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Chapter: 1 Introduction

1.1  The problem of spam

Internet has opened new channels of communication; enabling an e-mail to be sent to a relative
thousands of kilometers away. This medium of communication opens doors for virtually free
mass e-mailing, reaching out to hundred of thousands users within seconds. However, this
freedom of communication can be misused. In the last couple of years spam has become a

phenomenon that threatens the viability of communication via e-mail.

It is difficult to develop an accurate and useful definition of spam, although every e-mail user
will quickly recognize spam messages. Merriam-Webster Online Dictionary® defines spam as
“unsolicited usually commercial e-mail sent to a large number of addresses”. Some other than
commercial purposes of spam are to express political or religious opinions, deceive the target
audience with promises of fortune, spread meaningless chain letters and infect the receivers’
computer with viruses. Even though one can argue that what is spam for one person can be an

interesting mail message for another, most people agree that spam is a public frustration.

Spam has become a serious problem because in the short term it is usually economically
beneficial to the sender. The low cost of e-mail as a communication medium virtually
guaranties profits. Even if a very small percentage of people respond to the spam advertising
message by buying the product, this can be worth the money and the time spent for sending
bulk e-mails. Commercial spammers are often represented by people or companies that have
no reputation to lose. Because of technological obstacles with e-mail infrastructure, it is
difficult and time-consuming to trace the individual or the group responsible for sending spam.
8



Spammers make it even more difficult by hiding or forging the origin of their messages. Even
if they are traced, the decentralized architecture of the Internet with no central authority makes

it hard to take legal actions against spammers.

Spam has increased steadily over the last years, according to Brightmail. At present, March
2004, 62% of all emails on the internet are spam compared to 45% a year ago. The major
problem concerning spam is that it is the receiver who is paying for the spam in terms of their
time, bandwidth and disk space. This can be very costly even for a small company with only
20 employees who each receive 20 spam e-mails a day. If it takes 5 seconds to classify and
remove a spam, then the company will spend about half an hour every day to separate spam
from legitimate e-mail. The statistics shows that 20 spam messages per day is a very low
number for a company that is susceptible to spam. There are other problems associated with
spam. Messages can have content that is offensive to people and might cause general
psychological annoyance, a large amount of spam messages can crash unprotected mail

servers, legitimate personal e-mails can be easily lost and more.

There is an immediate need to control the steadily growing spam flood. A great deal of on-
going research is trying to resolve the problem. However, e-mail users are impatient and

therefore there is a growing need for rapidly available anti-spam solutions to protect them.

1.2 Research objectives

There are many different approaches available at present attempting to solve the spam issue.
One of the most promising methods for filtering spam with regards to performance and ease of
implementation is that of statistical filters. These filters learn to distinguish (or classify)
between spam and legitimate e-mail messages as they are being used. In addition, they

automatically adapt as the content of spam messages changes.

The objective of this thesis is to explore the statistical filter called Naive Bayesian classifier
and to investigate the possibilities for improving its performance. After dissecting the

segments of its operation, this work focuses on three specific areas described below.
9
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Before a message can be classified as either spam or legitimate it is first split into
tokens; this process is called tokenizing. As this text is being read, tokenizing into
tokens (words) is actually taking place as space is being used as a delimiter. Similarly
an e-mail message can be split into tokens using space or any other character as
delimiter. The first objective of this work is to examine how the selection of delimiters
affects the classifier’s performance and to offer recommendations for choosing

delimiters.

The classification of some e-mail messages as spam is based upon the knowledge
gathered from the statistics about tokens appearing in previous e-mail messages. When
a message is to be classified; each token is looked up in the training data. For example,
the token ‘Viagra’ may have appeared 5 times in previous spams and 0 times in
previous legitimate e-mails. These are the frequencies of a token in the training data.
From these frequencies it is possible to estimate the probability that a token is found in
a spam or legitimate e-mail. The most straight forward technique is to divide the
frequency by the total number of tokens previously seen. Higher frequencies give better
probability estimates. But whenever a token is either not present in any of the previous
messages or it has a low frequency, there are better ways of estimating its probability.
Our second objective is to examine how different probability estimators affect the spam

classification performance.

A feature is a characteristic of an object. For example in image recognition a feature
could be a color and in the case of classifying e-mails it is a token or a word. E-mail
messages are written using natural languages which contain thousands of distinct
words. The number of words is the dimensionality of the message. The primary purpose
of feature selection is to reduce the dimensionality in order to increase the speed of the
computation. Our third objective was to conduct comparative analyses between three

commonly used feature selection methods.



Chapter : 2 Method

The methodology used throughout the thesis consisted of a theoretical study requiring a

literature survey and practical work involving several experiments.

2.1  Literature Survey

Articles found on the Internet are the most commonly used research material for this work.
Google and Citeseer’ were frequently used to find articles of interest. The spam
phenomenon is still in its infancy and it was therefore natural to use the Internet as the
main source of information. The theory behind statistical filters is well established and a
number of books on statistics served as primary literature in this area. Books on Formal
Languages, Artificial Intelligence and Discrete Mathematics were often consulted

throughout the work on this thesis.

2.2  Experimental work

The experimental work is supported by some theoretical background. The empirical results
obtained were verified with the theoretical ones whenever they were available. To carry out
the experiments a test environment in Python was built. In order to avoid rebuilding the
environment for different tests, experiments were defined in an XML file that is read at
run-time. For example, the corpus to use, probability estimator and feature selection
method are defined in the XML file.

11



Chapter : 3 Technigues to eliminate spam

There are several approaches which deal with spam. This section briefly summarizes some
common methods to avoid spam and briefly describes the spam filtering techniques used at

present.

3.1 Hiding the e-mail address

The simplest approach to avoid spam is to keep the e-mail address hidden from spammers.
The e-mail address can be revealed only to trusted parties. For communication with less
trusted parties a temporary e-mail account can be used. If the e-mail address is published
on a web page it can be disguised for e-mail spiders* by inserting a tag that is requested to
be removed before replying. Robots will collect the e-mail address with the tag, while
humans will understand that the tag has to be removed in order to retrieve the correct e-
mail address. For most users this method is insufficient. Firstly, it is time consuming to
implement techniques that will keep the e-mail address safe, and secondly, the disguised
address could not only mislead robots, but also the inattentive human. Once the e-mail

address is exposed, there is no further protection against spam.

3.2 Pattern matching, white-lists and blacklists

This is a content-based pattern matching approach where the incoming e-mail is matched
against some patterns and classified as either spam or legitimate. Many e-mail programs
have this feature which is often referred to as “message rules” or “message filters”. This
technique mostly consists of a plain string matching. Whitelists and blacklists, which
basically are lists of friends and foes, fall into this category. Whenever an incoming e-mail
is matched against an entry in the whitelist, the rule is to allow that e-mail through.
However whenever an e-mail has a match against the blacklist, it is classified as a spam.
This method can reduce spam up to a certain level and requires constant updating as spam
evolves. It is time consuming to determine what rules to use and it is hard to obtain good
results with this technique. In Mertz D. 2002 some simple rules are presented. The author
claims that he was capable of catching about 80% of all spam he received. However, he

also stated that the rules used had, unfortunately, relatively high false positive rates.

12



Basically, this technique is a simpler version of the more sophisticated “rule based filters”

which are discussed below.
3.3 Rule based filters

This is a popular content-based method deployed by spam filtering software such as
SpamAssassin®. Rule-based filters apply a set of rules to every incoming email. If there is
a match, the e-mail is assigned a score that indicates spaminess or non-spaminess. If the
total score exceeds a threshold the e-mail is classified as spam. The rules are generally
built up by regular expressions and they come with the software. The rule set must be
updated regularly as spam changes, in order for the filtering of spam to be successful.
Updates are retrieved via the Internet. The tests results from the comparison of anti-spam
programs presented in Holden 2003 show that SpamAssasin finds about 80% of all spam,

while statistical filters (discussed later) find close to 99% of all spam.

The advantage of rule-based filters is that they require no training to perform reasonably
well. Rules are implemented by humans and they can be very complex. Before a newly
written rule is ready for use, it requires extensive testing to make sure it only classifies
spam as spam and not legitimate messages as spam. Another disadvantage of this technique
is the need for frequent updates of the rules. Once the spammer finds the way to deceive

the filter, the spam messages will get through all filters with the same set of rules.

34 Statistical filters

In Sahami et al. 1998, it is shown that it is possible to achieve remarkable results by using
a statistical spam classifier. Since then many statistical filters have appeared. The reason
for this is simple; they are easy to implement, have a very good performance and require a
little maintenance. Statistical filters require training on both spam and non-spam messages
and will gradually become more efficient. They are trained personally on the legitimate and
spam e-mails of the user. Hence it is very hard for a spammer to deceive the filter. A more

in-depth discussion on statistical filters will follow in the next chapter.

35 E-mail verification
13



E-mail verification is a challenge-response system that automatically sends out a one-time
verification e-mail to the sender. The only way for an e-mail to pass through the filter is if
the sender successfully responds to the challenge. The challenge in the verification e-mail
is often a hyperlink for the sender to click. When this link is clicked, all e-mails from that
sender are allowed through. Bluebottle® and ChoiceMail’ are two such systems. The
advantage of this method is able to filter almost 100% of the spam. However, there are
two drawbacks associated with this method. The sender is required to respond to the
challenge which necessitates extra care. If this challenge is not recognized the e-mail will
be lost. Verifications can also be lost due to technical obstacles such as firewalls and other
e-mail response systems. It can also cause problems for automated e-mail responses such

as online orders and newsletters. The verification e-mail also generates more traffic.

3.6  Distributed blacklists of spam sources

These filters use a distributed blacklist to determine whether or not an incoming e-mail is
spam. The distributed blacklist resides on the Internet and is frequently being updated by
the users of the filter. If a spam passes through a filter, the user reports the e-mail to the
blacklist. The blacklist is updated and will now protect other users from the sender of that
specific e-mail. This class of blacklists keeps a record of known spam sources, such as IP
numbers that allow SMTP relaying. The problem involved in using a filter entirely relying
on these blacklists is that it will generally classify many legitimate e-mails as spam (false
positive). Another downside is the time taken for the networked based lookup. These
solutions may be useful for companies assuming that all their e-mail communications are
with other serious non-listed businesses. Companies offering this service include MAPS?,
ORDB?® and Spamcop.

3.7  Distributed blacklist of spam signatures

These blacklists work in a same manner to that described in 3.6. The difference is that
these blacklists consist of spam message signatures instead of spam sources. When a user
receives a spam, that user can report the message signature (typically a hash code of the e-
mail) to the blacklist. In this way, one user will be able to warn all other users that a

certain message is spam. To avoid non-spam being added to a distributed blacklist, many
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different users must have reported the same signature. Spammers have found an easy way
to fool these filters; they simply add a random string to every spam. This will prevent the
e-mail from being detected in the blacklist. However spam fighters attempt to overcome
this problem by adapting their signature algorithms to allow some random noise. The
advantage being that these kinds of filters rarely classify legitimate messages as spam. The
greatest disadvantage is they are not able to recall much of the spam. Vipul’s Razor'! uses
such a blacklist and states that it catches 60%-90% of all incoming spam. Another

disadvantage is the time taken for the network lookup.

3.8 Money e-mail stamps

The idea of e-mail stamps is not new, having been discussed since 1992, but it is not until
recently that major companies have considered using it to combat spam. The sender would
have to pay a small fee for the stamp. This fee could be minor for legitimate e-mail
senders, while it could destroy business for spammers that send millions of e-mails daily.
There are two stamp types; money stamps and proof-of-work stamps (discussed later).
GoodmailSystems™ is developing a system for money stamps. The basic idea is to insert a
unique encrypted id to the header of each sent e-mail. If the recipient ISP is also
participating in the system, the id is sent to Goodmail where it is decrypted. Goodmail will
now be able to identify and charge the sender of the e-mail. Today there are many issues
requiring solutions before such a system can be deployed. Who receives the money? Where
is tax paid? Who are allowed to sell stamps? Since this is a centralized solution, what

about scalability? It would also be the end of many legitimate newsletters.

3.9  Proof-of-work e-mail stamps

At the beginning of 2004, Bill Gates, Microsoft’s chairman, suggested that the spam
problem could be solved within two years by adding a proof-of-work stamp to each e-mail.
Camram™ is a system that uses proof-of-work stamps. Instead of taking a micro fee from
the sender, a cheat-proof mathematical puzzle is sent. The puzzle requires a certain amount
of computational power to be solved (matter of seconds). When a solution is found, it is
sent back to the receiver and the e-mail is allowed to pass to the receiver. The puzzle

Camram is using is called Hashcash™.
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Whether it is money or proof-of-work e-mail stamps, many oppose the idea, not only
because e-mailing should be free, but also because it will not solve the spam problem. To
make this approach effective, most ISP’s would have to join the stamp program. As long
as there are ISP’s that are not integrated into the stamp system, spammers could use their
servers for mass e-mailing. It could then still be possible for the legitimate e-mailers to pay
to send e-mails, while spam is still flooding into the inboxes of users. Many non-profit
legitimate mass e-mailers will probably have to abandon their newsletters due to the
sending cost. Historically, spammers have been able to deceive most of the other anti spam

filters and this could also be the case with the stamp system.

3.10 Legal measures

In recent years many nations have introduced anti-spam laws, in December 2003, president
George W. Bush signed the CAN-SPAM™ act, the Controlling the Assault of Non-Solicited
Pornography and Marketing Act. The law prohibits the use of forged header information in
bulk commercial e-mail. It also requires spam to include opt-out instructions. Violations
can result in fines of $250 per e-mail, capped at $6 million. In April 2004 the first four
spammers were charged under the CAN-SPAM law. The trial is still on, but if the court
manages to send out a strong message, this could deter some spammers. The European
Union introduced an anti-spam law on the 31st of October 2003 called “The Directive on
Privacy and Electronic Communications”. This new law requires that companies gain
consent before they send out commercial e-mails. Many argue that this law is toothless
since most of the spam comes from the outside of EU. In the long-run legislation can be
used to slowdown the spam flood to some extent, but it will require an international
movement. Legislation will not be able to solve the spam problem by itself, at least not in

the near future.

3.11 Conclusion

The most commonly used methods for eliminating spam were described in this chapter.
Perhaps legislation is the best option in the long run. However, it requires a world wide

effort and this process could be slow. Presently users need to protect themselves and for
16



the moment statistical filters are the most promising method for this purpose. They have
superior performance, can adapt automatically as spam changes and in many cases are

computationally efficient.

Chapter : 4 Statistical Classifiers

A classifier’s task is to assign a pattern to its class. The pattern can be a speech signal, an
image or simply a text document. For example in spam classification, the classifier would

assign a message as either spam or legitimate class.

Historically, rule-based classifiers were mainly used until the end of the 1980s. Rule-based
classifiers are simple but require classification rules to be written. Writing rules for high
accuracy is difficult and time consuming. By the end of 1980s, when computers were
becoming more efficient, statistical classifiers started to emerge. Statistical classifiers use
machine learning to build its classifier from previously labeled (the class is known)
training data. For example, a statistical spam classifier is trained on labeled legitimate and
spam messages and a speech recognition classifier is trained on different labeled voices.
The classifier uses characteristics of the pattern to classify it into one of several predefined

classes. Any characteristic can be referred as a feature.

4.1 Features and classes

A feature is any characteristic, aspect, quality or attribute of an object. For example, the
eye color of a person or the words in a text documents are features. A good feature is one
that is distinctive for the class of the object. For example, the word ‘Viagra’ is found in
many spam messages but not in many legitimate, hence it is a good feature. In most cases
many features makes the classification more accurate. The combination of n features can
be represented as an n -dimensional vector, called a feature vector. The feature vector is
definedas F={f; ,f,,..,f,}:1<i<n wheref;isa feature. The n -dimensionality
of the feature vector is called the feature space. By examining a feature vector the

classifier’s task is to determine its class. If m is the number of classes, then the class
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vector is defined as C = {¢;, C2 ,..., Cm } , Where ¢, , 1 <k <m, is a unique class.

4.2  Text categorization

Text categorization is the problem involved in classifying text documents to a category or
class. Text categorization is becoming more popular as the amount of digital textual
information grows. The problem of classifying an e-mail message as spam or legitimate
message can be considered as a text categorization problem. Another popular area of use is
Web page categorization to hierarchical catalogues.

Statistical text classifiers can be divided into two categories, generative and discriminative.
The generative approach uses an intermediate step to estimate parameters while the
discriminative models the probability of a document belonging to a class directly. There
are arguments for using discriminative methods instead of involving the intermediate step
of generative approaches. Recent studies (Ng and Jordan 2002) have shown that the
performances of generative and discriminative approaches are highly dependent on the

corpus training data size.

There are many statistical filters in the literature. An extensive study (Yang Y. and Liu X,
1998) compared several filters including Supported Vector Machines (SVM), k-Nearest-
Neighbor (KNN), Neural Networks (NNet) and Naive Bayesian (NB). NB is the only
generative algorithm from these four. A brief introduction to these classifiers follows.

SVM (Vapnik 1995) separates two classes with vectors that pass through training data
points. The separation is measured as the distance between the support vectors and is
called the margin. The time involved in finding support vectors that maximize the margin
is, in the worst-case scenario, a quadratic. SVM have shown promising results concerning
text categorization problems in several studies (Yang Y. & Liu X, 1998). A recent study

(Androutsopoulos 2004) demonstrated that its performance was good with reference to the
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spam domain.

Another classifier, k-Nearest Neighbor (kNN), maps a document to features and measures
the similarity to the k-nearest training documents. Scores are created for each of the classes
of the k-nearest documents based on the similarity. The document is then classified as the
class with the greatest similarity. This approach has been available for over four decades
and has proved to be the top-performer on Reuters corpus (topic classification of text

documents).

Neural Networks (NNet) is commonly used in pattern analysis and has been applied to text
categorization by Wiener et al. 1995 & Yang Y. and Liu X, 1998. In a study (Chen D. et
al.) the NNet was outperformed by NB. NNets are expensive to train and memory

consuming as the number of features grow.

Among the described classifiers the NB classifier is the simplest in terms of its ease of
implementation. When compared to the others, it is also computationally efficient. Tests
carried out by Yang Y. and Liu X, 1998 showed that NB underperformed the others.
Another study (Androutsopoulos 2000a) shows that NB outperforms KNN. For this work
NB is used as classifier not only for its simplicity and computational efficiency, but also
because of a belief that with a good probability estimator and careful feature selection it

does not necessarily under-perform discriminative methods.

In the rest of this section the basic elements of the theory relevant to NB will be clarified
by using simple examples from everyday life. The detailed description of NB and its

elements will follow in the next chapter.

4.3  Basics about Probability Theory

The probability that an event X occurs is a number that can be obtained by dividing the

number of times X occurs by the total number of events. The probability is always
19



between 0 and 1, or it can be expressed as percentage. For example, the probability of a
six sided die showing 6 is P(6) = * 6 or it is approximately equal t016.67%. Two events
are independent if they do not affect each other’s probabilities. For example, the events
“tossing a coin” and “rolling a die” are independent because the probability of the coin

landing on its head is not affected by the probability of rolling a six on a die.
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For independent events, the probability of both occurring is called a joint probability and it
is calculated as a product of the individual probabilities. The probability for event X is P(
X') and for event Y is P(Y ) .

The unconditional (prior) probability of an event X , P( X ), is the probability of the event
before any evidence is presented. The evidence is the perception that affects the degree of
belief in an event. The conditional probability of an event is the probability of the event

after the evidence is presented.

For example, the event that a person has anti-virus program can be event V and the event
that a person has a spam-filter event S. If there is evidence that 60% of all people have an
anti-virus program and that 20% of all people have a spam-filter and an anti-virus program,
then the probability of a person having a spam-filter given that he/she has an anti-virus

program can be calculated as follows.

4.4  Classical vs. Bayesian statistics
4.4.1 Using statistics

Statistics is used to draw conclusions from data and to predict the future in order to answer
research questions such as “Is there a relationship between a student’s 1Q and height?” To
answer such questions students” 1Q and height data must be collected. This can be
achieved by performing experiments. For example, an 1Q-test is given and the height of
each student is recorded. A plot is made of IQ v Height and it is then possible to detect
whether or not a correlation exists. Statistical tests can be applied to answer research
questions, to confirm or reject certain hypothesis. There are two essential statistical
methods, classical (or frequentists) (Hinton R. 2004) and Bayesian (Bullard F. 2001 &
Heckerman D. 1995 & Lee P. 2004).

4.4.2 Using statistics

Consider the scores from one hundred students that have taken a test. Each test is marked

with a score between zero and fifty. The collected data is somewhat uninformative as it is
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merely a list of numbers. To improve the presentation it is possible to add up the number
of people who achieved the same mark. This is called the frequency for each mark. For
example, 3 people scored 13 points, 10 scored 21 points etc. This information can now be
represented as a histogram, where the mark is assigned to the x-axis and the number of
students with that mark along the y-axis. This presentation is called the frequency
distribution. Frequency distributions are important in statistical analysis as they provide an
informative representation of the data. Statistical tests can be applied to frequency
distributions to answer research questions, to confirm or reject certain hypothesis.

4.4.3 Objective and subjective probabilities

In classical statistics all attention is devoted to the observed data, the frequencies which are
generally collected from repeated trials. For example, in the case where the research
question consists of deciding whether a particular die is biased or not, multiple rolls are
required to obtain sufficient data. The data is then used as evidence to determine whether
the observed results are significantly different to the expected for a non-biased die. This
can be used as evidence that a die is biased.

Now consider the scenario where a Casino employee, who is an expert on biased dice, is
present and claims that there is a 98% certainty that a particular die is biased. However,
this additional information does not benefit the test as such subjective degrees of belief are

ignored in classical statistics.

As opposed to classical, Bayesian statistics takes a subjective degree of belief into account,
the prior data. It allows us to use the information offered by the expert in our prediction as
to whether or not the die is biased. In fact many experts could be consulted and asked for
their opinions. With Bayesian statistics it is possible to take subjective probabilities
together with the collected data to obtain the probability of the die being biased.

4.4.4 Inference differences
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Another difference between classical and Bayesian statistics is how their inference is
performed. In classical statistics an initial assumption or the hypothesis about the research
question is first made. It is usually called a null hypothesis. A single or several alternative
hypotheses can also be defined. Then the relevant evidence or data are collected. This
evidence measures how different the observed results are from the expected if the null
hypothesis was true. The measurement is given in terms of a calculated probability called
the p-value. It is the probability of obtaining the observation found in the collected data, or

other observations which are even more extreme.

The significance level is the degree of certainty that is required in order to reject the null
hypothesis in favor of the alternative. A typical significance level of 5% is usually used.
The notation is «=0.05. For this significance level, the probability of incorrectly rejecting
the null hypothesis when it is actually true is 0.05. If higher protection is needed, a lower
a can be selected. Once the significance level is determined and the p-value is calculated
the following conclusion is drawn. If the probability of observing the actual data under the
null hypothesis is small (p< «) the null hypothesis is not true and it can be rejected. This
means that the alternative hypothesis is accepted. The converse is not true. If the p-value is

big (p> «), then there is insufficient evidence to reject the null hypotheses.

For example, let the null hypothesis, “the die is unbiased” be assumed to be true. If the die
is rolled many times and 70% of all outcomes are sixes, the statistical test will calculate
the probability of obtaining a six in 70% of outcomes or higher (p-value). The probability
distribution for the outcomes observed using an unbiased die is used for this calculation. If
the p-value is lower than 0.05 then according to classical statistics the null hypothesis can

be rejected and the die will be considered to be biased.

In Bayesian statistics, however, a probability is really an estimate of a belief in a particular
hypothesis. The belief that a six occurs once in every six rolls of the die comes from both,
prior considerations about fair die and the empirical results that have been observed in the
past. Bayesian statistics evaluates the probability of a six by taking the previous data

collected into consideration. For many researchers this approach is more intuitive than the
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inference of classical statistics.

4.4.5 Example of statistical spam classification

In order to implement either the classical or the Bayesian statistics to classify an e-mail
massage as spam, some data must be available. This usually occurs as a collection of e-
mail messages labeled as spam or non-spam and are referred as a corpus (training data). In
addition, the information about the frequency distribution of the tokens in the corpus is
available. This means that every token is accompanied by the number of times it has been

seen in the corpus.

4.45.1 Classical statistics

When testing a new e-mail message the starting point is the null hypothesis stated as “the
message is spam”. The alternative hypothesis is “the message is non-spam”. The
significance level is chosen to be 5% or o =0.05. To classify a message as spam a
frequency distribution of its tokens is created and compared to the previous training data
(spam corpus) with an appropriate statistical test ( y 2 tests can be used to analyze
frequency data). The statistical test will give a probability ( p -value) and if it is lower than
the significance level the null hypothesis is rejected and the message is concluded not to be

spam. Otherwise the null hypothesis is accepted.

4.4.5.2 Bayesian statistics

Bayesian probabilistic reasoning has been used in machine learning since the 1960s,
especially in medical diagnosis. It was not until 1998 that Sahami et al. 1998 applied a
Bayesian approach to classify spam. With Bayesian statistics the probability of a model
based on the data is calculated as opposed to classical statistics which calculates the
probability of the data given a hypothesis (model). To illustrate this, consider the previous
example where classical statistics was used to verify the null hypothesis (the message being
spam), either the message is classified as spam or not. Bayesian statistics calculates the
probability of a message being spam. For example, Bayesian statistics can calculate that a

message has an 82% chance of being a spam.
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Chapter : 5 Naive Bayesian Spam Filtering

5.1 The model

A general Naive Bayesian spam filtering can be conceptualized into the model presented in
Figure 1. It consists of four major modules, each responsible for four different processes:
message tokenization, probability estimation, feature selection and Naive Bayesian

classification.

[ncoming message (e-mail)

h

Message tokenization

Y

Probability estimation

h

Feature selection

i

Naive Bayesian classifier

Spam Legitimate

h J h 4

Remove message / tag subject Process message as usual

Figure 1. A model of Naive Bayesian spam filtering.

When a message arrives, it is firstly tokenized into a set of features (tokens), F . Every
feature is assigned an estimated probability that indicates its spaminess. To reduce the
dimensionality of the feature vector, a feature selection algorithm is applied to output a

subset of the features, F ' € F .
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The Naive Bayesian classifier combines the probabilities of every feature in F * , and

estimates the probability of the message being spam.

In the following text, the process of Naive Bayesian classification is described, followed by
details concerning the measuring performance. This order of explanation is necessary
because the sections concerned with the first three modules require understanding of the

classification process and the parameters used to evaluate its improvement.

5.2  Naive Bayesian Classifier

In terms of a spam classifier Bayes theorem (4) can be expressed as

PC | F )F’(F | C)P(C)

= ()

P(F)

where F = { f; ,..., f , } is a set of features and C = {good , spam} are the two classes.
When the number of features, n, is large, computing P(F | C ) can be time consuming.
Alternatively, it can be assumed that the features, which are usually words appearing in the

e-mail message, are independent of each other.

This assumption is, however, not true, as words in e-mails are not independent. For
example an e-mail with the word “Viagra’ is likely to co-occur with ‘purchase’. However
even though the independence assumption is not true the classifier works well, at least on
the spam domain. One argument (Domingos & Pazzani 1996) is that with the independence
assumption the classifier would produce poor probabilities, but the ratio between them
would be approximately the same as would occur using conditional probabilities. Using the
somewhat ‘Naive’ independence assumption gave birth to its name Naive Bayesian

classifier.
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Using the assumption for independence, according to (1), the joint probability for all n

features can be obtained as a product of the total individual probabilities

N

PFIC)=TIP(fi |C). (6)

Inserting (6) into (5) yields

n

PCOITP(fi | C)
(7)

P(F)

The denominator P(F ) is the probability of observing the features in any message and can

be expressed as

m n
P(F)=P(Cx) - TTP(fi [Cc). (8)
k=1 i =
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Inserting (8) into (7) the formula used by the Naive Bayesian Classifier is obtained

PICHITP(Ti | C)
=1

PCIF)=m n . (9)

P(C«) - TIP(fi [Ck)

The formal representation (9) may appear to be complicated. However, if C = spam then
(9) can basically be read as: “The probability of a message being spam given its features
equals the probability of any message being spam multiplied by the probability of the
features co-occurring in a spam divided by the probability of observing the features in any

message”.

To determine whether or not a message is spam the probability given by (9) is compared

to a
A
threshold value, t = . If P(C =spam | F) > tthen the message is classified as spam.
For
1+

example, when A = 9 then t = 0.9 meaning that blocking one legitimate message is of the
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same order as allowing 9 spam messages to pass.

5.3  Measuring the performance

The meaning of a good classifier can vary depending on the domain in which it is used.
For example, in spam classification it is very important not to classify legitimate messages

as spam as it can lead to e.g. economic or emotional suffering for the user.

5.3.1 Precision and recall

A well employed metric for performance measurement in information retrieval is precision
and recall. These measures have been diligently used in the context of spam classification
(Sahami et al. 1998).

Recall is the proportion of relevant items that are retrieved, which in this case is the
proportion of spam messages that are actually recognized. For example if 9 out of 10 spam
messages are correctly identified as spam, the recall rate is 0.9.

Precision is defined as the proportion of items retrieved that are relevant. In the spam
classification context, precision is the proportion of the spam messages classified as spam
over the total number of messages classified as spam. Thus if only spam messages are
classified as spam then the precision is 1. As soon as a good legitimate message is

classified as spam, the precision will drop below 1.

Formally:
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Let ngg be the number of good messages classified as good (also known as false

negatives).

Let ngs be the number of good messages classified as spam (also known as false positives).

Let ngs be the number of spam messages classified as spam (also known as true positives).

Let ngg be the number of spam messages classified as good (also known as true negatives).

The precision ( p) and recall (r) are defined as

ss 1 (10)
p= =
'S+ Ngs 1+ Ngs/ N
ss 1
r= = (12)

"ss + Ngg 1+ ng /N

The precision calculates the occurrence of false positives which are good messages
classified as spam. When this happens p drops below 1. Such misclassification could be a
disaster for the user whereas the only impact of a low recall rate is to receive spam
messages in the inbox. Hence it is more important for the precision to be at a high level
than the recall rate. The precision and recall reveal little unless used together. Commercial
spam filters sometimes claim that they have an incredibly high precision value of 0.9999%
without mentioning the related recall rate. This can appear to be very good to the untrained
eye. A reasonably good spam classifier should have precision very close to 1 and a recall

rate > 0.8.
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A problem when evaluating classifiers is to find a good balance between the precision and
recall rates. Therefore it is necessary to use a strategy to obtain a combined score. One

way to achieve this is to use weighted accuracy.

5.3.2 Weighted accuracy

To reflect the difference in misclassifying a good message and a spam message a cost
sensitive evaluation (Androutsopoulos et al. 2004) is used to measure the performance of
the classifier. The weighted accuracy of a classifier is defined as

A
Ngg  *Ns
(12)
YAce=
Nng +ns

where ng is the total number of messages and ns is the total number of spam messages. 4
is the

weight of each good message. Each misclassification of a good message counts as 1
misclassifications of spam. At the same time, one correctly classified message counts as A
successful classifications. Spam messages are treated as single messages. Using weighted
accuracy gives the impression that legitimate messages are A times more important than

spam.
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5.3.3 Cross validation

There are several means of estimating how well the classifier works after training. The
easiest and most straightforward means is by splitting the corpus into two parts and using
one part for training and the other for testing. This is called the holdout method. The
disadvantage is that the evaluation depends heavily on which samples end up in which set.

Another method that reduces the variance of the holdout method is k -fold cross-validation.

In k -fold cross-validation (Kohavi 1995) the corpus, M , is split into k mutually exclusive

parts,

M; , M 5 ..M . The inducer is trained on M \ M ; and tested against M ; . This is
repeated k times with different i such that i €{1,2,..., k}. Finally the performance is
estimated as the mean of the total number of tests. For a k-folded test the precision p and

the recall r are defined as

1k 1k
(13 and 14)
p= pi andr = i

i =1 "i=1

where p; and r; are the precision (10) and recall (11) for each of the k tests.
32



Research has shown that k = 10 is a satisfactory total (Breiman & Spector 1992) and
(Kohavi 1995), therefore 10-fold cross validation was used throughout the experiments in

this thesis.

5.3.4 Benchmark corpuses

One problem when attempting to benchmark a classifier arises because of the different
results obtained depending on the test corpus. It is easy to optimize parameters for a
classifier to favor a given corpus to achieve impressive results. When this classifier is
applied to another corpus it may perform poorly. Therefore it is important to use more than
one corpus source when testing a particular classifier. It is also preferred that corpuses are

publicly available in case another researcher wants to compare or reproduce the results.

5.4  Message tokenization

Message tokenization is the process of tokenizing an e-mail message using carefully
selected delimiters. The selection of delimiters affects the classification accuracy.
Traditionally, selection is performed manually by trial and error. This thesis examines the
possibility of automatic delimiter selection. The problem of finding high performance
delimiters is called the feature subset problem. In this case the features refer to the

delimiters.
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There have been few attempts made to automatically find a good delimiter subset for spam
classification. In fact, the author is only aware of one previous attempt (Bevilacqua-Linn
2003) which attempted to use two different search methods, a hill-climber and a genetic
algorithm. Both search methods proved to be too time-consuming in accomplishing their

task and the experiment was abandoned.
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Since the dimensionality tends to be astronomically large, exhaustive search is not
plausible. In this work Sequential Forward Floating Selection (SFFS) is implemented to
find a good delimiter subset. There are two common schemes for implementing a search
algorithm, called filters and wrapper induction and both approaches are examined and
implemented in this thesis. For each method a fitness function is introduced. The fitness
for the filter approach uses the discriminative power of the tokenized data. The wrapper
fitness estimates the delimiter performance by running the inducer (measures the
performance of the delimiters by running the classifier on test data).

This section begins by presenting some definitions after which it explains how delimiters
interact. This explanation is necessary to decide upon the choice of search algorithm.

Finally filters and wrappers are presented.

5.4.1 Definitions

A={a, a,. &

The alphabet } is a finite set of symbols. Eachsymbol is a character. For
example, the English alphabet E = {a, b,..., z} and the binary alphabet B = {0,1} . E-mail messages

AASC
use ASCII character code. The alphabet used is 1l = {char(0), char(1),..., A, B,..., (char255)},

where chr(i) , 0 <i <255 is the character corresponding to integer i.

A string X

A is a sequence of symbols from the alphabet A . This is denoted by

Xa=<S1, S ,., S > Si € A . For example, let the alphabet A = {a, m, p, s} then a
string over A could be X A = spam . Every e-mail message is a string over the alphabet

Aascil-
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The cardinality of a string X is denoted by X = n . For example, if X = spam , then X = 4
. The cardinality of the alphabet Aascii IS Aascin = 256 .

A delimiter set, D , for a string X over the alphabet A is a subset of A . For example, if
the string X=<Dear Friend how are you?> then the delimiter set for X could as an example

be D={space, question-mark}.

A tokenizer T is a function of a string X and a delimiter set D such that Q = T ( X ,D)
. Where

production Q = {X1 , X2 ,..., X } :

the x; IS a substring between two delimiters in X . For example,
the string X=<Dear Friend how are you?> and the delimiter subset D={space}, then
T ( X ,D) ={Dear, Friend, how, are, you?}.

A label set L ={l;,.,In}isa

finite set of labels, I;, 1 <i < m. The label set used for e-mail

messages has only two labels, namely L = {good , spam}.

A classifier C is a function that maps a message X to a label | . This is defined as C( X
)=1 e L.
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Let M ={my m, ..., m;}:C(mi) =1 be a collection of previously labeled messages

which all have the same label.

5.4.2 Delimiter Interaction

An intuitive model of the delimiter interaction would be to think of it as a diagram where
the tokenizer productions are plotted. Let the y-axis be the probability of spam (spaminess)
of each token (x-axis). The spaminess of a token is calculated from its frequencies in the
training data. (This is called the probability estimator and is examined in the next chapter.)
If no delimiters are used, all tokens are likely to occur in the middle of the diagram, where
they have a 50% probability of being spam or good related. As new delimiters are
introduced the tokens will start to separate in the diagram, as if the tokens were attracted
by magnets pulling them towards either the top (high spam probability) or bottom (low
spam probability) of the diagram. The more separation in both directions often means a

better delimiter subset.

Clearly, using no delimiters at all allows for a very high precision and a very low recall.
As new delimiters are added the recall rate may increase to a particular level before the
precision starts to fall. The aim is to choose delimiters that maximize the recall rate while
maintaining a high precision. One reason for the precision fall is related to the fact that
information is removed from the messages as the number of delimiters increases. This is
called information loss. Information loss contributes to the destruction of patterns that
characterize one class from another. For example, in unigram character tokenization every
character is treated as a token. This separation of characters removes all patterns and the

information loss is high. The result is low classifier performance.

The interaction between delimiters for a message tokenizer is highly complex; it is
uncertain as to whether the relation between delimiters is transitive and also suffers from
non-monotonicity. To demonstrate the non-transitivity and non-monotonicity properties of

delimiter interaction the following simple example should be considered.
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Let the alphabet A = {a, b, ¢, d} and let the messages X = abcd and Y = bcad .

Let the label of the messages be L( X ) = good and L(Y ) = spam . Let the delimiters used
by the tokenizer T be D .

Table 1 illustrates the productions Q; = T ( X , D) and Q, = T (Y , D) . Clearly a
tokenizer that produces different productions depending on whether the message is good or
spam is more beneficial than one that does not. This intuition can be used to demonstrate
the non-transitive property. A simple criterion (fitness) function J (D) =| Q1 U Q2 | — | Q1

N Q. | is created by counting the number of different elements in Q; and Q; .

Table 1. Illustration of the non-transitive relationship between delimiters

D

Q Q2 J (D)
{a} {bcd} {bc, d} 3
{a, b} {cd} {c, d} 3

{b, c} {a, d} {ad} 3

[a, c} {b, d} {b, d} 0
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5.4.2.1 Non-transitivity

Let us denote a beneficial relationship between two features with — . A transitive relation
could appear asa — b A b — ca — c and is read as “the delimiter ‘a’ is of benefit to the
classification together with ‘b’, ‘b’ is of benefit together with ’c’ therefore ‘a’ is of benefit

with ‘c’”.

As shown the delimiters {a, b} and {b, c} are beneficial in the classification task since the
productions of T are distinguishable. The presence of a transitive property would imply
that the production of {a, c} is also beneficial, but this is not the case asa - b A b — ¢

-a — ¢ . This illustrates the fact that delimiter interaction is non-transitive.

5.4.2.2 Non-monotonicity

Monotonicity is the property that states that whenever a new feature is added the criterion
function J (D) shows an improvement. In mathematical notation the property is expressed

as: Given two

sets, D; and D, , D € D, J (D1 ) <J (D2 ) . However, this is not the case for most
criterion functions. If the previous example is considered, then {a} c {a, ¢} / J ({a}) <J
({a, c¢}) . The non-monotonicity property for delimiter interaction has now been shown for
the simple J (D) .

5.4.3 Dimensionality reduction in the search for a good delimiter subset

The order of delimiters is not of importance and neither are repetitions, hence the
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exhaustive search

for a delimiter subset of size s over an alphabet with cardinality n is . The s

dimensionality for all subsets is 2" . The growth is combinatorial and therefore an
exhaustive search would be too slow for this purpose. Another choice is the branch and
bound search which is much faster than an exhaustive search, but does require the
monotonicity property. As shown previously in this chapter, finding a delimiter subset
suffers from nonmonotonicity which makes the use of branch and bound algorithms
inappropriate. As the delimiter interaction is non-transitive it is not possible to rely on
transitive graphs to find maximum cliques. Other search space reduction algorithms are
genetic algorithms (Siedlecki & Sklansky 1988).

Two other simple algorithms (Jain & Mao 1999), Sequential Forward Selection (SFS) and
Sequential Backward Selection (SBS), are very fast but are sub-optimal. SFS begins with
no features and repeatedly adds the one that maximizes the fitness function. This algorithm
only examines n(n + 1) / 2 subsets. SBS works in the same manner as SFS but it starts

with all features and removes the feature that maximizes the fitness for the remainder.

In order to create results closer to the optimal solution (Pudil & Kittler 1994) improved
SFS and SBS were required. Sequential Forward Floating Selection (SFFS) and Sequential
Backward Floating Selection (SBFS) are, respectively, the improved algorithms. SFFS
works in a similar manner to SFS, but for every new subset it enters a backtracking loop
that attempts to find a better subset than that of its predecessor by removing one feature at
a time. This is repeated until no better subset is found and the backtrack loop is then

exited. These algorithms gave near optimal results in
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some experiments (Pudil & Kittler 1994, Jain & Zongker 1997, Ferri & Pudil 1994). The
original SFFS and SBFS had one defect; it could dismiss superior subsets when switching
from the backtracking loop. An adaptive version of SFFS (Somol et al.1999) was proposed
to address this problem. The solution was to keep a record of all the best subsets. After
backtracking, instead of presuming that the forward subsets are better than the previous
ones, a check is performed against the record. Figure 2 shows the pseudo code for the
modified SFFS.

Due to the previous impressive results the adapted version of SFFS was implemented to
find a good subset of delimiters. There is a small tradeoff in speed in comparison with
SFS. The running time may increase by a factor of 2 to 10.

5.4.4 Filters and wrappers

The two most common feature selection methods are filters and wrapper induction.

The filter approach (Kohavi & John 1996), does not use the inducer to estimate the fitness
of features, it only analyses the data distribution. Hence filters are relieved from bias and
errors in the inducer and may be able to find a more general solution. Filter methods
generally run faster than wrappers. Two well-known filters are FOCUS (Almuallim &
Dietterich 1991), and Relief (Kira & Rendell 1992). Figure 3 illustrates the filter procedure.
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Wrapper induction (Kohavi & John 1996, Kushmerick 1997 & 1999) uses the inducer as a
part of the fitness function. Wrapper induction has successfully been used for information
extraction of Internet resources such as the stock market and product catalogs. This is
closely related to the purpose of this thesis. Their aim was to find delimiters in HTML
code for better information retrieval, whereas this work attempts to find message delimiters
for better spam classification. Figure 4 illustrates the wrapper model. Wrappers often

produce better results than filters but they may be less general.

55  Probability estimation

The most straightforward approach for estimating the probability of an item is to divide its
count by the total counts. This estimate approaches the theoretical probability as the sample
space increases. If the entire population is available an exact probability can be obtained,
but for most cases when the sample space is finite the Maximum Likelihood Estimate
(MLE) will be in the neighborhood of the probability.

where X; is the item and N is the total number of training instances. The problem regarding
this estimator is that it estimates the probability of unseen items to bee zero. This is
sometimes referred to as the zero-frequency-problem. In the case of a Naive Bayesian
classifier where estimates are combined from two corpuses a single zero estimate of a
token could result in an overall spam probability of 0. The same problem remains for rare
words, those with low frequencies. For example a probability estimated from a token
occurring once in the good corpus and ten times in the spam corpus is less reliable than a

token with 10 occurrences in the good and 100 in the spam corpus. Even though the
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combined probability is the same the latter is more reliable.

Schemes do exist to solve the problems concerning Maximum Likelihood Estimation for
cases with sparse data. It is usually said that these schemes perform smoothing. Smoothing

Is the method of moving probability mass from seen to unseen items.

The labels used are given below.

N is the total number of training instances.

X i is the item.

N; is the frequency of frequency of items seen j times. For example, if there exist exactly

three tokens which each have been seen five times then N 5 = 3.

B is the number of bins (distinct items).

5.5.1 Absolute Estimate ( Paps )

The absolute estimate (Nay et al. 1994), subtracts a constant from the frequencies

Pans ( Xi ) =| i | —¢(16)
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where c is the constant usually obtained from the frequency of frequency of items seen

once and twice, N; and N », such that

N (17)

N; + 2N »

5.5.2 Laplace Estimate ( piap )

Laplace (or add-one) is perhaps the simplest smoothing technique which assumes that

every event has been seen once before.

| x|
+1 (18)
xi )
PLap=

N+B

Where B is the number of bins (distinct items). The problem with the Laplace estimator is

that it allocates too much probability mass to unseen objects (Gale & Church 1994).

5.5.3 Expected Likelihood Estimate (ELE) ( peLe )
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This method assigns less probability mass to unseen objects than the Laplace estimator
by adding 0.5 instead of 1 to every count.

| x|
+0.5 (19)
EL (i )
E =
N +
0.5B

This estimator is also referred to as Jeffreys-Perks law.

5.5.4 Lidstone Estimate ( prig )

Laplace and ELE are both special cases of the Lidstone estimator which adds ¢ to every
count

| x|

+0 20
"Li (i ) @0)
d =

N +

OB

where, usually, 0 < 6 < 1 . This estimate works in a similar manner as the Laplace
estimate and ELE. The difference is that instead of using a constant to move the

probability mass to unseen items, it uses an adjustable variable, 6 . But its weakness lies in
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finding a good ¢ .

5.5.5 Witten Bell smoothing ( pws )

Witten Bell smoothing (Witten & Bell 1991) was originally developed for the task of
text compression. It uses items seen once to estimate unseen items. The probability

mass assigned to unseen items is

N (21)
P(xi) = for|xi =0

N; +N

where N; is the number of items that have been seen once. The mass is taken from higher

frequency items such that

| il
xi ) for |

Pwh= Xi >0 (22)

N + N;

The probability for unseen items is determined by

Pwh N, for | xi |= 0 (23)

xi )
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Z (N + N

where Z is the number of unseen items which can be derived by Z =B — N; .

5.5.6 Good Turing Estimate ( pscT )

Good Turing estimators (Good 1953) use the following equation to calculate the probability
of events that have been observed before

r

*

xi )
'6T=  where (24)
N
r* = (r +E(Nr+1)
1) -
(25)
E(N )

where E(n) is the expectation of the variable n . It estimates how many different words
were seen n times, r is the frequency of the item, N | is the frequency of that frequency
and r * is the new estimated frequency. There are many different Good Turing estimators

depending on how the E function is selected. For the experiment a version'® called Simple
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Good-Turing (Gale 1995), denoted as psgt Was used.

5.5.7 Bayesian smoothing ( Prob )

Finally an approach that smoothes (Robinson 2003) the maximum likelihood estimate by
assuming a beta distribution for the prior was examined. This estimate was first adapted to
smooth spam probabilities by Gary Robinson. Since then it has been implemented in a

number of spam filters’’ and has shown very promising results.

s+n

where po is the expected probability when there is no data, n is the number of data points,

s is the strength of the smoother.

Diagram 1 illustrates how this technique smoothes pmie (Xi ) = 0.8 for two different
strengths s = 1.0 and s = 0.5 as the number of data points increase. As seen in the table,

when there are no data points a probability of 0.5 is assigned to the data ( po = 0.5).

5.6 Feature Selection

The primary purpose of feature selection is to reduce the dimensionality to decrease the
computation time. This is particularly important concerning text categorization where the

high dimensionality of the feature space is a problem. In many cases the number of
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features is in the tens of thousands. Then it is highly desirable to reduce this number,
preferably without any loss in accuracy. Several feature selection methods have been

proposed. The y ?

statistics, Information Gain, Mutual Information, Term Strength,
Document Frequency, Probability Ratio and Odds Ratio are some of them. A number of
studies have been conducted to compare their performance. A comparative study (Yang &
Pedersen 1997) showed that Information Gain, y > and Document Frequency had excellent
performance on Reuters corpus using a k-Nearest Neighbor classifier. Another study
(Mladenic & Grobelnik 1999) showed that Odds-Ratio outperformed Information Gain
using a Naive Bayesian classifier due to the different domains and classifier. (Forman
2003) strengthens the results of (Yang & Pedersen 1997) and introduced a new feature
selection method, BNS which showed promising results. Another purpose of feature
selection is to improve performance when using all features. This is rarely the case, but it
is possible. For example, (Forman 2003) showed that bi-normal separation (BNS) did

improve the results when using all features.

However, when dealing with spam, it is often a matter of several hundred or perhaps
thousands of features as opposed to hundreds of thousands in other areas of text
categorization. In comparison to other classifiers such as neural networks, the computations
in a Naive Bayesian classifier are rapid. This work will also investigate whether there is a
need for feature selection when a Naive Bayesian spam classifier is used for spam

detection.

Three common feature selection methods will be investigated, Information Gain, y 2 and
the Probability Ratio. Odds Ratio and Probability Ratio are closely related. The reason for
using these three feature selection methods in this study is that they are commonly used in
spam classification and have all shown good performance. A brief description about each

feature selection method is given in the following subsections.

Information Gain
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Information gain measures the decrease in entropy, or the number of bits gained knowing
a feature is present or absent. The information gain, IG , for a term t is defined (Yang &
Pedersen 1997) as

P( XY
P( X ,Y ) )
IG(t) = log (27)
Xeftt
} Ye{ci P( X ) -
} P(Y)

where {c; }i"=; denote the set of classes, in our case, good and spam.

56.1 x? statistics

The x 2 test of independence compares patterns of observed with expected frequencies to
determine whether or not they differ significantly from each other. As the » 2 distribution is
continuous and the observed frequencies are discrete the y # test is not reliable for small

cell values. Recommendations are to keep frequencies larger than five.

The chi square statistics is defined as

2= (Oy) , (28)
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Where O is the observed and E is the expected frequency calculated from the joint corpus.
The degrees of freedom are defined from the size of the contingency table as df = (I — 1)(J

— 1) . Here is a two way contingency table for a term t

t t
C =
¢ = good A = freq(t, ¢) freq(t , C)
B = D =
¢ # good freqt, ) freqlt  ,c)
We can calculate the y 2 value from
N - ( AD -
2
) CB)
X

= : (29)

(A+C)- B+D)- (A+B):- (C+D)
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where N = A + B + C + D . The degree of freedomis 1= (2 —1) - (2 —1). The y 2
value is zero if t is completely independent of ¢ . Following on from the work of (Yang &
Pedersen 1997) this implementation uses the maximum y 2 value between the feature and

class as the weight.

2 2 (30)

*ma= arg

X max{y (tci )}

5.6.2 Probability Ratio

Probability ratio encourages extreme probabilities and is highly dependent on the estimator.

The feature weight is calculated by

p(t | good )
PR(t) =fog ~ | (31)

p(t | spam)

In an anti-spam context the Probability Ratio has previously been used in (Graham 2002),
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but the probability ratio was measured as

PRGra (t ) =

p(spam | t) — 0.5‘. (32)

Since Graham 2002 was published, Probability Ratio has become very popular in the
implementation of spam filters due to its promising performance and simplicity. This work
examines how well Probability Ratio compares to the more sophisticated Information Gain

and y 2 feature selection methods.

Chapter 6: Experimental Results

Algorithm:

With a multinomial event model, samples (feature vectors) represent the frequencies
with which certain events have been generated by a multinomaial(pl,......,pn) where
is the probability that event i occurs (or K such multinomials in the multiclass case).
A feature vector (x1,...xn) is then a histogram,with x; counting the number of times
event i was observed in a particular instance. This is the event model typically used
for document classification, with events representing the occurrence of a word in a

single document.The likelihood of observing a histogram x is given by

(2 %:)! o
L ! ]_:_[ i

p(x| Cy) =

The multinomial naive Bayes classifier becomes a linear classifierwhen expressed in

log-space:
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logp(C. | x) x log (p{{j’k}lﬂ_‘[phm)

i=1

L)
=logp(Cy) + =i - logpyi
i=1
=bh+ w;:x

where b=log,(Cx)andwy;=log pi.

Result graph:

Distribution by Classifier

0.96 4
0.94
g 5 2 5 ] :

mm Score

Accuracy Score

= =
[==] w
=] =

=]
=41
o
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Result comparison:

S.no. |Algorithm Accuracy
1. Support vector machine 97.84%
2. K Nearest Neighbour 93.30%
3. Naive Bayes 98.80%
4. Decision Tree 96.05%
5. Logistic Regression 95.33%
6. Random Forest 97.96%

6.1.6 Conclusion

In this chapter a Naive Bayes was applied to find a subset of delimiters for the tokenizer.
Then a filter and a wrapper algorithm were proposed to determine how beneficial a group
of delimiters is to the classification task. The filter approach ran about ten times faster than
the wrapper, but did not produce significantly better subsets than the base-lines. The
wrapper did improve the performance on all corpuses by finding small subsets of
delimiters. This suggested an idea concerning how to select delimiters for a near-optimal
solution, namely to start with space and then add a few more. Since the wrapper generated
subsets had nothing in common apart from space, the recommendation is to only use space

as a delimiter. The wrapper was far too slow to use in spam filter software.
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6.1.7 Future work

In this work it was found that near-optimal solutions are likely to have low cardinality.
Even though the wrapper was too slow to use at run time in spam filter software, it is
believed that a near-optimal solution can be found by using SFS for small delimiter
subsets. Such an algorithm could be included with the spam filtering software and executed
by the user to tune the delimiter subset. During testing an attempt was made to plug 4 = 99

into J ewacc Which resulted in a completely

different delimiter subsets (without space) yielding a precision of 100% and recall of
approximately 60% on the test corpuses. It would be interesting to implement this under

more controlled experiments.
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