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ABSTRACT 

 

With the increasing demands of timely delivery of software, software testing has 

become very much important for any software product. Hence, testing has become an 

inevitable part in software development cycle. Every stakeholder wants product with 

minimum bugs or defects at runtime. For removing defects as early as possible, we need 

to provide more optimized approach for finding out defects in any software. Even after 

spending thousands of dollars on it, we find defects in the software in livable condition, 

and these defects hamper the brand image of the organization and provide inconvenience 

to end user as well. Hence we need to develop such products which have minimum or no 

defect, high in Quality and cost effective in terms of adding new features or modification 

in the software. 

The cost of finding issues in software is directly proportional to the time of its 

finding in the development cycle. Later found bugs are more expensive w.r.t. previously 

found defects.  

Analysis of statistical analysis of code and software binary together between two 

consecutive releases of product based on software metrics can be useful in predicting 

changes in the software product. So focus can be shifted to change prone areas majorly in 

testing, and hence more chances of finding issues in those areas.  

With the help of these software metrics data from Statistical analysis, software 

change prediction model can be generated that can be useful in predicting issues in later 

releases of same software. Thus the development of predictive models to predict faulty or 

defective classes can help & guide the stakeholders in early phase of the software 

development cycle. 

The objective of thesis is to do statistical analysis of code & binary together and 

then build Deep Learning (DL) based multilayer perceptron model [1] over several 

Android data sets. The evaluation is performed with an intention to find the effectiveness 

of the DL based model for prediction of classes’ change in software based on software 

quality metrics. Software quality metrics used in our study are CKJM, McCabe, Halstead 

[2] that were generated on 7 android module projects i.e. Contacts, DeskClock, 
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ExactCalculator, Launcher3, ManagedProvisioning, PackageInstaller, and Settings over 

Android Nougat (7.0) and Android Oreo (8.0) releases.  

DL model in our study is 2 step-model that predicts potentially change prone 

classes within a given set of software project with respect to its metric data. The data set 

used in our experiment is organized in two forms: one for learning and other for 

prediction purpose, or the training set & the testing set. We evaluate model developed 

using DL with Bayes net ML technique [3] over same data and we found that our DL 

based multilayer perceptron model performs comparable even on medium size data. 
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Chapter 1:    Introduction 

A lot of surveys are done in past for calculating cost of software, and more than 

90% of projects exceeds the cost of their pre-decided budget. Statistics shows importance 

of predicting potential errors early in software development life cycle & taking the 

necessary steps before these results come out.  

Releasing defect free software projects have always been a difficult task. 

Especially for larger projects, the task of testing becomes more expensive. The cost of 

fixing a defect increases exponentially if defects are uncovered towards the end of 

software development or after product delivery. 

On the other hand, evaluating software in a continuous and the disciplined manner 

bring many benefits like accurate estimation of project cost & schedule, hence improves 

the quality of product & process. We know that most of defects in two consecutive 

releases of any software can be found in the delta part of two release. So, software change 

prediction between two releases can play a very vital role in increasing testing coverage 

of released software. As it helps in keeping focus of testing limited to those change prone 

areas of software and thus useful in reducing testing.  

Hence, the challenges of effective testing lead to the research area of identifying 

change prone classes in early phase & aligning the test activity accordingly to increase 

the maximum coverage in software testing.  

In this research, we created change prediction model on medium size OO project 

using multilayer perceptron based DL technique [1] and calculate its effectiveness by 

comparing it to Bayes net Machine Learning (ML) technique [3].  

Model is developed using OO metrics [2] [4] that are basic characteristics of any 

OO software. These software metrics which capture various properties (like coupling, 

cohesion, encapsulation, inheritance, no. of classes, LOC, etc.) of software shall be used 

for developing models for predicting classes’ change proneness in the software. OO 

metrics’ collected from past release of same software (Android subsequent releases 

Nougat to Oreo) are used for developing the change predicting model. The developed 

change prediction model can then be subsequently used for classifying the classes of 



 

2 

 

current projects as containing errors or error free and helping to keep testing efforts only 

to those areas. 

In our work we have developed models for individual projects using Bayes Net 

ML technique [3] and DL-MLP [5] based technique and check the performance of this 

technique on subsequent releases of 7 application packages of popular mobile operating 

system Android. We have used OO metrics for prediction of the change proneness in 

classes. The results were evaluated & compared based on ROC [6] analysis. 
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Chapter 2:    Literature Review 

 

Several studies were done in the past to relate software metrics with change 

proneness using ML and DL techniques. Some of the key studies are discussed below. 

Malhotra and Khanna [7] deeply studied about relationship between OO metrics 

& change proneness. Change prediction based model is very helpful in identifying the 

change prone class which would helpful to focus testing on those areas only and lead to 

better results. Model developed can be used to decrease the probability of error 

occurrence and helpful in better maintenance. 

Malhotra and Khanna [8] have evaluated the performance of ten ML techniques 

and searchbased techniques on 3 open source software. Here, author developed change 

predicting model using two data sets and performs inter-project validations in order to 

obtain the unbiased results & perfromace of this study yeilding the good result.  

Singh, Kaur and Malhotra [9] proposed to find out the relationship of OO metrics 

& fault proneness in a class. They used seven ML and one logistic regression method so 

as to predict faulty class categories. The result obtained from this work was based on data 

set fetched from the open source software. The results show that the predictive accuracy 

of ML technique Logit Boost is highest with AUC of 0.806. Malhotra [10] also did 

comparison of different ML techniques to get better performing method. 

 Li, He and Zhu [11] have proposed framework called Defect Prediction using 

Convolutional Neural Network (DP-CNN), which allows DL to genetate effective 

features. It is based on Abstract Syntax Trees (ASTs) of the programs. Here, Author 

firstly extracted the token vectors, then encoded them to the numerical vectors via 

mapping & then via words embedding. Then numerical vectors are input to DP-CNN to 

learn semantic & structural features of programs automatically. These learned features 

were combined with the program’s handcrafted features, for accurate change  prediction 

in software. This method is evaluated on 7 open source projects for checking F-measure 

in the defect predicting software. The experiment results showed that on an average, 

performance of defect prediction via convolutional neural network was better then state 

of art method by tweleve percentage.  
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 Kaur and Kaur [12] proposed SVM based model to find out the relationship 

between OO metrics given by C&K [2] with change susceptibility. The model proposed 

was efficiently verified on the KC1 NASA data set using public domain. The 

performance of SVM based method was then evaluated using analysis of ROC curves [6]. 

Based on above experiment results, it is efficient to claim that these models could help us 

in planning & testing part by focusing resources on change-prone parts of the code 

structure and designing. Thus, the study shows that the SVM method is also useful in the 

generation of quality model. 
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Chapter 3:    Research Background 

 

Here, we will see the data collection process, tools used in our experiment, OO 

metrics generation etc. 

 

3.1 Data set generation:  

In this study, OO Metrics were obtained using open source mobile OS – Android. 

8 Android packages namely Contacts, DeskClock, ExactCalculator, Launcher3, 

ManagedProvisioning, PackageInstaller, and Settings over Android Nougat and Android 

Oreo releases” are considered for generating the data sets.  

Source code is fetched from Google GIT repository [13] 

(https://android.googlesource.com/platform/packages/apps/Contacts/) for above 

application packages. Android source code contains java files. First Android code is 

compiled to generate the class files from the java Files. Our study is focus only on bugs 

related to functionality, i.e. bugs occurred in java files. We built .class files from 

downloaded Android Source code through different build methodology [13] of partial 

building of Android source code. Once .class files are generated for the above packages, 

Defect Collection and Reporting System (DCRS) tool [14] is used to generate the reports 

having OO metrics. DCRS tool has integrated CKJM tool which calculates C&K OO 

metrics [2] by processing the bytecode of the java classes. The program takes input from 

each class & source code file & generated the OO metrics as mentioned in Table 3.1.1.  

Characteristics of different android application package with respect to Android 

7.1 and 8.0 releases are mentioned in Table 3.1.1. 
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Table 3.1.1: Dataset for different android packages for android tag: 7.1.1_r28 & 

8.0.0_r4 

Packages Total Classes 
Classes having 

Changes 
 Change Percentage % 

Contacts 172 121 70 

DeskClock 112 83 73 

ExactCalculator 11 9 82 

Launcher3 240 182 76 

ManagedProvisioning 58 51 88 

PackageInstaller 68 26 38 

Settings 580 386 67 

 

GIT is open source versioning control system used for source code management task for 

Google android code. GIT as a distributed revision control system is aimed for speed, 

integrity of data and support for non-linear, distributed workflows. Google GIT 

Repository: https://android.googlesource.com/platform/packages/apps/... 

Table 3.1.1 contains android app packages data sets with total class, total number 

Of classes having changes w.r.t. Android 7.1 and 8.0 release for 7 Application Package. 

Changes were generated using DCRS Tools developed by the Delhi Technical University 

(DTU) students. 

 

3.1.1 Downloading Source Code using DCRS Tool: 

DCRS Tool [15] is a JAVA based automated tool which collects and reports 

various changes, defects, bugs or issues which were present in a given version of android 

Operating System (OS) w.r.t. previous versions of android OS. Matrix generation from 

DCRS Tool depends on 2 subsequent releases of Java Project over GIT. 

Various studies in the past have been done that showed change data collected 

from the open source operating system i.e. Android is used in research areas of change 

suspecting. Some of the commonly traversed areas of change prediction include 

https://en.wikipedia.org/wiki/Distributed_revision_control
https://android.googlesource.com/platform/packages/apps/
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validation & analysis of the effect of given metrics, on change suspecting, and 

applicability of such metric suite for the prediction of change suspecting models.  

DCRS tool determines the deleted source files, newly added source files, change, 

etc. It efficiently collects change data from above files that can be used in research areas.  

DCRS tool 1st obtain the defect logs of android source files & then filtered them 

to obtain the defects which were present in a given android OS version & have been fixed 

in the next released version. The system filters changed logs to extract useful change 

information like a unique change identifier and change-description, if any.  

DCRS tool also associates changes to the relating source files (java files, or 

simply class files). Then, it performs computation of the total number of changes in every 

class, i.e., the number of changes that are associated with that class. Finally, the 

corresponding values of different metric suites are obtained by the system for each class 

files in the source code of previous version of android OS. 

Install & configure GIT first, for extracting the change-logs for source code of 

each version of the Android OS. Find the path of each android application on Google site: 

(https://android.googlesource.com) for corresponding TAGs i.e. android-7.1.1_r28 and 

android-8.0.0_r4. Now, download source code of each application for corresponding 

versions for DCRS tool or directly using tag and application path with command line, 

source code of both the versions is required to generate the change logs. Versioning can 

be seen through above GIT Tags. Figure 3.1.1 shown below is the tool UI to download 

the source code of android application. 
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Figure 3.1.1: DCRS Tool in download mode 

 

We can fetch information from DCRS as per below method. It processes two 

versions of source code to generate change logs using GIT. Change log provides 

description regarding the modifications that have been made in the source code. These 

change-logs are further processed to get bug-logs. We can retrieve bug-ids and 

description from the bug-logs. These bug-ids are mapped to the classes in source code. 

Based on the above gathered information, DCRS generates the following reports: 

a. Bug-Report –Contains details of each bug data, class-wise (bug-id and 

description)  
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b. Bug-Count report - Contains bug-count (class-wise), CKJM and other metrics 

data for each class  

c. Change Report – contains total inserted and deleted LOC class-wise, for all 

incurred changes  

We can collect change data from android OS change logs as per below steps: 

   

3.1.2 Generating change logs from DCRS tool:   

We can obtain change logs using DCRS tool which processes the Git repository 

and obtains change logs of two predetermined consecutive releases (like Android-

7.1.1_r28 and Android-8.0.0_r4). The change is due to errors, addition of new 

functionality, refactoring or other related enhancements. Each change constitutes a single 

change record. A change logs consists of various information like timestamp of 

committing, unique identifier, change description and a list of changed lines of the source 

code. Here, we obtained change log for 7 android application projects between their 2 

consecutive releases (Android-7.1.1_r28 & Android-8.0.0_r4). Figure 3.1.2 is DCRS tool 

UI displaying the GIT change logs. 

 

 

Figure 3.1.2: DCRS Tool - Change logs 
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3.1.3 Generating class files from android application: 

We downloaded the complete android source code separately for Tag android-

7.1.1_r28 and android-8.0.0_r4 for generating the class files that was used for generating 

OO metrics. 

Then, we built code on the Linux server machine with the below set of commands 

[13] to generate binary (.class) files:  

Table 3.1.2: List of commands for building Android packages 

 

It will create class files in following folder: 

/out/target/obj/APPS/Contacts_Intermediates/classes/. Figure 3.1.3 shows the created 

class files at above specified folder location in the system. 

Source code along with generated class files combined will be input in DCRS Tool. 



 

11 

 

 

Figure 3.1.3: Class files generated for Contact Package 

 

3.1.4 OO Metrics generation using DCRS Tool: 

OO metrics is used to predict & evaluate the software’s quality. OO metrics 

generated is used for change prediction & as an early indicator of externally visible 

attributes (like cohesion, coupling, Encapsulation, inheritance etc.) CKJM metrics is the 

most popular used as OO Metrics. Other metrics that is also used is Mood metrics [2] 

[16] [12]. 

OO Metrics were generated using DCRS tool on each Java file. We provided the 

path of generated class files and downloaded source code to tool, and tool generated OO 

metrics for each of the classes of android application packages w.r.t Android 7.1 & 8.0 

release.  Figure 3.1.4 illustrates the OO metrics generation process. 
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Figure 3.1.4: DCRS Tool- OO Metrics generation 

 

OO metrics generated using DCRS Tool is displayed below in Table 3.1.3: 

Table 3.1.3: CKJM OO Metrics generated from DCRS Tool 
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3.1.4.1 CKJM Metrics:  

C&K [2] define the so called C&K metric suite. This metric suite offers 

informative insight whether developers are following OO principles in their design & 

development. This metrics helps managers to create higher style selections. C&K metrics 

is incredibly standard among the researchers conjointly also and it’s the most well-known 

suite of measurements for OO software quality. C&K had projected six metrics. 

Following discussion describes its attributes: 

 

3.1.4.2 Weighted Methods Per Class (WMC): 

WMC represents total number of the methods defined in any class. It calculates 

the complexity of any class and it is can be checked by the cyclomatic complexity of the 

methods. More is the value of WMC shows class is more complex than less values. 

Hence, class with low WMC value is better. As WMC is quality mensuration metric and 

it provide a plan of needed effort in maintenance of a particular class.  

 

3.1.4.3 Depth of Inheritance Tree (DIT): 

DIT shows maximum inheritance distance from the class to its base class. It is the 

length of the maximum distance from the child node to the base of the tree. Hence, this 

metric calculates how far a class is present in the inheritance hierarchy. It is used to check 

number of ancestor classes that can potentially impact this class. DIT shows the 

complexity of the behaviour of any class, the design complexity of any class and its 

potential reuse. The deeper is the class in its hierarchy, more methods and variables it 

will likely to inherit, making it more complex. A high DIT indicates increase errors in the 

project and recommended value of DIT is 5 or less. 

 

3.1.4.4 Number of Children (NOC): 

NOC shows total number of immediate sub-class of any class. It measures sub 

classes’ number that is inheriting the methods of its parent class. NOC size indicates the 

reuse of code in any application. If NOC value increases then it means more reuse of 
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code. On the other hand, if NOC value increase, then it means more checking of code 

will be needed because more children in a class which indicate greater responsibility of 

class. Hence, NOC displays total efforts required to test the class & its reuse. 

A high NOC, a large no. of child class, indicates following: 

1. High reuse of a base-class. Inheritance is reusing of code. 

2. Base class might require more test. 

3. Improper use of abstract for parent class. 

4. Improper of sub-classes. 

5. High NOC indicates lesser bugs in code. 

 

3.1.4.5 Coupling between Object Classes (CBO) 

CBO shows coupling between the classes. If any object is using other object then 

it is said to be coupled. A class is coupled with another class if the methods of one class 

is using the methods of second class. An increase in CBO value shows decrease in class 

reusability. Hence, the CBO for each class must be as less as possible. 

 

3.1.4.6 Response for a Class (RFC) 

For any response to message, RFC is the number of methods that are called. As 

RFC value increases, testing efforts also get increases as testing sequence grows. Design 

complexity of a class increases with increase in RFC value and it becomes harder to 

understand. On other side, its lower value represents more polymorphism. RFC values 

lies between 0 and 50 for any class, it can increase up to 100 for some cases depending 

on project. 

 

3.1.4.7 Lack of Cohesion of Methods (LCOM) 

LCOM metric represents degree of equality between the methods. It shows the 

degree of cohesiveness in the software, i.e. way of designing of the system and amount of 

complexity of the class. LCOM is subtraction of the number of method pairs whose 
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likeness is zero and count of method pairs whose similarity is not zero. So, LCOM value 

should be kept Low and cohesion high. 

 

3.2 Independent and Dependent Variables: 

In our study, the dependent variable is the change that occurred in the class & the 

OO metrics of the class is the independent variables. The objective of our study is to 

establish the relation of OO metrics and the change in a class. We have used CKJM 

metrics with other OO metrics as independent variables. We use DL method to predict 

change in a class. Our dependent variable will be forecasted based on the change found 

during SDLC. It is also calculated using DCRS tool along with OO metrics generation. 

The metrics given by C&K [2] are summarized in Table 3.2. In figure 3.2.1, change is the 

dependent variable which dependent on independent variables i.e. WMC & NOC, CBO, 

RFC, LCOM & Ca, NPM and DIT. 

 

 

Figure 3.2.1: Independent and Dependent Variables 

 
 Dependent Variable 

 Independent Variable 
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Chapter 4:    Research Methodlogy 

 

To answers our research questions, we have conducted an empirical validation of 

various ways on two releases of the android OS given in Table 4.3.1 using the following 

steps. 

1. Pre-processing of android data-sets. 

2. Building DL based model for the change prediction.  

3. Predicting changes between two android releases.  

4. Performance evaluation based on comparison between ML based model and DL 

based model. 

5. Model evaluation results. 

 

4.1 Preprocessing of Data: 

We have used eight OO metrics for change prediction. Uncorrelated and the best 

attributes are selected out of a set of OO metrics using correlation based feature selection 

[11] technique. This technique is simple, widely used and very fast method in for sub 

selecting attributes using the DL technique. In order to predict models using DL 

technique, it is important to identify relevant and important features. A relevant feature is 

one that is correlated to the class and is less related to other features. Feature selection 

technique based on correlation searches all the combinations of attributes to find the best 

combination of the independent variables. The feature selection technique based on 

correlation is a heuristic technique that computes the correlation between the independent 

& dependent variable. The feature selection technique based on correlation is based on 

the principle that good attributes are those that are highly correlated among the dependent 

variables and that are less correlated amongst them. An attribute is selected if the 

correlation with the dependent variable is higher than the highest correlation amongst the 

attributes. The aim in our study is to get individual variables that are correlated with the 

dependent variables and uncorrelated with other independent variables. Thus, the 
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correlation based feature selection technique handles both redundant and irrelevant 

attributes. 

4.2 Building Model based on DL Based technique  

In DL [1] based computational models made of multiple processing layers that 

learn multi-level abstracted data representations. 

It finds detailed structure in large data sets by using the back-propagation 

algorithm to give idea how any machine should change its internal prams which are used 

to differentiate the representation of particular layer from the representation in the 

previous layer.  

It has been very impressive in state of art in the visual object, speech recognition 

and many other domains. With such high effectiveness in other domains, we applied it in 

predicting change in two consecutive versions of software. 

In this study, we have used DL based technique. After creating the dataset, the 

next step is to build a neural network model based on DL. As we are building the model 

in JAVA, there is a library called deeplearning4j [5] which is open source library. We 

implemented our work using deeplearning4j library and Weka tool [17]. DL [18] can be 

implemented using this library alone, but Weka provides GUI platform to input various 

tuning parameters used in it, that is useful in reducing time of coding. Figure 4.2.1 

illustrates about deeplearning4j library. 

 

 

Figure 4.2.1: Deeplearning4J and Weka integrated library (University of Waikato, 

2018) Specification 
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4.3 Predicting Changes between 2 Android Release 

WEKA tool is for implementing algorithms. Correlation based feature selection  

technique is applied as preprocessing technique using the OO Metrics attributes- WMC, 

NOC, DIT, RFC, CBO, LCOM, Ca, NPM. 

In Figure 4.3.1, WEKA is used to pre-process the selected data set. WEKA is 

capable of reading ‘.csv’ format files. Data is loaded into WEKA, We have performed a 

series of operations using WEKA's attribute. We have used the GUI interface for WEKA 

Explorer. 

 

Figure 4.3.1: WEKA - Preprocess 

In Figure 4.3.2, we have used WEKA for executing DL based algorithm & 

generating results with respect to each android release for different applications. Results 

shows performance measures like confusion matrix, sensitivity, precision, F-Measure, 

ROC etc. 
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Figure 4.3.2: Deep learning classification using DL4J-MLP classifier (University of 

Waikato, 2018) 
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Table 4.3.1: Table Dataset Description 

Project Description Versions Total Files Change Rates (%) 

Contacts android-7.1.1_r28, 

android-8.0.0_r4 

171 71.8 

DeskClock android-7.1.1_r28, 

android-8.0.0_r4 

112 74.1 

Dialer android-7.1.1_r28, 

android-8.0.0_r4 

395 99.0 

ExactCalculator android-7.1.1_r28, 

android-8.0.0_r4 

11 81.8 

Launcher3 android-7.1.1_r28, 

android-8.0.0_r4 

240 75.8 

ManagedProvisioning android-7.1.1_r28, 

android-8.0.0_r4 

58 87.9 

PackageInstaller android-7.1.1_r28, 

android-8.0.0_r4 

68 38.2 

Settings android-7.1.1_r28, 

android-8.0.0_r4 

581 66.4 

 

 

Table 4.3.1 states about dataset description of android applications that, we obtained from 

calculation from DCRS Tool developed by Malhotra and Nagpal [15]. Basically, it 

calculates changes between files of 2 versions by parsing GIT reference logs file. 

  

4.4 Performance Evaluation 

In this section, we evaluate effectiveness of our DL model on comparing accuracy 

of change prediction method with other state of art methods. In particular, our evaluation 

resolves the following Research Questions (RQ): 

RQ1: ROC Analysis for the evaluation of change suspecting / prediction model 

based on DL. 
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RQ2: Do the DL based methods outperform traditional ML methods. 

All experiments here were executed on Linux-Ubuntu machine. Unless otherwise 

stated, every experiment was run for at least 5 times and average result was reported. 

 

4.4.1 Evaluation Metrics 

To evaluate the prediction accurateness, we use a widely adopted following metrics [19], 

[20]:  

F-measure (or F1 score), which is harmonic mean of recall & precision [16]. We 

first represent some notations here in displaying recall, precision and F-measure:  

 (a) Predict the changed-file as change-file (c → c); 

(b) Predict the changed-file as clean-file (c → c1); and  

(c) Predict the cleaned-file as changed-file (c1 → c). 

 

N denotes the amount of files in every above definition, e.g., Nc→c for the 1st case. 

Then, our metrics can be defined as follows: 

 

Precision: The ratio of total files really buggy to the total files classified as buggy. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛; 𝑃 =
𝑁𝑐 → 𝑐 

𝑁𝑐1 → 𝑐
 

 

Recall: The ratio of the total files correctly classified as buggy to the total number of truly 

buggy files. 

𝑅𝑒𝑐𝑎𝑙𝑙;  𝑅 =
𝑁𝑐 → 𝑐

(𝑁𝑐 → 𝑐 +  𝑁𝑐 → 𝑐1)
 

 

F-measure: The traditional F-measure (F1 score) is the harmonic mean of total precision 

value P and the recall R value. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒;  𝐹 =
2 ∗  𝑃 ∗  𝑅

(𝑃 +  𝑅)
 

 

TP Rate:  True Positive (TP) is positive tuples correctly labeled by the classifier.TP Rate 

is the ratio of TP and TP plus False Negative (FN) 
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𝑇𝑃 𝑅𝑎𝑡𝑒;  𝑇𝑃 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

FP Rate: False Positive (FP) is the false alarms. There are the negative tuples that are 

incorrectly labeled as positive. FP Rate is ratio of FN and FN plus True Negative (TN). 

𝐹𝑃 𝑅𝑎𝑡𝑒: 𝐹𝑃 =
𝐹𝑃

(𝐹𝑃 +  𝑇𝑁)
 

 

ROC analysis [6]: The output of the evaluated models can be analyzed using 

analysis of ROC curves. ROC curve is a graph plot of sensitivity (on the y-axis) and 1-

specificity (on the x-axis). Many cut off points are selected between 0 and 1 while the 

construction of ROC curves. AUC is the measure obtained using ROC analysis lies 

between 0 and 1 and higher the AUC value means good is the prediction capacity of the 

developed model. This gives us optimal cut off point that maximizes both as well as 

sensitivity & the specificity. This measure is very effective in measuring the quality of 

the predicted models and is popularly being used in ML research. The following rules can 

be used to categorize AUC: Table 4.2 illustrates the validation of outputs from ROC 

analysis. 

Table 4.4.1: ROC Values 

 

 

4.5 Model Evaluation Results:  

In this section, we will discuss about evaluation of performances of various DL 

techniques for model based on change prediction for generated data set OO metrics 

indicated above and the outcome of the prediction model based on our work. Below are 

the evaluation parameters for used DL Algorithms with respect to 2 Android OS release 



 

23 

 

on 8 android modules. The results of models predicted using DL techniques were 

predicted using WEKA tool with the help of deeplearning4j library. The predicted 

models are verified using 10-fold cross validation technique in weka tool. 

 

After this, we empirically compared the ML techniques and the results were 

evaluated on basis of the AUC. The AUC is widely accepted by researchers as a primary 

indicator of performance comparison of the various predicted models as AUC is helpful 

in dealing with unbalanced and noisy data also and it doesn’t get impacted by the changes 

in the class distributions. The deep technique yielding best AUC for a given release will 

be highlighted.  

Table 4.2 to Table 4.8 shows results for different performance parameters TP rate 

& FP Rate, Precision & Recall, F Measure, & ROC Area with respect to various ML 

Techniques. 

 

4.5.1 Contact Package 

Table 4.5.1 shows comparison between DL classification with multilayer 

perceptron (DL-MLP) and ML classification with Bayes Net technique. Figure 4.5.1 

displays the ROC curves of Bayes Net ML technique and figure 4.5.2 shows the ROC 

curves of the MLP based on DL technique. 

 

Table 4.5.1: Comparison for ML and DL Techniques for Contact Package 
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Figure 4.5.1: ROC Curve of ML-Bayes Net Classification for Contact Package 

 

 

Figure 4.5.2: ROC Curve of DL-MLP Classifier for Contact Package 
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4.5.2 DeskClock Package 

Table 4.5.2 shows comparison between DL-MLP and ML classification with 

Bayes Net technique. Figure 4.5.3 shows the ROC curves of Bayes Net ML technique & 

figure 4.5.4 shows the ROC curves of the MLP based on DL technique.  Here, ML based 

Bayes net technique outperforms DL-MLP technique. 

 

Table 4.5.2 : Comparison for ML and DL Techniques for DeskClock Package 

 

 

 

Figure 4.5.3: ROC Curve of ML-Bayes Net Classification for DeskClock Package 
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Figure 4.5.4 : ROC Curve of DL-MLP Classifier for DeskClock Package 

 

4.5.3 ExactCalculator Package 

Table 4.5.3 shows comparison between DL-MLP and ML classification with 

Bayes Net technique. Figure 4.5.5 shows the ROC curves of Bayes Net ML technique & 

figure 4.5.6 displays the ROC curves of the MLP based on DL technique. Here, DL-MLP 

technique outperforms ML-Bayes Net technique. 

 

Table 4.5.3: Comparison for ML and DL Techniques for ExactCalculator Package 
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Figure 4.5.5: ROC Curve of ML-Bayes Net Classification for ExactCalculator 

Package 

 

Figure 4.5.6: ROC Curve of DL-MLP Classifier for ExactCalculator Package 
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4.5.4 Launcher3 Package 

Table 4.5.4 shows comparison between DL-MLP and ML classification with 

Bayes Net technique. Figure 4.5.7 illustrates the ROC curves of Bayes Net ML technique 

& figure 4.5.8 shows the ROC curves of the MLP based on DL technique.  Here, 

performance of both the techniques is comparable. 

 

Table 4.5.4: Comparison for ML and DL Techniques for Launcher3 Package 

 

 

Figure 4.5.7: ROC Curve of ML-Bayes Net Classification for Launcher3 Package 



 

29 

 

 

Figure 4.5.8 : ROC Curve of DL-MLP Classifier for Launcher3 Package 

 

4.5.5 ManagedProvisioning Package 

Table 4.5.5 shows comparison between DL-MLP and ML classification with 

Bayes Net Technique. Figure 4.5.9 displays the ROC curves of Bayes Net ML Technique 

& figure 4.5.10 shows the ROC curves of the MLP based on DL technique. Here, DL-

MLP technique outperforms ML-Bayes Net technique. 

 

Table 4.5.5: Comparison for ML and DL Techniques for ManagedProvisioning 

Package 
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Figure 4.5.9: ROC Curve of ML-Bayes Net Classification for ManagedProvisioning 

Package 

 

Figure 4.5.10: ROC Curve of DL-MLP Classifier for ManagedProvisioning Package 



 

31 

 

4.5.6 PackageInstaller Package 

Table 4.5.6 shows comparison between DL-MLP and ML classification with 

Bayes Net technique. Figure 4.5.11 shows the ROC curves of Bayes Net ML Technique 

& figure 4.5.12 displays the ROC curves of the MLP based on DL technique. Here, DL-

MLP technique outperforms ML-Bayes Net technique. 

 

Table 4.5.6: Comparison for ML and DL Techniques for PackageInstaller Package 

 

 

Figure 4.5.11: ROC Curve of ML-Bayes Net Classification for PackageInstaller 

Package 
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Figure 4.5.12: ROC Curve of DL-MLP Classifier for PackageInstaller Package 

 

4.5.7 Settings Package 

Table 4.5.7 shows comparison between DL-MLP and ML classification with 

Bayes Net technique. Figure 4.5.13 illustrates the ROC curves of Bayes Net ML 

technique & figure 4.5.14 illustrates the ROC curves of the MLP based on DL technique. 

Here, ML based Bayes net technique outperforms DL-MLP technique. 

 

Table 4.5.7: Comparison for ML and DL Techniques for Settings Package 

 



 

33 

 

 

Figure 4.5.13: ROC Curve of ML-Bayes Net Classification for Settings Package 

 

 

Figure 4.5.14: ROC Curve of DL-MLP Classifier for Settings Package 
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Chapter 5:    Conclusion & Future Work 
 

In Our work we have found relationship between CKJM Metrics suite & change 

proneness of any class. From our experiment, we found that for some projects ROC 

values of DL-MLP technique is better and for some projects, ML-Bayes Net technique 

outperforms. But, overall both the techniques are comparable on above project. On the 

basis of above experiment, we created package wise performance and it is visible in 

Figure 5.1.  

Since, due to system limitation, we selected the moderate data size for our project 

and under such small data, performance of DL-MLP classifier is very promising and 

motivating, as DL-MLP classifier gives competition to ML based technique which works 

well on moderate size data. Hence, we can conclude our work on DL-MLP based model 

for change prediction developed can be used for forecasting change prone classes in 

subsequent releases of Android OS Data sets (like Android Nougat MR1 to Oreo 

Release).  

 

Figure 4.5.1: Above comparison chart shows 10-fold cross validation results for 7 

Android Packages w.r.t. DL-MLP classifier and ML-Bayes Net technique 
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In future, we can compare the performance of DL-MLP based model to different 

ML based technique. Also, we can apply developed models to different projects that are 

similar in nature. We will check performance of above developed models on cross 

projects. We have planned to enhance scope of our work to large data sets & more DL 

techniques. Our future scope of work includes comparison of various ML technique to 

DL technique and conclude that which one is most efficient to use industrially and 

provide solution of change prediction that can be helpful to corporate world that can be 

helpful in cost reduction of many of the product release.  
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