
 Design and Development of a Tool for

analyzing effect of Refactoring on

Maintainability

A PROJECT REPORT

 SUBMITTED IN PARTIAL FUL LLMENT OF THE REQUIREMENTS FOR THE AWARD

OF

DEGREE OF MASTER OF TECHNOLOGY

IN
SOFTWARE ENGINEERING

Submitted by
Shweta Meena
2K16/SWE/16

Under the supervision of

DR. RUCHIKA MALHOTRA

Associate Professor
Department of Computer Science and Engineering

Delhi Technological University

 DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)
SHAHABAD DAULATPUR, BAWANA ROAD, DELHI – 110042

JUNE, 2018

M
. T

ech
 (S

o
ftw

a
re E

n
g

in
eerin

g
)

S
h

w
e
ta

 M
ee

n
a

2
0
1
8

i

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College Of Engineering)

Bawana Road, Delhi – 110042

CANDIDATE’S DECLARATION

I, (Shweta Meena), 2K16/SWE/16, student of M.Tech, Software Engineering, hereby

declare that the project Dissertation titled, “Design and Development of a Tool for

analyzing effect of Refactoring on Maintainability” which is submitted by us to the

Department of Computer Science and Engineering, Delhi Technological University,

Delhi in partial fulfillment of the requirement for the award of the degree of Master of

Technology, is original and not copied from any source without any citation. The work

has not previously formed the basis of any Degree, Diploma Associateship, Fellowship

or other similar title or recognition.

Place: Delhi SHWETA MEENA

Date: 2K16/SWE/16

ii

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College Of Engineering)

Bawana Road, Delhi – 110042

CERTIFICATE

I hereby certify that the project Dissertation titled, “Design and Development of a Tool

for analyzing effect of Refactoring on Maintainability” which is submitted by Shweta

Meena, 2K16/SWE/16, Software Engineering, Delhi Technological University, Delhi in

partial fulfillment of the requirement for the award of the degree of Master of

Technology, was carried out by the students, under my supervision. To the best of my

knowledge this work has not been submitted in part or full for any Degree or Diploma to

this university or elsewhere.

Place: Delhi

Date:

 Dr. Ruchika Malhotra

(Supervisor)

Associate Professor

Discipline of Software Engineering

CSE Department

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad, Daulatpur, Bawana Road, Delhi – 110042

iii

ABSTRACT

Delivering programming is an exceptionally perplexing and troublesome process that sets

aside an impressive opportunity to advance. Inadequately planned programming

frameworks are hard to comprehend and keep up. Programming upkeep can take around

half of the general advancement expenses of delivering programming. Here we have

basically address prototype of a tool which will perform the automatic refactoring of five

different methods in our work. One of the fundamental characteristics of these high

expenses is inadequately planned code, which makes it troublesome for engineers to

comprehend the framework even before considering executing new code. With regards to

programming building process, software refactoring affects diminishing the cost of

programming upkeep through changing the inside structure of the code, without changing

its outside conduct. Refactoring is a method for rebuilding a current group of code, its

heart is a progression of little conduct safeguarding changes. Every change called a

‘refactoring’ does pretty much nothing, however, a succession of changes can create a

huge rebuilding.

iv

ACKNOWLEDGEMENT

The successful completion of any task would be incomplete without accomplishing the

people who made it all possible and whose constant guidance and encouragement secured

us the success.

First of all, I would like to thank the Almighty, who has always guided me to work on the

right path of the life. My greatest thanks are to my parents who best owed ability and

strength in me to complete this work.

I owe a profound gratitude to my project guide Dr. Ruchika Malhotra, who has been a

constant source of inspiration to me throughout the period of this project. It was her

competent guidance, constant encouragement and critical evaluation that helped me to

develop a new insight into my project. Her calm, collected and professionally impeccable

style of handling situations not only steered me through every problem, but also helped

me to grow as a matured person. I am also thankful to her for trusting my capabilities to

develop this project under her guidance.

 Shweta Meena

 M.Tech(SWE) – 2nd Semester

 2K16/SWE/16

v

Table of Contents

Candidate’s Declaration .. i

Certificate .. ii

Abstract ... iii

Acknowledgement ... iv

List Of Figures... vii

List of Tables .. viii

Chapter 1 ... 1

Introduction.. 1

1.1 Research Objective ... 1

1.2 Scope.. 3

1.3 Organization of the Dissertation... 4

Chapter 2 ... 5

Literature Review ... 5

2.1 Background Work ... 5

Chapter 3 ... 7

Refactoring Techniques... 7

3.1 Refactoring Methods .. 7

3.1.1 Hide Method .. 7

3.1.2 Encapsulate Field ... 9

3.1.3 Self Encapsulate Field ... 10

3.1.4 Remove Assignments To Parameters .. 11

vi

3.1.5 Remove Parameters ... 13

Chapter 4 ... 14

Implementation Methodology ... 14

4.1 Datasets Used .. 14

4.2 Technologies Used.. 14

4.3 Tool Implementation .. 20

4.3.1 Comment Cleaning File .. 20

Chapter 5 ... 22

Results and Conclusion .. 22

5.1 Results .. 22

5.2 Analysis and Comparison.. 23

5.3 Limitations ... 28

Chapter 6 ... 29

Conclusion and Future Work ... 29

vii

LIST OF FIGURES

Fig 3.1: Before applying Hide Method Refactoring ... 7

Fig 3.2: After applying Hide Method Refactoring .. 8

Fig 3.3: Before applying Encapsulate Field Refactoring ... 9

Fig 3.4: After applying Encapsulate Field Refactoring ... 9

Fig 3.5: Before applying Self Encapsulate Field Refactoring .. 10

Fig 3.6: After applying Self Encapsulate Field Refactoring .. 10

Fig 3.7: Before applying Remove Assignments to Parameters Refactoring ... 11

Fig 3.8: After applying Remove Assignments to Parameters Refactoring ... 11

Fig 3.9 Before applying Remove Parameters Refactoring ... 13

Fig 3.10 After applying Remove Parameters Refactoring .. 13

Fig 4.1: Starting window of a Anaconda Navigator ... 16

Fig 4.2: Sign in to Anaconda cloud .. 16

Fig 4.3: Login window of Anaconda Cloud .. 17

Fig 4.4: Launching Jupyter Notebook.. 17

Fig 4.5: Launched Jupyter Notebook .. 18

Fig 4.6: Process of a cleaning file .. 20

Fig 4.7: Retrieving Parameters ... 21

Fig 5.1: Executing refactor.py from Anaconda Prompt…..22
Fig 5.2: Automatically generated cleaned comment file and refactoring files…......................................23

file:///C:/Users/DELL/Desktop/Complete%20thesis%20updated.docx%23_Toc516181442
file:///C:/Users/DELL/Desktop/Complete%20thesis%20updated.docx%23_Toc516181443

viii

LIST OF TABLES

Table 5.1 Effect of Refactoring Methods on Maintainability………………………26

Table 5.2 Comparison with other existing tool for refactoring…………………….27

1

CHAPTER 1

INTRODUCTION

Refactoring is basically the process of improving software internally without affecting

external behavior. It aims to make code easier to understand, easier to maintain and easier

to extend. Refactoring also helps in identifying the error prone parts of your program

which can be corrected by refactor your code.

It was basically Martin Fowler who made refactoring prominent by publishing the

mechanisms of 72 refactorings for object-oriented programs in his influential book

Refactoring: Improving the Design of Existing Code [1] . Though refactorings within

Fowler’s book are well described, time and skill and quite good test coverage is needed,

if one wants to apply them with confidence [1]. It was also indicated that all such manual

refactoring is tedious and error-prone. Proper tool support is therefore considered crucial.

But unfortunately automating the various refactorings is not easy. It is a challenge and

requires some serious work.

We basically aims to review various existing refactoring tools. Instead, it shall be a

starting point for researchers, as well as for IDE and tool developers willing to implement

refactorings. It shall help researches in finding open topics and provide tool developers

with an overview over current research and useful implementation techniques. Such a

starting point is needed because these two groups rarely work together.

1.1 RESEARCH OBJECTIVE

The main objective of developing this prototype of a tool is to automate the refactoring in

comparison to other refactoring tools which are available on the web or in the market.

file:///D:/MAJOR%20PROJECT%20REPORT/MINE.docx%23page8

2

The way in which this tool is different from other refactoring tool is that it provides the

cleaned file of the code or the file which user provides it as a input. The most important

part of this tool is that it is developed in Python language. There are many advantages of

Python over C++ and Java. This prototype is open source so that anybody can use it .

After cleaning the actual code we have implemented the five types of refactoring which

are commonly used in the published research papers. It will also reduce the execution

time of the projects so that they would take less time in development and to test this we

will also refactor the individual modules of the refactoring projects. Nowadays, it seems

to be difficult to deliver the product in a reasonable amount of time, so that task can be

achieved by automatically finding out the errors in the project and then correcting them

using the tool performs the automatic refactoring. In the past, developers achieved such

goals by poring over hardware and software manuals, trying to locate the proper

combination of assembly language instructions that would result in the level of

performance that they desired. Since the computers they had available were all well

documented and functioned in a wholly deterministic manner, it was relatively easy for a

developer to determine the types of source-code adjustments that would work best on a

given architecture.

In the past ten years, however, the software development landscape has evolved

dramatically as the general public has embraced computing devices of all types and

become increasingly reliant on them to accomplish everyday tasks. As the demand for

more sophisticated applications has increased, designers have turned to use the use of

higher-level languages and frameworks in an attempt to reduce development costs and

remain competitive in the marketplace. As a result, applications have grown increasingly

complex in terms of both code size and the interactions that occur within them.

Therefore, while this approach to development may save time and money in the short run,

it complicates the task of determining whether an observed performance issue is internal

to an application or caused by the frameworks that it is built upon.

Beyond this, computer hardware itself has been forced to change dramatically to keep up

with the unrelenting demand for more computing power. The simple single-issue

3

processors of the past have given way to super-scalar designs capable of executing

multiple instructions in a single cycle while simultaneously reordering operations to

maximize overall performance. As a result, the instructions passed into the processor

have become merely a guideline for execution, as opposed to the written rules they were

viewed as in the past. Since a developer now has no way to determine precisely how the

processor will operate, the act of hand-tuning an application at the assembly level is no

longer a straightforward task.

 Open Source :- It is open source so that anyone can make changes in the

source code of the project according to their needs and requirements. Being open

source its code can be used in other projects as an API.

 Platform Independent :- This prototype is developed under Anaconda,

which is an open source distribution of the Python. It is available for all major

platforms and this project has been developed using standard library only.

Therefore this code can be deployed to any platform and executable can be made

for that platform.

 Easy to Integrate :- This prototype is easy to integrate with other web or stand-

alone applications because this tool doesn’t require any virtual environment or

specific technologies for its execution.

 Fast Performance :- These prototype may require to perform refactoring fast

so that it will not take more time during its working thus it is very important to

make it fast. In order to make it fast, we have developed it using Python, which is

compiled language and very close to machine level.”

 Light Weight :- This prototype uses command line interface and do not

require any special environment for its execution which makes it light and

portable.

1.2 SCOPE

4

As programming are developing in intricacy, designers are winding up progressively

dependent on the utilization of structures and reflection layers to actualize new

functionalities in an opportune way. In doing as such, the capacity to comprehend the

exact way in which a given section of code works has been decreased, prompting

programming ventures in which nobody individual very sees how the whole

application capacities. Accordingly, it has turned out to be about difficult to upgrade

applications utilizing the manual (or "by-hand") tuning systems of the past. In light of

this issue, computerized investigation devices can have a vital part in programming

improvement. We have kept this prototype open-source, platform independent

and easy to integrate. This increases its scope, anyone can access and use it online. It

can be used as an API in other programs which wants to use its functionality. Being

light and easy to integrate, it can be integrate with other applications. E.g. It can be

used to develop plugin for IDE like Netbeans or Eclipse , it would be really helpful

for these tools.

 1.3 ORGANIZATION OF THE DISSERTATION

In this thesis, we have introduced the procedure followed by us to develop a prototype

for a tool. The rest of the thesis has been divided into various chapters. This Chapter

contains the general summary of the project. In Chapter 2 the work done in the

research regarding refactoring and refactoring tool has been discussed. In Chapter 3 we

have explained the refactoring techniques which have been implemented in the tool. In

Chapter 4 we have mentioned the technologies used for the development of this tool.

In Chapter 5 we have discussed the results drawn and our analysis for effect of

refactoring on maintainability. The conclusion and future work have been explained in

Chapter 6. Finally, all the references used in the research have been mentioned. The

appendix contains relevant code snippets and screenshots.

5

CHAPTER 2

LITERATURE REVIEW

There are many IDEs and commercial software exists for refactoring. All of them don’t

do the refactoring automatically. The user and developers will check at each and every

line about the type of refactoring needs to be performed. It is very time consuming.

2.1 BACKGROUND WORK

Most of the analysis software are available under commercial license therefore their

source code can’t be alter to make new application. The existing open source software

are heavy and can’t be integrated with other applications easily.

The research which has done till now in this field has basically compared the existing

tools on the basis if the languages and the type of refactoring they perform and the

software requirements for such IDE installation. According to Rani et al. [1], IntelliJ

IDEA was the primary Java™ IDE to broadly execute a significant number of

refactoring which will work out and prescribed in the pivotal book Refactoring:

Improving the Design of Existing Code by Martin Fowler et al. From that point forward,

refactoring a code is considered as a noteworthy focal point of improvement, along each

discharge to date including different as well as extended refactoring.

Rani et al. [1] also introduces that Eclipse is the multi-dialect programming improvement

environment it is composed generally in java. It can be utilized to create applications in

Java and, by methods for different modules other programming dialect like including R,

ruby Ada ,C,C++, COBOL, FORTAN, php and so on

In spite of the fact that it is conceivable to refactor physically, instrument bolster is

viewed as essential. Today, an extensive variety of devices is accessible that robotize

different parts of refactoring.

6

In this research we have found that Bois et al. [27] introduced that some tools for

example, the Refactoring Browser, XRefactory, jFactor bolster a self-loader approach.

A few analysts showed the practicality of completely mechanized refactoring. For

instance, Guru is a completely robotized apparatus for rebuilding legacy progressive

systems and refactoring strategies in SELF projects. Other programmed refactoring

approaches are proposed in. There is additionally an inclination to coordinate refactoring

apparatuses straightforwardly into modern quality programming advancement situations.

This is for instance the case for Smalltalk VisualWorks v7, Eclipse v2, Borland Together

Control-Center v6, IntelliJ IDEA v3, Borland JBuilder v6, and so forth... The focal point

of every one of these apparatuses is on applying a refactoring upon demand of the client.

There is significantly less help accessible for identifying where and when a refactoring

can be connected. Simon et al. [28] proposes to do this by methods for measurements,

while Kataoka et al. [29] demonstrates where refactoring may be appropriate via

naturally distinguishing program invariants utilizing the Daikon instrument. This

approach depends on unique examination of the runtime conduct, and is by all accounts

integral to different methodologies.

7

CHAPTER 3

REFACTORING TECHNIQUES

There are 74 refactoring methods which were proposed by Fowler [11]. Five refactoring

methods have been implement in this tool. In this chapter we have basically discussed the

refactoring methods, their reason to occur, solution to avoid them, advantages and

example etc.

3.1 REFACTORING METHODS:- There are different types of refactoring. Some of

them which are implemented in this prototype are described as follows.

3.1.1 Hide Method :-

Issue:- A method isn't utilized by totally different categories or it is utilized just inside its

own particular class chain of importance.

Solution :- Change the access modifier of a method or private or protected.

Fig 3.1: Before applying Hide Method Refactoring

8

Fig 3.2: After applying Hide Method Refactoring

In Fig 3.1 we have taken the code from comment cleaned file on which we have applied

Hide method refactoring in Fig 3.2. In the above figure before applying refactoring the

access modifier or visibility of the method is public. The public method can be accessible

from objects of other classes also. We have written the code for making public methods

to private. In Fig 3.2 the create_book() access modifier changes to private. After this the

create_book() can be accessed by the object of same class only.

“

Reason of Refactoring

Quite usually, the requirement to cover ways for obtaining and setting values is

attributable to improvement of a richer interface that gives extra behavior, particularly if

you started with a category that additional very little on the far side mere knowledge

encapsulation. As new behavior is constructed into the category, you will realize that

public getter and setter ways aren't any longer necessary and may be hidden. If you create

getter or setter ways personal and apply direct access to variables, you'll delete the

strategy.

Advantages

1. Hidden methods makes it more easy for our code to evolve. If we change the

access modifier of a function to private, then we will only worry about how can

we not break the present class because we know that the function is not used at

any other place in our code.”

9

2. By making the access modifier of a function as private, we underscore the

significance of general interface of the class and of the functions whose access

modifier remains public.

3.1.2 Encapsulate Field :-

Issue :- We have a public member or field.

Solution :- Make that public member or field to private member or field and create

access methods for it.

Fig 3.3: Before applying Encapsulate Field Refactoring

Fig 3.4: After applying Encapsulate Field Refactoring

In Fig 3.3 the access modifier of data member testvar is public in cleaned comment file

of the code. We will apply Encapsulate Field Refactoring to change its accessibility to

private. We have changed the accessibility of a data member because it will maintain the

encapsulation property of object – oriented programming language. Encapsulation

preserves the property of data members in the way that they would be accessible by the

methods of the class. In Fig 3.4 we see that the access modifier changed to private.

Reason of Refactoring

Encapsulation is one of the advantage or we can say it is a benefit of object-oriented

programming, the capability to hide objects data. Otherwise, all objects would be public

and these objects would access and modify the data of your object without any checks

and “alances. The Data which is associated with this data separate it from its behaviors,

modularity of program sections is compromised, and it makes maintenance complicated.

10

Advantages :- If the data and behavior of a component are closely interrelated and are in

the same place in the code, it is much easier for you to maintain and develop this

component.

 3.1.3 Self Encapsulate Field :-

 Issue :- You have a direct access to private members or fields inside a class.

 Solution :- You can create a setter and getter for the that member or field, and use only

 them for accessing the field.

Fig 3.5: Before applying Self Encapsulate Field Refactoring

Fig 3.6: After applying Self Encapsulate Field Refactoring

In Fig 3.5 we see that it is before applying refactoring. The data member testvar is

defined as public, which indicated that it can be accessible outside the class. It violates

the” Encapsulation property of object – oriented language. We have to make it private. In

Fig 3.6 we have made the data member visibility to private and we have also created

setter and getter for this data member. Now, we access this data member inside the class

in which they are declared.

Reason of Refactoring

11

It is not flexible to directly accessing a private field inside a class. We want to be able to

assign or initiate a member or filed value when the initial query is performed or we can

also perform different operations on the new values of the member or field when they are

assigned to the field, or we can also do all this in various ways in subclasses.

Advantages

Indirect access to fields is when a field is acted on via access methods (getters and

setters). This approach is much more flexible than direct access to fields. First, you can

perform complex operations when data in the field is set or received.

3.1.4 Remove Assignments to Parameters

Issue :- Some value is assigned to a parameter within method's body.

Solution :- You can use a local variable instead of a parameter.”

Fig 3.7: Before applying Remove Assignments to Parameters Refactoring

Fig 3.8: After applying Remove Assignments to Parameters Refactoring

12

In Fig 3.7 we see that we are passing tester2 data member as a actual parameter. It does

not have any initial value. If user will use this same parameter and its value would after

calling the create_book() method and before calling the create_book(). It will result in

incorrect value of tester2. To avoid this, we have applied Remove Assignments to

Parameters refactoring in Fig. 3.8. In Fig 3.8 we have declared a dummy variable which

will store the value of tester2 inside the function. So that it won’t affect the actual

parameter value.

““

Reason of Refactoring

The reasons for this refactoring are a similar as for Split Temporary Variable, however

during this case we tend to are managing a parameter, not an area variable. First, if a

parameter is passed via reference, then once the parameter worth is modified within the””

strategy,” this worth is passed to the argument that requested line this technique. Very

often, this happens accidentally and ends up in unfortunate effects. albeit parameters are

typically gone along worth (and not by reference) in your programing language, this

writing quirk might alienate people who are unaccustomed to that.

Second, multiple assignments of various values to one parameter create it tough for you

to understand what knowledge ought to be contained within the parameter at any explicit

purpose in time. the matter worsens if your parameter and its contents are documented

however the particular worth is capable of differing from what's expected within the

strategy.

Advantages

Each component of the program ought to be liable for just one issue. This makes code

maintenance a lot of easier going forward, since you'll be able to safely replace code with

none facet effects.This refactoring helps to extract repetitive code to separate ways.

13

3.1.5 Remove Parameters

Issue :- The parameter is declared in the body of a method , but it is not used in the

body of a method.

Solution :- We will remove the unused parameter.”

Fig 3.9 Before applying Remove Parameters Refactoring

Fig 3.10 After applying Remove Parameters Refactoring

In Fig 3.9 we have passed data member token as a actual parameter but it doesn’t require

to pass it to a method. We don’t need token in the function definition. We will remove

this by applying refactoring. In Fig 3.10 we have applied Remove parameter refactoring.

Reason of Refactoring

Every parameter during a methodology decision forces the coder reading it to work out

what data is found during this parameter. Sometimes we tend to add parameters with a

watch to the longer term, anticipating changes to the tactic that the parameter may well be

required. All identical, expertise shows that it's higher to feature a parameter only if it's

genuinely required. After all, anticipated changes usually stay simply that – anticipated.

 Advantages

A method contains only those methods which are truly used by it.

14

CHAPTER 4

IMPLEMENTATION

METHODOLOGY

The prototype of a tool which we have developed is in python. We will further discuss

about the technologies which we used. We have taken different c++ files on which we

have tested this tool. At each and every stage we have performed testing for the

development of this tool. At the end of this chapter we will discuss about the

implementation of this tool, the files that it will create automatically, cleaned file of a

input file.

4.1 DATASETS USED

4.1.1 Data collection

We can execute any unlimited files on this prototype. There is no limit on the number of

files or projects that developer and user execute. The user needs to provide this prototype

a c++ file as a input, then it will provide a comments cleaned file and cpp file of five

different refactorings which are implemented in this prototype.

4.2 TECHNOLOGIES USED

4.2.1 Python

Python is a broadly utilized high – level, general – reason, translated dialect. The

plan theory of Python underlines code readability and the linguistic structure has been

intended to allow software engineers to express ideas and calculations in less lines of

code than conceivable in dialects, for example, C++ or Java. There are develops” given in

Python expected to take into consideration the written work of clear and effective

15

projects on both a little and in addition on an extensive. Multiple assorted programming

ideal models are upheld by Python, including object – situated, basic and utilitarian

programming. Further, the highlights of a dynamic sort framework and programmed

memory administration, joined with an expansive and exhaustive standard library, settle

on Python a well known decision among developers.

The availability of Python interpreters for many operating systems allows Python code to

run on a wide variety of systems. By the use of third – party tools such as Py2exe or Py

installer. Python code can be packaged into stand – alone executable programs for some

of the most popular operating systems, which allows the distribution and use of Python –

based software on a variety of environments with no need to install a Python interpreter.

4.2.2 Anaconda

Anaconda might be a free and open source dispersion of the Python and R programming

dialects for data science and machine learning associated applications (expansive scale

handling, prophetical examination, logical processing), that means to change bundle

administration and preparation. Package forms square measure oversaw by the bundle

administration framework conda. The Anaconda distribution is employed by over vi

million users, and it includes quite 250 in style information science packages appropriate

for Windows, Linux, and MacOS.

Steps to start with Anaconda

1. Go to start window and search for anaconda navigator. Click on Anaconda

Navigator.

2. You will see Anaconda command prompt. It will start anaconda navigator after

initializing it.”

3. We will get this window of Anaconda Navigator. In Fig 4.1 we will open

launch Anaconda Navigator. It will take somethime in initialization. In Fig 4.2 we

have shown the window of launching jupyter notebook. In Fig 4.3 the screen

16

shows the sign in window. User has to enter its credentials for strtaing jupyter

notebook.

Fig 4.11: Starting window of a Anaconda Navigator

 4. Click on Sign in to Anaconda Cloud.

Fig 4.12: Sign in to Anaconda cloud

17

 5. Enter user credentials.

 Fig 4.13: Login window of Anaconda Cloud

6. Click on Launch Jupyter.

Fig 4.14: Launching Jupyter Notebook

In Fig 4.4 User has to click on Launch icon below Jupyter notebook. In Fig 4.5 it will

navigate to the jupyter notebook in browser. In the browser user can open any jupyter

notebook on which they want to work.

18

 7. After launching Jupyter Notebook

 Fig 4.15: Launched Jupyter Notebook

4.2.3 Jupyter

The Jupyter Notebook is AN ASCII text file internet application that permits you to form

and share documents that contain live code, equations, visualizations and narrative text.

Uses include: knowledge cleansing and transformation, numerical simulation, applied

mathematics modeling, knowledge image, machine learning, and far a lot of.

While Jupyter runs code in several programming languages, Python may be a demand

(Python three.3 or larger, or Python two.7) for putting in the Jupyter Notebook.

4.2.4 Python Standard Libraries Used

A. Generic Operating System Services

1. import os:- This os stands for Miscllaneous Operating System Interface.This

module gives a versatile method for utilizing working framework subordinate usefulness.

In the event that we simply need to peruse or compose a document see open(), on the off

chance that we need to control ways, see the os.path module, and on the off chance that

19

we need to peruse every one of the lines in every one of the records on the summon line

see the file input module.

2. import time :- In import time library we have a Time access and

conversions.”This”module gives different time-related capacities. For related

usefulness, see additionally the date time and date-book modules. Despite the fact that

this module is constantly accessible, not all capacities are accessible on all stages. The

majority of the capacities characterized in this module call stage C library capacities with

a similar name. It might some of the time be useful to counsel the stage documentation,

on the grounds that the semantics of these capacities shifts among stages.

A. Python runtime services : - These are basically system – specific parameters and

functions. This module provides access to some variables used or maintained by the

interpreter and to functions that interact strongly with the interpreter. It is always

available.

B. Random :- This module implements pseudo-random number generators for various

distributions. For integers, there is uniform selection from a range. For sequences, there is

uniform selection of a random element, a function to generate a random permutation of a

list in-place, and a function for random sampling without replacement. On the real line,

there are functions to compute uniform, normal (Gaussian), lognormal, negative

exponential, gamma, and beta distributions.

C. Numpy :- Numpy is the core library for scientific computing in Python. It provides a

high-performance multidimensional array object, and tools for working with these arrays.

If you are already familiar with MATLAB, you might find this tutorial useful to get

started with Numpy.

D. Matplotlib:- Matplotlib is a plotting library. In this section give a brief introduction to

the matplotlib.pyplot module, which provides a plotting system similar to that of

MATLAB.”

http://www.numpy.org/
https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
http://matplotlib.org/

20

4.3 TOOL IMPLEMENTATION

4.3.1 Comment Cleaning File

The first module of this prototype is basically comment cleaning. In Fig 4.6 we will

provide a particular cpp file of a project as an input to this module then it will provide the

cleaned file of the input file to the user. The cleaned file which it will provide would be

different from the original file in the way that it has the no text after the back slash in

single line comment and in multiline comment it will remove all the text between double

back slash. This module work independently from all the files. It has no limit on the

number of files that it can clean. The user can clean unlimited files. In Fig 4.6 we will

provide cpp file as a input to the tool. It will provide cleaned .cpp file foe that input file.

 library.cpp cleaned_lib.cpp

4.3.2 Retrieve all the parameters

After cleaning the file we need to retrieve all the parameters on the basis of which this

prototype will choose the parameters on the basis which it performs refactoring. These

parameters will in the form of a dictionary. We have basically created a dictionary of all

the parameters. The dictionary contains the List of all Classes, List of class attributes,

Dictionary of Classes, Data Types and Access Types. This output is used by the user

while performing refactoring on a file that on what parameters which parameters are

required and how to change them so that refactoring is performed.

In Fig 4.7 we have shown that the user will provide cleaned .cpp file as a input to a tool.

The tool will provide dictionary of all the attributes, classes, methods, access modifier

etc. to the user.

Prototype of a

tool

Fig 4.16: Process of a cleaning file

21

 cleaned_lib.cpp Dictionary of a parameters

4.3.3 Refactoring Methods

In this prototype we have implemented five refactoring methods which are most

commonly used in the published research papers. We have not added support for File

handling and Inheritance in this prototype right now. The File Handling and Inheritance

increases complexity because of virtual functions. The user will provide cleaned_lib.cpp

to the module then user want to apply. Then it will apply that particular refactoring. At

the end it will provide the .cpp file of the particular refactoring method to the user. The

five different refactoring methods which are implemented in this prototype are: Hide

Method, Encapsulate Field, Self Encapsulate Field, Remove Assignment to Parameters

and Remove unused Parameters.

Prototype of

a tool

Fig 4.17: Retrieving Parameters

22

CHAPTER 5

RESULTS AND CONCLUSION

In this chapter we have basically discussed about the results of a tool, what it will do. We

will also discuss about the way it performs refactoring. The comparsion of existing tool

with other existing tools of refactoring. The refactoring methods which are implemented

in this tool are not available in other existing refactoring tools. We have discussed about

the effect of implemented refactoring methods on maintainability. How does

maintainability modify when user apply these refactoring methods on the code discussed

in this chapter. Maintainability is basically defined as the feasibility of modification the

attribute set. We have also discussed about the limitations of this refactoring tool.

5.1 RESULTS

Fig 5.1: Executing refactor.py from Anaconda Prompt

In Fig 5.1 we are basically starting prototype of a tool from Anaconda Promopt. We have

coded in such a way that it will automatically provide you all the refactoring performed

.cpp file to the user. It will ask for the file name. User has to type the input file name.

The other files in Fig 5.2 would be automatically created in tool folder.

23

Fig 5.2: Automatically generated cleaned comment file and refactoring files

5.2 ANALYSIS AND COMPARISON

5.2.1 Tool Description

The refactoring tool is coded in Python (3.x) and is designed for handling C++(.cpp)

files. The tool aims to be a 1st version of an advanced tool for refactoring the C++ code.

We have considered five refactoring methods in our tool and it is also a tool for comment

cleaning.

The comment cleaning file takes care of both types of comments, Single Line Comment

and Multi Line Comment. The tool is not designed yet to handle, XML type codes or

integration of other languages into the C++ files. It is designed to handle core C++ code

currently in its first version.

Semantic rules have been used to identify the areas required as per each refactoring.

For comment cleaning:

We have used letter by letter parsing to identify for appearance of special character

sequences such as “//” and “/* */”. Hence one of the limitations, of our tool is

appearance of these characters out of the required places. As the code syntax and

24

semantics, plays an important role in the structure of the code, we identify the different

attributes and classes present in the code. Hence the positive is to have the list of classes

present in the code as well their attributes.

5.2.2 Effect of Refactoring Implemented in this tool on Maintainability

The five refactoring methods which have been implemented would be discussed here. We

will discuss these refactoring methods on the basis of their comparison with other tools or

in way it is different from other existing tools. We will discuss about the effect of

applying these refactoring methods on maintainability on the basis of readability and

understandability.

5.2.2.1. Hide Method (HM)

This refactoring changes the public methods of the class to private members, as public

methods are loosely accessed, private access makes the calls secure, so if the member is

only called from within the object of the class, making the method private makes it easier

to keep the code secure.

This doesn’t increase the lines of code much, and has the same readability and

understandability. This refactoring changes only the access modifier of the function that’s

why it has no effect on lines of code. In Table 5.1 we have shown that the readability ad

understandability will remain same even after Hide Method Refactoring.

5.2.2.2. Encapsulate Field (EF)

We have used the access types, to identify public attributes and create custom ‘getter’ and

‘setter’ functions and insert it into private access with their respective getter and setter

methods as ‘public’.

This creates a good level of abstraction, after this refactoring, as we can integrate type

checking strongly using the getter and setter functions and also the members of the class

are not directly exposed to user, making them more secure.

25

Although in Table 5.1 we have shown that it does increase the maintainability of the code

as the lines of the code are increased and also access type of the member is changed, so

updates have to be made accordingly.

Readability of the code and understandability is increased but proper checks have to be

taken to replace the direct calls to the members to be replaced by the calls from the getter

and setter and programmer has to adapt accordingly.

5.2.2.3. Self Encapsulate Field (SEF)

This refactoring is similar to Encapsulate Field (EF), but even the newly created getter

and setter methods are set to private.

This decreases the maintainability of the code, as wherever the code is assigning the

parameter, we have to update it to call the getter and setter method and too within the

object, this might break the consistency of the code. In Table 5.1 we have shown that Self

Encapsulate Field has no effect on readability and understandability starts decreasing.

5.2.2.4. Remove Assignment to Parameters (RAP)

We check for the parameters, creating a list of the parameters, we do this by iterating the

whole file once, after removing the comments. On second iteration, on encountering the

method, we keep check of the list of parameters and see whether they are being assigned;

we replace that code by a dummy variable declaration and assignment to that dummy

variable.

This is similar to creating a copy of the variable and updating the copy rather than the

original variable itself.

In Table 5.1 we have shown that Remove Assignments to parameters refactoring

increases the maintainability of the code, as any risk of modification is not there to the

variable. Also increases the lines of code and understandability, making it very easy to

maintain. It also increases the readability.

26

5.2.2.5. Remove Unused Parameters (RUP)

In this refactoring we identify the parameters of the methods and check whether it is ever

used in the method, this is a type of obsolete code identification.

This does decrease lines of code wherever applicable, but makes it difficult to maintain,

as the programmer needs to take care of the parameter removal and make sure to update

the parameter list and also make sure that further calls don’t refer to the removed

parameter. In Table 5.1 we have shown that it increases the readability of the code as user

does not need to read unused parameters. Sometimes developers and users get confused

why they have written this parameter if it is not used then it creates confusion for them.

Table 5.1 Effect of Refactoring Methods on Maintainability

Refactoring Method Readability Understandability

Hide Method

Encapsulate Field

Self Encapsulate Field

Remove assignment to

Parameters

Remove Parameters

In Table 5.1 the upper arrow indicates that the readability and understandability

increases after applying refactoring and the downward arrow indicates that the

readability and understandability decreases after applying refactoring. In Table 5.2 we

have basically shown the comparison of three different tools. The three different tools

that we have compared are as follows: Python refactoring Tool, Eclipse, Intellij Idea etc.

The number of refactoring methods performed by Eclipse are more than Intellij Idea and

Python Tool. Neither of them creates automatic refactoring files individually. It makes

user more understandable.

27

Table 5.2 Comparison with other existing tool for refactoring

“Tool” Python refactoring

Tool

“Intellij Idea” “Eclipse”

“Automated

cRefactoring”

It performs

automatic

refactoring on the

input file provided to

it. User does not

need to worry where

and which

refactoring need to

apply.

In Intellij Idea user will

apply refactoring and

then it will whether the

applied refactoring is

feasible to apply or not.

It doesn’t perform

automatic refactoring.

In Eclipse the user will

check at each line is it

feasible to apply

particular type of

refactoring at a

particular line of a

code. It doesn’t

perform automatic

refactoring.

“System

Requirements”

Jupyter Notebook Microsoft”Windows 8/7/

Vista/XP, 1 GB RAM

minimum, 300 MB hard

disk space +at least 1 G

for caches.”

“Eclipse requires Java

to run system needs

the same Java version

315 MB available hard

disk space Microsoft

Windows,8/7/Vista/X

P”

Methods”for

Refactoring”

1. Hide Method

2. Encapsulate

Field

3. Self

Encapsulate

Field

4. Remove

assignment

to Parameters

5. Remove

unused

Parameters

1. Extract“Method

2. Extract Method

Object

3. Inline Superclass

4. Replace Method

Code

5. Replace Temp

with Query

6. Introduce

constants””

1. Extract Method

2. Rename

3. Simple Name

Change

4. Extract Method

Object”

Languages

Support”

C++ “Java JSP, XML, CSS,

HTML and JavaScript”

“R, Ada, Java, PHP,

C, C++”

Generate

automatic

refactoring file

for the input

It will generate

automatically all

refactorings cpp file

which are performed

on the input file

code.

It will not generate any

such file. It performs

refactoring in the source

file code only.

It will not generate any

such file. It performs

refactoring in the

source file code only.

User Interface It is compatible with

user interface as user

does not need to

complete code.

Here, User needs to go

through each line of

code. So, it not

compatible to user

interfaces.

Here, User needs to go

through each line of

code. So, it is not

compatible to user

interface.

28

5.3 LIMITATIONS

The prototype of a refactoring tool is unable to separate comments if "/" is faced within a

text string currently. It will work for c++ files only.

29

CHAPTER 6

CONCLUSION AND FUTURE WORK

We would conclude that the prototype of a refactoring tool is developed, which will work

for c++ language only. This prototype will perform the comment cleaning in c++

projects and perform five different refactoring automatically without any human

intervention. The individual file of each refactoring method would be generated. We have

analyzed the effect of refactoring on maintainability on the basis of readability and

understandability. We have also compared this prototype of a python tool with other

existing refactoring tools on the basis of the platform, user interface, refactoring methods

etc.

In the future, we will add other refactoring methods apart from these five refactoring

methods. We will test this tool for large c++ projects and will produce complete

automatically refactoring tool.

30

References

[1] A. Rani and H. Kaur, “Refactoring Methods and Tools”, International

Journal of Advanced Research in Computer Science and Software

Engineering, Volume 2, Issue 12, Dec. 2012.

[2] E. M. Hill, “Programmer-Friendly Refactoring Tools”.

[3] A. P. Black,“ Why Don’t People Use Refactoring Tools?”, Computer

Science Faculty Publications, Portland State University, 2007.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, “Compilers: Principles,

Techniques, and Tools”, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2006.

[5] D. Campbell and M. Miller, “ Designing refactoring tools for

developers. In Proceedings of the Workshop on Refactoring Tools”,

ACM, 2008.

[6] N. Chen and R. Johnson, “Toward Refactoring in a Polyglot World”,

In Proceedings of the 2nd Workshop on Refactoring Tools, ACM,

2008.

[7] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of

refactoring engines”, In Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, pp 194. ACM,

2007.

[8] Eclipse. The ASTRewriter class documentation, 2010. since Eclipse

JDT Release 3.5.

[9] U. Eisenecker, K. Czarnecki, and S. Helsen, “Generative

Programming”, Addision Wesley, 2000.

31

[10] T. Ekman, M. Schäfer, and M. Verbaere, “Refactoring is not (yet) about

transformation”, In Proceedings of the 2nd Workshop on Refactoring

Tools, pp 1–4. ACM, 2008.

[11] M. Fowler, “Refactoring: improving the design of existing code”,

Addison-Wesley Professional, 1999.

[12] L. Frenzel, “The Language Toolkit: An API for Automated Refactorings in

Eclipse-based IDEs”, 2006. URL http://www.eclipse.org/articles/Article-

LTK/ltk.html.

[13] R. M. Fuhrer, A. Kiezun, and K. M, “Refactoring in the Eclipse JDT:

Past, present, and future”, In Proceedings of the 1st Workshop on

Refactoring Tools, pp 31–32. ACM, 2007.

[14] D. Jemerov, “Implementing refactorings in IntelliJ IDEA”, In

Proceedings of the 2nd Workshop on Refactoring Tools, pp 1–2.

ACM, 2008.

[15] M. Klenk, R. Kleeb, and M. Kempf, “Refactoring Support for the

Groovy-Eclipse Plugin”, 2008.

[16] H. Li, C. Reinke, and S. Thompson, “Tool support for refactoring

functional programs”, In Proceedings of the 2003 ACM SIGPLAN

workshop on Haskell, pp 38, ACM, 2003.

[17] E. Mealy and P. Strooper, “Evaluating software refactoring tool

support”, In Software Engineering Conference, Australian, pp 10,

2006.

[18] J. C. Miller and B. M. Strauss, III, “Implications of automated

restructuring of cobol”, SIGPLAN Not.. 22 (6): pp76–82, 1987.

http://www.eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/articles/Article-LTK/ltk.html

32

[19] M. Bisi and N. K. Goyal, \Software development e orts prediction using

arti cial neural network," IET Software, vol. 10, no. 3, pp. 63-71,

2016, issn: 1751-8806.

[20] I. Moore, “Automatic inheritance hierarchy restructuring and method

refactoring”, In Proceedings of the 11th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications,

pp 250. ACM, 1996.

[21] E. Murphy-Hill, “A Model of Refactoring Tool Use”, In Proceedings of

the 3rd Workshop on Refactoring Tools, ACM, 2009.

[22] E. Murphy-Hill and A. Black, “Making Refactoring Tools Part of the

Programming Workflow”, 2008.

[23] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how

we know it”, In International Conference on Software Engineering

2009, volume 2, pp 0–24, 2009.

[24] J. Overbey and R. Johnson, “Generating Rewritable Abstract Syntax

Trees”, Software Language Engineering, pp 114–133, 2009.

[25] J. Kerievsky, “ Refactoring to Patterns”, 1st ed. Reading, MA: Addison

Wesley, 2004. [Online] Available: Safari e-book.

[26] K. O. Elish and M. Alshayeb, “A Classification of Refactoring Methods

Based on Software Quality Attributes”, Arabian Journal of Science

and Engineering, Volume 36, Issue 7, pp 1253–1267, Nov. 2011.L.

Breiman, \Bagging predictors," Machine Learning, vol. 24, no. 2, pp.

123-140, 1996, issn: 1573-0565.

https://link.springer.com/journal/13369/36/7/page/1

33

[27] B. D. Bois, P. V. Gorp and T. Mens,”A Discussion of Refactoring in

Research and Practice”.

[28] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based

refactoring. In Proc. European Conf. Software Maintenance and

Reengineering, pp 30–38. IEEE Computer Society Press, 2001.

[29] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated

support for program refactoring using invariants. In Proceedings of the

International Conference on Software Maintenance, pp 736–743. IEEE

Computer Society Press, 2001.

	CANDIDATE’S DECLARATION
	CERTIFICATE
	ABSTRACT
	ACKNOWLEDGEMENT
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	INTRODUCTION
	1.1 RESEARCH OBJECTIVE
	1.2 SCOPE
	1.3 ORGANIZATION OF THE DISSERTATION

	CHAPTER 2
	LITERATURE REVIEW
	2.1 BACKGROUND WORK

	CHAPTER 3
	REFACTORING TECHNIQUES
	3.1.3 Self Encapsulate Field :-
	3.1.4 Remove Assignments to Parameters
	3.1.5 Remove Parameters

	CHAPTER 4
	IMPLEMENTATION METHODOLOGY
	4.1 DATASETS USED
	4.2 TECHNOLOGIES USED
	4.3 TOOL IMPLEMENTATION
	4.3.1 Comment Cleaning File

	CHAPTER 5
	RESULTS AND CONCLUSION
	5.1 RESULTS
	5.2 ANALYSIS AND COMPARISON
	5.3 LIMITATIONS

	CHAPTER 6
	CONCLUSION AND FUTURE WORK

