

A DISSERTATION

ON

DEVELOPMENT OF SOFTWARE CHANGE PREDICTION

MODEL USING DEEP LEARNING TECHNIQUE

Submitted in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

In

SOFTWARE TECHNOLOGY

Submitted by

Avanish Shah

University Roll No. 2K14/SWT/507

Under the Esteemed Guidance of

Dr. Ruchika Malhotra

Associate Head & Associate Professor,

Department of Computer Science & Engineering, DTU

2015-2018

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY,

DELHI– 110042, INDIA

ii

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

DECLARATION

I hereby declare that the thesis entitled “DEVELOPMENT OF SOFTWARE

CHANGE PREDICTION MODEL USING DEEP LEARNING TECHNIQUE”

which is being submitted to the Delhi Technological University, in partial fulfillment of

the requirements for the award of the degree of Master of Technology in Software

Technology is an authentic work carried out by me. The material contained in this thesis

has not been submitted to any university or institution for the award of any degree.

DATE:

SIGNATURE:

Avanish Shah

2K14/SWT/507

iii

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

CERTIFICATE

This is to certify that thesis entitled “DEVELOPMENT OF SOFTWARE

CHANGE PREDICTION MODEL USING DEEP LEARNING TECHNIQUE”, is a

bona fide work done by Mr. Avanish Shah (Roll No: 2K14/SWT/507) in partial

fulfillment of the requirements for the award of Master of Technology Degree in

Software Technology at Delhi Technological University, Delhi, is an authentic work

carried out by him under my supervision and guidance. The content embodied in this

thesis has not been submitted by him earlier to any University or Institution for the award

of any Degree or Diploma to the best of my knowledge and belief.

DATE:

SIGNATURE:

Dr. RUCHIKA MALHOTRA

ASSOCIATE HEAD & ASSOCIATE PROFESSOR,

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING.

DELHI TECHNOLOGICAL UNIVERSITY, DELHI 110042

iv

ACKNOWLEDGEMENT

I am presenting my work on “DEVELOPMENT OF SOFTWARE CHANGE

PREDICTION MODEL USING DEEP LEARNING TECHNIQUE” with a lot of

pleasure and satisfaction. I take this opportunity to express my deep sense of gratitude

and respect towards my guide Dr. Ruchika Malhotra. I am very much indebted to her

for her generosity, expertise and guidance I have received from her while working on this

project. Without her support and timely guidance the completion of the project would

have seemed a far-fetched dream. In this respect, I find myself lucky to have my guide.

She has guided not only with the subject matter, but also taught the proper style and

techniques of documentation and presentation. Besides my guides, I would like to thank

entire teaching and non-teaching staff in the Department of Computer Science &

Engineering, DTU for all their help during my tenure at DTU. Kudos to all my friends at

DTU for thought provoking discussion and making stay very pleasant. I am also thankful

to the SAMSUNG who has provided me opportunity to enroll in the M.Tech Program

and to gain knowledge through this program. This curriculum provided me the

knowledge and an opportunity to grow in various domains of computer science.

Avanish Shah

2K14/SWT/507

v

ABSTRACT

With the increasing demands of timely delivery of software, software testing has

become very much important for any software product. Hence, testing has become an

inevitable part in software development cycle. Every stakeholder wants product with

minimum bugs or defects at runtime. For removing defects as early as possible, we need

to provide more optimized approach for finding out defects in any software. Even after

spending thousands of dollars on it, we find defects in the software in livable condition,

and these defects hamper the brand image of the organization and provide inconvenience

to end user as well. Hence we need to develop such products which have minimum or no

defect, high in Quality and cost effective in terms of adding new features or modification

in the software.

The cost of finding issues in software is directly proportional to the time of its

finding in the development cycle. Later found bugs are more expensive w.r.t. previously

found defects.

Analysis of statistical analysis of code and software binary together between two

consecutive releases of product based on software metrics can be useful in predicting

changes in the software product. So focus can be shifted to change prone areas majorly in

testing, and hence more chances of finding issues in those areas.

With the help of these software metrics data from Statistical analysis, software

change prediction model can be generated that can be useful in predicting issues in later

releases of same software. Thus the development of predictive models to predict faulty or

defective classes can help & guide the stakeholders in early phase of the software

development cycle.

The objective of thesis is to do statistical analysis of code & binary together and

then build Deep Learning (DL) based multilayer perceptron model [1] over several

Android data sets. The evaluation is performed with an intention to find the effectiveness

of the DL based model for prediction of classes’ change in software based on software

quality metrics. Software quality metrics used in our study are CKJM, McCabe, Halstead

[2] that were generated on 7 android module projects i.e. Contacts, DeskClock,

vi

ExactCalculator, Launcher3, ManagedProvisioning, PackageInstaller, and Settings over

Android Nougat (7.0) and Android Oreo (8.0) releases.

DL model in our study is 2 step-model that predicts potentially change prone

classes within a given set of software project with respect to its metric data. The data set

used in our experiment is organized in two forms: one for learning and other for

prediction purpose, or the training set & the testing set. We evaluate model developed

using DL with Bayes net ML technique [3] over same data and we found that our DL

based multilayer perceptron model performs comparable even on medium size data.

vii

TABLE OF CONTENTS

DECLARATION ... ii

CERTIFICATE ... iii

ACKNOWLEGEMENT ... iv

ABSTRACT .. v

TABLE OF CONTENTS ...vii

LIST OF TABLES ……………………………………………………………………… ix

LIST OF FIGURES ………………………………………………………………………x

LIST OF ACRONYMS…………………………………………………………..……...xii

Chapter 1: Introduction ...1
Chapter 2: Literature Review ..3

Chapter 3: Research Background..5

3.1 Data set generation: ...5

3.1.1 Downloading Source Code using DCRS Tool: ...6
3.1.2 Generating change logs from DCRS tool: ...9
3.1.3 Generating class files from android application: ...10

3.1.4 OO Metrics generation using DCRS Tool: ..11
3.1.4.1 CKJM Metrics: ..13

3.1.4.2 Weighted Methods Per Class (WMC): ...13
3.1.4.3 Depth of Inheritance Tree (DIT): ..13

3.1.4.4 Number of Children (NOC): ...13
3.1.4.5 Coupling between Object Classes (CBO) ...14
3.1.4.6 Response for a Class (RFC) ..14

3.1.4.7 Lack of Cohesion of Methods (LCOM) ..14

3.2 Dependent & Independent Variables: ...15

Chapter 4: Research Methodlogy..16

4.1 Preprocessing of Data: ..16

4.2 Building Model based on Deep learning...17

4.3 Predicting Changes between 2 Android Release ..18

4.4 Performance Evaluation ..20
4.4.1 Evaluation Metrics ...21

4.5 Model Evaluation Results: ..22

4.5.1 Contact Package ...23
4.5.2 DeskClock Package ...25
4.5.3 ExactCalculator Package ...26
4.5.4 Launcher3 Package ..28
4.5.5 ManagedProvisioning Package ..29

viii

4.5.6 PackageInstaller Package ...31

4.5.7 Settings Package ..32
Chapter 5: Conclusion & Future Work ...34
Bibliography ..36

ix

LIST OF TABLES

Table 3.1.1: Dataset for different android packages for android tag: 7.1.1_r28 &

8.0.0_r4 ... 6

Table 3.1.2: List of commands for building Android packages 10

Table 3.1.3: CKJM OO Metrics generated from DCRS Tool .. 12

Table 4.3.1: Table Dataset Description... 20

Table 4.4.1: ROC Values .. 22

Table 4.5.1: Comparison for ML and DL Techniques for Contact Package 23

Table 4.5.2 : Comparison for ML and DL Techniques for DeskClock Package 25

Table 4.5.3: Comparison for ML and DL Techniques for ExactCalculator Package 26

Table 4.5.4: Comparison for ML and DL Techniques for Launcher3 Package 28

Table 4.5.5: Comparison for ML and DL Techniques for ManagedProvisioning

Package ... 29

Table 4.5.6: Comparison for ML and DL Techniques for PackageInstaller Package 31

Table 4.5.7: Comparison for ML and DL Techniques for Settings Package 32

x

LIST OF FIGURES

Figure 3.1.1: DCRS Tool in download mode ... 8

Figure 3.1.2: DCRS Tool - Change logs ... 9

Figure 3.1.3: Class files generated for Contact Package .. 11

Figure 3.1.4: DCRS Tool- OO Metrics generation ... 12

Figure 3.2.1: Dependent and Independent Variables .. 15

Figure 4.2.1: Deeplearning4J and Weka integrated library (University of Waikato,

2018) Specification ... 17

Figure 4.3.1: WEKA - Preprocess .. 18

Figure 4.3.2: Deep learning classification using DL4J-MLP classifier (University of

Waikato, 2018) .. 19

Figure 4.5.1: ROC Curve of ML-Bayes Net Classification for Contact Package 24

Figure 4.5.2: ROC Curve of DL-MLP Classifier for Contact Package 24

Figure 4.5.3: ROC Curve of ML-Bayes Net Classification for DeskClock Package 25

Figure 4.5.4 : ROC Curve of DL-MLP Classifier for DeskClock Package 26

Figure 4.5.5: ROC Curve of ML-Bayes Net Classification for ExactCalculator

Package ... 27

Figure 4.5.6: ROC Curve of DL-MLP Classifier for ExactCalculator Package 27

Figure 4.5.7: ROC Curve of ML-Bayes Net Classification for Launcher3 Package 28

Figure 4.5.8 : ROC Curve of DL-MLP Classifier for Launcher3 Package 29

Figure 4.5.9: ROC Curve of ML-Bayes Net Classification for ManagedProvisioning

Package ... 30

Figure 4.5.10: ROC Curve of DL-MLP Classifier for ManagedProvisioning Package ... 30

Figure 4.5.11: ROC Curve of ML-Bayes Net Classification for PackageInstaller

Package ... 31

Figure 4.5.12: ROC Curve of DL-MLP Classifier for PackageInstaller Package 32

Figure 4.5.13: ROC Curve of ML-Bayes Net Classification for Settings Package 33

xi

Figure 4.5.14: ROC Curve of DL-MLP Classifier for Settings Package 33

Figure 5.1: Above comparison chart shows 10-fold cross validation results for 7

Android Packages w.r.t. DL-MLP classifier and ML-Bayes Net technique 34

xii

 LIST OF ACRONYMS

AUC: Area under Curve .. 22

C&K: Chidamber & Kemerer ... 5

CKJM: Chidamber & Kemerer Java Metrics .. 5

DCRS: Defect Collection and Reporting System ... 5

DL: Deep Learning ... 3, 17

DL-MLP: Deep Learning classification with multilayer perceptron 23

GUI: Graphical User Interface .. 17

LOC: Lines of Code .. 1

ML: Machine Learning ... 3

OO : Object Oriented .. 1

OS: Oeprating System... 5

ROC: Receiver operating Characteristics ... 2

RQ: Research Questions ... 20

SVM: Support Vector Machine .. 4

WEKA: Waikato Environment for Knowledge Analysis ... 18

WMC: Weighted Methods Per Class .. 13

1

Chapter 1: Introduction

A lot of surveys are done in past for calculating cost of software, and more than

90% of projects exceeds the cost of their pre-decided budget. Statistics shows importance

of predicting potential errors early in software development life cycle & taking the

necessary steps before these results come out.

Releasing defect free software projects have always been a difficult task.

Especially for larger projects, the task of testing becomes more expensive. The cost of

fixing a defect increases exponentially if defects are uncovered towards the end of

software development or after product delivery.

On the other hand, evaluating software in a continuous and the disciplined manner

bring many benefits like accurate estimation of project cost & schedule, hence improves

the quality of product & process. We know that most of defects in two consecutive

releases of any software can be found in the delta part of two release. So, software change

prediction between two releases can play a very vital role in increasing testing coverage

of released software. As it helps in keeping focus of testing limited to those change prone

areas of software and thus useful in reducing testing.

Hence, the challenges of effective testing lead to the research area of identifying

change prone classes in early phase & aligning the test activity accordingly to increase

the maximum coverage in software testing.

In this research, we created change prediction model on medium size OO project

using multilayer perceptron based DL technique [1] and calculate its effectiveness by

comparing it to Bayes net Machine Learning (ML) technique [3].

Model is developed using OO metrics [2] [4] that are basic characteristics of any

OO software. These software metrics which capture various properties (like coupling,

cohesion, encapsulation, inheritance, no. of classes, LOC, etc.) of software shall be used

for developing models for predicting classes’ change proneness in the software. OO

metrics’ collected from past release of same software (Android subsequent releases

Nougat to Oreo) are used for developing the change predicting model. The developed

change prediction model can then be subsequently used for classifying the classes of

2

current projects as containing errors or error free and helping to keep testing efforts only

to those areas.

In our work we have developed models for individual projects using Bayes Net

ML technique [3] and DL-MLP [5] based technique and check the performance of this

technique on subsequent releases of 7 application packages of popular mobile operating

system Android. We have used OO metrics for prediction of the change proneness in

classes. The results were evaluated & compared based on ROC [6] analysis.

3

Chapter 2: Literature Review

Several studies were done in the past to relate software metrics with change

proneness using ML and DL techniques. Some of the key studies are discussed below.

Malhotra and Khanna [7] deeply studied about relationship between OO metrics

& change proneness. Change prediction based model is very helpful in identifying the

change prone class which would helpful to focus testing on those areas only and lead to

better results. Model developed can be used to decrease the probability of error

occurrence and helpful in better maintenance.

Malhotra and Khanna [8] have evaluated the performance of ten ML techniques

and searchbased techniques on 3 open source software. Here, author developed change

predicting model using two data sets and performs inter-project validations in order to

obtain the unbiased results & perfromace of this study yeilding the good result.

Singh, Kaur and Malhotra [9] proposed to find out the relationship of OO metrics

& fault proneness in a class. They used seven ML and one logistic regression method so

as to predict faulty class categories. The result obtained from this work was based on data

set fetched from the open source software. The results show that the predictive accuracy

of ML technique Logit Boost is highest with AUC of 0.806. Malhotra [10] also did

comparison of different ML techniques to get better performing method.

 Li, He and Zhu [11] have proposed framework called Defect Prediction using

Convolutional Neural Network (DP-CNN), which allows DL to genetate effective

features. It is based on Abstract Syntax Trees (ASTs) of the programs. Here, Author

firstly extracted the token vectors, then encoded them to the numerical vectors via

mapping & then via words embedding. Then numerical vectors are input to DP-CNN to

learn semantic & structural features of programs automatically. These learned features

were combined with the program’s handcrafted features, for accurate change prediction

in software. This method is evaluated on 7 open source projects for checking F-measure

in the defect predicting software. The experiment results showed that on an average,

performance of defect prediction via convolutional neural network was better then state

of art method by tweleve percentage.

4

 Kaur and Kaur [12] proposed SVM based model to find out the relationship

between OO metrics given by C&K [2] with change susceptibility. The model proposed

was efficiently verified on the KC1 NASA data set using public domain. The

performance of SVM based method was then evaluated using analysis of ROC curves [6].

Based on above experiment results, it is efficient to claim that these models could help us

in planning & testing part by focusing resources on change-prone parts of the code

structure and designing. Thus, the study shows that the SVM method is also useful in the

generation of quality model.

5

Chapter 3: Research Background

Here, we will see the data collection process, tools used in our experiment, OO

metrics generation etc.

3.1 Data set generation:

In this study, OO Metrics were obtained using open source mobile OS – Android.

8 Android packages namely Contacts, DeskClock, ExactCalculator, Launcher3,

ManagedProvisioning, PackageInstaller, and Settings over Android Nougat and Android

Oreo releases” are considered for generating the data sets.

Source code is fetched from Google GIT repository [13]

(https://android.googlesource.com/platform/packages/apps/Contacts/) for above

application packages. Android source code contains java files. First Android code is

compiled to generate the class files from the java Files. Our study is focus only on bugs

related to functionality, i.e. bugs occurred in java files. We built .class files from

downloaded Android Source code through different build methodology [13] of partial

building of Android source code. Once .class files are generated for the above packages,

Defect Collection and Reporting System (DCRS) tool [14] is used to generate the reports

having OO metrics. DCRS tool has integrated CKJM tool which calculates C&K OO

metrics [2] by processing the bytecode of the java classes. The program takes input from

each class & source code file & generated the OO metrics as mentioned in Table 3.1.1.

Characteristics of different android application package with respect to Android

7.1 and 8.0 releases are mentioned in Table 3.1.1.

6

Table 3.1.1: Dataset for different android packages for android tag: 7.1.1_r28 &

8.0.0_r4

Packages Total Classes
Classes having

Changes
 Change Percentage %

Contacts 172 121 70

DeskClock 112 83 73

ExactCalculator 11 9 82

Launcher3 240 182 76

ManagedProvisioning 58 51 88

PackageInstaller 68 26 38

Settings 580 386 67

GIT is open source versioning control system used for source code management task for

Google android code. GIT as a distributed revision control system is aimed for speed,

integrity of data and support for non-linear, distributed workflows. Google GIT

Repository: https://android.googlesource.com/platform/packages/apps/...

Table 3.1.1 contains android app packages data sets with total class, total number

Of classes having changes w.r.t. Android 7.1 and 8.0 release for 7 Application Package.

Changes were generated using DCRS Tools developed by the Delhi Technical University

(DTU) students.

3.1.1 Downloading Source Code using DCRS Tool:

DCRS Tool [15] is a JAVA based automated tool which collects and reports

various changes, defects, bugs or issues which were present in a given version of android

Operating System (OS) w.r.t. previous versions of android OS. Matrix generation from

DCRS Tool depends on 2 subsequent releases of Java Project over GIT.

Various studies in the past have been done that showed change data collected

from the open source operating system i.e. Android is used in research areas of change

suspecting. Some of the commonly traversed areas of change prediction include

https://en.wikipedia.org/wiki/Distributed_revision_control
https://android.googlesource.com/platform/packages/apps/

7

validation & analysis of the effect of given metrics, on change suspecting, and

applicability of such metric suite for the prediction of change suspecting models.

DCRS tool determines the deleted source files, newly added source files, change,

etc. It efficiently collects change data from above files that can be used in research areas.

DCRS tool 1st obtain the defect logs of android source files & then filtered them

to obtain the defects which were present in a given android OS version & have been fixed

in the next released version. The system filters changed logs to extract useful change

information like a unique change identifier and change-description, if any.

DCRS tool also associates changes to the relating source files (java files, or

simply class files). Then, it performs computation of the total number of changes in every

class, i.e., the number of changes that are associated with that class. Finally, the

corresponding values of different metric suites are obtained by the system for each class

files in the source code of previous version of android OS.

Install & configure GIT first, for extracting the change-logs for source code of

each version of the Android OS. Find the path of each android application on Google site:

(https://android.googlesource.com) for corresponding TAGs i.e. android-7.1.1_r28 and

android-8.0.0_r4. Now, download source code of each application for corresponding

versions for DCRS tool or directly using tag and application path with command line,

source code of both the versions is required to generate the change logs. Versioning can

be seen through above GIT Tags. Figure 3.1.1 shown below is the tool UI to download

the source code of android application.

8

Figure 3.1.1: DCRS Tool in download mode

We can fetch information from DCRS as per below method. It processes two

versions of source code to generate change logs using GIT. Change log provides

description regarding the modifications that have been made in the source code. These

change-logs are further processed to get bug-logs. We can retrieve bug-ids and

description from the bug-logs. These bug-ids are mapped to the classes in source code.

Based on the above gathered information, DCRS generates the following reports:

a. Bug-Report –Contains details of each bug data, class-wise (bug-id and

description)

9

b. Bug-Count report - Contains bug-count (class-wise), CKJM and other metrics

data for each class

c. Change Report – contains total inserted and deleted LOC class-wise, for all

incurred changes

We can collect change data from android OS change logs as per below steps:

3.1.2 Generating change logs from DCRS tool:

We can obtain change logs using DCRS tool which processes the Git repository

and obtains change logs of two predetermined consecutive releases (like Android-

7.1.1_r28 and Android-8.0.0_r4). The change is due to errors, addition of new

functionality, refactoring or other related enhancements. Each change constitutes a single

change record. A change logs consists of various information like timestamp of

committing, unique identifier, change description and a list of changed lines of the source

code. Here, we obtained change log for 7 android application projects between their 2

consecutive releases (Android-7.1.1_r28 & Android-8.0.0_r4). Figure 3.1.2 is DCRS tool

UI displaying the GIT change logs.

Figure 3.1.2: DCRS Tool - Change logs

10

3.1.3 Generating class files from android application:

We downloaded the complete android source code separately for Tag android-

7.1.1_r28 and android-8.0.0_r4 for generating the class files that was used for generating

OO metrics.

Then, we built code on the Linux server machine with the below set of commands

[13] to generate binary (.class) files:

Table 3.1.2: List of commands for building Android packages

It will create class files in following folder:

/out/target/obj/APPS/Contacts_Intermediates/classes/. Figure 3.1.3 shows the created

class files at above specified folder location in the system.

Source code along with generated class files combined will be input in DCRS Tool.

11

Figure 3.1.3: Class files generated for Contact Package

3.1.4 OO Metrics generation using DCRS Tool:

OO metrics is used to predict & evaluate the software’s quality. OO metrics

generated is used for change prediction & as an early indicator of externally visible

attributes (like cohesion, coupling, Encapsulation, inheritance etc.) CKJM metrics is the

most popular used as OO Metrics. Other metrics that is also used is Mood metrics [2]

[16] [12].

OO Metrics were generated using DCRS tool on each Java file. We provided the

path of generated class files and downloaded source code to tool, and tool generated OO

metrics for each of the classes of android application packages w.r.t Android 7.1 & 8.0

release. Figure 3.1.4 illustrates the OO metrics generation process.

12

Figure 3.1.4: DCRS Tool- OO Metrics generation

OO metrics generated using DCRS Tool is displayed below in Table 3.1.3:

Table 3.1.3: CKJM OO Metrics generated from DCRS Tool

13

3.1.4.1 CKJM Metrics:

C&K [2] define the so called C&K metric suite. This metric suite offers

informative insight whether developers are following OO principles in their design &

development. This metrics helps managers to create higher style selections. C&K metrics

is incredibly standard among the researchers conjointly also and it’s the most well-known

suite of measurements for OO software quality. C&K had projected six metrics.

Following discussion describes its attributes:

3.1.4.2 Weighted Methods Per Class (WMC):

WMC represents total number of the methods defined in any class. It calculates

the complexity of any class and it is can be checked by the cyclomatic complexity of the

methods. More is the value of WMC shows class is more complex than less values.

Hence, class with low WMC value is better. As WMC is quality mensuration metric and

it provide a plan of needed effort in maintenance of a particular class.

3.1.4.3 Depth of Inheritance Tree (DIT):

DIT shows maximum inheritance distance from the class to its base class. It is the

length of the maximum distance from the child node to the base of the tree. Hence, this

metric calculates how far a class is present in the inheritance hierarchy. It is used to check

number of ancestor classes that can potentially impact this class. DIT shows the

complexity of the behaviour of any class, the design complexity of any class and its

potential reuse. The deeper is the class in its hierarchy, more methods and variables it

will likely to inherit, making it more complex. A high DIT indicates increase errors in the

project and recommended value of DIT is 5 or less.

3.1.4.4 Number of Children (NOC):

NOC shows total number of immediate sub-class of any class. It measures sub

classes’ number that is inheriting the methods of its parent class. NOC size indicates the

reuse of code in any application. If NOC value increases then it means more reuse of

14

code. On the other hand, if NOC value increase, then it means more checking of code

will be needed because more children in a class which indicate greater responsibility of

class. Hence, NOC displays total efforts required to test the class & its reuse.

A high NOC, a large no. of child class, indicates following:

1. High reuse of a base-class. Inheritance is reusing of code.

2. Base class might require more test.

3. Improper use of abstract for parent class.

4. Improper of sub-classes.

5. High NOC indicates lesser bugs in code.

3.1.4.5 Coupling between Object Classes (CBO)

CBO shows coupling between the classes. If any object is using other object then

it is said to be coupled. A class is coupled with another class if the methods of one class

is using the methods of second class. An increase in CBO value shows decrease in class

reusability. Hence, the CBO for each class must be as less as possible.

3.1.4.6 Response for a Class (RFC)

For any response to message, RFC is the number of methods that are called. As

RFC value increases, testing efforts also get increases as testing sequence grows. Design

complexity of a class increases with increase in RFC value and it becomes harder to

understand. On other side, its lower value represents more polymorphism. RFC values

lies between 0 and 50 for any class, it can increase up to 100 for some cases depending

on project.

3.1.4.7 Lack of Cohesion of Methods (LCOM)

LCOM metric represents degree of equality between the methods. It shows the

degree of cohesiveness in the software, i.e. way of designing of the system and amount of

complexity of the class. LCOM is subtraction of the number of method pairs whose

15

likeness is zero and count of method pairs whose similarity is not zero. So, LCOM value

should be kept Low and cohesion high.

3.2 Independent and Dependent Variables:

In our study, the dependent variable is the change that occurred in the class & the

OO metrics of the class is the independent variables. The objective of our study is to

establish the relation of OO metrics and the change in a class. We have used CKJM

metrics with other OO metrics as independent variables. We use DL method to predict

change in a class. Our dependent variable will be forecasted based on the change found

during SDLC. It is also calculated using DCRS tool along with OO metrics generation.

The metrics given by C&K [2] are summarized in Table 3.2. In figure 3.2.1, change is the

dependent variable which dependent on independent variables i.e. WMC & NOC, CBO,

RFC, LCOM & Ca, NPM and DIT.

Figure 3.2.1: Independent and Dependent Variables

 Dependent Variable

 Independent Variable

16

Chapter 4: Research Methodlogy

To answers our research questions, we have conducted an empirical validation of

various ways on two releases of the android OS given in Table 4.3.1 using the following

steps.

1. Pre-processing of android data-sets.

2. Building DL based model for the change prediction.

3. Predicting changes between two android releases.

4. Performance evaluation based on comparison between ML based model and DL

based model.

5. Model evaluation results.

4.1 Preprocessing of Data:

We have used eight OO metrics for change prediction. Uncorrelated and the best

attributes are selected out of a set of OO metrics using correlation based feature selection

[11] technique. This technique is simple, widely used and very fast method in for sub

selecting attributes using the DL technique. In order to predict models using DL

technique, it is important to identify relevant and important features. A relevant feature is

one that is correlated to the class and is less related to other features. Feature selection

technique based on correlation searches all the combinations of attributes to find the best

combination of the independent variables. The feature selection technique based on

correlation is a heuristic technique that computes the correlation between the independent

& dependent variable. The feature selection technique based on correlation is based on

the principle that good attributes are those that are highly correlated among the dependent

variables and that are less correlated amongst them. An attribute is selected if the

correlation with the dependent variable is higher than the highest correlation amongst the

attributes. The aim in our study is to get individual variables that are correlated with the

dependent variables and uncorrelated with other independent variables. Thus, the

17

correlation based feature selection technique handles both redundant and irrelevant

attributes.

4.2 Building Model based on DL Based technique

In DL [1] based computational models made of multiple processing layers that

learn multi-level abstracted data representations.

It finds detailed structure in large data sets by using the back-propagation

algorithm to give idea how any machine should change its internal prams which are used

to differentiate the representation of particular layer from the representation in the

previous layer.

It has been very impressive in state of art in the visual object, speech recognition

and many other domains. With such high effectiveness in other domains, we applied it in

predicting change in two consecutive versions of software.

In this study, we have used DL based technique. After creating the dataset, the

next step is to build a neural network model based on DL. As we are building the model

in JAVA, there is a library called deeplearning4j [5] which is open source library. We

implemented our work using deeplearning4j library and Weka tool [17]. DL [18] can be

implemented using this library alone, but Weka provides GUI platform to input various

tuning parameters used in it, that is useful in reducing time of coding. Figure 4.2.1

illustrates about deeplearning4j library.

Figure 4.2.1: Deeplearning4J and Weka integrated library (University of Waikato,

2018) Specification

18

4.3 Predicting Changes between 2 Android Release

WEKA tool is for implementing algorithms. Correlation based feature selection

technique is applied as preprocessing technique using the OO Metrics attributes- WMC,

NOC, DIT, RFC, CBO, LCOM, Ca, NPM.

In Figure 4.3.1, WEKA is used to pre-process the selected data set. WEKA is

capable of reading ‘.csv’ format files. Data is loaded into WEKA, We have performed a

series of operations using WEKA's attribute. We have used the GUI interface for WEKA

Explorer.

Figure 4.3.1: WEKA - Preprocess

In Figure 4.3.2, we have used WEKA for executing DL based algorithm &

generating results with respect to each android release for different applications. Results

shows performance measures like confusion matrix, sensitivity, precision, F-Measure,

ROC etc.

19

Figure 4.3.2: Deep learning classification using DL4J-MLP classifier (University of

Waikato, 2018)

20

Table 4.3.1: Table Dataset Description

Project Description Versions Total Files Change Rates (%)

Contacts android-7.1.1_r28,

android-8.0.0_r4

171 71.8

DeskClock android-7.1.1_r28,

android-8.0.0_r4

112 74.1

Dialer android-7.1.1_r28,

android-8.0.0_r4

395 99.0

ExactCalculator android-7.1.1_r28,

android-8.0.0_r4

11 81.8

Launcher3 android-7.1.1_r28,

android-8.0.0_r4

240 75.8

ManagedProvisioning android-7.1.1_r28,

android-8.0.0_r4

58 87.9

PackageInstaller android-7.1.1_r28,

android-8.0.0_r4

68 38.2

Settings android-7.1.1_r28,

android-8.0.0_r4

581 66.4

Table 4.3.1 states about dataset description of android applications that, we obtained from

calculation from DCRS Tool developed by Malhotra and Nagpal [15]. Basically, it

calculates changes between files of 2 versions by parsing GIT reference logs file.

4.4 Performance Evaluation

In this section, we evaluate effectiveness of our DL model on comparing accuracy

of change prediction method with other state of art methods. In particular, our evaluation

resolves the following Research Questions (RQ):

RQ1: ROC Analysis for the evaluation of change suspecting / prediction model

based on DL.

21

RQ2: Do the DL based methods outperform traditional ML methods.

All experiments here were executed on Linux-Ubuntu machine. Unless otherwise

stated, every experiment was run for at least 5 times and average result was reported.

4.4.1 Evaluation Metrics

To evaluate the prediction accurateness, we use a widely adopted following metrics [19],

[20]:

F-measure (or F1 score), which is harmonic mean of recall & precision [16]. We

first represent some notations here in displaying recall, precision and F-measure:

 (a) Predict the changed-file as change-file (c → c);

(b) Predict the changed-file as clean-file (c → c1); and

(c) Predict the cleaned-file as changed-file (c1 → c).

N denotes the amount of files in every above definition, e.g., Nc→c for the 1st case.

Then, our metrics can be defined as follows:

Precision: The ratio of total files really buggy to the total files classified as buggy.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛; 𝑃 =
𝑁𝑐 → 𝑐

𝑁𝑐1 → 𝑐

Recall: The ratio of the total files correctly classified as buggy to the total number of truly

buggy files.

𝑅𝑒𝑐𝑎𝑙𝑙; 𝑅 =
𝑁𝑐 → 𝑐

(𝑁𝑐 → 𝑐 + 𝑁𝑐 → 𝑐1)

F-measure: The traditional F-measure (F1 score) is the harmonic mean of total precision

value P and the recall R value.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒; 𝐹 =
2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)

TP Rate: True Positive (TP) is positive tuples correctly labeled by the classifier.TP Rate

is the ratio of TP and TP plus False Negative (FN)

22

𝑇𝑃 𝑅𝑎𝑡𝑒; 𝑇𝑃 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

FP Rate: False Positive (FP) is the false alarms. There are the negative tuples that are

incorrectly labeled as positive. FP Rate is ratio of FN and FN plus True Negative (TN).

𝐹𝑃 𝑅𝑎𝑡𝑒: 𝐹𝑃 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑁)

ROC analysis [6]: The output of the evaluated models can be analyzed using

analysis of ROC curves. ROC curve is a graph plot of sensitivity (on the y-axis) and 1-

specificity (on the x-axis). Many cut off points are selected between 0 and 1 while the

construction of ROC curves. AUC is the measure obtained using ROC analysis lies

between 0 and 1 and higher the AUC value means good is the prediction capacity of the

developed model. This gives us optimal cut off point that maximizes both as well as

sensitivity & the specificity. This measure is very effective in measuring the quality of

the predicted models and is popularly being used in ML research. The following rules can

be used to categorize AUC: Table 4.2 illustrates the validation of outputs from ROC

analysis.

Table 4.4.1: ROC Values

4.5 Model Evaluation Results:

In this section, we will discuss about evaluation of performances of various DL

techniques for model based on change prediction for generated data set OO metrics

indicated above and the outcome of the prediction model based on our work. Below are

the evaluation parameters for used DL Algorithms with respect to 2 Android OS release

23

on 8 android modules. The results of models predicted using DL techniques were

predicted using WEKA tool with the help of deeplearning4j library. The predicted

models are verified using 10-fold cross validation technique in weka tool.

After this, we empirically compared the ML techniques and the results were

evaluated on basis of the AUC. The AUC is widely accepted by researchers as a primary

indicator of performance comparison of the various predicted models as AUC is helpful

in dealing with unbalanced and noisy data also and it doesn’t get impacted by the changes

in the class distributions. The deep technique yielding best AUC for a given release will

be highlighted.

Table 4.2 to Table 4.8 shows results for different performance parameters TP rate

& FP Rate, Precision & Recall, F Measure, & ROC Area with respect to various ML

Techniques.

4.5.1 Contact Package

Table 4.5.1 shows comparison between DL classification with multilayer

perceptron (DL-MLP) and ML classification with Bayes Net technique. Figure 4.5.1

displays the ROC curves of Bayes Net ML technique and figure 4.5.2 shows the ROC

curves of the MLP based on DL technique.

Table 4.5.1: Comparison for ML and DL Techniques for Contact Package

24

Figure 4.5.1: ROC Curve of ML-Bayes Net Classification for Contact Package

Figure 4.5.2: ROC Curve of DL-MLP Classifier for Contact Package

25

4.5.2 DeskClock Package

Table 4.5.2 shows comparison between DL-MLP and ML classification with

Bayes Net technique. Figure 4.5.3 shows the ROC curves of Bayes Net ML technique &

figure 4.5.4 shows the ROC curves of the MLP based on DL technique. Here, ML based

Bayes net technique outperforms DL-MLP technique.

Table 4.5.2 : Comparison for ML and DL Techniques for DeskClock Package

Figure 4.5.3: ROC Curve of ML-Bayes Net Classification for DeskClock Package

26

Figure 4.5.4 : ROC Curve of DL-MLP Classifier for DeskClock Package

4.5.3 ExactCalculator Package

Table 4.5.3 shows comparison between DL-MLP and ML classification with

Bayes Net technique. Figure 4.5.5 shows the ROC curves of Bayes Net ML technique &

figure 4.5.6 displays the ROC curves of the MLP based on DL technique. Here, DL-MLP

technique outperforms ML-Bayes Net technique.

Table 4.5.3: Comparison for ML and DL Techniques for ExactCalculator Package

27

Figure 4.5.5: ROC Curve of ML-Bayes Net Classification for ExactCalculator

Package

Figure 4.5.6: ROC Curve of DL-MLP Classifier for ExactCalculator Package

28

4.5.4 Launcher3 Package

Table 4.5.4 shows comparison between DL-MLP and ML classification with

Bayes Net technique. Figure 4.5.7 illustrates the ROC curves of Bayes Net ML technique

& figure 4.5.8 shows the ROC curves of the MLP based on DL technique. Here,

performance of both the techniques is comparable.

Table 4.5.4: Comparison for ML and DL Techniques for Launcher3 Package

Figure 4.5.7: ROC Curve of ML-Bayes Net Classification for Launcher3 Package

29

Figure 4.5.8 : ROC Curve of DL-MLP Classifier for Launcher3 Package

4.5.5 ManagedProvisioning Package

Table 4.5.5 shows comparison between DL-MLP and ML classification with

Bayes Net Technique. Figure 4.5.9 displays the ROC curves of Bayes Net ML Technique

& figure 4.5.10 shows the ROC curves of the MLP based on DL technique. Here, DL-

MLP technique outperforms ML-Bayes Net technique.

Table 4.5.5: Comparison for ML and DL Techniques for ManagedProvisioning

Package

30

Figure 4.5.9: ROC Curve of ML-Bayes Net Classification for ManagedProvisioning

Package

Figure 4.5.10: ROC Curve of DL-MLP Classifier for ManagedProvisioning Package

31

4.5.6 PackageInstaller Package

Table 4.5.6 shows comparison between DL-MLP and ML classification with

Bayes Net technique. Figure 4.5.11 shows the ROC curves of Bayes Net ML Technique

& figure 4.5.12 displays the ROC curves of the MLP based on DL technique. Here, DL-

MLP technique outperforms ML-Bayes Net technique.

Table 4.5.6: Comparison for ML and DL Techniques for PackageInstaller Package

Figure 4.5.11: ROC Curve of ML-Bayes Net Classification for PackageInstaller

Package

32

Figure 4.5.12: ROC Curve of DL-MLP Classifier for PackageInstaller Package

4.5.7 Settings Package

Table 4.5.7 shows comparison between DL-MLP and ML classification with

Bayes Net technique. Figure 4.5.13 illustrates the ROC curves of Bayes Net ML

technique & figure 4.5.14 illustrates the ROC curves of the MLP based on DL technique.

Here, ML based Bayes net technique outperforms DL-MLP technique.

Table 4.5.7: Comparison for ML and DL Techniques for Settings Package

33

Figure 4.5.13: ROC Curve of ML-Bayes Net Classification for Settings Package

Figure 4.5.14: ROC Curve of DL-MLP Classifier for Settings Package

34

Chapter 5: Conclusion & Future Work

In Our work we have found relationship between CKJM Metrics suite & change

proneness of any class. From our experiment, we found that for some projects ROC

values of DL-MLP technique is better and for some projects, ML-Bayes Net technique

outperforms. But, overall both the techniques are comparable on above project. On the

basis of above experiment, we created package wise performance and it is visible in

Figure 5.1.

Since, due to system limitation, we selected the moderate data size for our project

and under such small data, performance of DL-MLP classifier is very promising and

motivating, as DL-MLP classifier gives competition to ML based technique which works

well on moderate size data. Hence, we can conclude our work on DL-MLP based model

for change prediction developed can be used for forecasting change prone classes in

subsequent releases of Android OS Data sets (like Android Nougat MR1 to Oreo

Release).

Figure 4.5.1: Above comparison chart shows 10-fold cross validation results for 7

Android Packages w.r.t. DL-MLP classifier and ML-Bayes Net technique

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Package-wise performance comparison

DL-MLP ML-Bayes Net

35

In future, we can compare the performance of DL-MLP based model to different

ML based technique. Also, we can apply developed models to different projects that are

similar in nature. We will check performance of above developed models on cross

projects. We have planned to enhance scope of our work to large data sets & more DL

techniques. Our future scope of work includes comparison of various ML technique to

DL technique and conclude that which one is most efficient to use industrially and

provide solution of change prediction that can be helpful to corporate world that can be

helpful in cost reduction of many of the product release.

36

Bibliography

[1] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521, no. 436, p.

436–444, 2015.

[2] B. Curtis, S. B. Sheppard and P. Milliman, "Measuring the Psychological

Complexity of Software Maintenance Tasks with the Halstead and McCabe

Metrics," in IEEE Transactions on Software Engineering, 1979.

[3] N. FriedmanDan, G. and G. , "Bayesian Network Classifiers," Machine Learning, p.

131–163, November 1997.

[4] T. Gyimothy, R. Ferenc and I. Siket, "Empirical validation of object-oriented metrics

on open source software for fault prediction," in IEEE Transactions on Software

Engineering, 2005.

[5] University of Waikato, "WekaDeeplearning4J: Deep Learning using Weka," 31

January 2018. [Online]. Available: https://deeplearning.cms.waikato.ac.nz/.

[Accessed 21 January 2018].

[6] TomFawcett, "An introduction to ROC analysis," pp. 861-874, Pattern Recognition

Letters.

[7] R. Malhotra and M. Khanna, "Investigation of relationship between object-oriented

metrics and change proneness," International Journal of Machine Learning and

Cybernetics, pp. Volume 4, Issue 4, pp 273–286, 2013.

[8] R. Malhotra and M. Khanna, "Mining the impact of object oriented metrics for

change prediction using Machine Learning and Search-based techniques," in

37

Advances in Computing, Communications and Informatics (ICACCI), 2015

International Conference on, Kochi, India, 2015.

[9] Y. Singh, A. Kaur and R. Malhotra, "Software Fault Proneness Prediction Using

Support Vector Machines," in World Congress on Engineering, London, U.K, 2009.

[10] R. Malhotra and R. Raje, “An Empirical Comparison of Machine Learning

Techniques for Software Defect Prediction,” Proceedings of the 8th International

Conference on Bioinspired Information and Communications Technologies, pp. 320-

327, 01 December 2014.

[11] J. Li, P. He and J. Zhu, “Software Defect Prediction via Convolutional Neural

Network,” in IEEE International Conference, Prague, 2017.

[12] A. Kaur and I. Kaur, "An empirical evaluation of classification algorithms for fault

prediction in open source projects," Journal of King Saud University - Computer and

Information Sciences, vol. 30, no. 1, pp. 2-17, 2018.

[13] Google, "Android Open Source Project," 31 December 2017. [Online]. Available:

https://source.android.com/setup/initializing.

[14] R. Malhotra, N. Pritam and K. Nagpal, "Defect Collection and Reporting System for

Git based Open Source Software," in 2014 International Conference on Data Mining

and Intelligent Computing, New Delhi, 2014.

[15] R. Malhotra, K. Nagpal and P. Upmanyu, Defect Collection and Reporting System

for Git based Open Source Software, New Delhi, India: IEEE, 2014.

[16] C. . D. Manning, P. Raghavan and H. Schutze, Introduction to Information Retrieval,

london: Cambridge University Press, 2008.

38

[17] University of Waikato, "Weka 3: Data Mining Software in Java," 22 December

2017. [Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/.

[18] A. Gibson, C. Nicholson and J. Patterson, "Deep Learning for Java," 13 August

2017. [Online]. Available: https://deeplearning4j.org.

[19] J. Nam, "Survey on software defect prediction," in Department of Compter Science

and Engineerning, The Hong Kong University of Science and Technology, Hong

Kong, 2014.

[20] T. Menzies, J. Greenwald and A. Frank, "Data mining static code attributes to learn

defect predictors," IEEE Transactions on Software Engineering, p. 2–13, 11

December 2006.

39

