in Fig 5.7. 

 

 

 

 

 

 

Fig 5.4:  On a noisy MRI image (a, b) Bias field & final contour using C. 

Li et al method (c, d) Bias field & final contour using proposed method 

 

Fig 5.5:  On a noisy MRI image (a, b) Bias field & final contour using B. N. 

Li et al method (c, d) Bias field & final contour using proposed method 
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Fig 5.6:  On a noisy MRI image (a, b) Bias field & final contour using W. Cui et al 

method (c, d) Bias field & final contour using the proposed method 

 

 

 
Fig 5.7 (a) Noisy image with Gaussian noise density of σ = 0.02. Results using (b) C. 

Li et al method (c) W. Cui et al method (d) Y. Chen et al method (e) B.N. Li et al 

method (f) Proposed method 
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           Results show that final contour obtained by other methods is affected by the noise 

and in case of the proposed method, the noise effect is very less. The proposed method is 

compared with other latest methods on the basis of Segmentation Accuracy (SA) for same 

synthetic image corrupted by different Gaussian noise (noise density,𝜎 = 0 𝑡𝑜 0.1). The 

values obtained by experimental evaluation are shown in Table 12. SA is defined as [87]   

SA =
Number of Correctly Classified Pixels

Total Number of Pixels
                (5.47)                                                        

 

 

 

 

 

 

 

 

 

 

 

5.4 Significant Finding 

Proposed novel fuzzy energy based level set method for biomedical image segmentation 

not only improves segmentation accuracy but also ensure that contour evaluation is inde-

pendent of initialization of initial contour. Mean filter based spatial term further improve 

segmentation by reducing noise effect.  

 

 

Table 12:  Segmentation Accuracy (SA) for Synthetic Image Corrupted 

by Gaussian Noise 

 
Method 

Noise Density 

              0 0.02      0.04 0.06 0.08 0.10  

C. Li et al  92.81 88.26 86.18 83.65 78.95 76.56 

W. Cui et al 95.64 92.44 89.92 88.06 85.22 82.47 

Y. Chen et al 92.78 89.57 85.32 82.48 78.12 77.21 

B.N. Li et al 96.42 93.30 88.74 86.15 84.74 85.13 

Proposed Method 99.85 98.23 96.28 94.76 93.42 92.38 
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This chapter is based on the following work: 

Mahipal Singh Choudhry, Rajiv Kapoor “Performance Analysis of Fuzzy C-Means 

Clustering Methods for MRI Image Segmentation”, Procedia Computer Science Journal 

(Pub: Elsevier), 2016, vol. 89, pp: 749-756 [88]. 

Mahipal Singh Choudhry, Rajiv Kapoor “A Novel Fuzzy Energy Based Level Set 

Method for Medical Image Segmentation”, Cogent Engineering (Pub: Cogent OA, Taylor 

& Francis), 2018 [77].                                                                                                       .



  

 

CHAPTER 6 

 

 

This chapter highlights the conclusions drawn from this study on the basis of the contri-

butions made either theoretically or experimentally and the details of future research di-

rections.  

6.1 Conclusions 

The two new methods are proposed for artifact removal from important 1-D biomedical 

signals (ECG and EEG). A new method for image segmentation is proposed for most im-

portant 2-D biomedical signal, MRI. These methods are as follows:   

 In the first method a cascade combination of Complete Ensemble Empiri-

cal Mode Decomposition (CEEMD) and morphological functions using adaptive 

structuring elements (SE), is used for baseline wander removal from the im-

portant 1-D signal, ECG. Proposed novel approach for denoising of baseline 

wander artifact, ensure that the morphological information present in the ECG 

signal remains preserved and denoising performance is independent of heart rate 

and external factors. The effectiveness of proposed method is tested on different 

publically available datasets by comparing with all latest methods. The results 

prove that proposed method provide far superior denoising results in terms of 

Minimum Square Error (MSE) and Signal to Noise Ratio (SNR).  The effective-

ness of the proposed method to preserve morphological information present in 

the ECG signal is verified in term of the large Correlation Coefficient between 

original ECG signal and artifact-free ECG signal. 

 In the second method, Stationary Wavelet Enhanced Independent Compo-

nent Analysis with a novel thresholding is used for ocular artifact removal from 

CONCLUSIONS & FUTURE SCOPE 
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EEG. Proposed method incorporates strengths of SWT and ICA. Denoising per-

formance is further improved by using a novel thresholding technique. The pro-

posed denoising method with novel thresholding technique is analyzed in terms 

of Correlation Coefficient and Mutual Information with other latest methods for 

different publically available datasets. The superiority of proposed method is also 

proved by measuring frequency domain Coherence between raw EEG data and 

artifact-free EEG data. 

 To deal with noise and intensity inhomogeneity problem of biomedical 

images, a new region-based level set model is proposed by integrating concepts 

of active contour and FCM clustering. In this method, proposed FCM based en-

ergy function deal with intensity inhomogeneity of medical image. A spatial 

function is also used with proposed energy function, which makes this method 

more advantageous for segmenting noisy images. The proposed method is tested 

on diverse real medical images, which contain noise as well as intensity inhomo-

geneity and also on synthetic images. Results show that proposed method has 

better performance in comparison to other latest methods in term of Segmenta-

tion Accuracy of images corrupted by noise. The proposed method has the better 

segmentation of medical images corrupted by both intensity inhomogeneity as 

well as noise so proposed method can be utilized for medical applications, where 

high quality and precise segmentation are required.  

 

6.2 Future Research Scope 

Despite the satisfactory performance of proposed methods, some issues are reported and 

these issues may lead to the future research paradigms. Despite the fact that a modified 

and faster version of EMD is used in the proposed method for baseline wander removal 
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from ECG, there is further scope for reduction in the computation time. In this method 

opening and closing, operations are used as morphological functions. Some more ad-

vanced morphological functions [62] may be used to preserve morphological information 

present in the ECG signal. In the proposed method, a simple artifact analysis algorithm 

using a wavelet breakdown and identification of ECG components is used to determine 

the lengths of the complexes and hence the structuring elements. Performance of pro-

posed method highly depend on the dimension of structure elements so some more effi-

cient method for calculating the dimension of structure elements may be used to improve 

performance.  

In proposed method for ocular artifact removal from EEG, bior-4.4 mother wave-

let is used in case of Stationary Wavelet Transform. Decomposition is done up to 6th level 

and the threshold is applied from 3rd to 6th level of decomposition. Performance of pro-

posed method may improve by testing and use various combinations of mother wavelet, 

level of decomposition and by applying threshold at different levels of decompositions.  

The proposed method for biomedical image segmentation is computationally 

complex since multiple similar convolutions are used repeatedly. As a future work, com-

plexity can be reduced either by using different types of level set methods for implemen-

tation of active contours or energy function using different FCM variations [88].
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