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ABSTRACT 

Metal-organic framework complexes in general and multi metal-citrate complexes in particular 

have been synthesized through green route. Hydrothermal method adopted in present research 

is decorated with features; a simple one pot synthesis, cost effectiveness & easy to scale up for 

commercial production. Efficient synthesis conditions like mild temperature & shorter duration 

further rules out possibility of forming byproducts which may cause damage to environment. 

The synthesis is environmental benign, as it eliminates use & recovery of harmful organic 

solvents namely N, N-dimethyl formamide & N, N- diethyl formamide, used by researchers in 

synthesis of metal-organic framework complexes. Multiple metal ions introduced in their 

frameworks to exploit unique coordination properties of different metals ions. Multi metal-

citrate complexes have also been synthesized using lime juice, squeezed from fresh fruit & 

strained, thereby reducing time & cost involved in extraction of citric acid commercially. These 

complexes are bluish green well defined crystalline solids having cubic geometry with a layered 

structure supported by a strong network of hydrogen bonds formed by ─OH of coordinated 

water lying between layers. They have been characterized by Fourier Transform Infrared 

Spectroscopy, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, UV-Vis 

spectroscopy & Powder X- Ray diffraction techniques. Stability of complexes has been 

established by Thermogravimetric analysis. Complexes exhibit mesoporous character & narrow 

pore size distribution as demonstrated by BJH & DFT models. Owing to good adsorption 

properties & mesoporous nature, these complexes exhibit exorbitant adsorption affinity for 

large molecules of dyes & can be  used as scavengers for dye stuff removal from industrial 

waste discharge to replace high cost carbon adsorbents & prevent water pollution with 

resultant toxic, carcinogenic & mutagenic effects of dye stuff on living beings. Multi metal-

citrate complexes serve as promising luminescent probe for sensing & recognition of NH4
+, 

Fe(CN)6 
4-, I

 

¯, CrO4
2-

 
& Cr2O7 

2-

 
ions through a simple & straight forward method involving 

conspicuous visual display of color change upon introduction of guest ions in their framework. 

They may be explored for applications in gas adsorption & separation and sensing, capture & 

catalytic degradation of harmful gases. Being fluorescent they have great potential in bio 

medical field for drug storage, drug delivery, medical imaging & biological sensors which 

require water soluble nanocrystalline fluorescent materials. 
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CHAPTER 1 

INTRODUCTION 

1.1 Metal-Organic Frameworks 

Metal-organic frameworks refers to a genre of coordination polymers with highly porous 

crystalline structure, made up of individual or collection of metal ions, connected to organic 

ligands through coordinate bonds, to form one, two or three dimensional complexes. The 

organic ligand may be a mono, bi, tri or tetra-dentate ligand. The label Metal-organic 

framework was first put forth by O. M. Yaghi in the year 1995, with the introduction of a new 

compound having diamond like structure with formula Cu (4,4’- bpy) 1.5 NO3 (H2O) 1.25 [bpy = 

4, 4′ bipyridine] [1]. International Union of Pure and Applied Chemistry (IUPAC) 

recommendations describe Metal-organic framework as: 

“Metal-organic framework, abbreviated as MOF, refers to the Coordination Network with 

organic linkers having prospective voids. Coordination networks constitute a subset of 

coordination polymers and MOFs refer to division of coordination networks.  Prime criterion 

for material to be named as MOF is presence of potential voids, irrespective of extent of 

porosity or other properties” [2]. 

Since the introduction of MOFs, publications reporting new MOFs have grown prolifically in 

past decade [3]. Initially, major concern was incapability of these materials to sustain internal 

porosity because of framework collapse upon solvent evacuation & release of guest species. 

Researchers thus had quest to synthesize a stable framework with permanent porosity for 

applications, particularly gas adsorption & separation, which was realized by use of 

multidentate carboxylate linkers due to their ability to chelate with metals strongly, forming 

metal carboxylates bearing M-O-C units called Secondary building units (SBU), there by 

yielding a stable and rigid structure [4 - 6].  
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The strong metal-carboxylate bond facilitates formation of stable framework capable to 

maintain its architecture during solvent evacuation. Structure of resulting network is guided by 

the fashion carboxylate linkers are coordinated to metal ions. Yaghi et al. first claimed 

fabrication of a stable crystalline, MOF-5 having Zn4O units linked with BDC [BDC = Benzene 

1, 4 - dicarboxylic acid] [7].  Use of multidentate carboxylate linkers thus afforded chemists 

with the solution for stability of MOFs. Subsequently numerous MOFs with robust structures 

and permanent porosity involving strong metal-carboxylate bonds have been reported by the 

researchers [8]. Though the coordination behavior of metal ions and type of ligands govern the 

structure and properties of MOFs, the solvent and associated ions also modify architecture of 

the framework. The solvent molecules get trapped during crystallization and modify pore 

dimensions. The thermal evacuation of the solvent results in permanent porosity which makes 

MOFs suitable candidates for a wide range of applications due to their more flexible structural 

design and great stability. 

1.2 Metal-Organic Frameworks -Versatile 

materials 

Because of their unique properties like, exceptionally large surface area, tunable structures, high 

porosity, variable pore dimensions, the metal-organic frameworks find a variety of applications 

in diverse fields such as reversible uptake and release of hydrogen for mobile applications as a 

clean automobile fuel [9, 10], gas adsorption and separation [11], detection and disintegration of 

toxic gases [12], catalysis of organic reactions due to their active metal sites [13], luminescent 

materials for chemical sensing and explosive detection[14] and in bio medical field for  selective 

capture of proteins [15], dug storage [16], drug delivery [17] , medical imaging and sensing [18] 

to name a few.  

MOFs may play a lead role for storage of H2 - a future generation fuel due to their exceptionally 

large surface area, suitable pore size & volume [19].The specific application based MOFs can be 

constructed by the proper picking of basic units' namely metal cations & ligands.  
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1.3 Established hydrogen storage techniques 

 Some of the established technologies for hydrogen storage include, compressed hydrogen gas in 

high pressure hydrogen cylinders, liquid H2 storage in specially designed tank, pipeline H2 

similar to natural gas network, carbon nano tubes and carbon nano fibers to name a few. These 

techniques make use of physical hydrogen storage where hydrogen gas is stored by compression 

or liquefaction under pressure. The liquefaction of hydrogen involves a great energy loss & tank 

must be perfectly insulated to avoid boil off. Chemical hydrogen storage makes use of Metal 

hydrides such as LiAlH4, NaAlH4, MgH2 etc. However the use of complex metal hydrides as 

hydrogen carriers has limitations of poor hydrogen capacity, slow adsorption ̸ release of gas & 

high cost. Most metal hydrides involve strong bonding with hydrogen and thus require high 

temperature for release of hydrogen. Compounds named Liquid Organic Hydrogen Carrier 

(LOHC) where hydrogen can be charged & discharged in a cyclic fashion in considerable 

amount, have been proposed to be used as fuels which may replace hydrocarbon fuels [20]. 

Imidazolium ionic liquids in combination with metal nano particles catalyst can be employed for 

efficient hydrogen storage under normal pressure conditions, as claimed by J. Dupont et al. [21].  

D.C Elias et al. reported that Graphene, an atomic layer of Graphite can react with atomic 

hydrogen reversibly to form Graphane & release hydrogen after heating to 450 ºC [22].  Dillion 

et al. provided experimental evidence for storage of hydrogen in carbon nano tubes at room 

temperature [23]. Since then attempts have been made towards hydrogen storage in various nano 

tubes and nanostructures as summarized by George E. Froudakis [24].  

Chen, et al. have shown that carbon nano tubes doped with Lithium & Potassium exhibit high H2 

uptake at 1 atmosphere & 200 °C - 400 °C temperature for Li doped and near room temperature 

for K doped carbon nano tubes [25]. Later on R. T. Yang adopted same procedure as reported by 

Chen et al. & concluded that high H2 uptake was due to moisture contamination, actual 

adsorption by alkali doped carbon nano tubes was merely 2 wt% with dry H2 [26]. Results 

reported by one group could not be reproduced by another group due to sensitive experimental 

conditions & measurement procedures. Rao et al. investigated H2 storage on single ∕ multi - 

walled nano tubes and found that maximum adsorption of 3.7 wt% was obtained [27]. 
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1.4 Metal-Organic Frameworks for mobile H2 

storage 

Fast consumption of natural petroleum reserves and resulting hazardous discharge in the air 

raises a serious issue of concern for the mankind and deserves much attention to devise a 

mechanism for use of safer non polluting fuel for automobiles. Hydrogen due to its cleaner 

combustion products and rich energy content can replace traditional carbon fuels which cause a 

great threat to the environment. However, use of H2 as vehicular fuel seems to be an uphill task 

due to its highly flammable nature. 

H2 a cleaner fuel can prove a boon in pollution management once challenges for its safe & 

economical onboard hydrogen storage are overcome. This can be achieved by synthesis of 

materials suitable for charging & discharging large quantities of hydrogen at appropriate rate 

under normal temperature & pressure conditions, which can attain the goal set by US 

Department of Energy (DOE website-energy.gov). MOFs seem to be best possible option to 

serve the purpose as they can be tailored to meet requirement of mobile hydrogen storage & 

carrier because of their matchless characteristics like, remarkable surface area, tailor made 

structure and porous nature. Their structures can be manipulated by introducing multiple metals 

with different coordination properties and appropriate choice of organic ligands with suitable 

functionalities for efficient uptake & storage of H2 for mobile applications. 

 MOFs have an added advantage of being synthesized by simple hydrothermal or solvothermal 

methods in which highly porous structure can be achieved by solvent evacuation without 

destabilizing the framework. 

The story of hydrogen storage by MOF started in the year 2003 when Yaghi et al. claimed H2 

storage by MOF-5 under conditions of room temperature and 20 bar pressure [28, 29]. Lee et al. 

carried out low temperature gas sorption analysis on three dimensional micro porous MOFs as 

well as two dimensional layered complexes and concluded that all micro porous metal organic 

frameworks have a relatively high hydrogen capacity [30].  
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Yaghi  et al. while analyzing the behavior of MOFs towards low pressure hydrogen adsorption in 

contrast with their structures, found that  catenated materials display remarkable capacities for 

hydrogen adsorption on a molar basis whereas functionalization does not have much influence 

on adsorption [31]. Space et al. while studying the role of polarization interactions in H2 storage 

by an MOF have demonstrated through their Monte Carlo Simulations that highly ionic 

frameworks with narrow pores result in large H2 capture by an MOF [32]. Li et al. have reported 

that hydrogen spillover process involving atomic hydrogen adsorption, to be an appropriate 

method to improve H2 storage capacity of covalent organic frameworks and metal-organic 

frameworks under ambient conditions [33]. Li et al. have reported an efficient and fast synthesis 

of three dimensional MOF, HKUST-1, Cu3 (BTC) 2 [BTC = Benzene 1, 3, 5 tricarboxylate] via 

ultrasonic technique which has comparable H2 storage capacity with MOFs synthesized using 

traditional methods [34]. Xiao et al. have presented the development of a nano porous MOF 

employed for storage of H2 [35]. According to them good MOFs are obtained by judicious 

choice of metal ions, counter ions, organic ligands and pH values. B. Kuchta et al. have claimed 

that chemically substituting Boron atoms in place of Carbon atoms enhances adsorption capacity 

of the material [36]. 

Carbon nanostructures are considered as most desired candidates for storage of H2 reversibly, but 

physical adsorption of hydrogen by them involve low hydrogen adsorption energy & weak H2 - 

H2 interactions and do not fulfill criteria prescribed by U.S. Department of Energy. 

 The amount of gas adsorbed on MOF surface depends on temperature and pressure of adsorbate. 

Adsorption gets enhanced commonly with drop in temperature & rise of pressure. Furthermore, 

greater is the surface area, more is adsorption of hydrogen. Another crucial factor is high 

enthalpy of hydrogen adsorption. Theoretically 22-25 kJ/mol energy interactions are sufficient 

for adsorption and quick de-sorption. 

MOFs containing unsaturated metal sites are highly suitable for adsorption of gases and removal 

of volatile solvent molecules bound to metal. Post synthetic modifications or super critical CO2 

drying of MOFs can enhance their hydrogen storage capacity [37].  
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Li et al. studied H2 storage properties of metal-decorated benzenes & reported that active metals 

from 1st to 3rd period in the periodic table exhibit strong affinity for adsorption on benzene 

surface and Ca being the most suitable metal for H2 storage [38]. Mannuela Gaab et al. reported 

synthesis of Al-MOF (Basonite A520) carried out in a water based route with 90% yield [39]. 

While synthesizing HKUST-1 & MOF-5, Mu reported that raising temperature, longer reaction 

time, use of DMF in place of DEF produces MOF with lesser surface area [40]. Researchers have 

proven that, at low pressure H2 adsorption capacity depends on binding affinity of H2 & at higher 

pressure depends on surface area of material [41, 42]. Yaghi et al. designed two complexes 

namely MOF-200 & MOF-210 having BET surface area of 4530 m2g-1  & 6240 m2g-1 

respectively by evacuating the samples under supercritical CO2 [43].  

Figure 1.1 illustrates MOFs with high gas storage ability [44].  
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Figure 1.1 Important MOFs with high gas storage properties 

[44] 
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Due to weaker interactions between H2 & MOFs it is still a challenging task to store of H2 under 

favorable conditions. Besides having larger surface area, MOF should have high heat of H2 

adsorption [45]. Major chunk of MOFs with high hydrogen storage capacity at low temperatures 

at present, involve use of harmful organic solvents mostly DMF ∕ DEF in their synthesis. Present 

research was carried out with the aim to synthesize metal-organic frameworks through green 

route, with active functional groups on surface to enhance H2 interaction and consequent high 

hydrogen storage by them.  

1.5 Metal-Organic Frameworks as adsorbents 

Water, an essential commodity constitutes around 70 % of surface of earth, but unfortunately a 

small percentage of it is suitable for human consumption. Water is ultimate necessity of life, but 

access to clean; fresh & safe drinking water is a foremost worldwide concern. One major 

problem affecting water cycle on earth is water contamination, challenge we face today is of 

water pollution. Chemicals that go into water stream primarily from textile & leather industry, 

paper & pulp industry, paint industry & tanneries are often very difficult, if not impossible, to 

remove. Textile dyeing industry alone is responsible for about 20% of water pollution [46]. 

 Apart from being toxic in nature, chemical industrial waste released into water bodies, may 

affect quality of sunlight that penetrates to a certain depth inhibiting plant & animal metabolism. 

Deterioration of aesthetic & life supporting qualities of water bodies caused by industrial waste 

may badly affect flora & fauna, which is a matter of grave concern for mankind. Waste discharge 

from dyeing industry interacts with atmospheric gases and results in formation of products which 

are more toxic, carcinogenic & mutagenic for living beings than parent dyes [47]. 

Leaving aside industrial dye stuff discharge into water resources, other major cause of water 

pollution in India includes Idol immersion in river waters. According to an assessment done by 

the Central Pollution Control Board (CPCB) in India, 32 tones of colors containing deadly 

metals; Pb, Cr, Hg, Mn etc is discharged into River Hooghly alone during Festivities like 

Dussehra [48].  
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Figure1.2 Major sources of water pollution in India; 1 Dyeing 

Industry   2 Idol immersion 
 

The phenomenon of adsorption has been exploited by the mankind since ancient times, utilizing 

the adsorbent properties of clay and wood charcoal for water purification [49]. Adsorption is one 

of the processes commonly used for dye removal in wastewater treatment [50 - 52]. The 

activated carbons usually employed for treatment of waste water are not only expensive, but add 

additional cost for their regeneration.  

MOFs sometimes termed as ʻ Porous Coordination Polymers ʼ (PCPs) encompass crystal 

structures with open space in them. These materials having extraordinary high surface area, 

variable pore dimensions & active functional groups, thus may serve as host for a variety of 

guest species.  
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An MOF consisting of tricarboxylate ligand coordinated to Zn (II) ions, containing large pores has 

recently been reported to encapsulate large guest molecules [53]. Pore size which is associated with 

transport mechanism is a crucial issue in adsorption of gases & other applications of porous 

materials. 

 A large variety of Metal-organic framework complexes have been tailored in the past for gas 

storage, separation & capture of small molecules by exploiting their microscopic nature. 

However there is still dearth of metal-organic frameworks with larger pores in their structure to 

be employed as scavengers for organic pollutant, particularly organic dye stuff discharge from 

textile industry, paper & pulp industry, tanneries etc.  

1.6 Metal-Organic Framework as Luminescent 

materials 

Photoluminescence in complexes arises from phenomena like, transfer of charge; from ligand → 

metal (LMCT), metal → ligand (MLCT), ligand → ligand (LLCT) and metal attached with 

antenna ligands [54]. The luminescent characteristics of complexes can be modified by judicious 

choice of metal species and appropriate choice of ligands. Specific application based luminescent 

materials can be tailored by selection of ligands bearing suitable functionalities, high porosity 

and appropriate particle size.  

Because of their porous nature the multi metal-citrate complexes act as host for different types of 

ionic species and luminescence resulting from guest ion or transfer of charge between metal and 

ligand [55]. 

Luminescent MOFs have key advantages over other luminescent probe materials as MOFs have 

well defined crystalline structure which is finely established by XRD, thereby providing exact 

knowledge of atomic positions and interactions that may be involved in detection of an analyte 

[56].  
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Luminescence of MOFs can be exploited for host of applications; biomolecule sensor [57], 

transport of drug [58], chemical sensing & explosive detection [59], fluorescent thermometers 

[60] and biomedical imaging [61]. Fluorescence-based detection of explosive molecules with 

luminescent MOF sensors was first reported by Li et al. [62]. Biomolecule recognition & sensing 

applications of MOFs have been explored by Lin et al. [63]. Though luminescent properties of 

lanthanide based MOFs have widely been exploited in various fields, yet controlling size & 

morphology of luminescent lanthanide MOFs to nanoscale is a challenging task, as variation in 

particle size gives rise to unique optical properties. It is even more challenging to apply different 

metal cations and ligands to produce lanthanide based luminescent materials for practical 

applications [64, 65]. 

Figure1.3 Reveals various applications of luminescent Metal-organic framework 

complexes. 
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Figure 1.3 Applications of luminescent Metal-organic 

framework complexes  
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1.7 Multi Metal-Organic Framework complexes 

The architecture of an MOF can be varied by introducing multiple metals with different 

coordination properties and appropriate choice of organic ligands with suitable functionalities. 

Yaghi group has designed complexes containing multiple metal atoms in a pre decided sequence. 

They have established that making such complexes bearing multiple hetero metal atoms in their 

structure is “notoriously tough”. However these complexes deserve special attention for 

selectivity in catalysis or “cascading reactions” [66, 67]. Wang et al. have designed multi-metal 

MOF-74 with 2 - 10 hetero metal atoms [68]. Li et al. have reported much better catalytic 

activity of MOFs containing multiple hetero atoms, especially in heterogeneous catalysis [69]. 

1.8 Structure of Metal-Organic Frameworks 

A noteworthy feature of MOF chemistry is ability of their primary molecular building blocks 

namely metal atoms or their clusters and organic linkers to maintain their structural integrity 

throughout the synthesis and form specific secondary building units (SBU) which further 

undergo self assembly to form final MOF architecture. Some of remarkable research highlights 

for MOFs and their structure are discussed here. 

MOF-5: First reported in 1999, consists of ZnO4 tetrahedra aggregating to form (Zn4O) O12 

octahedral SBU connected by 1, 4-benzenedicarboxylic acid struts between the nodes, forming 

Zn4 O (BDC)3 having three dimensional cubic network structure [7].  

MIL-101: Ligand 1, 4-benzenedicarboxylic acid coordinates with Cr3O inorganic building block 

resulting in mesoporous material with extraordinary large surface area & large pore volume [70]. 

HKUST-1: The highly porous MOF [Cu3 (TMA) 2(H2O)3] consists of Cu2 located at six vertices 

of an octahedron in SBU [71].  

MOF-2:  Zinc based MOF-2, Zn (BDC).DMF H2O, has a layered structure [72]. 
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MOF-3: The tri nuclear SBU in Zn3 (BDC)3 6CH3OH is octahedral and linked with benzene di 

carboxylate linker to form porous three dimensional structure having poly trigonal prismatic 

topology [72]. 

Catenation in the form of interpenetration and interweaving usually caused by long linkers is 

generally considered as one of the most undesirable features in synthesis of porous network and 

a threat to structural stability and porosity of open frameworks. Yaghi group has however been 

successful in achieving highly porous structures with great degree of interpenetration / 

interweaving and permanent porosity [73, 74].  

 

Figure 1.4 depicts structures of some prominent MOFs (a) MOF-5 [7] (b) HKUST-1[71] (c) 

MOF-2 [72] (d) MOF-3 [72]. 
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                      (a)                                                                                            (b) 

                               

              (c)                                                                                             (d) 

Figure 1.4 Structures of Metal-Organic Frameworks (a) MOF-5 

[7] (b) HKUST-1 [71] (c) MOF-2 [72] (d) MOF-3 [72] 
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1.9 Synthesis of Metal-Organic Framework 

complexes  

Metal-organic frameworks hold an edge over other porous materials because of their simple and 

convenient synthesis by hydrothermal or solvothermal methods. However, solvothermal method 

has been the most favorite method, adopted by a large community of researchers for synthesis of 

transition metals complexes with organic ligands, involves use of harmful organic solvents 

namely DMF & DEF. Salifoglou et al. reported first synthesis of anionic Iron-citrate complex 

containing iron coordinated to two citrate linkers and charge balanced by NH4
+ counter ions in 

aqueous medium. The complex contains an extensive array of hydrogen interactions in its 

network [75]. Synthesis of many MOFs through a water based route has been reported by 

researchers in the past [76 - 78]. Li et al. synthesized two dimensional mixed ligands-metal co-

ordination complexes by bridging oxalate and 4, 4’- bipyridine ligands with different metals 

through hydrothermal route [79]. Alkaline earth metals based MOFs have also been synthesized 

by hydrothermal method [80]. Hydrothermal synthesis of metal-organic framework, Co3 (BTC)2. 

12H2O containing an array of hydrogen bonding with water coordinated to metal has been 

reported [81]. Researchers have reported the electrochemical synthesis, mechano-chemical 

synthesis, microwave assisted synthesis and ultrasound synthesis of metal-organic frameworks 

[82 - 85]. These materials have fascinated the researchers to such an extent that metal-

biomolecule frameworks (MBioFs) and even edible metal organic framework materials have 

been tailored from natural products [86, 87]. Yaghi et al. have claimed creation of popular MOFs 

namely; MOF-5, MOF-74, MOF-177, MOF-199 under normal temperature conditions and 

extended the method for synthesis of IRMOF-0 with cubic geometry [88]. 

Figure 1.5 illustrates metal-organic framework synthesis through different routes and 

comparison of MOFs synthesized using different synthetic routes [44]. 
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Figure 1.5 (a) Metal-organic framework synthesis through 

various routes (b) Comparative study of MOFs synthesized 

through different routes [44] 

 

 



Synthesis of Metal-Organic Frameworks through Green Synthetic Pathways and Their Applications                           2018 

Usha Raju Delhi Technological University Page 18 

 

1.10 Twelve guiding principles for green route 

to synthesis  

Proposed by P. Anastas and J. Warner green synthesis is based on twelve principles [89]: 

1.10.1 Waste prevention: The amount of waste generated may be reduced by changing design 

and methodology or appropriate use of materials or products for cost reduction and environment 

benefits. 

 

 1.10.2 Atom economy: Atom economy refers to efficacy of conversion of reactants into desired 

products. The higher is the atom economy in a process, the greener the process will be. 

 

1.10.3 Less hazardous chemical syntheses: A chemical process should be designed in a way 

which generates minimum or no toxic chemical products which may be dangerous for human 

health or cause damage to the environment. 

 

1.10.4 Designing safer chemicals: The researchers and the chemical companies must think 

about the toxicity and consequent adverse effects of products before they are designed and to 

minimize toxicity whenever possible through rational chemical design. 

 

1.10.5 Safer solvents and auxiliaries: Green process should either avoid the use of solvents and 

other auxiliaries, if possible, or should be safe if necessary. 

 

1.10.6 Use of energy efficient technology: The researcher should design, construct and execute 

the project in a way which minimizes the use of energy. One should adopt energy-

efficient technologies for designing a product. 

 

1.10.7 Use of renewable feed stocks:  The raw materials or feedstock used in a chemical 

synthesis should be renewable rather than depleting resources which take much longer to be 

replenished, and are being consumed at a faster rate by the mankind. 
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1.10.8 Reduce derivatives: The strategy should be made to simplify the process in order to 

reduce the number of steps, as all these steps will lead to the use of additional chemicals and 

their recovery. 

 

1.10.9 Catalysis: A catalyst increases the rate of a chemical reaction by providing an alternate 

path of low activation energy. The use of a safe catalyst thus helps in making a process more 

economical in terms of time and energy.  

 

 1.10.10 Design for degradation: During synthesis the methodology  

should lead to the formation of products which are biodegradable and do not harm the 

environment in any way. 

 

 1.10.11 No generation of hazardous environment pollutants: The process should be designed 

in such a way which allows the real time monitoring of all the steps to control the generation of 

hazardous by products. 

 

 1.10.12 Safer chemistry for accident prevention: The process should involve the use of   

inherently safer chemical reaction process, design and operation to avoid accidents, fires, hazards 

and explosions. 
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CHAPTER 2 

SCOPE OF THE RESEARCH 

In view of continuous depletion of petroleum reserves & ever rising threat of environmental 

pollution, hydrogen - A future generation fuel may prove boon for mobile applications once 

challenges for its onboard storage are overcome. Metal-organic framework materials can 

function as facilitator for hydrogen storage and supply for mobile applications as an automobile 

fuel. Storage of hydrogen under normal temperature conditions till now is a great challenging 

task owing to weak interactions of H2 with metal-organic frameworks. Solvothermal, the most 

prevalent technique employed for synthesis of MOFs, though has merits of fast crystal growth, 

phase purity & larger surface area of product, yet suffers from serious impediment of use and 

recovery of harmful & expensive organic solvents mostly N, N- dimethyl formamide and N, N- 

diethyl formamide. Thus there arises a need for environmental friendly method to be devised for 

synthesis of MOFs. 

Present research was carried out with the motivation to synthesize MOFs with active functional 

groups on surface to enhance hydrogen interaction & hydrogen storage capacity, through green 

route, completely eliminating role of harmful organic solvents namely, DMF & DEF. 

Citric acid, a naturally occurring complexing agent and its environment friendly nature, 

employed to provide active functional groups on MOF surface to enhance H2 interaction & 

hydrogen storage capacity, further compliments green route to synthesis. An excellent chelating 

agent, citric acid can easily co-ordinate with different metal ions to form a variety of one, two 

and three dimensional complexes under mild conditions.  

Citric acid linker facilitates the optimization of pore size, inclusion of open metal sites and 

attractive sites for improving hydrogen storage in multi metal-organic frameworks.  

Lime juice squeezed from fresh fruit, used as a source of citric acid further reduces time & cost 

involved in extraction of citric acid commercially.  
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The aim of present research was to synthesize metal-organic frameworks as metal-citrate 

complexes through green synthetic pathways adopting a water based route, completely 

eliminating the role of harmful organic solvents namely DMF and DEF commonly employed in 

the synthesis of MOFs. Multiple metal ions in different combinations introduced in the 

framework to exploit different coordination properties of transition metal ions and to obtain 

metal ions with coordinative unstauration or vacant sites, after removal of solvent guest 

molecules in multi metal-citrate complexes. The multi metal-citrate complexes have potential 

applications in storage of hydrogen, separation of gases, capture of organic dye molecules, 

sensors for fatal ionic species in industrial waste discharge and bio medical applications due to 

their photo luminescent properties.  

The broad objectives of the present research are summarized as under: 

Objective  

Synthesis of Metal-organic frameworks through green synthetic pathways and their applications 

Specific objectives 

❖ Green synthesis of Multi metal-citrate complexes using citric acid linker. 

❖ Green synthesis of Multi metal-citrate complexes using lime juice, a source of citric acid. 

❖ Characterization of multi metal-citrate complexes by Fourier Transform Infrared 

Spectroscopy, Scanning Electron Microscopy, UV-Vis spectroscopy, Energy Dispersive 

Spectroscopy and Powder X- Ray diffraction techniques. 

❖ Introduction of multiple metal ions in the framework. 

❖ Study of stability of these complexes through Thermogravimetric analysis. 

❖ Applications of Multi metal-citrate complexes. 
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CHAPTER 3 

EXPERIMENTAL SECTION 

3.1 Materials 

Materials used in synthesis and characterization of multi metal-citrate complexes,  Copper II 

sulfate pentahydrate (CuSO4.5H2O), Iron II sulfate heptahydrate (FeSO4.7H2O), Nickel II sulfate 

hexahydrate (NiSO4.6H2O), Zinc II sulfate heptahydrate (ZnSO4.7H2O), Citric acid monohydrate 

(2-hydroxypropane-1, 2, 3-tricarboxylic acid, C6H8O7. H2O), oxalic acid dihydrate (Ethanedioic 

acid, C2H2O4·2H2O), sodium hydroxide pellets (NaOH), and Phenolphthalein indicator were 

commercially available analytical grade and used as obtained without further purification. Lime 

juice used was squeezed from fresh fruit and strained to discard pulp. Water used was double 

distilled water. All the reactions were carried out in the air. 

3.2 Characterization and measurements 

Powder X-ray diffraction patterns were recorded with a Bruker  D8 ADVANCE X-ray powder 

diffractometer operated at 40 KV & 40 mA with monochromated CuKα radiation (λ = 1.5406 

Å). Fourier transform infrared spectra were recorded in wavenumber range 4000 - 400 cm-1 by 

using a Nicolet 380 FTIR spectrometer adopting KBr pellet technique. Scanning electron 

microscopy to observe microscopic morphology of crystals and energy dispersive X-ray 

spectroscopy to identify the relative elemental composition was performed with HITACHI S-

3700N electron microscope with a “built-in” Energy Dispersive X-Ray Analyzer. Absorption 

spectra were recorded with Shimadzu UV-1800 at room temperature. Fluorescence spectra were 

recorded on JobinYyon HoribaFluorolog-3 spectrofluorometer. 

Thermogravimetric analysis of complexes was carried out in PerkinElmer thermogravimetric 

analyzer TGA4000 with a scanning rate of 10 ºC min-1.  
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Nitrogen physisorption measurements to determine specific surface area of multi metal-citrate 

complexes were performed using N2 adsorbate (Molecular Weight.: 28.013u, Liquid Density: 

0.806 g cc-1, Eff. mol. diameter (D): 3.54 Å, Cross Section: 16.200 Å², Temperature 77.350K) 

using a Quanta chrome Instrument version 3.0, Autosorb iQ., Automated gas sorption analyzer, 

having cell type 6mm w/o rod.  All the samples were pretreated for outgas at temperature 300 

°C before adsorption measurements. The BET plot is displayed automatically by ASiQwin 

software. Collected adsorption data were treated by BET-isotherm in the range 0.05 < P/Po< 0.3. 
 

3.3 Outline of Research 
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3.4  Green Synthesis of Multi Metal-Citrate 

Complexes 1-4 using Citric Acid 

Synthesis of complex 1 

Multi Metal-Citrate complex 1 was synthesized by stirring a solution of 10 mmol each of 

NiSO4.6H2O (2.63 g, 10.0 mmol) and ZnSO4.7H2O (2.88 g, 10.0 mmol) with 20 mmol of Citric 

acid monohydrate in 20 mL of double distilled water. The reaction mixture was initially heated 

to a temperature of 30 - 40 ºC for 30 minutes & solution was stirred continuously for four hours. 

The resultant solution was having pH in the range 3 - 4. Upon cooling bluish green needle 

shaped crystalline product was obtained in 54% yield after 48 hours. 

Synthesis of complex 2 

Complex 2 was prepared by complexation of Citric acid monohydrate with CuSO4.5H2O (2.49 

g, 10 mmol) & FeSO4. 7H2O (2.78 g, 10 mmol) in a molar ratio of 2:1:1 using 20 mL double 

distilled water as a solvent on the same lines as complex 1. Upon cooling yellowish green 

cubical crystals were obtained in 52% yield.  

Synthesis of complex 3 

Complex 3 was synthesized by the complexation of Citric acid monohydrate with CuSO4.5H2O 

(2.49 g, 10 mmol), FeSO4. 7H2O (2.78 g, 10 mmol) and NiSO4.6H2O (2.63 g, 10.0 mmol) in a 

molar ratio of 2:1:1:1 and dark green cubical crystals were obtained in 62% yield. 

Synthesis of complex 4 

The complex 4 was synthesized by taking a solution of 10 mmol each of CuSO4.5H2O (2.49 g, 

10.0 mmol), FeSO4. 7H2O (2.78 g, 10.0 mmol), NiSO4.6H2O (2.63 g, 10.0 mmol) & 

ZnSO4.7H2O (2.88 g, 10.0 mmol) with 20 mmol of Citric acid in 20 mL of double distilled 

water adopting procedure as complex 1, dark green crystals were separated out in 59% yield. 

The complexes 1-4 were washed with ice cold distilled water and dried in air. 
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3.5  Green Synthesis of Multi Metal-Citrate 

Complexes I-IV using Lime Juice  

   Synthesis of complex I 

Multi metal-citrate complex I was synthesized by dissolving 10.0 mmol each of NiSO4.6H2O 

(2.63 g, 10.0 mmol) and ZnSO4.7H2O (2.88 g, 10.0 mmol) in 20 mL of double distilled water. 

Lime juice was squeezed from fresh fruit and strained. 20 mL of fresh lime juice was added to 

the solution of NiSO4.6H2O and ZnSO4.7H2O. The resultant mixture was heated to 30 - 40 ºC 

under stirring for 30 minutes and stirring continued for four hours. The mixture solution was in 

the pH range 3 - 4. The resultant solution was allowed to cool in air and kept undisturbed. The 

bluish green crystals of the complex I separated out in 58% yield after 48 hours and 

subsequently re-crystallized from distilled water. 

 Synthesis of complex II 

 Complex II was synthesized by dissolving 10 mmol each of CuSO4.5H2O (2.49 g, 10 mmol) 

and FeSO4.7H2O (2.78 g, 10 mmol) in 20 mL of double distilled water. Lime juice was 

squeezed from fresh fruit and strained.  

20 mL of fresh lime juice was poured in the reaction mixture. The resultant solution was heated 

to 30 - 40 ºC under stirring for 30 minutes and stirring continued for four hours. The same 

procedure was followed as reported for complex I.  Yellow green crystals in 42% yield were 

obtained after the solution being kept undisturbed for ten days.  

Synthesis of complex III 

 Complex III was synthesized by dissolving 10 mmol each of CuSO4.5H2O (2.49 g, 10 mmol), 

FeSO4.7H2O (2.78 g, 10 mmol) and NiSO4.6H2O (2.63 g, 10.0 mmol) in 20 mL of double 

distilled water. 20 mL of fresh squeezed and strained lime juice was added to the above 

solution. The same procedure was followed as reported for complex I. Dark green crystals in 

60% yield were obtained after the solution being kept undisturbed for four days. 
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Synthesis of complex IV 

 Complex IV was synthesized by the same procedure as adopted for complexes I, II and III by 

stirring a solution of 10 mmol each of CuSO4.5H2O (2.49 g, 10 mmol), FeSO4. 7H2O (2.78 g, 

10 mmol), NiSO4.6H2O (2.63 g, 10.0 mmol) and ZnSO4.7H2O (2.88 g, 10.0 mmol) with 20 mL 

of double distilled water and 20 mL of fresh squeezed and strained lime juice was added to the 

reaction mixture. Bluish green crystals were obtained in 54% yield after four days. 

3.6 Determination of Citric Acid content in Lime 

Juice   

The citric acid content in lime juice, squeezed from fresh lime fruit and strained was determined 

by titrating it against standardized sodium hydroxide solution. Fresh squeezed and strained lime 

juice was titrated against standardized sodium hydroxide solution using phenolphthalein 

indicator as per standard methods of volumetric analysis. The citric acid content in fresh 

squeezed lime juice was found to be 5.99% by weight and 5.97% by volume. The citric acid 

content in lime juice was calculated by standard procedure. 

Citric acid             +           Sodium hydroxide    →        Sodium citrate        +           water 

C6H8O7 (aq.)           +          3   NaOH (aq.)           →         Na3C6H5O7 (aq.)     +          3 H2O (l) 

Volume of lime juice taken for each titration 

Mass of 0.010 L of lime juice 

Molarity of standardized NaOH solution 

= 0.010L 

= 10.25 g 

= 0.9615M 

  

Volume of sodium hydroxide solution used for  

 neutralization of citric acid in lime juice 

  Moles (NaOH) 

 

=       0.0101L 

=       Molarity × Volume 

=       0.9615 × 0.0101 
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Moles (C6H8O7) 

 

 

Formula mass (C6H8O7) 

Mass (C6H8O7) 

 

 

 

=       0.0097mol. 

=        Moles (NaOH)  ̸  3 

=        0.0097 ∕ 3 

=        0.0032 mol. 

=       192.06 g 

=        Moles × formula mass 

=        0.0032 × 192.06 

=        0.6146 g 

  Percentage of citric acid (by mass) in fresh lime juice 

 Mass (0.010 L of lime juice) 

 Percentage (C6H8O7) 

 

 

=        10.25 g 

=   Mass (C6H8O7)   ∕   Mass 0.010 L of lime juice × 100 

=   0.6146 ∕ 10.25 × 100 

=      5.99 %  

   Percentage of citric acid (by volume) in fresh lime juice 

Density (C6H8O7) 

Volume (C6H8O7) 

 

 

Percentage (C6H8O7) 

 

=   1.03 g m L-1 

=   Mass ∕ Density 

=   0.6146 ∕ 1.03 

=   0.5967 m L 

=   Volume (C6H8O7)   ∕ Volume 0.010 L of lime juice × 100 

=   0.5967 ∕ 10 × 100     =    5.97 % 
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3.7 Characterization of Multi Metal-Citrate 

complexes 

All complexes synthesized using citric acid and lime juice have been characterized by: 

• Fourier Transform Infrared Spectroscopy. 

• Scanning Electron Microscopy. 

• Energy Dispersive X-Ray Spectroscopy. 

• Powder X- ray Diffraction Spectroscopy. 

• UV-Vis Spectroscopy. 

• Surface characteristics determined by BET, BJH and DFT methods. 

• Stability of complexes established by Thermogravimetric analysis.  

• Photo luminescent properties of complexes explored.  

• Crystal structure of complexes could not be determined by single crystal X- ray 

diffraction probably due to overlapping of reflections. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 FTIR Spectroscopy of Multi Metal-Citrate 

Complexes synthesized using Citric Acid 

Infrared spectroscopy (IR) is a quantitative and qualitative analysis to detect functional groups 

associated with the sample. The material absorbs Infrared radiations and undergoes vibrational 

transitions which are characteristics for every functional group. The technique helps to identify 

the conversion, appearance or disappearance of functional groups present in sample during the 

course of a chemical reaction. Fourier Transform Infrared Spectroscopy of the multi metal-

citrates in KBr indicates the presence of vibrationally active carboxylate group (Figure 4.1, 

Figure 4.2). Both anti-symmetric and symmetric stretching vibrations of the carboxylate groups 

present in the coordinated citrate ligand are revealed by the FTIR spectra of the complexes. 

Strong absorption bands between 1630 ─ 1600 cm-1 are assigned to anti- symmetric, while 

between 1450 ─ 1400 cm-1 are due to symmetric stretching vibrations of the carboxylate groups 

of citrate ligand. Due to acidic medium the intensities of these bands decrease [1]. The 

difference between anti-symmetric and symmetric stretching vibrations in complex 1 & 2 being 

greater than 200 cm-1, indicates that carboxylate groups of citrate ligand in these complexes are 

coordinated to metal ions in a mono dentate fashion [2], while a separation of 180 ─ 200 cm-1 in  

complex 3 & 4 refers to bidentate bridging bonding, the most preferred co-ordination of 

carboxylate groups of citrate ligand in these complexes [3, 4].  

A peak at 1724 cm-1 and 1726 cm-1 in complex 1 & 2 respectively, suggests that a fraction of 

hydrogen atoms of carboxylate group of citric acid remain bound while others are replaced by 

metal atoms forming multi metal-citrate complexes [5].  

Absence of characteristic vibrational band of carboxyl group of citric acid between 1750 – 1720 

cm-1 reflects presence of complete deprotonated form of the citric acid in complexes 3 & 4 [6].  
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In addition strong –OH stretching band in the range 3200 ─ 2500 cm-1 and in-plane and out-of-

plane O─H bending bands of carboxylic acids at 1430 cm-1 and 930 cm-1 are absent in multi  

metal-citrate complexes [7]. Thus hydroxyl group of citrate ligand is coordinated as shown by 

Hedwig et al. through potentiometric and spectroscopic study for synthesis of Ni (II) complex 

with citric acid in aqueous solution in pH range 3-6 [8]. The characteristic vibrational bands of 

alcoholic hydroxyl group of citric acid at 3450, 1290, 1265, 1165, 1125, 1060, 925, 890 & 820 

cm-1 disappear in FTIR spectrum of prepared complexes [6].  A broad peak between 3700 ─ 

3200 cm-1 in all complexes is assigned to hydrogen bonding by hydroxyl group of coordinated 

water, lying between tetrahedral and octahedral sheets in these complexes [7]. A layered 

structure similar to one assigned to metal carboxylates by researchers in the past is thus 

proposed for hydrothermally synthesized multi metal-citrate complexes in the present research 

[9]. Two vibrational bands at around 760 cm-1 and 630 cm-1 confirm the presence of coordinated 

water molecules in the complexes [10].  
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 Figure4.1 FTIR Spectroscopy of Complex 1- 4 synthesized 

using Citric Acid 
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Figure4.2 FTIR combined graph for Complexes 1 - 4 

synthesized using Citric Acid 
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4.2 FTIR Spectroscopy of Multi Metal-Citrate 

Complexes synthesized using Lime Juice 

FTIR spectroscopy of multi metal-citrate complexes synthesized using lime juice, in KBr 

indicates presence of vibrationally active −COOH (Figure 4.3, Figure 4.4). FTIR spectra of 

complexes exhibit both symmetric & anti-symmetric stretching vibrations of −COOH present in 

coordinated citrate ligand. A strong band in range 1630 - 1620 cm-1 is assigned to anti-

symmetric stretching vibrations, while the one in range 1401 - 1384 cm-1 to symmetric 

stretching vibrations of −COOH of citrate ligand in complexes [1]. A difference greater than 

200 cm-1 between anti-symmetric & symmetric stretching vibrations reveals mono dentate 

bonding of carboxylate groups of citrate linker with metal ions [2]. The peak at 1726 cm-1 in 

complex 1 reveals that a fraction of hydrogen atoms of −COOH of citric acid remain bound 

while others are replaced by metal atoms forming multi metal-citrate complexes [5]. A similar 

peak at 1726 cm-1 & 1724 cm-1 was also observed in complexes when synthesized using citric 

acid. A peak around 1100 cm-1 in complexes assigned to C ─ O coordinated to metal cations 

[11]. Weak band between 575 cm-1 & 573 cm-1 attributed to in plane vibration of O ─ C ═ O 

group [12]. A strong band at 980 cm-1 in multi metal-citrate complexes is assigned to C ─ C 

skeletal bonds of citric acid moiety [13, 14]. Characteristic vibrational bands of ─OH group of 

citric acid at 3450, 1290, 1265, 1165, 1125, 1060, 925, 890 & 820 cm-1 are absent in FTIR 

spectra of complexes [6]. In-plane & out-of-plane ─OH bending vibrational bands of −COOH 

at 1430 cm-1 & 930 cm-1 disappear in complexes [7]. ─OH group of citrate ligand is coordinated 

as shown by Hedwig et al. for synthesis of Ni2+ complex with citric acid in aqueous solution in 

pH range 3-6 [8]. Removal of proton from ─OH group of citric acid depends upon nature of 

metal ion bound to citric acid, with Cu bound to citric acid, tetraionised Cit4- is formed at pH 4 

[15].  A broad band between 3732 cm-1 & 3200 cm-1 in multi metal-citrate complexes is 

observed, due to hydrogen bonding of water molecules coordinated to metal ions and lying 

between tetrahedral & octahedral sheets in complexes [7]. 
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Further two vibrational bands between 765 cm-1 ─ 750 cm-1 & 635 cm-1 ─ 615 cm-1 due to 

rocking ρr(H2O) & wagging ρw(H2O) vibrations confirm presence of coordinated H2O in 

complexes [10]. Absorption band at 3154 cm-1 in complex 1 is assigned to symmetric ─OH 

stretching mode associated to tetrahedral coordinated water molecule [16]. 

The vibrational bands observed for multi metal-citrate complexes I - IV appear to be quite 

similar and comparable to those obtained for complexes 1 - 4 synthesized using commercially 

available citric acid. FTIR peaks characteristics for heavy transition metals in these complexes 

appear beyond 400 cm-1. A strong network of hydrogen bonding in these complexes is further 

confirmed by their thermogravimetric analysis. 

Figure 4.3 and Figure 4.4 reveal Fourier Transform Infrared spectra of multi metal-citrate 

complexes I - IV synthesized through green route using lime juice. 
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                     Complex III                                                            Complex IV 

Figure4.3 FTIR Spectroscopy of Complex I - IV synthesized 

using Lime Juice 
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Figure4.4 FTIR combined graph for Multi Metal-Citrate 

complex I-IV synthesized using Lime Juice 

 

 



Synthesis of Metal-Organic Frameworks through Green Synthetic Pathways and Their Applications                           2018 

Usha Raju Delhi Technological University Page 48 

 

4.3 Structure of Multi Metal-Citrate Complexes 

synthesized using Citric acid & Lime Juice 

All multi metal-citrate complexes are colored, well defined crystalline solids, stable in air and 

decompose at higher temperature. Based on their Fourier transform infrared spectroscopy, a 

layered structure similar to one reported in the literature for metal carboxylates is proposed for 

multi metal-citrate complexes synthesized using citric acid as well as synthesized using lime 

juice in the present research [9]. The −COOH group of citrate ligand in complexes 1 & 2 are 

coordinated to metal ions in a mono dentate fashion and a fraction of the hydrogen atoms of 

carboxylate group of citric acid remain bound while others are replaced by metal atoms forming 

multi metal-citrate complexes, whereas in complex 3 & 4 citrate ligand exhibits complete 

deprotonated form involving co-ordination of hydroxyl group also and binds with metal ions by 

bidentate bridging mode, which is the most preferred co-ordination of −COOH groups of citrate 

ligand in these complexes. In complexes I-IV synthesized using lime juice, −COOH groups of 

citrate ligand are coordinated to metal ions in a mono dentate fashion. In complex I synthesized 

using lime juice a fraction of the hydrogen atoms of carboxylate group of citric acid remain 

bound while others are replaced by metal atoms forming multi metal-citrate complexes just like 

its counterparts 1 & 2 synthesized using citric acid. The hydrogen bonded hydroxyl group of 

coordinated water lying between the tetrahedral and octahedral sheets in the complexes is 

indicated in these complexes. The comparative Fourier transform infrared frequencies of 

complexes synthesized using commercially available citric acid and using fresh lime juice are 

depicted in Table I. 

Figure 4.5 depicts the structure assigned to multi metal-citrate complexes synthesized using 

commercial citric acid and lime juice. 
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     Figure 4.5 Proposed structure of Multi Metal-Citrate 

complexes 
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Table 1 Comparison of FTIR Frequencies of Multi Metal-

Citrate Complexes synthesized using Citric acid 1-4 & Lime 

Juice I-IV 

 

 

Complex 

1 

Peak/ 

Cm-1 

 

Complex 

I 

Peak/ 

Cm-1 

 

Complex 

2 

Peak/ 

Cm-1 

 

Complex 

II 

Peak/ 

Cm-1 

 

Complex 

3 

Peak/ 

Cm-1 

 

Complex 

III 

Peak/ 

Cm-1 

 

Complex 

4 

Peak/ 

Cm-1 

 

Complex 

IV 

Peak/ 

Cm-1 

 

Assignment 

3732  3627 3444 3389 3590 3231 3333 (O-H) H2O 

3040 3154        (O-H) 

2326         (C-H) 

1726 1726 1724       (C=O) 

1620 1620 1609 1622 1623 1627 1630 1619 as (COO¯) 

1401 1401 1401 1384 1432 1380 1450 1384 s(COO¯) 

   1228  1223 1224 1229 (C–O) 

1068 1092 1093 1143 1120 1063 1111 1137 (C–O) 

982 983 984 988 987 994 997 996 (S=O)/(C-C) 

765 758 753 753 755 750 750 758 ρr(H2O) 

620 627 635 615 629 628 628 635 (Ni O)/ρw(H2O) 

 574 574   575  573 O-C=O 

  526     514  (Fe-O) 

  486 482 483  486 489  (Cu-O) 

  474  463 476  476  (Fe-O) 

463 459 459 446   443 464  (Zn-O) 

  440  439   444  (Cu-O) 

  438  424  422 430  (Fe-O) 
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4.4 Powder X- Ray Diffraction Spectroscopy of 

Multi Metal-Citrate Complexes synthesized using 

Citric Acid and Lime Juice 

X-ray diffraction method is commonly employed to study the structure of crystalline material 

when monochromatic X-Ray beam fall on the surface and interaction of incident rays with 

sample produces diffraction lines owing to constructive interference when Bragg's Law is 

obeyed. The diffraction pattern thus obtained provides valuable information to analyze atomic 

structure and microstructure of a sample. Characterization of a sample from its diffraction 

pattern is based upon position and relative intensities of diffraction lines. Diffraction patterns 

are collected as 2 θ versus absolute intensity. 

X-ray diffraction studies were carried out using powder technique where sample was ground to 

a fine homogeneous powder. Unit cell dimensions, crystal lattice, inter planar spacing of lattice 

planes and miller indices of reflection planes have been calculated from crystallographic data 

which establish cubic nature of crystals. All reflections have been indexed for [h, k, l] values 

using methods reported in literature. 

All Multi Metal-Citrate complexes exhibit sharp lines in their Powder X-Ray diffraction 

spectroscopy (Figure 4.6 – Figure 4.13) which reflects their highly crystalline nature of single 

phase. Cubic nature of complexes is substantiated by the fact that Sin2 θ values of diffraction 

lines give a set of integers and satisfy equation (1) obtained by combining Bragg’s Law with 

plane spacing equation for cubic system [17].  

2 2 2

2 2 2 2

sin sin

( ) 4ah k l

  


= =

+ +
                                                (1)                                                                

(θ = Bragg's diffraction angle in radian, [h k l] = Miller indices, δ = h2+k2+l2= an integer, λ= 

wave length of the CuKα radiation (0.15406 nm), a = lattice constant). 

 

 

https://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html
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The lattice parameters of these complexes were calculated by using the formula          

2 2 2a d h k l= + +                                                            (2) 

Where a = lattice constant, d = inter planar distance and [h k l] = Miller indices. 

 Unit cell dimensions of cubic structure assigned to multi metal-citrate complexes 1- 4 

synthesized using citric acid are found to be 6 Å for complex 1 & 2 and 7 Å for complex 3 &4, 

while for complexes synthesized using lime juice the cubic cell dimensions are found to be 4 Å, 

6 Å, 9 Å & 5 Å for complexes I, II, III & IV respectively. The variation in lattice constants can 

be attributed to difference in ionic radii of different metal ions [18]. The average crystallite size 

of the complexes was calculated using Scherrer formula [19, 20]. 

K
   

cos




 
=                                                             (3) 

 Where λ is wave length of CuKα radiation (0.15406 nm), K is shape factor, a constant (0.94), β 

(FWHM) is broadening of diffraction line measured in radian at half of its maximum intensity, 

θ is Bragg’s diffraction angle in radian.  

The crystallite size of multi metal-citrate complexes synthesized from Citric acid and Lime 

Juice, calculated using Scherrer formula is shown in Table II. 
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Table 2 Crystallite size/nm calculated using Scherrer formula 

for Multi Metal-Citrate Complexes synthesized using Citric 

Acid 1─4 and using Lime Juice I─IV 

 

Complex 2 θ/ degrees FWHM of 100% 

peak, degrees 

 

Crystallite size, 

nm 

 

Lattice strain 

1 48.00 0.232 39.16 0.0023 

I 32.80 0.133 65.06 0.0020 

2 15.20 0.124 67.54 0.0041 

II 35.24 0.105 82.95 0.0014 

3 31.96 0.206 41.92 0.0031 

III 18.44 0.170 49.47 0.0046 

4 18.44 0.214 39.31 0.0058 

IV 18.56 0.146 57.61 0.0039 
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Figure4.6  Powder XRD pattern of complex 1 synthesized using 

Citric acid 

Table 3 Indexing of Powder XRD pattern of complex 1 

 

   

 

 

2θ 

(deg) 

 

 

θ 

(deg) 

θ  

(rad) 

Sin θ 

 

Sin 2 θ 

 

Ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter 

a 

(Å) 

ratio  

sin2θ/ 

h2+k2+l2 

15.28 7.64 0.133 0.132 0.017 1 1 1 100 0.265 5.79173 5.791738 0.01767 

22.20 11.10 0.193 0.192 0.037 2.09 2.0969 2 110 0.385 3.99954 5.656207 0.01853 

24.60 12.30 0.214 0.213 0.045 2.56 2.5675 3 111 0.426 3.61451 6.260521 0.01512 

29.96 14.98 0.261 0.258 0.066 3.78 3.7800 4 200 0.516 2.97893 5.957861 0.01670 

30.56 15.28 0.266 0.263 0.069 3.92 3.9292 4 200 0.527 2.92180 5.843603 0.01736 

33.48 16.74 0.292 0.288 0.082 4.69 4.6936 5 210 0.576 2.67334 5.977774 0.01659 

48.00 24.00 0.418 0.406 0.165 9.35 9.3596 9 221 0.813 1.89311 5.679345 0.01838 

62.28 31.14 0.543 0.517 0.267 15.1 15.129 15 4Ῑ0 1.034 1.48898 5.766810 0.01782 

65.48 32.74 0.571 0.540 0.292 16.5 16.548 17 410 1.081 1.42374 5.870241 0.01720 
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Figure4.7 Powder XRD pattern of complex 2 synthesized using 

Citric Acid 

Table 4 Indexing of Powder XRD pattern of complex 2 

 

2θ 

(deg) 

 

 

θ 

(deg) 

θ 

(rad) 

Sin θ 

 

Sin 2 θ 

 

Ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin 

θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter a 

(Å) 

ratio  

Sin2θ / 

h2+k2+l2 

15.20 7.60 0.132 0.13 0.017 1 1 1 100 0.264 5.82202 5.82202493 0.01749 

14.84 7.42 0.129 0.12 0.016 0.953 0.9534 1 100 0.258 5.96244 5.96244049 0.01667 

16.32 8.16 0.142 0.14 0.020 1.151 1.1517 1 100 0.283 5.42490 5.42490765 0.02014 

17.48 8.74 0.152 0.15 0.023 1.319 1.3199 1 100 0.303 5.06742 5.06742705 0.02308 

20.36 10.18 0.177 0.17 0.031 1.785 1.7857 2 110 0.353 4.35665 6.16123782 0.01561 

24.60 12.30 0.214 0.21 0.045 2.594 2.5944 3 111 0.426 3.61450 6.26051110 0.01512 

30.88 15.44 0.269 0.26 0.070 4.052 4.0520 4 200 0.532 2.89224 5.78449119 0.01771 

31.56 15.78 0.275 0.27 0.073 4.227 4.2278 4 200 0.543 2.83146 5.66292331 0.01848 

44.28 22.14 0.386 0.37 0.142 8.119 8.1198 8 220 0.753 2.04313 5.77887082 0.01775 

47.12 23.56 0.411 0.39 0.159 9.133 9.1337 9 221 0.799 1.92640 5.77920162 0.01775 

53.96 26.98 0.470 0.45 0.205 11.76 11.766 12 222 0.907 1.69723 5.87938960 0.01715 

57.80 28.90 0.504 0.48 0.233 13.35 13.352 13 320 0.966 1.59327 5.74462177 0.01796 
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Figure4.8 Powder XRD pattern of complex 3 synthesized using 

Citric Acid 

Table 5 Indexing of Powder XRD pattern of complex 3 

 

2θ 

(deg) 

 

 

θ 

(deg) 

θ 

(rad) 

Sin θ 

 

Sin 2 θ 

 

ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter a 

(Å) 

ratio  

Sin2θ / 

h2+k2+l2 

12.40 6.20 0.108 0.107 0.0116 1 1 1 100 0.215 7.12967 7.12967216 0.0116638 

18.44 9.22 0.160 0.160 0.0256 2.20 2.2010 2 110 0.320 4.80571 6.79631344 0.0128361 

20.78 10.39 0.181 0.180 0.0325 2.78 2.7885 3 111 0.360 4.26953 7.39505284 0.0108417 

21.98 10.99 0.191 0.190 0.0363 3.11 3.1158 3 111 0.381 4.03907 6.99588464 0.0121142 

23.82 11.91 0.207 0.206 0.0425 3.65 3.6515 4 200 0.412 3.73107 7.46214544 0.0106476 

25.48 12.74 0.222 0.220 0.0486 4.16 4.1694 4 200 0.441 3.49163 6.98326548 0.0121580 

26.92 13.46 0.234 0.232 0.0541 4.64 4.6451 5 210 0.465 3.30803 7.39699485 0.0108360 

32.94 16.47 0.287 0.283 0.0803 6.89 6.8913 7 22Ī 0.567 2.71592 7.18565489 0.0114828 
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Figure4.9 Powder XRD pattern of complex 4 synthesized using 

Citric Acid 

 Table 6 Indexing of Powder XRD pattern of complex 4 

  

2θ 

(deg) 

 

 

θ 

(deg) 

θ 

(rad) 

Sin θ 

 

Sin 2 θ 

 

ratio k factor h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter 

a 

(Å) 

ratio  

Sin2θ / 

h2+k2+l2 

12.36 6.18 0.107 0.107 0.0115 1 1 1 100 0.215 7.152 7.152677 0.011589 

18.00 9.00 0.157 0.156 0.0244 2.111 2.1116 2 110 0.312 4.922 6.961047 0.012235 

22.16 11.08 0.193 0.192 0.0369 3.186 3.1869 3 111 0.073 4.006 6.939775 0.012310 

23.56 11.78 0.205 0.204 0.0416 3.596 3.5964 4 200 0.408 3.771 7.543325 0.010419 

27.32 13.66 0.238 0.236 0.0557 4.812 4.8124 5 210 0.472 3.260 7.290702 0.011154 

31.96 15.98 0.278 0.275 0.0757 6.539 6.5399 7 22Ῑ 0.550 2.796 7.399977 0.010827 

37.88 18.94 0.330 0.324 0.1053 9.090 9.0906 9 221 0.649 2.372 7.116933 0.011705 

45.76 22.88 0.399 0.388 0.1511 13.04 13.044 13 320 0.777 1.980 7.140586 0.011628 

45.20 22.60 0.394 0.384 0.1476 12.74 12.743 13 320 0.768 2.003 7.224331 0.011360 

53.04 26.52 0.462 0.446 0.1993 17.20 17.203 17 410 0.89302 
 

1.724 7.110235 0.011727 
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Figure4.10 Powder XRD pattern of complex I synthesized using 

Lime Juice 

Table 7 Indexing of Powder XRD pattern of complex I 

 

2θ 

(deg) 

 

 

θ 

(deg) 

θ  

(rad) 

Sin θ 

 

Sin 2 θ 

 

ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D spacing 

(Å) 

cell  

parameter a 

(Å) 

ratio  

Sin2θ / 

h2+k2+l2 

19.94 9.97 0.1740 0.1731 0.0299 1 1 1 100 0.34626 4.453236 4.453236432 0.02997486 

28.48 14.24 0.2485 0.2459 0.0605 2.0186 2.0186 2 110 0.49196 3.134348 4.432638276 0.03025409 

28.52 14.26 0.2488 0.2463 0.0606 2.0241 2.0241 2 110 0.49264 3.130043 4.42655002 0.03033737 

32.80 16.40 0.2862 0.2823 0.0797 2.6594 2.6594 3 111 0.56468 2.730736 4.72977362 0.02657223 

34.44 17.22 0.3005 0.2960 0.0876 2.9238 2.9238 3 111 0.59208 2.604364 4.510891996 0.02921352 

38.50 19.25 0.3359 0.3296 0.1086 3.6262 3.6262 4 200 0.65938 2.338555 4.677111778 0.02717398 

52.46 26.23 0.4577 0.4419 0.1953 6.5168 6.5168 6 211 0.88395 1.744440 4.272988392 0.03255707 

68.32 34.16 0.5962 0.5615 0.3152 10.518 10.518 11 311 1.12301 1.373093 4.554035911 0.02866261 

79.68 39.84 0.6953 0.6406 0.4104 13.692 13.692 14 321 1.28129 1.203472 4.502983346 0.02931622 
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Figure4.11 Powder XRD pattern of complex II synthesized 

using Lime Juice 

Table 8 Indexing of Powder XRD pattern of complex II 

 

2θ 

(deg) 

 

θ 

(deg) 

θ  

(rad) 

Sin θ 

 

Sin 2 θ 

 

Ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameters a 

(Å) 

ratio 

Sin2θ / 

h2+k2+l2 

13.88 6.94 0.121125 0.120 0.0146 1 1 1 100 0.24166 6.37259 6.37259566 0.014599 

16.52 8.26 0.144164 0.143 0.0206 1.413 1.4136 1 100 0.28733 5.35967 5.35967801 0.020639 

19.08 9.54 0.166504 0.165 0.0274 1.881 1.8814 2 110 0.33147 4.64593 6.57035065 0.013734 

22.60 11.30 0.197222 0.195 0.0383 2.629 2.6298 3 111 0.39189 3.92965 6.80635552 0.012798 

24.32 12.16 0.212232 0.210 0.0443 3.039 3.0390 3 111 0.42128 3.65548 6.33148524 0.014790 

25.44 12.72 0.222005 0.220 0.0484 3.320 3.3207 3 111 0.44037 3.49703 6.05703714 0.016160 

27.48 13.74 0.239808 0.237 0.0564 3.864 3.8640 4 200 0.47503 3.24188 6.48376396 0.014103 

33.92 16.96 0.296007 0.291 0.0850 5.828 5.8282 6 211 0.58340 2.63966 6.46582514 0.014181 

31.84 15.92 0.277856 0.274 0.0752 5.153 5.1533 5 210 0.54859 2.80719 6.27708444 0.015047 

35.24 17.62 0.307527 0.302 0.0916 6.276 6.2760 6 211 0.60540 2.54375 6.23089167 0.015271 

37.28 18.64 0.325329 0.319 0.1021 6.997 6.9971 7 22Ῑ 0.63924 2.40910 6.37389018 0.014593 

42.32 21.16 0.369311 0.360 0.1303 8.924 8.9248 9 221 0.72194 2.13312 6.39936000 0.014477 

48.36 24.18 0.422020 0.409 0.1677 11.49 11.491 11 311 0.81920 1.87986 6.23479563 0.015252 

49.60 24.80 0.432841 0.419 0.1759 12.05 12.050 12 222 0.83890 1.83572 6.35914888 0.014661 

57.20 28.60 0.499164 0.478 0.2291 15.69 15.695 16 400 0.95738 1.60855 6.43420177 0.014321 
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Figure4.12 Powder XRD pattern of complex III synthesized 

using Lime Juice 

Table 9 Indexing of Powder XRD pattern of complex III 

 

2θ 

(deg) 

 

 

θ  

(deg) 

θ  

(rad) 

Sin θ 

 

Sin 2 θ 

 

Rati

o 

k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter a 

(Å) 

ratio 

Sin2θ / 

h2+k2+l2 

10.12 5.06 0.0883 0.088 0.0077 1 1 1 100 0.1763 8.74160 8.74160488 0.007779 

13.56 6.78 0.1183 0.118 0.0139 1.79 1.7916 2 110 0.2361 6.53072 9.23583875 0.006968 

18.40 9.20 0.1605 0.159 0.0255 3.28 3.2860 3 111 0.3197 4.82233 8.35252223 0.008520 

18.68 9.34 0.1630 0.162 0.0263 3.38 3.3858 3 111 0.3245 4.75067 8.22840997 0.008779 

20.04 10.02 0.1748 0.173 0.0302 3.89 3.8916 4 200 0.3479 4.43124 8.86248001 0.007568 

24.04 12.02 0.2097 0.208 0.0433 5.57 5.5751 6 211 0.4165 3.70222 9.06856326 0.007228 

28.52 14.26 0.2488 0.246 0.0606 7.79 7.7997 8 220 0.4926 3.13004 8.85309997 0.007584 

35.00 17.50 0.3054 0.300 0.0904 11.6 11.624 12 222 0.6014 2.56396 8.88184510 0.007535 

39.04 19.52 0.3406 0.334 0.1116 14.3 14.352 14 321 0.6682 2.30744 8.63366673 0.007974 

45.52 22.76 0.3972 0.386 0.1496 19.2 19.240 19 331 0.7737 1.99290 8.68688308 0.007877 

45.64 22.82 0.3982 0.387 0.1504 19.3 19.336 19 331 0.7756 1.98794 8.66525882 0.007916 

57.36 28.68 0.5005 0.479 0.2303 29.6 29.607 30 521 0.9598 1.60652 8.79930991 0.007677 
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Figure4.13 Powder XRD pattern of complex IV synthesized 

using Lime Juice 

Table 10 Indexing of Powder XRD pattern of complex IV 

 

2θ 

(deg) 

 

 

θ 

(deg) 

θ 

(rad) 

Sin θ 

 

Sin 2 θ 

 

ratio k 

factor 

h2+k2+l2 [hkl] 2 Sin θ 

(rad) 

D 

spacing 

(Å) 

cell 

parameter a 

(Å) 

ratio  

Sin2θ / 

h2+k2+l2 

17.70 8.86 0.154 0.154 0.0237 1 1 1 100 0.3080 5.00582 5.0058232 0.0237224 

18.60 9.28 0.161 0.161 0.0260 1.09 1.0962 1 100 0.3225 4.78111 4.7811186 0.0260046 

19.40 9.70 0.169 0.168 0.0283 1.19 1.1967 1 100 0.3369 4.57595 4.5759561 0.0283887 

28.10 14.06 0.245 0.242 0.0590 2.48 2.4879 2 110 0.4858 3.17365 4.4882205 0.0295094 

28.00 13.98 0.243 0.241 0.0583 2.46 2.4602 2 110 0.4831 3.19144 4.5133881 0.0291812 

37.20 18.58 0.324 0.318 0.1015 4.27 4.2796 4 200 0.6372 2.41974 4.8394924 0.025381 

48.20 24.08 0.420 0.408 0.1664 7.01 7.0175 7 22Ῑ 0.8160 1.88965 4.9995473 0.0237819 

69.80 34.90 0.609 0.572 0.3273 13.7 13.799 12 222 1.1442 1.34755 4.6680794 0.0272792 
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4.5 Scanning Electron Microscopy (SEM) of Multi 

Metal-Citrate complexes 

Scanning Electron Microscopy provides valuable information about surface texture and 

morphology, surface roughness and composition of the material surface when a beam of 

electrons scans the surface of a sample, interact with electrons of sample atoms and produce 

characteristic signals which reveal great information about the material. At low pH value metal 

oxides micro crystals preferably grow into thermodynamically stable morphologies, such as 

cube & octahedron as revealed by SEM images of complexes [21]. Crystalline nature of 

complexes is supported by their SEM images. SEM images of complexes 1-4 synthesized using 

citric acid and complexes I-IV synthesized using lime juice are depicted in Figure 4.14.  

 

 

 

Figure4.14 SEM images of Multi Metal-Citrate complex 1-4  

synthesized using Citric Acid & complex I-IV synthesized using 

Lime Juice 

 



Synthesis of Metal-Organic Frameworks through Green Synthetic Pathways and Their Applications                           2018 

Usha Raju Delhi Technological University Page 63 

 

4.6 Energy dispersive X-ray spectroscopy (EDS) 

of Multi Metal-Citrate complexes 

Energy-dispersive X-ray spectroscopy is an attractive tool for qualitative as well as quantitative 

X-ray microanalysis for a rapid evaluation of specimen which relies on the ability to detect X-

rays generated and separate them with different energy levels when a specimen is bombarded 

with high-energy electrons in an electron microscope.  

Transition metals such as iron, copper and nickel tend to have high count rates and thus form 

well-defined isolated peaks against a low background which enables system to detect extremely 

low concentrations of these elements, whereas low energy X-rays produced by carbon, nitrogen 

& oxygen atoms generate much lower count rates and makes it difficult to detect these atoms at 

low concentrations [22]. 

Energy-dispersive X-ray spectroscopy (EDS) was performed for elemental analysis of 

synthesized complexes, which confirms the presence of metals namely Cu, Fe, Ni & Zn as 

targeted. However no chemical formula could be assigned to complexes because Electron 

Dispersive Spectroscopy was not able to detect carbon, as analysis of lighter elements such as 

Be, B, C, N, O & F is difficult with standard EDS technique [23]. Energy dispersive X-ray 

spectrograms of complexes 1 - 4 synthesized using citric acid and complexes I - IV synthesized 

using lime juice are depicted in Figure 4.15 - Figure 4.18 and Figure 4.19 - Figure 4.22 

respectively. Tables XI - XVIII reveals the quantitative results for elemental composition of 

these complexes. 
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Figure4.15 Energy dispersive X-ray spectroscopy of Complex 1 

synthesized using Citric Acid 

Table 11 Quantitative Results of EDS for Complex 1 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 4629 40.55 +/- 0.63 68.20 +/- 1.06 O 

Na K 73 0.63 +/- 0.46 0.73 +/- 0.53 Na 

S K 2728 13.41 +/- 0.46 11.25 +/- 0.38 S 

S L 0 --- --- --- ---  

Ni K 632 24.07 +/- 1.60 11.03 +/- 0.73 Ni 

Ni L 567 --- --- --- ---  

Zn K 282 21.35 +/- 2.50 8.78 +/- 1.03 Zn 

Zn L 758 --- --- --- ---  

Total  100.00  100.00   
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Figure4.16 Energy dispersive X-ray spectroscopy of Complex 2 

synthesized using Citric Acid 

Table 12 Quantitative Results of EDS for Complex 2 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 26 30.04 +/- 5.78 56.18 +/-10.80 O 

S K 38 22.22 +/- 4.09 20.74 +/- 3.82 S 

S L 697 --- --- --- ---  

Fe K 3 9.38 +/- 9.38 5.03 +/- 5.03 Fe 

Fe L 0 --- --- --- ---  

Cu K 6 38.35 +/-31.96 18.06 +/-15.05 Cu 

Cu L 31 --- --- --- ---  

Total  100.00  100.00   
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Figure4.17 Energy dispersive X-ray spectroscopy of Complex 3 

synthesized using Citric Acid 

Table 13 Quantitative Results of EDS for Complex 3 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 56 33.75 +/- 4.82 62.18 +/- 8.88 O 

S K 35 12.16 +/- 3.13 11.18 +/- 2.87 S 

S L 1875 --- --- --- ---  

Fe K 5 8.42 +/- 6.73 4.44 +/- 3.55 Fe 

Fe L 0 --- --- --- ---  

Ni K 9 26.57 +/- 8.86 13.34 +/- 4.45 Ni 

Ni L 0 --- --- --- ---  

Cu K 5 19.10 +/-11.46 8.86 +/- 5.32 Cu 

Cu L 13 --- --- --- ---  

Total  100.00  100.00   
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Figure4.18 Energy dispersive X-ray spectroscopy of Complex 4 

synthesized using Citric Acid 

Table 14 Quantitative Results of EDS for Complex 4 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

S K 474 25.98 +/- 1.59 40.20 +/- 2.46 S 

S L 8631 --- --- --- ---  

Fe K 59 13.87 +/- 3.06 12.32 +/- 2.7s2 Fe 

Fe L 0 --- --- --- ---  

Ni K 57 21.09 +/- 5.18 17.82 +/- 4.38 Ni 

Ni L 0 --- --- --- ---  

Cu K 3 1.39 +/- 2.78 1.09 +/- 2.17 Cu 

Cu L 0 --- --- --- ---  

Zn K 51 37.66 +/-10.34 28.57 +/- 7.84 Zn 

Zn L 207 --- --- --- ---  

Total  100.00  100.00   
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Figure4.19 Energy dispersive X-ray spectroscopy of Complex I 

synthesized using Lime Juice 

Table 15 Quantitative Results of EDS for Complex I 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 9325 56.59 +/- 4.29 80.57 +/- 6.11 O 

S K 2658 10.04 +/- 0.66 7.13 +/- 0.47 S 

S L 1220323 --- --- --- ---  

Ni K 563 16.88 +/- 2.85 6.55 +/- 1.11 Ni 

Ni L 0 --- --- --- ---  

Zn K 277 16.49 +/- 2.86 5.74 +/- 1.00 Zn 

Zn L 0 --- --- --- ---  

Total  100.00  100.00   
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Figure4.20 Energy dispersive X-ray spectroscopy of Complex II 

synthesized using Lime Juice 

Table 16 Quantitative Results of EDS for Complex II 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 6 17.37 +/- 5.79 41.61 +/-13.87 O 

S K 8 12.17 +/- 4.56 14.54 +/- 5.45 S 

S L 0 --- --- --- ---  

Fe K 2 16.45 +/-16.45 11.29 +/-11.29 Fe 

Fe L 0 --- --- --- ---  

Cu K 3 54.01 +/-36.00 32.56 +/-21.71 Cu 

Cu L 5 --- --- --- ---  

Total  100.00  100.00   
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Figure4.21 Energy dispersive X-ray spectroscopy of complex III 

synthesized using Lime Juice 

Table 17 Quantitative Results of EDS for Complex III 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 4820 38.79 +/- 0.70 65.82 +/- 1.19 O 

S K 3502 15.62 +/- 0.45 13.22 +/- 0.38 S 

Fe K 741 16.57 +/- 0.94 8.06 +/- 0.46 Fe 

Fe L 69 --- --- --- ---  

Ni K 377 14.12 +/- 1.31 6.53 +/- 0.61 Ni 

Ni L 332 --- --- --- ---  

Cu K 289 14.91 +/- 1.70 6.37 +/- 0.73 Cu 

Cu L 486 --- --- --- ---  

Total  100.00  100.00   
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Figure4.22 Energy dispersive X-ray spectroscopy of complex IV 

synthesized using Lime Juice 

Table 18 Quantitative Results of EDS for Complex IV 

 

Element 
 

Net 
Counts 

Weight 
( %) 
 

Weight 
( %) 
Error 

Atom 
( %) 
 

Atom 
( %) 
Error 

Formula 
 

O K 6524 26.20 +/- 1.83 37.42 +/- 2.61 O 

S K 5703 23.26 +/- 1.16 29.11 +/- 1.45 S 

S L 1207716 --- --- --- ---  

Fe K 796 14.04 +/- 2.05 10.09 +/- 1.47 Fe 

Fe L 0 --- --- --- ---  

Ni K 369 10.44 +/- 1.70 7.13 +/- 1.16 Ni 

Ni L 0 --- --- --- ---  

Cu K 372 14.67 +/- 2.17 9.26 +/- 1.37 Cu 

Cu L 0 --- --- --- ---  

Zn K 212 11.39 +/- 2.63 6.99 +/- 1.62 Zn 

Zn L 0 --- --- --- ---  

Total  100.00  100.00   
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4.7 Thermogravimetric analysis of Multi Metal-

Citrate complexes 

Thermogravimetry deals with variation of mass of the sample being monitored continuously 

with change of temperature, when it is heated or cooled at a specified rate in an atmosphere 

which may be inert or oxidative. Chemical changes which take place in an oxidative atmosphere 

reveal very important information for characterization of material. It provides valuable 

information on thermal stability of sample and various chemical reactions such as oxidation, 

decomposition, decarboxylation and fusion besides crystallization or phase transitions which 

occur as the sample is being heated at different temperatures under controlled conditions. The 

thermogram is analyzed to obtain information about percentage weight loss at different 

temperatures. The 1st derivative of TGA curve, DTG, provides decomposition rate and is 

helpful for evaluating mass loss steps accurately. Peak of first derivative indicates point of 

greatest rate of change on weight loss curve. This is also known as inflection point. 

The variation in mass of the complexes synthesized through green route was studied by  heating 

the samples under controlled conditions,  up to 1500 ºC for complexes 1-4 synthesized using 

citric acid and up to 900 ºC for complexes I-IV synthesized using lime juice. The samples were 

heated at a rate of 10 ºC min-1. The thermogravimetric curves of complexes 1-4 & complexes I-

IV have been depicted in Figure 4.23 - Figure 4.25 & Figure 4.26, Figure 4.27 respectively. 

Thermogravimetric curves of complexes 1, 3 and 4 show four stage decomposition patterns, 

while thermal decomposition of complex 2 occurs in three stages. Major weight loss in 

temperature range 120 ºC- 150 ºC in the first stage can be attributed to vaporization of lattice 

water in all the complexes [24]. The second stage reveals a small weight loss corresponding to 

coordinated water in all complexes, followed by gradual weight loss in temperature range 300 ºC 

- 700 ºC. A large weight loss in third stage may be attributed to decarboxylation of carboxylic 

acid groups of citrate moiety. The dehydration takes place at relatively higher temperatures 

during thermal analysis of multi metal-citrate complexes due to an extensive array of hydrogen 

bonds in these complexes and probably due to “resistance of crystal lattice” to water escaping as 

described by Rogan and Poleti [25].  
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Hydrogen bonding occurs between lattice water & coordinated water molecules and between 

coordinated water molecules & carboxyl oxygen atoms of citrate moiety to form a rigid three 

dimensional supramolecular structure with great stability [26]. Moreover decarboxylation of 

citrate ligand occurs at higher temperature as thermal stability of citrate ligand increases on 

complexation with metal ions [27]. The residue contains mixed metal oxides as a result of 

decomposition of complexes in air.  Pyrolysis of these complexes in an atmosphere of nitrogen 

leaves more residues as compared to their thermal decomposition in air due to carbon black 

formed from pyrolysis of citrate moiety. Thermal stability of multi metal-citrate complexes I-IV 

was established based on their thermogravimetric analysis carried out in an inert atmosphere of 

nitrogen by scanning these complexes under controlled heating between 30 ºC − 900 ºC. 

Thermogravimetric curves for these complexes exhibit four step thermal decomposition pattern 

except complex II in which thermal decomposition occurs in five stages. The first stage involves 

major weight loss to a temperature range of 120 - 130 ºC due to vaporization of lattice water in 

all complexes. A small weight loss in second stage may be attributed to loss of coordinated water 

followed by weight loss at around 350 ºC due to onset of decomposition process involving 

decarboxylation of carboxylic acid groups of citric acid linker and crystallization of oxides of 

different metals at higher temperature around 700 ºC in all complexes. The thermal treatment of 

complex 2 reveals a five step process due to formation of carbonate and oxy carbonate 

intermediates which is lacking in complexes I, III and IV due to the presence of nickel ions 

which decompose to form oxides at higher temperature without forming intermediates [28]. 
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Figure4.23 TGA ̸ DTG curve for Complexes 1-4 synthesized 

using Citric Acid 
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Figure4.24 Thermogravimetric curve in air: combined graph 

for Complexes 1- 4 

 

 

 



Synthesis of Metal-Organic Frameworks through Green Synthetic Pathways and Their Applications                           2018 

Usha Raju Delhi Technological University Page 76 

 

200 400 600 800 1000 1200 1400

 

Temperature (C)

 Complex 1

 

 Complex 2

 

M
a
s
s
 (

%
)

 Complex 3

 

 

 Complex 4

 

Figure4.25 Thermogravimetric curve in nitrogen: combined 

graph for Complexes 1- 4 
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                        Complex III                                                               Complex IV 

Figure4.26 TGA ̸ DTG curve for complexes I - IV synthesized 

using Lime Juice 
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Figure4.27 Thermogravimetric curve in air: combined graph 

for Complexes I - IV 
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4.8 Differential Scanning Calorimetry of Multi 

Metal-Citrate complexes 

DSC curve for the samples exhibit a broad endothermic start up hook and sloping base line at the 

commencement which is primarily based on difference in heat capacity of the sample and the 

reference. Broad endothermic peak in the beginning refers to dehydration of surface water. No 

melting peak could be visualized due to dissolution of metal citrate complexes in water of 

crystallization associated with the samples. A sharp endothermic peak between 100 ºC & 118 ºC 

followed by an exothermic peak at around 130 ºC are indicative of dehydration involving escape  

of lattice water followed by precipitation of metals [29, 30]. The melting peak for complexes was 

not observed, which is attributed to dissolution of complex in water of hydration followed by 

crystallization and precipitate formation which melts at higher range of temperature around 30 

350 ºC as reported in literature. DSC curves for complexes I-IV have been represented in Figure 

4.28 & Figure 4.29. 
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Figure4.28  DSC curve for complexes I - IV synthesized using 

Lime Juice 
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Figure4.29 DSC: combined graph for complexes I - IV 
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4.9 UV-Vis spectroscopy of Multi Metal-Citrate 

complexes 

UV-Vis Spectroscopy is a powerful tool for characterization of crystals.  It is a type of 

absorption spectroscopy in which a beam of light propagates through a sample which has ability 

to interact with electromagnetic radiation. When a monochromatic beam of light in Ultraviolet 

Visible region of electromagnetic spectrum is passed through the material, some of it is absorbed 

by the material and remaining gets transmitted through the sample. The one absorbed by material 

causes excitation of outermost electrons of molecule from ground state to higher energy states. 

As a result of absorption of energy the electrons in sample undergo various transitions. The 

amount of energy absorbed depends on difference in energy of ground state and higher energy 

excited state to which electron gets promoted. A typical UV-Vis spectrophotometer generates a 

spectrum of absorbance against wavelength. The absorbance is generated as a ratio of transmitted 

light to the incident light represented by the equation (4) which is known as Beer-Lambert law.  

                                                         10 0  /   A log I I c l= =                                                                           (4) 

Where, A = absorbance, I0 = intensity of light incident upon sample cell, I = intensity of light 

leaving sample cell, c = molar concentration of solute, l = length of sample cell (cm.), ε = A 

constant called molar absorptivity or molar extinction coefficient and is a measure of probability 

of electronic transition.  

The extent to which a sample absorbs light depends upon wavelength of light. The wavelength at 

which a substance shows maximum absorption is designated as absorption maximum or λ max 

which can be determined by plotting absorbance versus wavelength graph. λ max  is very 

important as it is characteristic for  a compound and provides information about electronic 

structure of material. 

UV- Visible spectroscopy is particularly useful for characterization of metal–ligand complexes 

because of distinct d–d transitions, charge transfer and ligand-based transitions for different 

metal ions, ligands, and complexes. 
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 If ligand molecular orbital are full of electrons, charge transfer may occur from ligand molecular 

orbital to empty or partially filled metal d-orbital. These transitions are selection rule allowed, 

called ligand-to-metal charge-transfer bands (LMCT). In transition metal complexes selection 

rule allowed charge transfer transitions result in intense colored complexes because of high 

probability of these transitions [31]. 

The electronic spectra of multi metal-citrate complexes 1- 4 synthesized using citric acid & 

complexes I - IV synthesized using lime juice were recorded in water at room temperature, are 

shown in Figure 4.30 - Figure 4.31 and Figure 4.32 - Figure 4.33 respectively. All complexes 

exhibit a high intensity peak in region 392 nm - 385 nm owing to good optical quality of multi 

metal-citrate crystals. Peak near 390 nm in all complexes is observed due to transfer of charge 

mainly from oxygen lone pair of carbonyl group of carboxylate ligands belonging to citric acid 

moiety to metal centre in these complexes [32]. The carboxylate ligands being rich in electrons 

lead to easy charge transfer to partially filled d- orbital’s of coordinating metals. Band near 390 

nm is distinctly sharp in complexes 1, 2 and I, II as ligand-to-metal electronic transitions are 

localized to single or two atomic centers, particularly in these complexes [33]. In addition to high 

energy intense band a very broad and less intense band gets displayed in visible region and 

beyond in all complexes due to spin allowed d-d transitions of metal ions which remain Laporte -

forbidden.  

A broad band is observed because numbers of vibrational energy levels are available for 

electrons to jump. This results in peak broadening. The simultaneous determination of all four 

metal ions by traditional absorption spectroscopy is difficult because absorption spectra overlap 

in visible region and superimposed curves are not suitable for quantitative evaluation. Peaks 

resulting from n → π* transitions of >C=O group are not observed as these are shifted to shorter 

wavelengths (blue shift) because of increased solvation of lone pairs of oxygen, in ground state 

by polar solvent water which lowers energy of n orbital. As >C=O group participates in the 

hydrogen bond formation with water of crystallization present in the complex as proto acceptor, 

shows blue shift owing to hydrogen bonding [34, 35]. 
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Figure4.30 UV-VIS spectroscopy of Complex 1-4 synthesized 

using Citric Acid 
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Figure4.31 UV-VIS spectroscopy: combined graph for 

Complexes 1- 4 
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Figure4.32 UV-VIS spectroscopy of Complex I - IV synthesized 

using Lime Juice 
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Figure4.33 UV-VIS spectroscopy: combined graph for Complex 

I - IV 
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4.10 Multi Metal-Citrate complexes as Photo 

luminescent materials 

Many of transition metal complexes are colored & colors are determined by electronic structure 

of complex. When irradiated with UV radiations, the Multi metal-citrate complexes reveal 

luminescence. Photo luminescent properties of complexes may be exploited for their optical & 

electronics applications. Enhancement of fluorescence of ligands upon complexation with metal 

ions is of great interest as it discloses an opportunity for a variety of photochemical applications 

[36]. Upon complexation with ligand, the luminescent properties of Cu2+ & Zn2+ ions get 

enhanced due to their ability to bind strongly to ligands & show strong UV absorption [37]. 

The excitation spectra of multi metal-citrate complexes were analyzed in the range from 350 nm 

- 700 nm to observe transfer of electrons among 3d orbital's of metals. Each complex shows one 

absorption band at 392 nm. Emission spectra were recorded for I - IV upon excitation at 310 nm 

and emission was observed in between 400 nm - 422 nm, that indicates promotion of electrons to 

d orbital of metal having lowest energy [38]. All complexes except complex II exhibit intense 

fluorescence emission with maxima at 347 nm due to coordination effects of citrate ligand to 

Zinc(II) ions involving charge transfer caused by  antenna effect of citrate ligand and ligand-to-

metal intra molecular  photo induced energy transfer process [39]. A similar narrow 

comparatively less intense peak observed in complex II is due to optical excitation caused by 

spin flip intra configurational transition taking place in unpaired electrons of Fe [40]. Ultraviolet 

photoluminescence spectroscopy of multi metal-citrate complexes display a wide emission 

behavior in the range 350 nm - 520 nm due to characteristic d-d transitions of transition metal 

ions with emission in blue region. These materials thus have potential as hybrid-inorganic-

organic emitting materials for electroluminescent devices and may play a significant role in flat 

panel display applications [41].  

Intense luminescence in complexes is observed due to the phenomenon involving capture of UV  

radiation by citrate linker and passing it on to the metal ions coordinated to the citrate ligand  

[42]. Photoluminescence graphs of Complexes I - IV are depicted in Figure 4.34 & Figure 4.35. 
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Figure4.34 Photoluminescence graph of Complex I - IV 

synthesized using Lime juice 
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Figure4.35 Photoluminescence: combined graph for Complex 

 I - IV (λex= 310 nm) 
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4.11 Multi Metal-Citrate complexes for storage 

and separation of gases 

4.11.1 BET Surface area of Multi Metal-Citrate complexes  

Threatening level of polluting gases in the Atmosphere caused by automobile exhaust arouse 

interest of scientific community in use of an alternative fuel for mobile applications. Hydrogen 

due to its clean combustion, easy availability from water and high mass energy density may 

serve as future generation fuel for vehicular applications once problems concerning its safe and 

efficient storage are overcome [43]. Low cost, light weight Metal-organic framework material 

which can efficiently store hydrogen in a reversible manner under ambient conditions may 

prove to be a magical tool to control carbon emission and further degradation of environment 

[44]. Hydrogen gas may bind to a surface either by physisorption through weaker interactive 

forces or by chemisorptions involving true chemical linkages. Physisorption of a gas on surface 

of a solid material is directly related to its surface area. Surface area is one of most important 

characteristic of porous material for adsorption of gases. Specific surface area of a material can 

be determined by BET method by measuring the physisorption of adsorbate gas on the surface 

of solid adsorbent [45]. BET theory is based on multimolecular layer adsorption of adsorbate on 

to the surface of an adsorbent, an infinite number of layers can build up on adsorbent and 

Langmuir model is applicable to all such layers. Metal-organic frameworks are novel materials 

known to exhibit large BET surface area.  

BET theory can be represented by the equation (5): 

                                              
𝒑

 𝒗(𝒑𝒐−𝒑)
=

𝟏

𝒗𝒎𝑪
 + 

𝑪−𝟏 

 𝒗𝒎𝑪
 

𝒑

𝒑𝒐
                                   (5) 

Where p = equilibrium pressure of absorbate gas, p o = saturation pressure of adsorbate gas, v   = 

volume of gas adsorbed, v m = Volume of adsorbate gas forming complete monolayer on 

surface of adsorbent.   

 C = BET constant representing extent of interaction between adsorbate and adsorbent surface. 

Equation 6 represents expression for constant C. 
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                                                      𝑪 ≈  𝒆
(

𝑬𝟏−𝑬𝟐

𝑹𝑻
) 

                                                                  (6)      

E1 = Enthalpy for adsorption of first layer, E2 = Enthalpy of adsorption of second layer. 

A plot of 
𝑝

𝑣(𝑝𝑜−𝑝)
 versus 

𝑝

𝑝𝑜
 gives a straight line whose intercept is 

1

𝑣𝑚𝐶
 and slope  

𝐶−1 

 𝑣𝑚𝐶
 . 

Constants V m & C can be evaluated from slope & intercept of adsorption isotherm respectively. 

Nitrogen adsorption technique has been used in to determine surface area of multi metal-citrate 

complexes synthesized by using citric acid as well as using lime juice. Figure 4.36 represents 

Adsorption-desorption isotherm for multi metal-citrate complexes. Multi metal-citrate 

complexes exhibit Type V adsorption isotherm which explains multimolecular layers formation 

on the surface. Table XIX- XXII depicts BET N2 adsorption data for multi metal-citrate 

complexes 1 - 4. BET plot for complexes 1 - 4 are presented in Figure 4.37 – Figure 4.40. The 

quantity of gas adsorbed by a solid depends on equilibrium pressure of gas, temperature and 

nature of adsorbate-adsorbent interaction. Constant C is related to affinity of solid with 

adsorbate and thus to heat of adsorption: C (BET) < 20 & C (BET) > 100 represent low & high 

interaction strength respectively [46]. Despite low value of specific surface area, multi metal-

citrate complexes exhibit high values of C, which indicates strong adsorbate-adsorbent 

interaction due to open metal sites and active functionalities at the surface. BET equation is 

generally used to give an apparent surface area related to adsorption capacity of solid.  

But if material contains micro pores, value of SBET has no physical meaning because no pure 

multilayer adsorption of nitrogen is ensured. Hudec et al. has demonstrated that value of C-

constant in classical BET-isotherm is very sensitive even with very small content of 

microporous materials in mesoporous matrix.  

Pure zeolites exhibit negative values of CBET constant [47]. The isotherms obtained for 

microporous materials are composite. 

Rouquerol et al. have examined the suitability of this method through comparison of surface 

area of microporous materials and mesoporous materials [48].  
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De Lange et al. have reported that these methods may yield highly inaccurate results as N2 

might had adsorbed earlier at lower pressure [49]. Therefore there is significant deviation 

between BET surface areas and nitrogen accessible surface areas when there are both 

Mesopores and large micro pores in a given pore structure as demonstrated in present research 

[50]. Low value of surface area may be attributed to the fact that chain-based MOFs generally 

exhibit one dimensional channel that lead to low surface areas and reduced micro pore volumes 

despite exhibiting a relatively high adsorption enthalpy [51].  
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Figure4.36 Nitrogen Adsorption-desorption isotherm for Multi 

Metal-Citrate Complexes 
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Table 19 Multi-Point BET Data for Complex 1 synthesized 

using Citric Acid 

 

Relative Pressure 
 [P/Po] 

Volume  
at STP / [cc/g] 

1 / [ W((Po/P) - 1) ] 

5.26510e-02 3.6658 1.2131e+01 

8.06059e-02 3.8783 1.8087e+01 

1.05772e-01 4.0673 2.3269e+01 

1.54545e-01 4.3787 3.3402e+01 

2.04665e-01 4.6797 4.3998e+01 

2.54434e-01 5.0137 5.4461e+01 

3.04526e-01 5.3360 6.5658e+01 

 

Figure4.37 BET plot for Multi Metal-Citrate complex 1 

synthesized using Citric Acid 
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Table 20 Multi-Point BET Data for Complex 2 synthesized 

using Citric Acid 

 

Relative Pressure 
 [P/Po] 

Volume  
at STP [cc/g] 

1 / [ W((Po/P) - 1) ] 

4.88780e-02 2.8582 1.4386e+01 

8.11299e-02 3.1683 2.2298e+01 

1.06398e-01 3.3522 2.8419e+01 

1.55774e-01 3.6641 4.0293e+01 

2.05861e-01 3.9489 5.2524e+01 

2.55999e-01 4.2097 6.5398e+01 

3.05969e-01 4.4809 7.8721e+01 

  

 

Figure4.38 BET plot for Multi Metal-Citrate complex 2 

synthesized using Citric Acid 
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Table 21 Multi-Point BET Data for Complex 3 synthesized 

using Citric Acid 

 

Relative Pressure 
 [P/Po] 

Volume 
 at STP [cc/g] 

1 / [ W((Po/P) - 1) ] 

5.14878e-02 1.7276 2.5141e+01 

8.13782e-02 1.8874 3.7554e+01 

1.06486e-01 1.9786 4.8193e+01 

1.56036e-01 2.1222 6.9705e+01 

2.06015e-01 2.2397 9.2695e+01 

2.56114e-01 2.3250 1.1848e+02 

3.06374e-01 2.4157 1.4630e+02 

 

 

Figure4.39 BET plot for Multi Metal-Citrate complex 3 

synthesized using Citric Acid 
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Table 22 Multi-Point BET Data for Complex 4 synthesized 

using Citric Acid 

 

Relative Pressure  
[P/Po] 

Volume  
at STP [cc/g] 

1 / [ W((Po/P) - 1) ] 

5.07289e-02 1.1713 3.6504e+01 

8.12591e-02 1.3295 5.3229e+01 

1.06691e-01 1.4394 6.6391e+01 

1.55769e-01 1.6128 9.1539e+01 

2.05868e-01 1.7649 1.1753e+02 

2.55838e-01 1.9145 1.4368e+02 

3.05774e-01 2.0586 1.7119e+02 

 

 

Figure4.40 BET plot for Multi Metal-Citrate complex 4 

synthesized using Citric Acid 
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4.11.2 Pore volume & pore size distribution in Multi Metal-Citrate 

complexes 

BJH method (Barrett, Joyner and Halenda method introduced in 1951) was employed to 

examine pore size of complexes synthesized through green synthetic pathways [52]. This 

method is based on assumptions that; a pore contains a surface on which gas molecules can 

adsorb and adsorbed molecules undergo condensation to fill the interior radius of the pore. At a 

given relative pressure amount of gas adsorbed includes adsorbate gas condensed in all pores 

and adsorbed on interior walls of pores [53]. Table XXIII depicts the pore size, total pore 

volume and corresponding surface area of multi metal-citrate complex 1. The complex exhibits 

a surface area 50.967 m²/g with pore volume 0.106 cc/g and pore diameter 3.855 nm measured 

upon desorption of N2. Figure 4.41 & Figure 4.42 represent volume histogram & area 

histogram for data obtained from Density Functional Theory model applied to physical 

adsorption of nitrogen. BJH pore diameter & pore volume values confirmed that complex 2 - 4 

contain Cu–O & Fe–O which are non-porous materials and explains their low surface area, 

whereas complex 1, a mesoporous material has relatively higher values of surface area. Such 

mesoporous materials having narrow distribution of pore size, having high stability are widely 

used as electro catalyst support, electrode in electric double layer capacitors (EDLC) and as an 

ultra capacitor. Extra large pore size in these complexes may be attributed to various metal ions 

coordinated to citrate ligands in different modes, hydrogen interactions involving hydroxyl 

group and water molecules forming a network of hydrogen bonds between the layers. 

Consequently large number of oxygen atoms constitutes the circumference of the pore and 

result in large size of pores suitable for capture of bigger molecules [54]. Because of their 

biocompatibility & non toxicity these Mesoporous materials are ideal for diagnostics 

applications due to increased image contrast & chemical stability. As most biological molecules 

& pharmaceuticals are of order of a few nanometers, synthesized multi metal-citrate complexes 

may be used for encapsulation of pharmaceutical drugs, proteins & other biological molecules. 
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Table 23 Nitrogen adsorption data for Multi Metal-Citrate 

complex 1 synthesized using Citric Acid 

 

Pore width / nm Pore Volume / cc g-1 Surface Area / cc g-1 

5.00 - 9.00 3.2190e-02 1.8355e+01 

9.00 - 13.00 1.6306e-02 4.8990e+00 

13.00 - 17.00 6.9849e-03 1.2751e+00 

17.00 - 21.00 5.9539e-03 7.8170e-01 

21.00 - 25.00 4.3580e-03 4.5507e-01 

25.00 - 29.00 2.7355e-03 2.3469e-01 

29.00 - 33.00 1.8328e-03 1.3194e-01 

 

 

Figure4.41 Volume Histogram; data based on Density 

Functional Theory 
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Figure4.42 Area Histogram; data based on Density Functional 

Theory 

 

4.11.3 Multi Metal-Citrate complexes for separation of CO2 ̷ CH4 

 CO2 gas produced as a result of combustion of carbon fuels is the major cause of green house 

effect. Most commonly employed methods for separation of CO2 ̷ CH4 mixture include zeolites 

and expensive carbon adsorbents. The multi metal-citrate complexes are Mesoporous materials 

with large pore diameter (≈ 4 nm) & pore volume Figure 4.43. These complexes may thus serve 

as strong candidate for CO2   ̷ CH4 separation. Pore size plays an important role in concluding 

gas adsorption and gas separation properties of materials.  
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CO2 has effective diameter of the order of 0.33 nm while CH4 molecule has about 0.38 nm, thus 

it becomes impossible for microporous materials to capture and hold methane molecules in their 

porous structure through the adsorption process.  

Mesoporous materials (pore size 2 - 50 nm) show great prospective in separation of CO2 ̷ CH4 

gaseous mixture under high pressure. Methane molecules adsorption is strongly affected by 

surface area and pore volume as compared to adsorption of carbon dioxide molecules. 

Adsorption capacity of materials strongly depends on pore structure at elevated pressure than at 

atmospheric pressure [55]. 

 

Figure4.43 Pore size distribution graph: data derived from 

Density Functional Theory 
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4.12 Mesoporous Multi-Metal Citrates as 

Scavengers for Organic Dyes 

Adsorption-desorption N2 isotherm for Multi Metal-Citrate complexes exhibit hysteresis loop 

due to capillary condensation, characteristic of mesoporous materials. These mesoporous 

materials have narrow pore size distribution & high stability. Large pore size in these complexes 

attributed to mixed-metal ion coordination and terminal hydroxyl groups. Extra-large pores of 

these materials can be exploited in utilization of these materials for specific applications where 

microporous materials become unsuitable.  

Multi metal-citrate complexes exhibit adsorption affinity for large molecules of dyes. Activated 

crystals when soaked in solutions of Eriochrome Black T (EBT, pH ≈ 7), Indigo blue dye (In B, 

pH ≈ 11) and Methyl orange dye (MO, pH ≈ 5), result in adsorption of dye molecules. Figure 

4.44 depicts structures of organic dyes namely Methyl Orange, Eriochrome Black T & Indigo 

Blue dyes for which complexes display high affinity. Adsorption of anionic azo dyes; MO & 

EBT can be attributed to electrostatic & hydrogen bond interactions between adsorbent & dye 

molecules. At lower pH, surface of adsorbent is positively charged due to protonation & strong 

electrostatic interactions exist between adsorbent surface & anionic dye molecules. In case of In 

B, di-ionic form exists in equilibrium with mono-ionic form in alkaline region (pH ≈ 11) and 

undergoes extensive hydrogen bonding with adsorbent surface. Color change of crystals was 

uniform and clearly observed with naked eyes (Figure 4.45). Uniform distribution of colors in 

crystals suggests that dye molecules not only get adsorbed on external surface, but penetrate into 

large pores and get adsorbed throughout the crystal structure. 

UV-Vis spectra of loaded multi metal-citrate complexes reveal absorption peaks corresponding 

to adsorbed dye molecules by these complexes, which occurs due to π → π* & n → π* 

transitions usually taking place in visible region [56]. λ max at 548 - 530 nm characteristic of 

bluish violet dyes was observed for In B adsorbed by complexes [57].Similar absorption peaks 

between 520 nm - 500 nm were observed for EBT & MO dyes adsorbed (Figure 4.46).  
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FTIR spectra of crystals loaded with MO & EBT reveal peak at 1639.0 cm-1 & 1640.5 cm-1 

respectively corresponding to N = N stretching vibrations of azo group (Figure 4.47). These 

complexes may replace high cost carbon adsorbents to curb water pollution & resultant toxic, 

carcinogenic & mutagenic effects of dye stuff on living beings 

 

 

 

      

(1)                                            (2) 

     

 

   (3) 

Figure4.44 Structure of Organic dyes;(1) Methyl Orange (2) 

Eriochrome Black T (3) Indigo Blue dye 
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Figure4.45 Adsorption of dyes by Multi-metal citrate complex  

(1) Crystals as synthesized (2) Activated crystals (3) Adsorption 

of Eriochrome Black T (4) Adsorption of Indigo Blue dye  (5) 

Adsorption of Methyl Orange dye by activated crystals  
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Figure4.46 UV-Vis spectra of (1) Multi metal-Citrate  complex 

(2) Loaded with Indigo blue dye (3) Loaded with Methyl orange 

dye (4) Loaded with Eriochrome black T dye 
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Figure4.47 FTIR spectra of (1) Multi Metal-Citrate complex (2) 

Loaded with Methyl Orange dye (3) Loaded with Eriochrome 

Black T dye (4) Loaded with Indigo Blue dye  
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The efficiency of multi metal-citrate complexes for removal of Eriochrome black T, an azo dye 

has been examined quantitatively by UV-Vis spectrophotometer. Dye samples of concentration 

ranging from 20 - 60 mg L-1 were prepared separately and adsorbed on fixed weight of activated 

complex 4, synthesized using citric acid. The percent efficiency for dye removal by the complex 

was calculated using initial dye concentration and after adsorption by complex 4. UV-Vis spectra 

were recorded before and after adsorption of dye by complex (Figure 4.48 & Figure 4.49).  The 

measured absorbance was converted to concentration by using equation 4. Percent removal of 

Eriochrome black T by Multi metal-citrate complex 4 has been depicted in Table XXIV. 

 

Table 24 Removal of EBT Dye by Multi metal-citrate complex 4 

S. No Initial Dye concentration 

Mol L-1 

Final Dye Concentration 

Mol L-1 

Percent dye 

removal 

1 1.300 × 10-4 0.217 × 10-4 83.30 

2 1.084 × 10-4 0.240 × 10-4 77.86 

3 0.867 × 10-4 0.217 × 10-4 74.97 

4 0.650 × 10-4 0.163 × 10-4 74.92 

5 0.433 × 10-4 0.193 × 10-4 55.42 
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Figure 4.48 UV-Vis graph at different concentrations of EBT Dye 
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Figure 4.49 UV-Vis graph for different concentrations of EBT Dye 

after adsorption by Multi-metal citrate complex 4: (1) 0.060 g L-1  (2)  

0.050 g L-1  (3)  0.040 g L-1  (4) 0.030 g L-1  (5)  0.020 g L-1 
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4.13 Porous Multi Metal-Citrates for sensing & 

recognition of ions in Industrial effluent water 

Some of transition metal cations such as mercury (II) & lead (II) are highly toxic for living 

beings and a serious threat to the environment. Anions like CrO4
2- and Cr2O7

2- can cause crucial 

gene mutations, deformity and life threatening diseases like cancer [58]. 

Metal-organic frameworks due to their porous nature, presence of active metal sites & hydrogen 

bonding interactions function as host for a variety of guest molecules. Molecules entrapped in 

voids of synthesized materials may induce two visible changes either by alteration of emission 

spectrum or change of fluorescence intensity. Luminescence enhancement is termed "turn-on" 

and luminescence quenching is known as "turn off" [59]. A major portion of MOFs for sensing 

&detection of analyte make use of “turn off” mechanism by quenching fluorescence of parent 

MOF by guest ion. Whereas “turn on” mechanism involving luminescence enhancement or shift 

of emission peaks which enable quick conspicuous color change visible to naked eye & exhibit 

better selectivity based on host-guest chemistry [60, 61].  Luminescent MOFs can selectively 

detect molecules/ ions of various sizes due to adjustable porosity in their structures. 

Real time detection / sensing of toxic cations & anions present even in trace amount through a 

straight forward technique is much desired. Though luminescent properties of MOFs have 

widely been exploited, yet controlling their size & morphology with desired optical properties is 

still a challenge. Multi metal-Citrates due to their porous nature, active metal sites & hydrogen 

bonding interactions serve as host for a variety of guest ions.  

Multi metal-Citrates serve as promising luminescent probe for sensing & recognition of NH4
+, 

Fe(CN)6
4-, I

 

¯ by “turn on” mechanism and CrO4
2-

 
& Cr2O7 

2-

 
ions by “turn off” mechanism 

(Figure 4.50). Present technique is decorated with features of being a simple & straight forward 

method involving conspicuous visual display of color change upon introduction of guest ions in 

their framework (Figure 4.51). They exhibit high sensitivity with regard to iodide ions. 
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Figure 4.50 UV-Vis graph for Luminescent Multi Metal-

Citrates 
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Figure4.48 Conspicuous visual display of color change upon 

introduction of guest species in Multi Metal-Citrates 
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4.14 Mixed-metal oxides customized from 

Multi Metal-Citrates and their applications 

Magnetic materials find a host of applications in fields like electromagnetism, electronic and 

medical appliances, magnetic sweepers, credit cards, conveyer belts etc. The porous nature of 

multi metal-citrate complexes synthesized in present research due to their magnetic properties 

could find various applications in porous molecular magnets [62]. The multi metal-citrate 

complex 4 and IV when heated to 300 ºC yield copper doped nickel-zinc-ferrite like materials 

and Complex 2 and II on strong heating yield nickel doped Zinc oxide as revealed by their 

Fourier transform Infrared spectroscopy (Figure 4.52). ZnO is a very versatile and important 

semiconducting oxide due to its piezoelectric and transparent conducting properties. It exhibits 

many potential applications in various fields such as laser diodes, solar cells, gas sensors, 

optoelectronic devices and photo catalysts [63 - 66]. 
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Figure 4.52 FTIR spectra for mixed metal oxides obtained from  

Multi Metal-Citrates 

 

 

 

 

 



Synthesis of Metal-Organic Frameworks through Green Synthetic Pathways and Their Applications                           2018 

Usha Raju Delhi Technological University Page 114 

 

4.15 Mesoporous Multi Metal-Citrate 

complexes for Bio medical Applications  

The mesoporous Copper, Iron, Nickel & Zinc multi metal-citrate complexes with different 

combinations of metal ions and citric acid linker, owing to their non toxicity may prove ideal for 

diagnostics applications due to increased image contrast. Most biological molecules and 

pharmaceuticals are of order of a few nanometers, thus synthesized complexes may be used for 

encapsulation of pharmaceutical drugs, proteins and other biological molecules [67]. Such 

mesoporous materials are widely used as electro catalyst support, electrode in electric double 

layer capacitors (EDLC) and ultra capacitor [68 - 70].  
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CHAPTER 5 

CONCLUSIONS AND FUTURE SCOPE 

Conclusions 
Multi Metal-Citrate complexes synthesized using Citric acid / Lime juice through green 

synthetic pathways are polynuclear complexes with cubic geometry. All complexes are brightly 

colored, well defined crystalline solid, stable up to 300 ºC and decompose at higher 

temperature. Based on analytical, spectral and thermal analysis, the multi metal-citrate 

complexes synthesized using citric acid / lime juice in present research are assigned a layered 

structure bearing a strong network of hydrogen bonds formed by ─OH of coordinated water, 

lying between tetrahedral & octahedral sheets in complexes and occupying the pores. The 

carboxylate groups of citrate ligand in complexes 1 & 2 are coordinated to metal ions in a mono 

dentate fashion, while in complex 3 & 4 by bidentate bridging mode, the most preferred co-

ordination of carboxylate groups of citrate ligand in these complexes. 

Multi metal-citrate complexes exhibit Type V adsorption isotherm which explains formation of 

multilayer. Despite low value of specific surface area, these complexes exhibit high values of C, 

due to strong adsorbate-adsorbent interaction owing to open metal sites and active 

functionalities at the surface. Low value of surface area attributed to the fact that chain-based 

MOFs generally exhibit one dimensional channel and lead to low surface areas & reduced micro 

pore volumes despite exhibiting high adsorption enthalpy.  

Multi metal-citrate complexes are mesoporous materials having narrow pore size distribution 

and high stability. Owing to excellent adsorption properties and mesoporous nature, Multi 

metal-citrate complexes exhibit exorbitant adsorption affinity for large molecules of dyes. 

Activated crystals of multi metal-citrates soaked in solutions of Eriochrome Black T, Indigo 

blue dye and Methyl orange dye result in adsorption of dye molecules. 
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Adsorption of anionic azo dyes; MO & EBT can be attributed to electrostatic & hydrogen bond 

interactions between adsorbent & dye molecules. In case of Indigo blue dye di-ionic form of the 

dye undergoes extensive hydrogen bonding with adsorbent surface. Color change of crystals 

was uniform and clearly observed with naked eyes Uniform distribution of colors in crystals 

suggests that dye molecules not only get adsorbed on external surface, but penetrate into large 

pores and get adsorbed throughout the crystal structure. These complexes may thus replace high 

cost carbon adsorbents to curb water pollution & resultant toxic, carcinogenic & mutagenic 

effects of dye stuff on living beings. 

Multi Metal-Citrates serve as promising luminescent probe for sensing & recognition of NH4
+, 

CO3
2-, I

 

¯ by “turn on” mechanism and CrO4
2-

 
& Cr2O7 

2-

 
ions by “turn off” mechanism. Present 

technique is decorated with features of being a simple & straight forward method involving 

conspicuous visual display of color change upon introduction of guest ions in their framework 

They exhibit high sensitivity with regard to iodide ions. 

The porous nature of multi metal-citrate complexes synthesized in present research owing to 

their magnetic nature can be explored for use as porous molecular magnets. The multi metal-

citrate complex 4 and IV when heated to 300 ºC yield copper doped nickel-zinc-ferrite like 

materials. 

Biocompatibility and non toxicity of Multi metal-Citrates makes these Mesoporous materials 

ideal for diagnostics applications due to increased image contrast. Luminescent Multi Metal-

Citrates may serve as perfect candidates for photovoltaic devices, bio sensors, electro 

luminescent devices and laser systems. 

Established protocol has merits of being; A simple one pot synthesis, cost effectiveness, easy to 

scale up for industrial production,  environmentally benign as it eliminates use and recovery of 

potentially harmful organic solvents particularly DMF & DEF usually employed in the 

synthesis of Metal-organic framework complexes. Lime juice substituted for Citric acid makes 

method appreciably economical in terms of time and energy.  
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Future Scope  

Increasing surface area of Multi Metal-Citrate complexes by post synthetic modifications and 

super critical drying can enhance their hydrogen adsorption properties. These biocompatible 

luminescent complexes may be reduced to nano size suitable for biological applications. 

Besides reducing carbon content in air owing to their green synthesis, the multi-metal oxides 

obtained upon thermal treatment of these complexes may be exploited for use in devices like 

microwave, magnetic memories, isolators, noise filters etc. as low cost alternative to traditional 

magnetic materials commonly used in industry.  
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