LEARNING MODELS FOR QUALITY ASSESSMENT IN WEB-BASED SOFTWARE

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY IN SOFTWARE ENGINEERING

Submitted by:

Divya Gupta 2K16/SWE/07

Under the Supervision of

Dr. AKSHI KUMAR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

JUNE, 2018

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CANDIDATE'S DECLARATION

I, Divya Gupta, Roll No. 2K16/SWE/07 student of M.Tech (Software Engineering), hereby declare that the project Dissertation titled "Learning Models for Quality Assessment in Web-Based Models" which is submitted by me to the Department of Computer Science & Engineering, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master of Technology, is original and not copied from any source without proper citation. This work has not previously formed the basis for the award of any Degree, Diploma Associateship, Fellowship or other similar title or recognition.

Place: Delhi

DIVYA GUPTA

Date:

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project dissertation titled "Learning Models for Quality Assessment in Web-Based Models" which is submitted by Divya Gupta, Roll No. 2K16/SWE/07, Department of Computer Science & Engineering, Delhi Technological University, Delhi in partial fulfillment of the requirement for the award of the degree of Master in Technology (Software Engineering), is a record of a project work carried out by the student under my supervision. To the best of my knowledge this work has not been submitted in part or full for ant Degree or Diploma to this University or elsewhere.

Place: Delhi

(Dr. AKSHI KUMAR)

Date:

SUPERVISOR

Assistant Professor

Department of Computer Engineering

Delhi Technological University

ABSTRACT

Software quality is one of the pivotal aspects of the software development industry which ensures product compliance to the requirement specification and standards. Conventional software development was mostly related with building desktop applications. The past decade has seen a proliferation of architectures, frameworks, and languages in software development. Software methodologies have shifted from building monolithic standalone applications to service-oriented, metric-driven, collaborative agile-based development of Web-based software. Web analytics is the process of examining websites to uncover patterns, correlations, trends, insights and other useful information which can be utilized to optimize web usage and to improve the quality of website. A Website quality model essentially consists of a set of criteria used to determine if a website reaches certain levels of fineness. UX (or user experience) directly measures the quality of site interactions, and is an indirect representative of site success and customer conversions. That is, a bad UX bounces away visitors to seek a more reliable website. Every single second a user spends on a website is directly attributable to the usability of a good UX. Hence, the evaluation of quality of websites is essential to determine user acceptance, that is, the users are the parameter measured for the success of the site.

The work presented in this research expounds the evident shift of quality models for conventional software to web-based software. It further suggests a π -model representation for quality criterion relationship interpretation for both types of software. The horizontal line of the π signifies the backbone of quality models with quality assessment parameters common to both kind of software whereas the two vertical pillars of the π depict the quality attributes specific to the software type. This research also proffers an approach which associates the website assessment with the user satisfaction and acceptance. The proposed WQA (Website Quality Analytic) Model considers websites from seven domains, namely, .com, .net, .org, .int, .gov, .edu and .mil and using 13 UX- based quality attributes evaluates the quality of websites in each domain. The quality assessment is automated using supervised learning models to predict good, average and bad websites. This feature (attribute) - based predictive model for quality analytics is empirically analyzed for five classification algorithms. A qualitative analysis of the domain-wise classification of websites is presented too.

ACKNOWLEDGEMENT

I am most thankful to my family for constantly encouraging me and giving me time and unconditional support while pursuing this research.

I am extremely grateful to Dr. Akshi Kumar, Asst. Professor, Delhi Technological University, Delhi, India for providing invaluable guidance and being a constant source of inspiration throughout my research. I will always be indebted to her for her extensive support and encouragement.

I also convey my heartfelt gratitude to all the research scholars of the Web Research Group (WRG) for their valuable suggestions and helpful discussions throughout the course of this research work.

DIVYA GUPTA (2K16/SWE/07)

TABLE OF CONTENTS

Candidate's Declaration	ii
Certificate	iv
Abstract	iv
Acknowledgement	
	iv
Table of Contents.	vi-vii
List of	Figures
	viiiii
List of Tables	ix
List of Acronyms	x
Chapter 1 Introduction and Outline	1
1.1. Introduction	1
1.2. Research Obectives	
1.3. Organization of Thesis	9
Chapter 2 Literature Review	10
2.1. Conventional Software and Web based Software	
2.2. Conventional Software Quality Models	
2.3. Web Quality	
2.3.1. Comparison of web based software q	uality models21
2.4. Web Performance Testing Tools	
2.5. Website Quality Evaluation	
Chapter 3 Proposed Model	
3.1. The Proposed pi- Model	
3.2. Website Quality Analytics Model (WQA Mod	el)38

3.2.2. Quality Attributes	
3.2.3. Evaluation Criteria for Dataset Creation	44
3.2.4. Supervised Machine learning algorithms	48
Chapter 4 Experimental Results and Analysis	49
4.1. Performance of Supervised Learning Algorithms	49
4.2. Qualitative Analysis of Different domains of websites	
Chapter 5 Conclusion and Future Scope	51
Chapter 5 Conclusion and Future Scope 5.1. Research Summary	
-	51
5.1. Research Summary	51
5.1. Research Summary	51

LIST OF FIGURES

Figure 1.1. Project Triangle	2
Figure 1.2. Different types of websites	5
Figure 1.3. The importance of UX	7
Figure 2.1. Quality Attributes	12
Figure 2.2 A general model of Web components and quality actors, and the Quality model of Polillo	19
Figure 3.1. A general framework of the π (pi) Model	37
Figure 3.2. WQA Model	
Figure 3.3. Categorization of Websites	
Figure 4.1. Accuracy	50
Figure 4.2. Precision, Recall, F-measure	50
Figure 4.3. Domain distribution of Good, Average and Bad Quality websites	51
Figure 4.4. Classification of each domain websites into categories of Quality	

LIST OF TABLES

Table 2.1 Comparison between web based and conventional software	10
Table 2.2 Comparison of the five conventional software quality models	.15
Table 2.3. Comparison of the web based Quality models	.21
Table 2.4. Comparison of various web performance tools	27
Table 3.1. Quality Attributes.	.40
Table 3.2. Scoring Criteria.	44
Table 3.3. Snippet of the dataset used	47
Table 4.1. Performance of supervised learning models	49
Table 4.2. Qualitative Analysis of Websites.	51

LIST OF ACRONYMS

А	Accuracy
DT	Decision Tree
DNS	Domain Name System
F	F-measure
KNN	k-Nearest Neighbors
LR	Logistic Regression
ML	Machine Learning
NB	Naïve Bayes
Р	Precision
QA	Quality Attributes
R	Recall
RF	Random Forest
SVM	Support Vector Machine
TLD	Top Level Domain
UX	User Experience
WQA	Website Quality Analytics

Chapter 1 Introduction and Outline

This chapter briefly introduces the research work proposed in the thesis. Section 1.1 gives an overview of the research undertaken. Section 1.2 sets out the research objectives. Section 1.3 illustrates the proposed framework and the main contributions arising from the work undertaken. Finally, Section 1.4 presents an outline of this thesis describing the organization of the remaining chapters.

1.1. Introduction

Software quality is one of the pivotal aspects of the software development industry which ensures product compliance to the requirement specification and standards. Conventional software development was mostly related with building desktop applications. The past decade has seen a proliferation of architectures, frameworks, and languages in software development. Software methodologies have shifted from building monolithic standalone applications to service-oriented, metric-driven, collaborative agile based development of Web based software. The work presented in the thesis expounds the evident shift of quality models for conventional software to web-based software. It further suggests a π -model representation for quality criterion relationship interpretation for both types of software. The horizontal line of the π signifies the backbone of quality models with quality assessment parameters common to both kind of software type. A comparison of some of the most prominent, free and open source web product performance tools is also presented.

As one of the core software project management concepts, the Iron Triangle or the Project Triangle, as shown in Fig. 1.1, represents the triple constraints of Time-Cost-Quality must be managed to ensure an on schedule, within budget and fit to purpose project delivery [1]. It is generally accepted that it's only possible to attain two elements at the same time, that is, you can have a high quality build and can get it done quickly but it will be done at a higher cost. Similarly, developing a high quality build at a low cost will take a longer time.

Fig. 1.1. Project triangle.

It has been established across pertinent literature that a well balancing act between these constraints along with an added scope and sustainability dimensions can lead to a successful software development and delivery. Over time software products have be- come more complex and for successful businesses that develop this software, software quality cannot be an exception – it must be a requirement. The software quality determines the conformance of requirements and thus reflects how acceptable and successful a soft- ware product could be. Good quality software is the one which is developed using systematic procedures and follows standards to produce a software product that works efficiently and meets business needs and is delivered on time and within budget. Formally, IEEE defined software quality as "the degree to which a system, component or process meets specified requirements and customer needs" [2].

Conventional software development is mostly related with building desktop applications. The past decade has seen a proliferation of architectures, frameworks, and languages in software development. Software methodologies have shifted from building monolithic standalone applications to service-oriented, metric-driven, collaborative agile-based development. Further, with the phenomenal growth of the Internet and Web, theWorldWideWeb has become a key reservoir of information and has progressed into an environment for delivery of varied kinds of

applications.

The exceptional spread of Web applications into areas of communication and commerce makes it one of the leading, rapidly growing and prime branch of the software industry. Web engineering has been described as a distinct line of research for development of Web- based software. It is the use of scientific, engineering, and management principles and systematic approaches with the aim of successfully developing, deploying and maintaining high quality Web-based systems and applications [3]. Web development and software development differ in a number of areas but the key parameters which define this difference are the people involved in development, the intrinsic characteristics of Web applications and the audience for which they are developed. Mendes [4] grouped the differences between Web and software development into 12 areas, namely, Application characteristics, Primary technologies used, Approach to quality delivered, Development process drivers, Availability of the application, Customers (stakeholders), Update rate (maintenance cycles), People involved in development, Architecture and network, Disciplines involved, Legal, social and ethical issues and Information structuring and design.

Current generation websites are more like software as these store data/interact with a database on the back end, execute some business logic and process information in a more convoluted way. They have a web inter- face but web development here is just not limited to developing an alluring interface but creating a web-based software. Thus, the web based software development primarily consists of three ingredients, namely the development of websites, web application development and development of web services. These are defined as:

- Websites are the collection of static or dynamic web pages and are accessed using a browser. Websites generally provide information about some organization, service, a product, blog etc.
- Web application (or WebApp) is a client server software application in which client runs on a web browser and it is dedicated to perform a particular function or used for an intended purpose [5]. It is similar to the traditional desktop software applications with a slight difference that web applications have everything online.
- Web Service is a technology which uses the collection of protocols and standards so

that two or more web apps can interact with each other and can exchange data between them.

The Web-based software is thus a hybrid between a website and a standard application. Conventional software mainly assesses quality to determine the functional features of the software whereas Web- based applications are primarily focusing on the non- functional features such as quality aspects of Web application. The Web-data is typically multimedia, unstructured, hyperlinked, dynamic, noisy and duplicate [6]. Predicting the usefulness and quality of the hypermedia based web applications is essential. Al- though scientific literature identifies several parameters, or criteria, of quality for conventional soft- ware but it is not a "one size fit all" model. Further, the web quality models have been defined too with their roots to these conventional models, but the paradigm shift can be observed owing to special quality assessment parameters pertinent to Web- Apps. High quality applications and services should be provided so that the organization remains competitive and customers return to do repeat business. Quality assessment criteria for web-based development have to be defined with the help of comprehensive indicators. Moreover the degree of importance of quality parameters for both conventional and web-based models is different too because of lack of disciplined development of WebApps, which are characterized by short time-to- market and resource constraints.

All publicly accessible websites collectively constitute the World Wide Web. Based on the recent statistics available on the worldwidewebsize.com, the currently indexed Web contains at least 4.51 billion pages (Wednesday, 11 July, 2018). This Web is an ubiquitous tool for "e-activities" such as e-commerce, e-learning, e-government, e-science and its use has pervaded to the realms of day-to-day work, information retrieval and business management [7]. Thus, the range and type of the websites is diverse as it can be a personal website, a commercial website for a company, a government website or a non-profit organization website. Moreover, it may typically be dedicated to a particular topic or purpose, ranging from entertainment and social networking to providing news and education.

Fig. 1.2. Different Types of Websites

With the increasing size of Web, superior technology, and optimal browser performance, the development of Web has seen significant ramifications from being an anachronistic static content repository to a turbulent, interactive, responsive content space. The kinds of work that you can do on a webpage have evolved radically in the past decade. We've gone from being information-centric & task-centric (reading email and writing text documents) to become goalcentric (doing graphic design and making music). That is, commercial websites which started out largely as interactive brochures (with the notable exception of hotel/airline reservation sites), over time their functionality (and the supporting technologies) has become more and more responsive to meet diverse user needs. The websites now rely on programmatic user input and data processing. The term Web-based Applications or simply Web-App defines the current dynamic pragmatics of the website where the user has control. Technologically, the current generation websites are more like software as these store data/interact with a database on the back end, execute some business logic and process information in a more convoluted way. They have a web interface but web development here is just not limited to developing an alluring interface but creating web-based software. Thus, the web-based software development primarily consists of three ingredients, namely the development of websites, web application development and development of web services [8].

Typically, Web analytics is the process of examining websites to uncover patterns, correlations, trends, insights and other useful information which can be utilized to optimize web usage and to improve the quality of website. Web quality is defined as the degree to which the web-based

software meets the specified requirements, is accessible, provides the reliable information and meets the user needs & expectations [2]. A Website quality model essentially consists of a set of criteria used to determine if a website reaches certain levels of fineness. The success with website's discoverability on the web and visitor engagement is fundamentally related to the "quality" of website. Studies are indicative of the fact that high quality websites get much better rankings on the most popular search engine, Google [3]. A good website is the one which provides reliable content, has good design and user interface and can address the global audience [2][4]. But the end- users struggle with the predicament of selecting qualitative websites. Although, "Quality" is fairly a subjective term, there is an obvious need of a useful and valid model which evaluates the quality attributes of a website. The objective of any such quality assessment model is to serve as the benchmark to differentiate between the 'good', 'average' and the 'bad' websites. It further provides an acceptance criterion defining the accessibility and usability of a website demonstrating its effectiveness in terms of experiences. The acceptance of websites by the end-user depends on a variety of factors. Users not only focus on the functional attributes but also on the structural attributes. UX (or user experience) is the current buzzword which focuses on user engagement and experience. UX is contemplated for the creation & evaluation of top quality websites as in essence, it measures the quality of site interactions, which in turn measures the quantity of site success and customer conversions[5]. Thus, a bad UX bounces away visitors to seek a more reliable website. Every single second a user spends on a website is directly attributable to the usability of a good UX.

Fig. 1.3. The Importance of UX

Hence, the evaluation of quality of websites is essential to determine user acceptance but current evaluation methods does not evaluate it from the user's perspective. This research proffers an approach which associates the website assessment with the user satisfaction and acceptance. The proposed WQA (Website Quality Analytic) Model considers websites from seven domains, namely, .com, .net, .org, .int, .gov, .edu and .mil and using 13 UX- based quality attributes (i.e. Design and Overall Theme, Dead Links, Relevance, Communication, Size, Compatibility, Global Audience, Resolution, Loading Time, Typography and Font, Color Scheme, Social Media Connectivity, Keyword matching and Page Rank) evaluates the quality of websites categorized into good, average, bad, in each domain. The quality assessment is automated using supervised learning models and an empirical analysis of five classification algorithms is provided.

Although there have been significant researches on the evaluation of website quality but none of

the existing research focuses on different domains of websites to evaluate and predict the website quality and determine the best supervised learning model for the prediction. The contribution of this research is two-fold. Firstly it presents a novel Website quality analytic model, WQA model, which predicts the quality of varied domain websites using supervised learning algorithms and at the same time, the research determines the best learning algorithm for these different domains of the website.

1.2. Research Objectives

Statement of Research Question

"Can we assess and automate a predictive model for quality analytics in a web based software?"

Pertinent psychological studies convey that it is very critical for humans to access good quality software and websites. Also, the needs of user must be fulfilled via good quality websites. A user must be able to access and analyze different domains of websites and evaluate its quality. Thus, this unifying research question can be broken down into the following four questions, each of which will be addressed by this research:

- How is web based quality assessment different from conventional quality assessment?
- Which quality parameters needs to be assessed for quality analytics?
- What categories of websites are used for qualitative analysis?
- Which supervised machine learning technique is the best for the quality assessment?

Consequently, the four main research objectives of the work undertaken are:

- i. **Research Objective I** To understand the paradigm shift from Conventional Software models to web based models.
- ii. **Research Objective II** To propose a framework which seeks co-relation between conventional software and web based software.

- iii. **Research Objective III** To propose a feature based predictive model for quality analytics.
- iv. **Research Objective IV** To find out the best supervised learning model for different domains of websites.

The objective of this thesis is to present the paradigm shift from conventional software quality models to the web based quality models and then to evaluate the quality attributes for different domains of websites to analyze the quality of the websites using various supervised learning algorithms.

1.3. Organization of Thesis

This thesis is structured into 5 chapters followed by references.

Chapter 1 presents the research problem, research objectives, justifies the need for and outlines the main contributions arising from the work undertaken.

Chapter 2 provides the essential background and context for this thesis and provides a complete justification for the research work described in this thesis.

Chapter 3 provides the details of the methodology employed and outlines the pi-model and the website quality analytics model.

Chapter 4 describes the experimental results obtained from the study. It also presents the analysis to account for the tests performed.

Chapter 5 presents future research avenues and conclusions based on the contributions made by this thesis.

Chapter 2 Literature Review

This chapter discusses the background work in the research domains of conventional software quality models, web based quality models and the various analysis of website quality. We present a review of conventional software and web based quality models. The research gaps have been identified as issues and challenges within the domain which make it an active and dynamic area of research.

2.1 Conventional Software and Web Based Software

Conventional software such as desktop applications are the various kinds of programs used to operate on computers, whereas a web-based software is a program that is stored on a server and is delivered through a browser interface over the Internet. The basic difference between the conventional software and web- based software is given in the Table 2.1.

S.No.	Parameters	Web-based software	Conventional software
		(Websites/WebApps/Web	
		Services)	
1.	Characteristics	Web based software are	Conventional software are developed
		integration of various elements,	for the target audience using the
		multimedia files and scripting	OOPS concepts.
		languages.	
2.	Primary	Java solutions, HTML, XML,	It is developed using object oriented
	technology used	UML, JavaScript, databases are	methods, relational databases, CASE
		used to build a website.	tools, agile methodology, rapid
			application development and extreme
			programming.
3.	Availability of	Customers of web based software	Except a few domain, conventional
	applications	expect it to be functional at all	software clients do not expect it to be
		the times.	functional at all the times.

Table 2.1 Comparison between web based and conventional software

4.	Customers	Customers (or stakeholders) of	The customers of conventional					
		· · · · · · · · · · · · · · · · · · ·						
		web based software	software are known prior to the					
		belongs to different social and	development process.					
		linguistic groups and from						
		different geographical locations.						
5.	Update rate	The web based software have	The conventional software are					
		high update rate i.e. they are	updated and maintained in months or					
		updated very frequently with	years and as specific releases or					
		their update cycles of days or	versions.					
		sometimes even within hours.						
6.	Delivered quality	The quality of web based	For conventional software, delivering					
	approach	software have high priority than	the software at time has higher					
		the time to market and delivering	priority than the quality of the					
		the poor quality software at time.	software.					
7.	Content	The content of web based	Conventional software contains					
		software can be structured or	structured content and rarely uses					
		unstructured, and it uses	hyperlinks.					
		hyperlinks for navigational						
		structures.						

In software engineering literature, there are many software quality models that evaluate general and specific type of software products based on a number of quality attributes. These quality attributes quantify and reflect the quality of the software product. Some of the vital software quality attributes are Maintainability, Efficiency, Reliability, Usability, Portability, Functionality, Flexibility, Testability, Correctness, Integrity and Interoperability as shown in Fig. 2.1.

Fig 2.1. Quality Attributes

Earlier literature surveys reported have either focused on the reviews of software quality models [7–15] and their comparison or simply web-based software (web) quality models. A systematic literature review of open source software quality assessment models has been recently presented in 2017 by Adewumi et al. [8] for helping developers in formulating newer models and practitioners (software evaluators) for selecting suitable OSS in the midst of alternatives. In 2015, Sheoran and Sangwan proffered a comparative analysis software quality models applied in predicting software quality attributes [9]. In 2014, Suman and Wadhwa [10] presented a comparison of 17 soft- ware quality models based on 28 attributes. In the same year, Miguel et al. [7] reviewed various software quality models for the evaluation of software products categorizing them as basic and tailored quality models.

Previously, Al-Baradeen [11,12], Al-Qutaish [13], Samarthyam [14] and Ghayathri [15] have also con- ducted comparative studies of basic quality models. Looking across work available in the literature, we found that none of the work has focused on discussing the obvious paradigm shift from conventional soft- ware products to the web-based software products. The work presented here thus reports a comparison of the conventional software quality with the web based qual- ity and presents a pi model depicting the paradigm shift from conventional software products to the web-based software products.

2.2 Conventional Software Quality Models

There are number of software quality models based on various quality characteristics. We will discuss about the prominent five software quality models namely, McCall's quality model, Boehm's quality model, Dromey's quality model, FURPS quality model and ISO 9126 quality model.

1. McCall's quality model

McCall's quality model is the one of the most prominent software quality model. Jim McCall proposed this model in 1977 and tried to bridge the gap between the consumers and developers by mapping the consumer's view with the developer's priority [13,16]. He identified three major perspectives to define the quality of a software product. The three major quality perspective has a set of quality factors which in turn consists of a number of quality criteria, which are reflected by one or more metrics.

The major perspectives are Product Revision, Prod- uct Operations and Product Transition that have 11 quality factors to elucidate the external view of the software and 23 quality criteria to discuss the internal view of the software. To provide the scope and method of measurement McCall Model has a set of Metrics [16].

The 11 quality factors that are considered in this model are maintainability, flexibility, correctness, integrity, reliability, efficiency, usability, testability, reusability, portability and interoperability.

2. Boehm's quality model

Boehm presented its model in 1976 to define the software quality by a set of attributes and metrics. It has hierarchy of attributes and metrics. The top level characteristics represent the basic top level requirements of actual use [17,18]. The three characteristics in its top level are:

i. As-is-utility to define how reliably, effortlessly and efficiently a software product can be

used.

- ii. Maintainability to define how easily the soft- ware product can be understood, modified and retested.
- iii. Portability to describe how the software product can be operated when the environment has been transformed.

The intermediate level characteristic represents the qualities expected from the software product. The seven quality characteristics are portability, reliability, understandability, usability, testability, efficiency and flexibility. The 15 primal characteristics provide the basis for defining quality metrics.

3. Dromey's quality model

Dromey introduced his quality model in 1995. He developed a quality assessment framework that analyses and evaluates the quality of a software product and its components and recognizes that it differs for each product. Dromey's quality model comprises of four software product properties and each property incorporates some quality attributes. For the implementation, the four product properties are correctness, internal, contextual and descriptive [19,20]. They are further classified into quality attributes such as functionality, reliability, maintainability, efficiency, reusability, portability and usability.

4. FURPS quality model

Robert Grady presented his model in 1992. FURPS stands for the five characteristics on which the model is based upon. The five characteristics are functionality, usability, reliability, performance and supportability. These characteristics are further classified into various quality characteristics such as security, human factors, frequency and severity of failure, recoverability and installability [13].

5. ISO 9126 quality model

ISO in 1991 gave a standard for the evaluation of quality characteristics of software product. The initial ISO 9126 series quality model contains two parts quality model for software quality product. The first part of this model is the internal and external quality model that determines the six characteristics which are further subdivided into twenty seven sub-characteristics. The six characteristics are functionality, reliability, usability, efficiency, maintainability and portability. The second part of the model is the quality in use model that consists of four quality characteristics which are effectiveness, productivity, safety and satisfaction [21–25].

2.2.1 Comparative study of software quality models

SI.	Characterist	Definition	McCall	Boehm	Drome	FURP	ISO 9126
No.	ics/ Model				У	S	
1.	Maintainabi	Maintainability is					
	lity	defined as the effort					
		required during					
		maintenance phase to					
		locate and fix an error.					
2.	Flexibility	Flexibility is defined					
		as the effort required					
		to modify an					
		operational program					
		i.e. how flexible the					
		software is to a change					
		in it.					
3.	Testability	Testability is defined					
		as the effort required					
		for testing software					
		which ensures that it					
		performs its intended					
		functions.					
4.	Correctness	Correctness is defined					
		as the extent to which					
		software meets its					
		specifications.					
5.	Efficiency	Efficiency is defined					
		as the amount of					
		resources and code					
		required by the					
		software to perform a					

Table 2.2 Comparison of the five conventional software quality models

		for a stirle a					i
		function.					
(Dali-1-214	Daliability in 1-fin 1					
6.	Reliability	Reliability is defined as the extent to which	N	Ň	N	N	N
		a software performs its					
		intended functions					
		without encountering					
-	T.4	any failure.					
7.	Integrity	Integrity is defined as					
		the extent to which					
		access to software or					
		data by the					
		unauthorized persons					
0	TT	can be controlled.					
8.	Usability	Usability is defined as			\checkmark	\checkmark	
		the extent of effort					
		required to learn,					
		understand and use the functions of the					
		functions of the software.					
0	Doutohilitar						
9.	Portability	Portability is defined	N		N		\checkmark
		as the effort required to transfer a software					
		product from one					
		platform to another platform.					
10.	Reusability	*					
10.	Reusability	Reusability is defined	N		N		
		as implementing the software systems					
		using the existing					
		components.					
11.	Interoperab	Interoperability is	N				
11.	ility	defined as the effort	v				
	inty	required to couple two					
		or more software					
		products with each					
		other.					
12.	Human	Human engineering is					
	Engineering	the characteristic		•			
		usability that the code					
		possess to the extent					
		that it can be human					
		engineered.					
13.	Understand	Understandability is					
	ability	defined as the extent		,			
		to which the software					
L		to which the software					

		is perceived with its			
		purpose.			
14.	Modifiabilit	Modifiability is			
14.		2	V		
	У	defined as the extent			
		to which the software			
		can incorporate			
		changes.		 	1
15.	Functionalit	Functionality is		 \checkmark	\checkmark
	У	defined as the extent			
		to which the basic			
		purpose for which the			
		software is being			
		designed is achieved.			
16.	Performanc	Performance of a			
	e	software is defined in			
		terms of speed,			
		resource consumption,			
		throughput, scalability			
		and response time.			
17	Supportabili	<u> </u>			
	ty	defined as the extent			
		to which the software			
		is serviceable,			
		sustainable, testable,			
		localizable and			
		extensible.			
		extensible.			

A comparison of quality characteristics that the five quality model considers is presented in Table 2. From this table, we infer that out of the 17 characteristics, only one of the characteristic is common to all the 5 software quality models. The quality characteristic which is considered in all the five model is reliability which is defined as the system's ability to perform its intended function satisfactorily. Moreover, it can be noted that there are three characteristics that belongs to four of the quality models. These characteristics are efficiency, usability and portability. Two characteristics i.e. testability and reusability are considered in two quality models whereas rest nine of the characteristics belong only to one software quality model.

It was observed that the ISO 9126 quality model is by far the best quality model as it has been build based on an international consensus and agreement from all the country members of the ISO organization [13,21-25].

2.3 Web Quality

Web quality is defined as the degree to which the web based software meets the specified requirements, is accessible, provides the reliable information and meets the user needs and expectations [26]. A good web based software is the one which provides reliable content, has good design and user interface and can address the global audience. It is a good practice to successfully deliver the web based software on time, within budget, having high level of quality and which is easy to use and maintain. Some of the quality attributes that are generally used to measure the quality of a web based software are Functionality, Reliability, Usability, Efficiency, Installability, Maintainability, Portability, Suitability. Adaptability, Learn ability, Interoperability, Safety, Security, Correctness, Testability, Flexibility, Reusability, Architecture, Communication, Content, Community, Platform, Accessibility, Software Code and Compatibility.

To measure the quality aspects of web based soft- ware, there are several web quality models. The web quality model is used to define and measure the quality of web based software. A web quality model is the set of defined characteristics and relationships between them, which provides a framework to specify quality requirements of web based software product and evaluate it [7]. A number of web quality models have been proposed over the years. Here we will discuss a few of them.

1. ISO 9126

ISO/IEC 9126 is issued as an International Standard quality model in 1991. It provides a very general model and consists a set of six quality characteristics and 27 sub-characteristics [21,27]. It was the best known model but it has been recently canceled and a new updated standard has been released.

2. ISO/IEC 25010

ISO/IEC 25010 is the updated standard issued by the International Standard. It defines the two quality models. The first one is the Product Quality Model that consists of internal and external qualities of the system. It defines 8 quality characteristics and 31 sub-characteristics [28,29]. The quality characteristics de- fined by the model are functional suitability, performance efficiency,

compatibility, usability, reliability, security, maintainability and portability. The second model described by the ISO/IEC 25010 is the quality in use model that defines the impact the product has on stakeholders. It is composed of 5 characteristics and 9 sub-characteristics. These characteristics and sub-characteristics are measurable through a set of associated measurable properties. The internal properties defines the internal qualities of the product, the external properties contributes to the external qualities of the product and the quality in use properties describe the properties that influence the quality of the product when used in different contexts [29].

3. Roberto Polillo quality model

Fig. 2.2. A general model of Web components and quality actors, and the Quality model of Polillo.

According to Roberto Polillo, the web based soft- ware can be modeled as a set of associated attributes like architecture, platform, Graphics and content. Each of these quality component is linked with an actor that interacts with these attributes. Figure 3 shows the 9 main quality characteristics of the Polillo quality model: Architecture, Communication, Functionality, Content, Community, Platform, Accessibility, Usability and Coding.

Architecture refers to the information architecture and not the internal software architecture. It includes the web based software navigation facilities. Communication defines the web-style guide, multimedia and style usage. Functionality refers to the extent to which the web based software performs the intended functions and meets the needs under specific conditions. Content refers to the data content of the web soft- ware which is generated by the company's content editors. Community contains the actors that are associated with it like web software users and website man- agers and the content generated by them. Platform refers to the hardware and software of the server. Software code refers to the software which is developed specifically for the web based software. The quality characteristics of this model are both static and dynamic. Once the top-level characteristics are well understood, then the lower level features can be adapted and improved over the time and with experience ac- cording to the project specifications [28].

Roberto Polillo proposed a model based on 30 sub-characteristics. The sub-characteristics are information architecture, navigation, brand identity, visual design, typography, multimedia usage, functional adequacy, functional correctness, security, categorization, conformity to style guide, information quality, content timeliness, con- tent localization, user relations, community management, platform adequacy, site availability, site performances, access monitoring, findability, band requirements, client independence, users ability requirements, effectiveness, efficiency, user satisfaction, reliability, maintainability and compliance to standards [28,30].

4. Olsina model

Luis Olsina proposed a quality model for web based software where the content of the web software is considered very peculiar to determine the software product quality. In this model, the web content is given great emphasis. It is considered that the quality content of a web software promises lower bounce rates as users find that content helpful and stay for a longer time thus contributing to high quality web software [31]. In this model, the seven characteristics define the quality of a web based software. These characteristics are functionality, reliability, usability, efficiency, maintainability, portability and content.

5. Fitzpatric quality model

Fitzpatrick et al. defined a web based software quality model with 12 external and 5 internal factors of quality. The external quality factors include suitability, installability, functionality, adaptability, ease of use, learnability, interoperability, reliability, safety, security, correctness and efficiency. The internal attributes of quality includes maintainability, testability, flexibility, reusability and portability. Later he identified 5 more web-site specific attributes and added these to his model. The five additional website specific characteristics were visibility, intelligibility, credibility, engagibility and differentiation [32].

6. Quint 2 Model

The Quint 2 model is the extension of ISO 9126 model with 4 major quality characteristics and 11 sub-characteristics. Reliability, functionality, usability and maintainability are the four main quality attributes which are further sub-grouped as availability, degradability, traceability, explicitness, customizability, attractiveness, clarity, helpfulness, user-friendliness, manageability and reusability [27].

2.3.1 Comparison of web based software quality models

A comparison of quality characteristics within the six web based quality model discussed is presented in Table3. Twenty-five quality attributes, namely, functionality, reliability, usability, efficiency, maintainability, portability, suitability, installability, adaptability, learnability, interoperability, safety, security, correctness, testability, flexibility, reusability, architecture, communication, functionality, content, community, platform, accessibility, software code and compatibility are identified and defined in the table.

S.No.	Model/ Characteristics	Definition	ISO/IEC 9126	Fitzpatrick et al	Polillo	ISO/IEC 25010- 201	Quint 2	Olsina
1.	Functionality	Functionality is defined as the						

Table 2.3 Comparison of the web based Quality models

·		1	1	1	1	1	r	ı
		extent to which						
		the basic						
		purpose for						
		which the web						
		software is being						
		designed is						
		achieved.						
2.	Reliability	Reliability is					\checkmark	
	,	defined as the						
		extent to which						
		a web software						
		performs its						
		intended						
		functions						
		without						
		encountering						
	T]	any failure.						
3.	Usability	Usability is	N	N	N	N	N	N
		defined as the						
		extent of effort						
		required to						
		learn,						
		understand and						
		use the functions						
		of the web based						
		software.						
4.	Efficiency	Efficiency is	\checkmark	\checkmark		\checkmark		
		defined as the						
		amount of						
		resources and						
		code required by						
		the web based						
		software to						
		perform an						
		intended						
		function.						
5.	Maintainability	Maintainability			İ			
	y	is defined as the						
		effort required to						
		locate and fix an						
		error during						
		maintenance						
		phase.						
6.	Portability	Portability is	1	$\overline{\mathbf{v}}$				
υ.	1 of tability	defined as the	v	V V		v		N
		effort required to						
		transfer a web						
		product from						
		one platform to						
		another						

		nlatform	[
		platform.					
7.	Suitability	Suitability is					
		defined as the					
		fitness of					
		purpose of the					
		web software					
		i.e.					
		appropriateness					
		of functions for					
		particular task.					
0	T	1					
8.	Installability	Installability is defined as the	\checkmark				
		effort needed to					
		install the web					
		software in a					
		specified					
		environment.					
9.	Adaptability	Adaptability is					
Э.	Adaptability	defined as the	v				
		extent to which					
		it can adapt in a					
		specified					
		environment.					
10	Learnability	Learnability is					
		defined as the					
		effort required to					
		learn the					
		product's					
		application,					
		operation, input					
		and output.					
11	Interoperability	Interoperability	\checkmark				7
		is defined as the					
		effort required to					
		couple two or					
		more web					
		products with					
		each other.					
12	Safety	Safety is	\checkmark				
		defined as the					
		extent to which					
		the system is					
		safe to use i.e.					
		the use of web					
		based software					
		should not					
		cause any					
		potential loss					
		rotential 1000	1	1	1	1	

			Γ	1		
		to human life				
		or devices				
		being used.				
13	Security	Security is	\checkmark			
	•	defined as the				
		ability to prevent				
		unauthorized				
		access.				
14	Correctness	Correctness is	\checkmark			
		defined as the				
		extent to which				
		the web software				
		meets its				
		specifications.				
15	Testability	Testability is				
	v	defined as the				
		effort required to				
		test the web				
		software to				
		ensure that it				
		performs its				
		intended				
		functions.				
16	Flexibility	Flexibility is	\checkmark			
	-	defined as the				
		effort required to				
		modify the web				
		based software.				
17.	Reusability	Reusability is	\checkmark			
		defined as the				
		extent to which				
		it can be reused				
		in other				
		applications.				
18	Architecture	Architecture				
		refers to the				
		information				
		architecture i.e.				
		how the web				
		software				
		navigation				
		facilities are.				
19	Communication	Communication		\checkmark		
		refers to the				
		multimedia				
		usage and style				
		issues of the				
		web software.				,
20	Content	Content implies		\checkmark		\checkmark
		the quality of				

			1	1	1	,
	information that					
	the web software					
	provides and					
	whether the data					
	is the duplicated					
	data and is it					
	according to the					
	user preference.					
21. Community	Community		\checkmark			
	includes the					
	associated actors					
	with the user					
	generated data.					
22. Platform	Platform		\checkmark			
	describes the					
	software and					
	hardware					
	infrastructure					
	of the web					
	based software.					
23 Accessibility	Accessibility is		\checkmark			
	defined as the					
	extent to which					
	the web					
	software and					
	its content is					
	accessible by					
	the user.					
24. Soft Code	Software Code					
24 Son Code			v			
	refers to the					
	software that is					
	specifically					
	designed for					
	the web					
	software.					
25 Compatibility	Compatibility is			\checkmark		
	defined as the					
	capacity of the					
	two web systems					
	to work together					
	without					
	changing either					
	of them.					

From this table, we infer that out of the 25 characteristics, two of the quality characteristic i.e. functionality and usability are common to all 6 web based soft- ware quality models. Moreover,

it can also be noted that reliability and maintainability are two characteristics that belongs to five out of the six quality models. Some additional quality attributes like content, communication and security, which are not considered in software quality models are taken in consideration in web software quality models.

2.4 Web Performance Testing Tools

Performance is the key to a great user experience and is helpful in determining the quality of the web products. Thus to assure that the users have great experience, the most frequent flows of web products must be tested and the performance of the browser and server must be understood. Performance Testing is helpful in providing the accurate information about the readiness and performance of a web product. It is done by simulating the load similar to the real conditions to evaluate whether the web application will be able to manage the expected load. It helps in identifying and fixing possible issues and provides helpful advice about how to fix problems. Some of the most prominent, free and open source web product performance tools [33-37] are as follows:

i. Apache Bench

Apache Bench is a command line open source tool used for benchmarking any HTTP server by sending arbitrary number of concurrent requests .

ii. Siege

Siege is a performance testing tool written on GNU/Linux and it allows testing against multiple URLs in three different modes of operation i.e. regression, internet simulation and brute force.

iii. Locust.io

It is a small and hackable event based tool that enables complex transactions and generates high level of concurrency.

iv. Bees with machine gunsIt creates many bees (micro EC2 instances) to load test the targeted web apps.

v. Multi mechanize
Literature Review

This tool is used for web performance and scalability testing by running concurrent python scripts to generate the load at a remote site.

vi. Httperf

It measures the webserver performance by providing an open ended facility to generate arbitrary HTTP workloads.

vii. JMeter

JMeter is a performance testing tool, written in Java that can test both static and dynamic resources.

viii. GooglePageInsights

It analyzes the content of a web page of mobile and desktop devices, measures its performance and generates suggestions so that the web page can improve conversion rates and reduce the page load time.

ix. SiteSpeed.io

It evaluates the website speed and performance of client side from real browsers on the basis of the performance best practices and timing metrics.

x. WebPageTest.org

It is a tool which tests a web page in any browser, from any geographical location and over any network connection.

Table 4 describes the tools against the various parameters the user of the web product consider for the evaluation of the web product's performance.

TOOLS/ PARA METER	Definitio n	Apac he Benc h	Sieg e	Locust.i o	Bees with machi ne guns	Multi mech anize	Httper f	JMet er	Goo gle Pag e Insi ghts	Site speed. io1	Web Page Test
Transfer rate	The transfer rate is the	V									

Table 2.4 Comparison of various web performance tools

Literature Review amount data of (character S or blocks) moved from one place to another in a given time. Time per Time per $\sqrt{}$ $\sqrt{}$ request request is the average time spent on each request. Requests Request $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ per second per second is defined the as number of requests made in a second. Keep Alive Keep $\sqrt{}$ Request alive request defines the maximum number of requests per connectio n. Write $\sqrt{}$ Write **Errors** errors defines the total number of errors failed during the write

	request					
0	request.					
Concurren	Concurre	 				
cy level	ncy level					
	is the					
	number					
	of					
	multiple					
	requests					
	that are					
	performe					
	d at a					
	time.					
Response	Response		 			
time	Time is					
unit	the time					
	taken to					
	respond					
	to a					
	request.					
No. of	Number					
transactio	of	v				
	transactio					
ns	n is the					
	number					
	of server					
	hits.					
	redirectio					
	n and					
	authentic					
	ation					
	challenge					
	s can be					
	counted					
	as two					
	hits rather					
	than a					
	single hit.					
No. of	It is the					
successful	total					
transactio	number					
ns	of					
	transactio					
	ns that					
	are					
	successfu					
	l i.e.					
	transactio					
	ns in					
	which the					
	server	<u> </u>				

responds with а code>400 Bytes **Bytes** $\sqrt{}$ $\sqrt{}$ transferre transferre d are the average number of bytes transferre from d the server to its user in а second. Total no of Total $\sqrt{}$ number recorded of hits determine the number of files download ed on the requested site. $\sqrt{}$ It $\sqrt{}$ $\sqrt{}$ of failures determine s the total number of failures or errors encounter ed. $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ Average Average content content length length determine the S average length of the response generally in bytes. $\sqrt{}$ of It defines $\sqrt{}$ complete the

d

hits

No.

No

requests

number

							Li	teratur	e Reviev	V
	of									
	requests									
	that have									
	been									
	complete									
	d and got									
	а									
	response.									
Elapsed	Elapsed									
time in	time is									
test	the sum									
	of all the									
	request's									
	response									
~	time.					1				
Connectio	Connecti					\checkmark				
n rate	on rate is									
	the									
	number									
	of new									
	connectio									
	ns									
	initiated									
	per									
T- 1	second. It is a									
Failure										
message	message									
	denoting that a									
	transactio									
	-									
	n has failed.									
Time	It is the						N			
taken to	time									
first	taken by									
response	the client									
repuise	to send									
	the first									
	response									
	to a									
	request.									
Idle time	Idle time				 					
-un unit	denotes									
	the total									
	time									
	spent									
	during no									
	useful									
	work or									
	time									
		1	1	1		1		1		

wasted during waiting. No. It is the $\sqrt{}$ of active number threads of active threads or connectio ns to the database. $\sqrt{}$ Time to It is "above the defined fold" load the as elapsed time from the moment of time when а user requests a new page the to moment the above the fold content is displayed by the browser. $\sqrt{}$ Time It is the $\sqrt{}$ to full page time elapsed load from the time user made а request to the moment the page fully is loaded and displayed First It is the $\sqrt{}$ visual time change instant at which first

	change in the								
	webpage								
	is								
	observed.								
Last	It is the								
Visual	time								
Change	instant at								
	which								
	last								
	change in								
	the								
	webpage								
	is								
_	observed.							,	
Page	Page							\checkmark	
download	download								
Time	time is								
	the								
	average								
	time								
	taken by the server								
	to download								
	the								
	webpage.								
Server	Server								
Connectio	connectio								
n time	n time is								
	the total								
	time								
	taken by								
	the server								
	to								
	connect								
	to the								
	requestin								
	g device.							ļ ,	
Server	Server							\checkmark	
response	response								
time	time is								
	the time								
	taken by								
	the server								
	to reply to a data								
	request made by								
	another								
	another	1		1	I			1	

	device.					
Domain	Domain					
Lookup	lookup					
Time	time is					
	the time					
	spent in					
	DNS					
	lookup of					
	the					
	webpage.					

2.5 Website Quality Evaluation

Websites are the collection of static or dynamic web pages that are accessed using a browser. Websites generally perform a particular function and provides information about some organization, service, a product, blog etc.[2] Website quality has been defined adequately within pertinent literature studies. According to R. Anusha, the website quality is the measure that makes a website profitable, user friendly and accessible, offering useful and reliable information and providing good design and visual appearance to meet the users' needs and expectations [4]. Tomas et al. defined website quality as a measure to evaluate the ability of websites to be used for their intended purpose [6].

Different researchers have given varied perspectives of website quality. In 2014, L. Mich [7] proposed a Website quality evaluation process model which included six types of quality and four quality gaps to analyze the website quality. Several researchers[8][9][10] have investigated consumer perceptions of website quality. According to Sanjaya, quality of websites can be measured by considering end user perspectives [11]. In another study, website quality is associated with customer satisfaction and also with the level of accomplishment of user expectation when interfacing a website[12]. Another quality evaluation method proposed in [13] for evaluating web page quality, investigates many factor related to browsing behavior of user. Ivory et. al. [14] provides an analysis of web pages but does not predict the model that provides high accuracy. In [15] quality of websites is analyzed using fuzzy technique but the result is not validated and website are not classified. Moreover, while a few studies suggested a relationship between overall website quality and satisfaction [16] research has not shown which quality parameters of website quality influence user expectations and satisfaction with website.[16] The

Literature Review

work done by Ivory et.al[17] [13] proffers an introductory evaluation of web pages and it also captures numerous website measures related with the websites. However, this work does not apply various machine learning algorithms to predict the best suitable model that can provide high accuracy. In addition, work presented by Kumar et al.[18], associates website quality with fault prediction. Another researcher in [19] indicates a close relation of fault prediction with website quality. Further, many researchers identified and evaluated website quality based on the functionality and the service the particular website provides[20][21][22].

Chapter 3 Proposed Model

Chapter 2 identified the issues related to website quality. This chapter illustrates the shift of the quality attributes from the conventional software to the web based quality models in Section 3.1. In Section 3.2 a Website Quality Analytics Model (WQA Model) is presented with further details in subsequent sections.

3.1. The Proposed pi- model

The shift of the quality attributes from the conventional software quality model to the web based quality model can be represented by a model called the pi model (π model) as shown in Fig. 4. The horizontal line represents the backbone of the pi model (π model) and constitutes the quality parameters that are common to both the conventional software quality models and the web based quality models. Maintainability, efficiency, reliability, usability, portability, functionality, flexibility, testability, correctness, interoperability and reusability are the eleven quality attributes that are considered in both conventional software quality models and the web based quality models. The two vertical pillars of the pi model (π model) represents the two classifications of the quality model attributes. The first vertical pillar symbolizes the quality attributes of the conventional software quality models and these are Integrity, human engineering, understandability, modifiability, performance and supportability. The web based quality models attributes are illustrated via the second vertical pillar of the pi model. It depicts that suitability, installability, adaptability, learnability, safety, security, architecture. communication, content, community, platform, accessibility, software code and compatibility are important aspects of the web based quality models. Thus the backbone of the pi model (π model) depicts the constant quality attributes while the two vertical pillars represent the two dimensions of the quality models.

Fig. 3.1. A general framework of the π (pi) model

The first vertical pillar considers vital quality at- tributes of the conventional software quality models that are not taken into account in web based quality models. Integrity which can be defined as the process of ensuring that the data is accurate and safeguarded from unauthorized access can be mapped to the quality parameter safety and security of the web based quality models. Human engineering is the characteristic us- ability that the code possess to the extent that it can be human engineered. Thus it can be indirectly mapped to the usability attribute of the quality models. Support- ability measures the parameters such as serviceability, sustainability, localizability, extensibility, configurability of the software based models. The quality parameter "performance" evaluate attributes like speed, resource consumption, throughput, capacity, scalability and response time of the conventional software. The web based quality models does not examine the performance attribute of the web based software. Thus there is a need of a quality model that can evaluate the quality of the web based software by assessing all the vital quality aspects specifically the performance attribute.

3.2. Website Quality Analytics Model (WQA Model)

The proposed model associates the website assessment with the user satisfaction and acceptance. It is based on a comprehensive set of quality attributes which correspond to user experience (UX) are used as features and classification algorithms are employed to evaluate the category of website. The approach primarily involves:

- Identifying different domains of the websites.
- Collecting the different websites of each domain.
- Identifying the quality attributes to be used as evaluation criteria.
- Capturing and labeling the data of all websites according to the quality attributes.
- Classifying the websites into three categories of quality (good; average; bad) based on the evaluation criteria using the supervised machine learning algorithms.
- Determining the accuracy of the classification algorithms.

The following figure 3 depicts the systematic flow of the model.

Fig. 3.2 WQA Model

The following sub-sections expound the details:

3.2.1. Types of Websites

In recent years, the development of websites have been done at a rapid pace for wide range of applications in different domains like government, education, commercial, business etc. In the Domain Name System (DNS) hierarchy, the naming convention of a top-level domain (TLD) identifies something about the website associated with it, such as its purpose, the organization that owns it or the geographical area where it originates. The generic TLDs encompass seven categories of website domains as shown in figure 4.

Fig. 3.3: Categorization of websites

In this work, 100 websites of each domain have been selected to determine the quality using the attributes described next.

3.2.2 Quality Attributes

The effectiveness of a website is dependent on one key factor, and this factor is user experience (UX). User behavior, emotions, actions, perceptions and satisfaction all collectively define UX. To put it simply, it is the connection a user feels when using a site or product. The UX metrics typically revolve around the functionality, ease of use and, naturally, the usability of the website. Thus, the proposed prediction

model uses 13 generic quality attributes representative of user perception about a quality website. These are: (1) Design and Overall Theme (2) Dead Links (3) Relevance (4) Communication (5) Size (6) Compatibility (7) Global Audience (8) Resolution (9) Loading Time (10) Typography and Font (11) Color Scheme (12) Social Media Connectivity (13) Keyword matching and Page Rank. The evaluation criterion for each attribute is adopted too. The details of the attributes and respective evaluation criterion are illustrated in the following table 1:

	ality Attribute	inition and description	luation Criterion
QA1	ality Attribute sign and Overall Theme	inition and description Design and Overall Theme is concerned with the visual attributes of the website and handles the overall impression about the website. Attractive design and appropriate theme significantly increases the website popularity among the target audience as they are not bored and confused of the website's layout and design. So they don't abort their attempt to access the website and find alternatives. [23][24][25]	
QA2	Dead Links	Dead link occurrence is a condition when the user cannot reach to the desired webpage or website. Dead links or broken links are links that are not accessible due to a website or webpage being no longer available, or a webpage being moved without affixing a redirect to	 To analyze the quality attribute dead link, the website is gauged for any possible dead links. A tool named "deadlinkchecker" is used to evaluate the number of broken links of a website.

		it, or when the URL structure of a	• The greater the number of
		website has been modified. [26]	dead links, the lesser is the
			score.
QA3	Relevance	The design and content of the	For inspecting the website in
		website should be appropriate to the	respect of quality attribute
		type of website. The relevance of	relevance, following
		content and design of the website	parameters are checked:
		with its purpose influence user	• design and content to the
		acceptance.[8] [27]	website type
			• text, icons, images and videos
			serving their purpose not
			being arbitrarily placed.
QA4	Communication	The credibility and the level of user	Following is the checklist to
		confidence of websites is enhanced	examine the website for the
		by providing information about the	communication attribute:
		organization's physical address,	• Presence of search fields,
		contact number, email address, fax	• contact information, email or
		identification of copyright etc.	suggestion form
		A good quality website must	• fax identification of copyright
		furnish these details to gain user	etc.
		confidence which results in positive	
		perception of the website by the	
		user.[26]	
QA5	Size	Size of a website must not be too	• To analyze the size of a
		large for a good quality website.	website, a tool is used to
		Heavy websites are not optimized	determine the size and
		for the mobile devices or devices	performance of the website.
		with less processor memory. It	• "GTmetrix" scrutinize the
		means that the website will suffer	website and provides the total
		with the dissatisfaction of the end	size of the website. The
		users and reduce the user	greater the website size, the lower the score it is awarded.
			Tower the score it is awarded.

		the website to completely download	determined by using a tool
QA9	Loading Time	Loading Time is the time taken by	Loading Time of a website is
			any device screen (PC, Tablet, mobile)
			• Conveniently viewed from
			of monitor screens,
		website quality. [23]	• optimized for different types
		significant role in determining	are assessed:
		the website's end users has a	attribute, following parameters
QA8	Resolution	The size of the monitor screen of	To evaluate the resolution
			geographical location.
			• meets the needs of all end users regardless of
			cultures and ethnicity
			• content suitable to different
			languages,
			available in different
		[32][27][33]	• content and information
		must have global audience.	validated:
		audience. A good quality website	following checklist is
-		website quality is its market	attribute Global Audience,
QA7	lobal Audience	One of the crucial attribute for a	For examining the quality
		browsers.[31][28]	
		accessed through a wide range of	
		A good quality website can be	of browsers.
		browsers.	is accessible via a wide range
		website via variety of different	consideration that the website
QAU	Compatibility	the ability to access and use the	explored by taking into
QA6	Compatibility	Compatibility of a website reflects	Compatibility of a website is
		quality website.[28][29][30]	

		and display its content when the	"GTmetrix". The websites with
		users clicks on a link or make a	minimum loading time are
		request for it.	given higher scores.
		According to the experts, Users	
		abandon websites that doesn't load	
		within few seconds. Thus to	
		increase the website loading speed	
		is very crucial for the best	
		experience of the end users.[34][35]	
QA1	`ypography and	Typography and font is concerned	Typography and Font of a
0	Font	with the typographic aspects of text	website is analyzed by the
		within the website.	following checklist:
		If the text within the webpage does	• text consistency in its type
		not account for readability and	and style
		legibility, then it is difficult and	• readable font type
		exhausting for a user to understand	• enough breathing space
		and retrieve information from the	• ease in reading and
		website.[36]	understanding information
			• multiple headings
			• different sizes for each
0.11			heading
QA1	Color Scheme		lowing is the checklist to inspect the Color Scheme of a website:
1		effective use of background and text colors in the design of the website.	
		[37][32][36]	and text colors
			 light colors as the background
			color
			• text color not exceeding four
			colors within the same page
QA1	Social Media	to the rapid development of the social	review this quality attribute,
2	Connectivity	networking sites like Facebook and	connectivity with social
		Twitter in past 10 years, several	networking sites like Facebook,

		profound changes have been observed	Twitter, Instagram, LinkedIn etc.
		in the way people communicate and	is gauged. A website with more
		interact with each other.	number of social media
		presence in web interface is a winning	connectivity is give a high score
		situation for developers to grab the	as compared to the website that
		attention of users which results in	has less number of social media
		positive perception of website by the	connectivity.
		end users.[38]	
QA13	yword matching	word matching helps in searching a	keyword matching, following
	and Page Rank	particular type of website that matches	aspects are analyzed:
		a keyword. According to the end users,	• Website matches a
		a good quality website has the content	keyword, phrase or close
		relevant to the matched keyword.	variations of that phrase
		website with exact keyword match	with search query.
		appears on the top of the search query	e Rank of a website is evaluated
		results which are based on the	using a tool "CheckPageRank"
		PageRank.	which provides insights about the
		eRank is sorting the websites according	website and the Google PageRank
		to their priority. It indicates the	(GooglePR).
		importance and relevance of a website.	
		[39][40]	

3.2.3 Evaluation Criteria for Dataset Creation

The evaluation criteria of the QAs for data creation takes in consideration the parameters of each Quality Attributes as discussed in the table 1. The score for each QA lies in the range 0-10, where 0 indicates the lowest score and 10 signifies the highest score. The evaluation criteria employed for each QA for the dataset creation is presented in following table 2.

0.	ality attributes	ring Criteria
QA1	sign and Overall	• A website is presented with a score of "10" if it fulfills all the
	Theme	above mentioned criteria.
		• Whereas it is assigned a score of "0" when none of the criteria is

Table 3.2. Scoring Criteria

		met.
		 The Design and Overall Theme is subjective to the user's perspective. A common stand of the representative set of users is used to score the website.
QA2	Dead Links	• A website is rewarded a perfect "10" score when the website does not account for any deadlink.
		• A score of "5" is awarded to the website if the number of deadlinks
		in the websites is 4-5%.
		• Whereas it is assigned a score of "0" when the webpage user is
		trying to access has more than 50% deadlinks.
QA3	Relevance	A website is given a score of "10" if it fulfills all the above mentioned criteria of relevance.
		• Whereas it is assigned a score of "0" when none of the criteria mention in table 1 is met.
		• The Relevance of a website is also subjective to the user's
		perspective. A common stand of the representative set of users is
		exploited to provide a score to the website.
QA4	ommunication	• A score of "10" for QA communication implies that the given
		website has search fields, provides the contact information (i.e.
		postal address, contact number, email address, fax information)
		and proffers suggestion forms
		• It is awarded score less than "5" when most of these parameters are not available on the website.
		 And it is assigned a score of "0" when no contact information or search field is supplied on the website.
QA5	Size	 A website is rewarded a perfect "10" score when the size of the
QAJ	SILC	• A website is rewarded a perfect 10 score when the size of the website is not more than 1 MB.
		 It is awarded a score of "5" when the size is 9-11 MB.
		 Whereas it is assigned a score of "0" when the size of the webpage
		user is trying to access extends 50 MB.
QA6	Compatibility	 When the website is compatible with all the browsers namely,
V.IU	puttonity	Google Chrome, Mozilla Firefox, Opera, Internet Explorer,

		 Microsoft Edge, Chromium, UC Browser, Safari, Vivaldi, OmniWeb, Vivaldi, Epiphany, Dolphin and Midori; it is assigned a perfect "10" score. It is awarded a score of "5" when it is not compatible with most of these browsers. Whereas it is given a score of "0" when the website is compatible with none of browsers or only with one of them.
QA7	lobal Audience	 Score of "10" implies that the website has the content and information presented in different languages to accommodate maximum viewers around the world, the content is not sensible for any specific ethnicity or culture and it meets the needs of users of various geographical locations.
		• Whereas it is assigned a score of "0" when none of the above mentioned parameters are fulfilled by the website and it is delivering the services only to specific group of customers.
QA8	Resolution	 A website is rewarded a perfect "10" score when the website can be conveniently viewed from any device monitor size, be it a huge desktop monitor, a tablet or a small mobile phone. It is awarded a score of "5" when it is optimized mainly for
		desktop monitor and standard mobile screen.
QA9	Loading Time	• A perfect "10" score for loading time conveys that the website is loaded within few milliseconds.
		• It is awarded a score of "5" when the webpage loads within 8-10 seconds.
		• Whereas it is assigned a score of "0" when the time taken by the webpage to fully load is more than 20 seconds.
QA10	ography and Font	• A website is presented with a perfect "10" score if the text is consistent in its type and style; has readable font type; have enough breathing space; have multiple headings and have different sizes for each heading for ease in assessment of text and provide

		ease in reading and understanding information.
		• It is granted a score of "5" when only two of the above mentioned criteria is met.
		• Whereas it is assigned a score of "0" when none of the parameters of the criteria is fulfilled by the website.
QA11	Color Scheme	• A score of "10" is assigned to a website score when it does not exceed the use of four colors for text within the same page and light background colors were preferred.
		• It is granted a score of "0" when the text color and background color are different shades of the same color tones.
QA12	Social Media Connectivity	• A website is rewarded a perfect "10" score when the website provides associations with social networking sites mainly, Facebook, Twitter, LinkedIn, Instagram, Google+ and YouTube.
		• Whereas it is assigned a score of "0" when the website is not associated with any social networking sites.
QA13	eyword matching and Page Rank	• A website is given a perfect "10" score when the Google Page Rank of the website is very high.
		• If the Google Page Ranking of the website is average it is awarded a score of "5".
		• Whereas it is associated with a score of "0" when the Google Page Ranking is poor.

It is essential to note that out of the 13 quality attributes, 2 QAs, namely Design & Overall Theme and Relevance are highly subjective, context- and user-dependent. That is, these rely purely on on users' perceptions of information and their own information need situations. The following Table 3 shows the snippet of the dataset used in the classification process.

Table 3.3. Snippet of the dataset used

Quality	Attributes
---------	------------

		1	2	3	4	5	6	7	8	9	10	11	12	13
n	o://avazunic.com/													
	os://www.incapsula.co													_
	m/													
,	ps://www.4gamer.net/													
	ps://www.successcds.n													
	et/													
5	ps://www.dostor.org/													_
	os://www.collegeboar													
	d.org/													
	os://www.eac.int													
	os://www.arc.int													
v	o://www.nationalarch													
	ives.gov.uk/													
	o://opapp.gov.ph/													-
1	ps://warrington.ufl.ed													
	u													
	ps://www.aimc.edu													
1	p://www.nationalguar													
	d.mil/													
	w.defenseinnovation													
	marketplace.mil/													

3.2.4. Supervised Machine learning algorithms

In machine learning, a model is a function which learns to predict/classify by learning through input examples. We call these examples as dataset. Each data point in the dataset is of the form (x, y) where x is the input and y is the output. The learning model goes through the entire dataset and '*learns*' the data. So, we use the training data to fit the model and testing data to test. So, if we provide a new input point 'x', the model can tell the 'y'. In a supervised learning, the data set has both x's and y's. Supervised learning problems are categorized into "regression" and "classification" problems. In a classification problem, we try to predict results in a discrete output, that is, we try to map input variables into discrete categories. Thus, for the dataset of 700 websites considered in this work, 490 data items are used to train the predictive model and the rest 210 data items are used for the testing purpose. Five fundamental supervised

learning algorithms have been employed to empirically analyze the best classifier which predicts the website quality. These are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (K-NN) and Linear Regression (LR). The next section discusses the results obtained.

Chapter 4 Experimental Results and Analysis

This chapter describes the experimental results and the analysis to account for the tests performed.

4.1. Performance of Supervised Learning Algorithms

As elaborated, the dataset is divided into train and test set in order to check accuracies, precisions by training and testing it on it. Accuracy, Precision, Recall and F-measure [41] [42] have been considered to measure the effectiveness and efficiency of prediction. The following Table 4 represents the performance results observed.

Measures \rightarrow	Accuracy	Precision	Recall	F-measure	
Techniques↓					
LR	84.8	0.85	0.83	0.85	
SVM	81.74	0.77	0.82	0.79	
RF	80.15	0.75	0.80	0.78	
K-NN	80.05	0.75	0.80	0.78	
DT	71.42	0.72	0.71	0.72	

Table 4.1. Performance of supervised learning models

From the above table, it is observed that Logistic Regression and Support Vector Machines give the highest accuracy score (84.8% and 81.74% respectively). Next to them were Random Forest and K-Nearest Neighbors with accuracy 80.15% and 80.05%. Decision Trees show the lowest accuracy of 71.42%. It is interesting to note that high values of four algorithms were observed as the data was concise. The results are illustrated in the graphs as shown in figure 5 and 6.

Fig. 4.2. Precision, Recall and F-Measure

4.2. Qualitative Analysis of different domains of Websites

This research also helped us establish a qualitative analysis of the websites belonging to different domains. Table 5 represents the domain-wise classification of the websites into the three categories of quality i.e. good quality websites, average quality websites and bad quality websites.

Table 4.2. Qualitative Analysis of Websites

Experimental Results and Analysis

Categories→ Domain↓	Good Quality Websites	Average Quality Websites	Bad Quality Websites
.com	72	17	11
.int	47	35	18
.org	43	43	14
.mil	37	40	23
.net	22	45	33
.edu	15	42	43
.gov	11	44	45

From the table, we observe that among the 7 domain of the websites, .com websites (i.e. commercial websites) have highest number of good quality websites. Next to them are .int and .org websites. The lowest quality websites belong to .gov domain with only 11% of websites being classified as the good quality websites. Figure 7 depicts the distribution of quality website for respective domains.

Fig. 4.3. Domain distribution of Good, Average and Bad Quality websites

In respective domains i.e. .com, .int, .org, .mil, .net, .edu and .gov., respective classifications is as follows:

Experimental Results and Analysis

Fig. 4.4. Classification of each domain websites into categories of quality

It is observed from figure 7 & 8, that the commercial websites have the highest number of good website quality. The .int and the.org follow next. The .gov websites have the least number of good quality websites.

Chapter 5 Conclusion and Future Scope

5.1. Research Summary

The shift of the quality attributes from the conventional software quality model to the web based quality model can be represented by a model called the pi model (π model) as shown in Fig. 4. The horizontal line represents the backbone of the pi model (π model) and constitutes the quality parameters that are common to both the conventional software quality models and the web based quality models. Maintainability, efficiency, reliability, usability, portability, functionality, flexibility, testability, correctness, interoperability and reusability are the eleven quality attributes that are considered in both conventional software quality models and the web based quality models. The two vertical pillars of the pi model (π model) represents the two classifications of the quality model attributes. The first vertical pillar symbolizes the quality attributes of the conventional software quality models and these are Integrity, , human engineering, understandability, modifiability, performance and supportability. The web based quality models attributes are illustrated via the second vertical pillar of the pi model. It depicts that suitability, installability, adaptability, learnability, safety, security, architecture, communication, content, community, platform, accessibility, software code and compatibility are important aspects of the web based quality models. Thus the backbone of the pi model (π model) depicts the constant quality attributes while the two vertical pillars represent the two dimensions of the quality models.

The first vertical pillar considers vital quality at- tributes of the conventional software quality models that are not taken into account in web based quality models. Integrity which can be defined as the process of ensuring that the data is accurate and safeguarded from unauthorized access can be mapped to the quality parameter safety and security of the web based quality models. Human engineering is the characteristic usability that the code possess to the extent that it can be human engineered. Thus it can be indirectly mapped to the usability attribute of the quality models. Support- ability measures the parameters such as serviceability, sustainability, localizability, extensibility, configurability of the software based models. The quality parameter "performance" evaluate attributes like speed, resource consumption, throughput, capacity,

Conclusion and Future Scope

scalability and response time of the conventional software. The web based quality models does not examine the performance attribute of the web based software. Performance attribute is one of the principal quality attribute that one should consider while evaluating the quality of any web based software. Thus there is a need of a quality model that can evaluate the quality of the web based software by assessing all the vital quality aspects specifically the performance attribute.

Like conventional software quality, web quality too is directly related with satisfaction of the user. Usability and functionality both work together to contribute to an experience that optimizes user's engagement. Measuring this user experience evaluates the quality of websites. This work is a preliminary analysis to evaluate a website on various relevant quality parameters. A predictive model, Web Quality Analytic (WQA) Model was proposed, to analyze the quality of websites from seven different domains based on 13 quality attributes. Out of the five supervised learning algorithms used to classify the websites into good, average and bad categories, Logistic Regression and Support Vector Machines outperform the others. The study also specifies that the .com websites are leaders in this 'look-and-feel' quality league.

Thus, the objective of this research to evaluate the quality of different kinds of website and to discover the best supervised learning model for the classification. The key contributions of this research are as follows:

- A model to study the relation between the conventional software quality models and the web based quality models.
- A model to classify and analyze the different domains of website into various categories of quality and to study the best supervised learning model for the classification of the websites.

5.2. Future Research Directions

Conclusion and Future Scope

As a promising quality analytic model, the use of other machine learning algorithms can be explored to discover meaningful patterns and correlations amongst quality attributes for best possible business results. Also, new computational techniques that could significantly improve feature (attribute) selection can be explored too. Deep learning excels at finding useful representations of the data for a particular task. Thus, the use of Neuro and/or fuzzy techniques is an open domain of research.

Bibliography

- [1] S. Kalaimagal and R. Srinivasan, A retrospective on software component quality models, in *SIGSOFT Software Engineersing Notes* **33**(5), (November 2008).
- [2] A. Ginige and S. Murugesan, Web engineering: an introduc- tion, *IEEE MultiMedia* 8(1) (Jan–Mar 2001).
- [3] E. Mendes, Practitioner's Knowledge Representation: A Path- way to Improve Software Effort Estimation, Springer Science & Business, 2014.
- [4] F.U. Onu, P.U. Osisikankwu, C.E. Madubuike and G. James, Impacts of object oriented programming on web application development, *International Journal of Computer Applications Technology and Research* 4(9) (2015), 706–710.
- [5] G.A. Di Lucca and A.R. Fasolino, Testing web-based applications: The state of the art and future trends, *Information and Software Technology*, Elsevier **48**(12) (December 2006), 1172–1186.
- [6] J.P. Miguel, D. Mauricio and G. Rodríguez, A review of software quality models for the evaluation of software products, *International Journal of Software Engineering & Applications (IJSEA)* **5**(6) (November 2014).
- [7] A. Adewumi, S. Misra and N. Omoregbe, A review of models for evaluating quality in open source software, in: *International Conference on Electronic Engineering and Computer Science*, IERI Procedia 4, 2013, pp. 88–92.
- [8] K. Sheoran and O.P. Sangwan, An Insight of Software Quality Models Applied in Predicting Software Quality Attributes: A Comparative Analysis, in: 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sept 2015.
- [9] Suman and M. Wadhwa, A comparative study of software quality models, *International Journal of Computer Science and Information Technologies (IJCSIT)* **5**(4) (2014), 5634–5638.
- [10] A.B. Al-Badareen, Software quality evaluation: User's view, *International Journal of Applied Mathematics* and *Informatics* **5**(3) (2011), 200–207.
- [11] A.B. Al-Badareen, M.H. Selamat, M.A. Jabar, J. Din and S. Turaev, Software Quality Models: A Comparative Study, in: Software Engineering and Computer Systems: Second International Conference, ICSECS 2011, Kuantan, Pahang, Malaysia, June 27–29, 2011, Proceedings, Part I, pp. 46–55.
- [12] E.R. Al-Qutaish, Quality models in software engineering literature: An analytical and comparative study, *Journal of American Science* **6**(3) (2010), 166–175.
- [13] G. Samarthyam, G. Suryanarayana, T. Sharma and S. Gupta, MIDAS: A Design Quality Assessment Method for Industrial Software, in: *Software Engineering in Practice*, *ICSE 2013*, San Francisco, CA, USA, pp, 911– 920.
- [14] J. Ghayathri and E.M. Priya, Software quality models: A comparative study, *International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)* **2**(1) (2013), 42–51.
- [15] J.A. McCall, P.K. Richards and G.F. Walters, Factors in Soft- ware Quality, Volumes I, II, and III. US Rome Air Development Center Reports, US Department of Commerce, USA, 1977.
- [16] B.W. Boehm, J.R. Brown and M. Lipow, Quantitative evaluation of software quality, in: Proceedings of the 2nd International conference on Software engineering, IEEE Computer Society, Los Alamitos (CA), USA, 1976, pp. 592–605.
- [17] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G. McLeod and M. Merritt, characteristics of Software Quality, *North Holland Publishing*, Amsterdam, The Netherlands, 1978.
- [18] R.G. Dromey, A model for software product quality, *IEEE Transactions on Software Engineering* 21 (1995), 146–162.
- [19] R.G. Dromey, Cornering the chimera [software quality], *IEEE Software* 13 (1996), 33–43.
- [20] ISO. ISO/IEC IS 9126: Software Product Evaluation Quality Characteristics and Guidelines for their Use. *International Organization for Standardization*, Geneva, Switzerland, 1991.
- [21] ISO. ISO/IEC 9126-1: Software Engineering Product Quality Part 1: Quality Model. *International Organization for Standardization*, Geneva, Switzerland, 2001.
- [22] ISO. ISO/IEC TR 9126-2: Software Engineering Product Quality Part 2: External Metrics. *International Organization for Standardization*, Geneva, Switzerland, 2003.
- [23] ISO. ISO/IEC TR 9126-3: Software Engineering Product Quality Part 3: Internal Metrics, *International Organization for Standardization*, Geneva, Switzerland, 2003.
- [24] ISO. ISO/IEC TR 9126-4: Software Engineering Product Quality Part 4: Quality in Use Metrics. International

Organization for Standardization, Geneva, Switzerland, 2004.

- [25] R. Anusha, A study on website quality models, *International Journal of Scientific and Research Publications* 4(12) (December 2014).
- [26] N. Kumar, R. Dadhich and A. Shastri, Quality models for web-based application: A comparative study, *International Journal of Computer* Applications (0975-8887) 125(2) (September 2015).
- [27] R. Polillo, Quality models for web [2.0] sites: a methodological approach and a proposal, in: *Proceedings of the 11th inter- national conference on Current Trends in Web Engineering*, June 20–21, 2011.
- [28] ISO/IEC 25010:2011: System and Software Engineering Systems and Software Quality Requirements and Evaluation (SQuaRE) System and Software Quality Models, *ISO Copy- right Office*, Geneva, March 2011.
- [29] R. Polillo, Plasmare il Web Road map per siti di qualità, *Apogeo*, Milano 2006.
- [30] L. Olsina, D. Godoy, G. Lafuente and G. Rossi, Assessing the quality of academic web sites: A case study, *New Review of Hypermedia and Multimedia* 5 (1999), 81–103.
- [31] R. Anusha, A study on website quality models, *International Journal of Scientific and Research Publications* 4(12) (December 2014).
- [32] J. Brunelle, M. Nelson, L. Balakireva, R. Sanderson and H. Sompel, Evaluating the SiteStory Transactional Web Archive with the ApacheBench Tool, in: *International Conference on Theory and Practice of Digital Libraries TPDL* 2013: Re- search and Advanced Technology for Digital Libraries, pp. 204–215.
- [33] D. Rahmel, Testing a Site with ApacheBench, JMeter, and Selenium, Springer Advanced Joomla, 211–247.
- [34] R. Abbas, Z. Sultan and S.N. Bhatti, Comparative analysis of automated load testing tools: Apache JMeter, Microsoft Visual Studio (TFS), LoadRunner, Siege, in: *Communication Technologies (ComTech)*, 2017 International Conference, April 2017.
- [35] S. Hussain et al., Survey of the tools for web service testing, in *Applied Mechanics and Materials* 427–429 (2013), 2951–2955.
- [36] D. Mosberger and T. Jin, Httperf-A tool for measuring web server performance, ACM Signetrics Performance Evaluation Review 26(3) (December 1998), 31–37.
- [37] S. Kalaimagal and R. Srinivasan, A retrospective on software component quality models, in *SIGSOFT Software Engineering Notes* **33**(5), (November 2008).
- [38] A. Ginige and S. Murugesan, Web engineering: an introduction, *IEEE MultiMedia* 8(1) (Jan–Mar 2001).
- [39] E. Mendes, Practitioner's Knowledge Representation: A Path- way to Improve Software Effort Estimation, Springer Science & Business, 2014.
- [40] F.U. Onu, P.U. Osisikankwu, C.E. Madubuike and G. James, Impacts of object oriented programming on web application development, *International Journal of Computer Applications Technology and Research* 4(9) (2015), 706–710.
- [41] G.A. Di Lucca and A.R. Fasolino, Testing web-based applications: The state of the art and future trends, *Information and Software Technology*, Elsevier **48**(12) (December 2006), 1172–1186.
- [42] J.P. Miguel, D. Mauricio and G. Rodríguez, A review of software quality models for the evaluation of software products, *International Journal of Software Engineering & Applications (IJSEA)* 5(6) (November 2014).
- [43] A. Adewumi, S. Misra and N. Omoregbe, A review of models for evaluating quality in open source software, in: *International Conference on Electronic Engineering and Computer Science*, IERI Procedia 4, 2013, pp. 88–92.
- [44] K. Sheoran and O.P. Sangwan, An Insight of Software Quality Models Applied in Predicting Software Quality Attributes: A Comparative Analysis, in: 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions), Sept 2015.
- [45] Suman and M. Wadhwa, A comparative study of software quality models, *International Journal of Computer Science and Information Technologies (IJCSIT)* **5**(4) (2014), 5634–5638.
- [46] A.B. Al-Badareen, Software quality evaluation: User's view, *International Journal of Applied Mathematics* and *Informat- ics* **5**(3) (2011), 200–207.
- [47] A.B. Al-Badareen, M.H. Selamat, M.A. Jabar, J. Din and S. Turaev, Software Quality Models: A Comparative Study, in: Software Engineering and Computer Systems: Second International Conference, ICSECS 2011, Kuantan, Pahang, Malaysia, June 27–29, 2011, Proceedings, Part I, pp. 46–55.
- [48] E.R. Al-Qutaish, Quality models in software engineering literature: An analytical and comparative study, *Journal of American Science* **6**(3) (2010), 166–175.
- [49] G. Samarthyam, G. Suryanarayana, T. Sharma and S. Gupta, MIDAS: A Design Quality Assessment Method

for Industrial Software, in: *Software Engineering in Practice, ICSE 2013*, San Francisco, CA, USA, pp, 911–920.

- [50] J. Ghayathri and E.M. Priya, Software quality models: A comparative study, *International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE)* **2**(1) (2013), 42–51.
- [51] J.A. McCall, P.K. Richards and G.F. Walters, Factors in Software Quality, Volumes I, II, and III. US Rome Air Development Center Reports, US Department of Commerce, USA, 1977.
- [52] B.W. Boehm, J.R. Brown and M. Lipow, Quantitative evaluation of software quality, in: *Proceedings of the* 2nd International conference on Software engineering, IEEE Computer Society, Los Alamitos (CA), USA, 1976, pp. 592–605.
- [53] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G. McLeod and M. Merritt, characteristics of Software Quality, *North Holland Publishing*, Amsterdam, The Netherlands, 1978.
- [54] R.G. Dromey, A model for software product quality, *IEEE Transactions on Software Engineering* 21 (1995), 146–162.
- [55] R.G. Dromey, Cornering the chimera [software quality], *IEEE Software* 13 (1996), 33–43.
- [56] ISO. ISO/IEC IS 9126: Software Product Evaluation Quality Characteristics and Guidelines for their Use. *International Organization for Standardization*, Geneva, Switzerland, 1991.
- [57] ISO. ISO/IEC 9126-1: Software Engineering Product Quality Part 1: Quality Model. *International Organization for Standardization*, Geneva, Switzerland, 2001.
- [58] ISO. ISO/IEC TR 9126-2: Software Engineering Product Quality Part 2: External Metrics. *International Organization for Standardization*, Geneva, Switzerland, 2003.

Appendix A

Appendix A

List of Publications

Journal (Published)

1. A. Kumar and D. Gupta, "Paradigm shift from conventional software quality models to web based quality models," Int. J. Hybrid Intell. Syst., vol. 14, no. 3, pp. 167–179, 2018. (DBLP)

Journal (Communicated)

1. A. Kumar and D. Gupta, "An Empirical Study Of Predictive Model For Website Quality Analytics," International Journal of Intelligent Systems And Applications (IJISA).