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ABSTRACT 

Wind turbines are used in a variety of applications with different performance requirements. 

Investigating the influence of scaling on wind turbine characteristics can pave the way to utilize 

the experience gained from a smaller turbine for a larger one. In this paper, the effects of wind 

turbine size on structural characteristics of a rotor blade are examined using CFD simulation. 

A GE’s 1.5 MW wind turbine was then chosen as a large turbine and a scaled down model of 

its rotor was simulated numerically. The results of the simulation were introduced to Similarity 

Theory relations in order to predict the structural characteristics of the 1.5 MW wind turbine. 

The 1.5 MW turbine was also simulated and the results of the simulation were compared to 

predictions of Similarity Theory. It was observed that the results of the simulation completely 

follow the values predicted by Similarity Theory. Both Similarity Theory predictions and 

simulation results demonstrated that the moment and mass increases with the cube of change 

in rotor diameter whereas the force reaction and equivalent stress grow with the square of 

change in diameter. 
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CHAPTER 1 

INTRODUCTION 

With the fast exhaustion of energy resources on earth which mainly includes non-renewable 

energy such as fossil fuels, wind energy in considered to the one of the prominent alternative 

energy sources which is widely accepted worldwide. Market analysis shows continuous 

upscaling of wind turbines, still there are various challenge regarding technical and economic 

feasibility of large scale wind turbines. If somehow, we can utilise the experience of small scale 

turbine in developing large scale turbine, we can succeed in saving a lot of amount and time 

which would have taken to start building large scale turbine from the scratch. It will be 

significant to test a scaled down model in a wind tunnel to analyse its various characteristics 

of to be designed large scale turbine and consequently decrease risks. In future as shown in fig 

1.1, wind power capacity is expected to grow at a yearly rate of 8%, which will increase its 

installed capacity to 600 GW by 2018. As we move ahead for the advancement of this sector, 

one of the major challenges, we got to face here is to make wind energy technology 

economically competitive to those of non-renewable energy like oil, coal and gas. 
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Figure 1.1 Worldwide wind power installed capacity prediction. Courtesy [1] 

First step in this direction is to reduce the levelized cost of energy where the term “levelized” 

is defined as the cost of energy distributed for complete life of an energy system. Apparently, 

LCOE is the minimum price of energy at which it is sold such that it comes at a stage of no 

profit no loss, i.e. break-even point. This figure can be defined as the ratio of operations and 

maintenance of an energy system to the complete energy coverage of its system in lifetime. 

Further as shown in fig 1.2, in order to reduce the levelized cost of energy, we tend to increase 

the rotor diameter of the turbine which further leads to increment of installation height and 

turbine power. Larger turbines tend to extract more energy from wind but it also increases the 

O & M cost, but overall levelized cost decreases. 
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Fig 1.2 Wind turbine upscaling pattern. It shows the trends of past 3 decades in turbine 

power, rotor diameter and installation height. Image reproduced from [2] 

If we look out for further increase of the wind turbine size, new doors can be opened for future 

development of wind turbine technologies [3]. However, these directions will produce new 

challenges in market which will require new solutions to tackle them. As shown by Ashuri [3], 

upscaling of large scale turbines through current scaling methods poses various technical and 

economic challenges for turbines close to 10 MW. Extreme and fatigue loads sustained by 

structural components [4] of very large turbines throughout their lifespan can be very severe 

which can be very dangerous. Increasing blade size can lead to increase in blade mass and other 

components which can be another barrier in technical feasibility and economical aspects of 

wind turbines. Hence, we can say that it is not possible to design large turbines just by upscaling 

it without considering advancement in their design to tackle problems regarding increasing 

blade weight etc. That’s why, in recent times, there is a lot of in depth research going on for 

the design of more efficient turbines and not just which focuses of all aspects rather than just 

upscaling of turbines. For this purpose, latest analysis technologies and design methods have 

been developed to provide excellent understanding of operational behaviour of wind turbines 
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and enable designers to produce better design methods. In this thesis, it concentrates on effects 

of scaling on wind turbine blade structural characteristics of such as Force reaction, blade mass, 

equivalent stresses and moment. 

In the last two decades, rapid expansion has been observed in wind turbine industry which is 

positive for this growing industry. Many well-known and established industries are into this 

sector which install wind turbines both offshore and onshore. For wind turbine energy to sustain 

in this market and be viable, manufacturers need to reduce the manufacturing cost of energy 

production in comparison to alternative energy sources. One major solution for this is to 

produce large rotors to generate more energy with same input and reduce the maintenance cost 

per megawatt output and hence, reduce cost. In fig. 1.3 shown below, offshore windfarm and 

service boat gives an idea of modern wind turbine which have rotors with blade diameter 

exceeding 150 m. 

 

 

Fig 1.3 : Offshore wind farm. Photo : Courtesy of Siemens 
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There are various constraints like installation limitation, cost, weight, fatigue life and clearance 

between tower and blade tip during operation while looking out for the choice of rotor diameter. 

From scaling laws, we can understand what are the challenges associated with wind turbines 

as it indicates that the power that a wind turbine extract varies as square of rotor diameter 

whereas aerodynamic and gravity based load of wind turbine varies with cubic and fourth 

power of wind turbine respectively. Rotors have to be designed with complex structures made 

up of composite fibre materials so as to maximize the aerodynamic performance while limiting 

the blade mass increase. Fibreglass epoxy and fibreglass polyester are the most commonly used 

materials in the fabrication of rotors. Some manufacturers are even using expensive materials 

like glass fibres and carbon fibres with high tensile modulus in order to achieve desired stiffness 

without increasing the weight of turbine. 

For designing bigger and comparatively lighter rotors, we need to focus more on accuracy of 

designing tools so as to push the limits of materials and their structure. Material updates and 

geometry can be easily accommodated from previous designs in blade modelling because of 

rapidly developing technologies and shorter time period between blade generations. 3D finite 

element analysis is considered to be expensive for most design process and also it doesn’t 

respond well for design exploration and analysis of various data. We can use beam models to 

effectively predict the behaviour of rotor blades as cross sectional dimensions of rotor blades 

is very small as compared to their overall length. 3D behaviour of each blade can be modelled 

using beam elements upto 102 to 103 degrees of freedom as compared to shell elements which 

uses 105 to 106 degree of freedom. 

As shown in fig 1.4, we can see the common process which can be used to develop a reduced 

model of 3D composite structure using beam elements. First thing we need to do is to take an 
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individual beam section and calculate its various mechanical properties in order to reduce the 

blade dimensions. The analysis tools which will be used must be able to analyse both thin and 

thick cross section having anisotropic and isotropic materials which are generally found in 

blades of wind turbines. Next step is to get the beam elements stiffness matrices using cross 

sectional properties. Materials and geometry approach are taken along the blade span during 

modelling approach. Analysis of large non-linear deformations such as local buckling can be 

used while doing beam analysis. 

 

Figure 1.4: Structural blade modelling 

1.1 Overview of Large Blade Development Project 

Low cost of energy and increase in rotor size has been the consistent trend in commercial grade 

production of wind turbine all these years. Blade design technology is improved more through 

optimum material usage and efficient aerodynamic and structural design. Issues related with 

large wind turbine rotors and blades such as manufacturing, design and materials issues are 

evaluated by WINDPACT studies which resulted in design specifications of candidate blades 

ranging from 30 to 70 metres in length [5,6] and rotors ranging from 80 to 120 meters in 

diameter [6,7]. Further advancement in design for even more larger machines can push the 
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limit further which is mainly restricted by limitations of weight growth. The objective of the 

work presented here is to examine the effects of scaling on structural characteristics using CFD 

analysis tool. Various new innovations in this sector already found includes improved design, 

materials and manufacturing approach. 

1.2 Large Turbines 

Maximum length of the blade found in the largest machines in the world was 61.5 meters when 

this research was beginning. largest available machines from various turbine manufacturers are 

listed (web survey conducted*on January 25, 2011). These machines include rotor diameters 

upto 128 m with ratings ranging from 2.5 to 6.15 MW. The survey list information which are 

readily available for use of the public. There are plans going on to develop even more larger 

machines to produce more energy for better utilization. For example, Clipper Britannia project 

has proposed to design a machine rated at 10 MW. Studies of other large blades includes work 

of Hillmer in 2007[8], wherein authors were exploring the possibility of increasing the blade 

length upto 82 meters. 

1.3 Existing Models 

Realistic structural models are required in order to perform structural analysis to evaluate 

designs. Technical data provided by manufacturers are scarce. Independent public studies in 

past are the only source to get structural model properties from studies of large turbines such 

as the DOWEC (Dutch offshore wind energy convertor) study [9,10], the UpWind project [11] 

and the DOE/NREL work [12]. In these studies, blade length ranges from 61.5 to 64.5 meters 

and turbine ratings varies 5-6 MW. 

1.3.1 Study of DOWEC Blade  

Study of DOWEC blade [9.10] which includes the development of 64.5 metres blade was 

carried out during the period of 197-2003. Distributed geometric properties as well as 
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distributed stiffness and blade mass properties are also presented in this blade research study 

with other results. Data available from the 64.5 metres blade development study of DOWEC 

study [9,10] are utilized by both Upwind project [11] and NREL 5 MW model [12]. 

1.3.2 NREL 5 MW Model  

NREL developed an aeroelastic model of 5 MW wind turbine by utilizing the existing 

conceptual designs of similar size [12].  FAST aero elastic code [13] was used to analyse the 5 

MW Model. NREL 5 MW model has been made public and widely available for researchers 

for their research studies. Models for the nacelle and drive train dynamics are included in this 

turbine model. It also contains distributed properties for the turbine blades and the tower. 

Controllers in addition to standard controllers were developed for this turbine model which 

includes variable speed, yaw and collective control pitch characteristics. Aerodynamics and 

structural properties of DOWEC study were used by this turbine model for developing its 

blades, even though the blades were decreased to 61.5 metres from original 64.5 metres. 

1.3.3 UpWind 5 MW Model 

This is a research program with major concentration on large turbine blades. During this study, 

61.5 metre blade design made up of all glass in developed by UpWind researchers similar to 

the external geometry of DOWEC 64.5 metre blade. Lay-up data of DOWEC blade study was 

not made publicly available due to its propriety nature. Therefore, an independent material 

layup was developed by UpWind researchers [14]. 

1.4 Thesis Layout  

This thesis is divided into four major chapters. Literature review is presented from various 

scholarly publications in 2nd chapter. Detailed discussions with conceptual descriptions are 

presented here. The information presented here develops a strong foundation for understanding 

various ongoing methods of studying wind turbines and their scaling effects. Research 



9 
 

Methodology is explained in 3rd chapter. Geometry of wind turbine blade is developed in solid 

works and is imported to Ansys for simulation of turbine blade at various wind speed conditions 

for determining characteristics. In 4th chapter, results for structural characteristics is presented 

for various wind speed and graphs are plotted between them for better understanding. Finally, 

in 5th chapter, conclusion is drawn from results and future work is predicted for the same. 
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Chapter - 2 

LITERATURE REVIEW 

2.1 Scaling Laws for Blade Structural Properties and Design Trends 

Scaling laws can be used to extrapolate existing model properties to larger turbine sizes and 

predict the effect of blade length on design trends such as root bending moments and natural 

frequencies. In this section we consider general scaling trends.  

2.2 Scaling Laws and rules of similarity  

Conventional scaling of turbine and blade properties is accomplished by a dimensional 

analysis, whereby all length dependent variables are scaled according to a scale factor. The 

theory of similarity is a very simple but powerful theory to investigate the wind turbine 

scaling effects on its different characteristics. Using this theory, the flow condition is the same 

in both large and small cases if the following criteria are met [15] 

a. The tip speed ratio is maintained in both cases. 

b. The blade profile and the number of blades are kept the same. 

c. Proportional adjustments are made to all dimensions containing radius, profile chord, and 

spar size. 

In this situation, the triangles of velocity and the relative velocity angles at every related blade 

cross-section is the same for large and small wind turbines; therefore, flow condition would be 

the same for the two cases. 

Based on these considerations, the effects of the scaling on the performance characteristics of 

the rotor, forces at the blade, stress at the blade root, and dynamic characteristics can be 

determined. In the present paper the impact of scaling on structural parameters 

are examined. These parameters are presented in Table 2.1. 
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Table 2.1 The relativity of structural parameters to wind turbine rotor diameter. 

Parameter Relativity to rotor diameter 

Blade Mass 𝑚2

𝑚1
 = (

𝐷2

𝐷1
)

3

 

Stresses 𝜎2

𝜎1
 = (

𝐷2

𝐷1
)

2

 

Force Reaction 𝐹2

𝐹1
 = (

𝐷2

𝐷1
)

2

 

 

In these equations, parameter “D” indicates wind turbine rotor diameter (twice the distance of 

rotor centre to blade tip). The results obtained by CFD simulation will be compared to 

predictions of the theory of similarity. In addition to parameters introduced in Table 2.1, the 

number of grid elements in simulation and as a result the computational time dependency on 

scale of the turbine is of interest. 

Scaling laws, based on this dimensional analysis, can be developed for turbine power, blade 

mass and stiffness properties, root bending moments and other turbine mass properties. In 

addition to geometric similarity, material similarity and constant tip speed ratio are assumed 

for this conventional up-scaling.  

First, we define a scale factor, α, as the ratio of the scaled blade length (LU) to the nominal 

blade length (LB): 

 

α=
𝑆𝑐𝑎𝑙𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
=  

𝐿𝑈

𝐿𝐵
                              (2.1) 
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where, “U” refers to the up-scaled blade and “B” refers the nominal blade. Alternatively, the 

scale factor can be defined as the ratio of the scaled rotor radius to the nominal rotor radius 

"U ". 

The total blade mass follows this relationship: 

         mu= α3 mb                                               (2.2) 

and the rotor power: 

        Pu = α2 Pb                                                                        (2.3) 

We immediately observe the well-known fact that as blade length increases blade mass grows 

at a faster rate (α3) than rotor power (α2). Innovations can be utilized to reduce the rate of mass 

growth. Equation (2.2) is the result of volume scaling because the material density is held 

constant due to assumed material similarity. Rotor power depends on the swept area of the 

rotor, thus the squared relationship in Equation (2.3). 

Further, the CG location, z, of the blade (or any span-wise location on the blade for that matter) 

follows the following scaling law:  

                 zu = α1 zb                                                            (2.4) 

Scaling laws can also be developed for the blade response to loads. For example, root bending 

moments, which are important design drivers, can be written with scaling laws. Expressions 

for the root bending moments that result from aerodynamic forces or gravitational loads are 

given below (Eqns. 2.7,2.8). The aerodynamic lift and drag forces can be written as [16]: 

 

             FL = 
1

 2
ρACLV2                                                   (2.5) 

             FD = 
1

2
ρACDV2                                                  (2.6) 
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Where ρ is air density, A is area, CL and CD are aerodynamic coefficients, and V is velocity. 

Both expressions for the aerodynamic force have the same mathematical form. The velocity 

depends on the inflow wind speed as well as the rotational rate. When assuming constant tip 

speed ratio for up-scaling, the velocity field along the blade is a constant. In order to maintain 

constant tip speed for longer blades, the turbine operating speed is reduced linearly. Area, then, 

is the only variable dependent on scale in these equations, thus aerodynamic forces, both lift 

and drag, scale with the square of the scale factor. 

We now consider bending moments due to aerodynamic loads. The bending moments arise 

from the product of force on the blade elements (an α2 dependence) and the span-wise location 

of the applied load (an α1 dependence). Thus, moments due to aerodynamic loads are scaled by 

the following cubic relation: 

           Mu
Aero = α3 MB

Aero                                       (2.7) 

We now consider root bending moments due to gravitational loads. These moments arise from 

the product of blade weight and its span-wise location. For conventional up-scaling, blade mass 

grows as the cube of the scale factor (See Equation 2) while location scales linearly. Therefore, 

moments due to gravitational loads grow with the fourth power of the scale factor: 

          Mu
Gravity = α4 Mu

Gravity                                  (2.8) 

Thus, we can see from Equations 2.7 and 2.8 that moments due to gravitational loads scale at 

a faster rate than aerodynamic loads. For blades on today’s machines, aerodynamic loads are 

typically larger than gravitational loads. Thus, root bending moments due to aerodynamic loads 

have been a principal design driver especially in the flap-wise direction. However, it is clear 

that as blade length increases, root bending moments due to gravitational loads will grow to 

exceed moments due to aerodynamic loads. Gravity loads are primarily resisted in the lead-lag 

direction. Much larger gravity loading will require additional reinforcement and design 
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adjustments in the lead-lag direction and beefed up components all the way through the turbine 

system itself.  

The root bending moment relations can be re-written in terms of stress or strain. One finds that 

stress (and strain) due to aerodynamic loads is independent of scale (α0). On the other hand, 

stress (and strain) due to gravitational loads grow linearly (α1) with scale. Observing these 

trends is important for strength and fatigue calculations, and demonstrates important design 

considerations for edge-wise strains. 

The natural frequencies of blade bending modes drop linearly with the scale factor (an α-1 

dependence). This trend can be observed by considering an analytical formula for the natural 

frequency of a beam with uniform cross-section: 

fi = 
𝜆𝑖

2

2𝜋𝐿2 √
𝐸𝐼

𝜌𝐴
      (2.9) 

where λi is a constant associated with the ith mode, L is the beam length, E is Young’s Modulus, I 

is the area moment of inertia, ρ is density, and A is cross-sectional area. 

With material similarity, E and ρ, are held constant while only the geometric variables are 

scaled. The result is 

fi
u=

1

𝛼
 

𝜆𝑖
2

2𝜋𝐿2 √
𝐸𝐼

𝜌𝐴
                 (2.10) 

                                                       =
1

𝛼
 fi

 

However, on a per rev basis natural frequencies (natural frequency divided by the operating 

speed) are independent of scale because the operating speed also scales as α-1.  
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2.3 THEORETICAL UPSCALING 

The first approach that has been followed for determining the characteristics of the proposed 

large wind turbines was based on standard, self-similar geometric upscaling, assuming 

geometric and aerodynamic similarity (fixed tip speed). This pathway provides a first 

approximation of critical operational and structural properties and helps in identifying 

possible technical barriers associated with upscaling. If geometrical similarity is enforced, the 

weight and power, which are the main criteria we are using, scale according to m ̴ s3 and      

P ̴ s2, respectively, where s is the scaling factor. In Table 2.2, the main characteristics (rotor 

diameter, tip speed and hub height) for power outputs from 5 to 20 MW are given, when 

simple scaling laws are used. The IEA 5 MW wind turbine is used as reference [17] for the 5 

MW size.  

Scaling in such a way, the aerodynamic forces for any linear scale (denoted by s) follow an s2 

rule (as the area increases in this manner), while the corresponding moments follow a cubic 

law (s3). The section bending stiffness (EI) follows an s4 rule, resulting in scale-invariant 

bending stresses due to aerodynamic forces (as they follow M . y=EI/. The same applies for 

tension stresses, with centrifugal forces scaling as m . ω2 . R, so that, for constant tip speed, the 

overall force scales following the square law. The cross section will also follow the square law 

resulting in constant tension stresses. On the other hand, tension/compression and bending 

loads due to self-weight scale as s3 and s4, respectively, resulting in a linear scaling of the 

corresponding stresses. 

In short, neglecting second-order aerodynamic effects and assuming linear structural 

behaviour, we end up with what we call “classic similarity laws”. A key finding of classic 

similarity as we described it, is that stresses due to aerodynamics loading appear due to 

invariant during upscaling, whereas those due to weight are linearly increasing with the 

geometric scaling factor. 
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A typical example of a beam-like structure subject to such loadings is a tubular support 

structure with linearly varying diameter (D) and wall thickness (t). Because of the simple 

geometry of this component, we will use it to illustrate the results of geometrical upscaling. In 

this context, upscaling will be considered under the prism of the following combined design 

loads.  

 Tower bending due to rotor thrust  

 Tower bending due to wind loads on the tower 

 Tower axial and bending loads from weight, including tower self-weight and tower-top 

components (nacelle and rotor) 

 The design criterion is buckling under ultimate compression, considering a quasi-steady load 

condition. The design work is carried out according to the guidelines of DIN 18800 on 

Structural Steelwork [18]. The maximum normal stress in an arbitrary section (z) of a beam-

like structure, subjected to a normal force F and a bending moment M, is given by 

        σ max = 
𝐹

𝐴
 + 

𝑀

𝑊𝑚
 → σmax(s) = 

𝐹(𝑠)

𝐴(1) .  𝑠2 + 
𝑀(𝑠)

𝑊𝑚(1) .  𝑠3        (2.11) 

 

where A(z) is the area of the section and Wm(z) is its resistance in bending. The overall design 

stress is then calculated from the superposition of the individual maximum normal stresses that 

correspond to the different load components. (F1,2 , M3,4,5), as σALL,max = Σσmax,i. For the case of 

geometrical upscaling, the result of the superposition is shown in Figure 1, with the calculation 

performed for the base section. The buckling limit is also shown, calculated according to the 

guidelines of DIN 18800 on Structural Steelwork. Note that the buckling limit is completely 

insensitive to scale only in the strict case of geometrical upscaling, where its deriving 

formula—based on non-dimensional geometric properties such as the t/D ratio—is scale 

independent. It is obvious that, as discussed, stresses due to aerodynamic forces are scale 
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invariant, whereas stresses due to weight are linearly increasing with the scale factor. As a 

consequence of this, classical upscaling is not possible beyond a certain s value, as the stress, 

increasing linearly, will exceed at that point the design stress limit. 

Table 2.2. Design parameters and ‘base’ values 

 Power, P (MW) 

5 10 15 20 

Rotor diameter, D (m) 126 178 218 252 

Maximum Tip speed, Ut (m s-1) 80 80 80 80 

Hub height, H (m) 90 116 136 153 

 

 

Figure 2.1. Stress distribution for different scales from 1 to 10. The percentile contribution of 

each source to the overall stress is given in the table for different sizes. 
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The contribution of the various stress components for three turbine sizes (5, 10 and 20 MW) is 

also shown in Figure 2.1, illustrating the relative magnitude of each stress component, based 

on the same reference 5 MW wind turbine [17] 

 The calculation of the various loads is not performed for the same operating point, as the 

extreme aerodynamic thrust on the rotor (based on rated conditions) and the tower (based on 

extreme gust conditions) are not fully consistent. Assuming that, for a pitch controlled turbine, 

the rotor thrust under extreme gust is less or equally severe with the thrust at rated conditions, 

we apply the above-mentioned combination for simplicity, having also in mind that we are not 

mainly interested in the exact loads of the reference turbine but in establishing the scaling 

trends of these loads. 

Similar conclusions can be derived for the other parts of the wind turbine. The rotor blades, 

being cantilevered beams with the design driven by aerodynamic bending moments, will also 

scale cubically in mass, unless the cyclic weight fatigue loading becomes the design-driving 

load instead. The scaling rules for the drive train are not as straightforward and depend on its 

actual configuration. The gearbox input torque will increase cubically, but if a constant output 

speed is required, the increased gear ratio required will result in a further mass increase. This 

could be offset by the fact that the constant-speed generator size will then increase following 

power (s2). For a direct-drive generator, the situation is simpler and a cubic law is expected 

(following torque). 

 A full set of scaling laws for all the components has been developed during this project, 

including loads, Eigen frequencies, masses, etc., and is reported in detail in Chaviaropoulos 

[19]. 
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However, these geometric similarity rules are approximations. Some of the effects that have 

not been included in the ‘theoretical’ upscaling laws are as follows:  

 Boundary layer effects related to the blades—change in the Reynolds number implies 

change in loads. As the Reynolds number is already large for the reference wind turbine, 

it is not expected that the effect will be substantial.  

 Wind shear effect. The power P from a wind turbine rotor of radius R in a steady wind 

field of velocity V is proportional to V3R2, and assuming geometric similarity, the hub 

height h is proportional to R. In the presence of wind shear characterized by a wind 

shear exponent α, V is proportional to hα. Hence, power becomes proportional to R2+3α. 

The bending moment on a blade (M) is proportional to V2R3, and a similar analysis 

establishes that it will be proportional to R3+2α. Hence, both power and loading will be 

somewhat influenced by the difference in shear expected in large sizes.  

 Size effects related to the fracture mechanics of materials—implying an upscaling 

exponent larger than 3  

 Size effects related to increased risk of buckling failure modes by upscaling  

 Increased risk by geometric upscaling of low-cycle fatigue failure from weight-induced 

loads 

 Non-linearities due to large deflections (e.g. see Riziotis et al. [20] for findings 

concerning the 5 MW machine considered here).  

 Effects of the inflow turbulence on the dynamic behaviour. As the rotor size increases, 

the spatial coherency of the incoming wind decreases, resulting in lower loads for the 

rotor and tower, better power quality and lower rotor speed fluctuations. On the other 

hand, the energy of the wind concentrates mainly on multiples of the rotational 

frequency that indicates that the wake-induced effects will have a strong variation with 

the azimuth [21]. 
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 Changes in design choices, especially for offshore applications where the technology 

is still evolving and different configurations are being considered for both fixed-bottom 

and floating structures. These can result in large variations in the structure weight that 

are not a direct result of the scaling.  

It is these shortcomings of the simplified method that led to the next step, where the actual 

upscaling trends of wind turbines are studied. 

2.4 REAL UPSCALING 

Purely geometrical upscaling offers useful insight but fails to cover all aspects of the 

operation of large size wind turbines. In order to quantify the actual upscaling process that 

has been used in wind turbine design and manufacturing, we employ a different method, 

based on the study of observed industrial trends. The main questions that need to be answered 

by such a study are as follows: 

 How do actual loads scale in real wind turbine designs? 

 What is the weight increase law for upscaling? 

 What is the cost increase law for upscaling? 

In order to answer the first question, we use the load calculations that have been performed by 

GH (Garrad Hassan) for wind turbine manufacturers as a typical set [22]. These calculations 

are typically performed in conformance with GL or IEC standards [23]. Because of design 

configuration differences and the influence of wind class, the load cases that create design-

driving extreme or fatigue loads vary considerably. Nevertheless, such data can be viewed 

collectively to see what information can be derived in terms of scaling trends. 

While the disadvantage of this data source is in the diversity of designs and external design 

conditions considered, a major advantage is that the data are totally ‘real world’ and in no way 

simplistic, with loads derived by rigorous calculation procedures, approved by certification 
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bodies and used by manufacturers in the design of their turbines. Only pitch regulated wind 

turbines have been considered for this study, and trend lines for the various examined loads 

have been derived. All kinds of extreme and fatigue loads have been examined, and typical 

results (for moments at the tower base and at the blade root) are shown in Figure 2.2 (the load 

component names conform to the GL coordinate system). In scaling with similarity, moments 

would follow a cubic law or greater where self-weight loading is involved. Each of the curves 

of Figure 2.2 are based on approximately 50 data points from detailed load calculations 

performed to certification standards. A wide variety of turbine design styles (concepts and 

operational characteristics) and design site conditions (IEC Class 1, Class 2 and others) are 

grouped together. This limits the statistical significance in determination of characteristic 

exponents, although some variations are striking and appear to be consistent.  

The high scaling exponent of tower base Mz (yaw moment) is interesting (the same happens 

for the tower top that is not shown). The yaw torque arises as a consequence of differential 

blade loading. It may be that the effect of turbulence in creating differential loading across the 

rotor disc, which is becoming more severe at large scale, is being registered here. Fatigue load 

exponents also tend to exceed simple cubic scaling, given that above rated wind speed, when 

most fatigue damage is accumulated; the blade self-weight will introduce cyclic loading in both 

the Mx and My (fore-aft and side) components (the effect will be even greater for the blades’ 

loading). An increasing effect of turbulence with scale may also be contributory to the 

exponents’ being greater than cubic. On the other hand, the reduction in RPM, due to the 

constant tip speed assumption, will reduce the fatigue loading. 

A similar procedure was used to answer the second question and estimate the weight of the 

main components, based on actual parts instead of upscaling theory. The diameter of the wind 

turbine was used to indicate the scale (rated power could also be used, but a geometrical 

quantity was deemed preferable). Results for nacelle and blade masses are given in Figure 2.3. 
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Interestingly, both seem to scale with exponents well below the cubic law that the similarity 

laws dictates. In the case of the nacelle weight in particular, weight seems to follow an s2 law, 

indicating an almost constant power/weight ratio. For the blades, the last three points shown in 

the figure correspond to projections for blades larger than ones presently available, assuming 

that the current trend continues.  
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Figure 2.2.  Design extreme loads based on real data. Tower base (left) and blade root (right) 

moments 

 

Figure 2.3. Mass as a function of size for nacelle and blades 

 

 

Figure 2.4. Mass as a function of size for nacelle considering only large size wind turbines 

Unfortunately, the method used for the weight estimation introduces a bias that can distort the 

trend lines and lead to erroneous conclusions. The dataset used includes small wind turbines of 

relatively old design and (fewer) large wind turbines, all of which are of relatively recent 

design. It is therefore difficult to differentiate between the effects of upscaling and those of the 

technology improvements that came with the larger machines. If the same regression is 

performed for the nacelle weight, keeping only recent wind turbines with rotor diameter       D 
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> 80 m, a different picture emerges, as seen in Figure 2.4, with the scaling exponent increasing, 

in closer agreement to the upscaling theory. An indication of the bias introduced by technology 

evolution is better seen when the weight increase of blades is considered, as the technology 

‘steps’ associated with blade materials are well defined historically [24]. The size correlations 

for each technology (glass epoxy, hybrid, etc.) are closer to the theoretical predictions, as seen 

in Figure 2.5. The first three curves and corresponding scatter points representing existing 

technologies (with hybrid having the lowest weight), whereas the last two give a projection of 

future technology, if the current trends continue.  

In order to have a physical insight of the scaling process, independently of the technology level, 

we use the same simplified tower problem that was described earlier. Instead of geometrical 

upscaling, we require constant-stress upscaling, introducing the scaling functions gD (s) and gt 

(s), which quantify the departure from geometrical upscaling in diameter and thickness, 

respectively. The objective of the optimization problem is to minimize the product gD (s) . gt 

(s) (which is equivalent to minimizing the weight for each scale) while constraining the overall 

stress below its design limit (for local buckling in this case). Using a constrained optimization 

algorithm [25], with gD and gt as the optimization variables, the resulting gD (s) . gt(s) s 

distribution, representing the extra weight needed in comparison to classical upscaling, is 

shown in Figure 2.6(a) (the optimization is performed independently for different scales). It is 

also seen that this extra weight term is always greater or equal (s = 1) to 1 and almost linearly 

(in this particular case) increasing with scale. Intuitively, one would expect, since   gD (s) . gt 

(s) ≥ 1, that increasing the scale, the weight forces are increasing accordingly, and more 

material is then needed for resisting the elevated stress level.  

The corresponding overall weight represented by the non-dimensional volume s3. gD (s) . gt (s) 

versus s is shown in Figure 2.6(b) in a log–log plot. Assuming that weight scales up following 

an sx law, we calculated the mean exponent (x) for this expression through a best-fit procedure. 
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This is evidently resulting in an x = 3+ exponent, as expected based on the previous discussion. 

It should be pointed out that the actual weight does not really scale following sx (the extra 

weight is nearly linear with the scale). The false impression that an exponential representation 

of weight scaling is representative comes from the fact that the deviation of x from its prevailing 

component 3 is rather small. We shall nevertheless continue 

to use this representation to provide estimates of the deviations from geometrical similarity. 

 

Figure 2.5. Blade mass as a function of size for different technologies (filled squares denote 

the combined size and technology improvement trend) 

A strict proof that gD (s) . gt (s) ≥ 1 always holds, suggesting that we cannot upscale beam-

like structures with a weight exponent less than 3, can be given. In order to do that, we 

further assume that the t/D ratio remains constant in upscaling (equivalent to setting 

gD (s) = gt (s)), thus eliminating one degree of freedom from the optimization procedure. The 

validity of the assumption is tested by comparing the results of Figure 2.6 (two degrees of 

freedom, D and t) against those of Figure 2.7 (one degree of freedom, D). 
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Figure 2.6. Scaling functions (a) and weight (b) increase with scale for a simplified tower 

structure 

 

In this case, thickness and diameter scale in the same way, as D(s) = D (1) . s . f(s), and t(s) = 

t (1) . s . f(s), where f (s) is a function of the scale with f(1) = 1. The area of a given section 

will then scale as A(s) = A(1) . s2 . f2(s) and the mass as m(s) = m(1) . s3 . f2 (s). 

Following above, the overall maximum stress reads 

σALL,max(s) = 
𝛼1 .  𝑠

𝑓2  (𝑠)
 + α2 . s + 

𝛼3 .  𝑠

𝑓3  (𝑠)
 + 

𝛼4 .  1

𝑓3  (𝑠)
 + 

𝛼5 .  1

𝑓2  (𝑠)
                          (2.12) 

where the constants α1,…,α5 are expressed in terms of geometrical and load data of the 

reference (s = 1) turbine and represent the actual stress from each of the five load mechanisms 

considered (compression from top-weight, compression from tower weight, bending from top-

weight offset, bending from rotor thrust and bending from thrust of air on the tower; in this 

order, details are in Sieros and Chaviaropoulos[26]). The last two terms, which do not have a 

direct dependence on scale, represent by far the largest contribution in small scales.  

Introducing the non-dimensional coefficients bi= αi /σALL,max(1), we come to the following 

equation that the unknown function f (s) must satisfy for every value of s: 

 



27 
 

𝑏1 .  𝑠

𝑓2  (𝑠)
 + b2. s + 

𝑏3 .  𝑠

𝑓3  (𝑠)
 + 

𝑏4 .  1

𝑓3  (𝑠)
 + 

𝑏5 .  1

𝑓2  (𝑠)
 = 1                      (2.13) 

 

Note that, according to their defining relation, b1,…,b5 express the ratio of the corresponding 

load component to the design stress limit of the reference wind turbine. For the given (bi, s), 

equation (3) can be solved for f (s). The previous equation can be written in the general form 

 

G (f) =f3 – af – b = 0             (2.14) 

 

 

Figure 2.7. Weight increase with scale-simplified model (gD = gS) 

 



28 
 

 

Figure 2.8. Blade cost as a function of scale 

 

The behaviour of G(f) can be analysed based on its roots, and there is always one real positive 

solution, which is larger than 1 when a+b > 1 and smaller than 1 when a+b < 1. The above 

analysis shows that there is always one single positive solution of for equation (4) for f(s), with 

f (1) = 1 and f (s)>1 for any s > 1. That means that it is not possible to upscale without having 

a weight increase of ≥ s3. More details regarding this constant-stress upscaling problem can be 

found in Sieros and Chaviaropoulos. [26,27] 

Note that the above conclusions have been derived taking account of normal stresses only and 

assuming that the limiting factor will always be the buckling limit. However, as long as the 

combined loading can be expressed as a combination of terms like the above, the conclusions 

will not differ greatly for other types of loading and components, although the relative 

magnitude of the terms will differ (e.g. weight-induced cyclic loading will have a bigger 

contribution in blade fatigue calculations). 

The final question about upscaling concerns the cost increase associated with size. Previous 

studies [28] indicate that weight is the major driver for component cost, but the two do not 



29 
 

scale in exactly the same way. For this reason, a study similar to the one for weight was 

performed for the cost of typical wind turbine components. Results for wind turbine blades are 

shown in Figure 2.8. Similar results can be obtained for other components, but as the variation 

in configurations is greater, it is harder to derive concrete conclusions. 

 

2.5 Blade element momentum theory 

 

The steady state aerodynamics of wind turbines is commonly analysed by using momentum 

and blade element theory. Momentum theory refers to a control volume analysis of the forces 

acting on the blade based on the conservation of linear and angular momentum. Blade element 

theory refers to an analysis of forces at a blade section, as a function of blade geometry. 

According to the blade element theory, the forces on the blades of a wind turbine are expressed 

as a function of lift and drag coefficients and the angle of attack (AoA). The results of these 

approaches can be combined into what is known as strip theory or BEM theory. 

The BEM theory is based on the subdivision of the rotor disk into concentric rings of radial 

width dr and mean radius r. Each ring intersects the rotor blades forming blade elements or 

strips. The flow data and the aerodynamic forces acting on each strip are determined by solving 

two equations, obtained by combining linear and angular momentum conservation and classic 

lift and drag theory. One equation results from equating the ring axial thrust determined with 

the one-dimensional (1D) conservation of the linear momentum to the axial thrust computed 

with the lift and drag forces acting on the blade strips intersected by the ring. The other equation 

results from equating the ring torque determined with the 1D conservation of the angular 

momentum to the torque produced by the lift and drag forces acting on the intersected strips. 

The main geometric and aerodynamic parameters of a generic strip is depicted in Fig. 2.9, in 

which the section lift and drag forces are denoted by dFL and dFD respectively. Denoting by dT 
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the thrust acting on a ring, the local thrust coefficient is CT = dT/(0.5ρU2dA), where dA = 2πrdr 

is the area of the ring, and ρ and U are the freestream density and velocity respectively. The 

local thrust coefficient computed using the conservation of linear momentum is: 

CT = 4a(1−a)                (2.15) 

where a is the axial induction factor. The local thrust coefficient computed using lift and drag 

theory is: 

CT = 
𝜎𝑟.(1−𝑎)2

𝑠𝑖𝑛2 𝜑
(CL Cos φ + CD Sin φ)              (2.16) 

where σr = (Nbc)/(2πr) is the local solidity, Nb is the number of blades, c is the airfoil chord 

length, and CL and CD are the lift and drag coefficients respectively. The symbol φ denotes the 

angle of the relative wind velocity vector Urel on the rotor plane. Its expression is φ = arctan 

[(1−a)/((1+a′) λr)], where a′ is the circumferential induction factor and λr = Ωr/U is the local 

speed ratio, where Ω is the angular speed of the rotor. Urel is expressed as Urel=U(1−a)/sinφ. 

Equating Eqns. 2.15 and 2.16 yields one equation in the two unknowns a and a′, since CL and 

CD are ultimately also functions of the induction factors. 

In fact, these force coefficients can be obtained with panel or CFD codes (see Sect. 2.2 for 

details) or experimental data as functions of the Reynolds number (Re), which depends on Urel 

and the relative AoA α, the angle between the air foil chord and Urel. As shown in Fig. 2.9, α = 

φ−θp, where θp is the section pitch angle. This parameter depends only on geometric features, 

and its expression is θp = θp,0+θT, where θp,0 is the pitch angle of the blade and θT is the section 

twist angle. Denoting by dQ the torque acting on a rotor ring, the local torque coefficient is CQ 

= dQ/(0.5ρU2rdA). The local torque coefficient computed using the conservation of angular 

momentum is: 

CQ = 4a′(1−a)λr                                   (2.17) 

The local torque coefficient computed using lift and drag theory is: 
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CQ =
𝜎𝑟.(1−𝑎)2

𝑠𝑖𝑛2 𝜑
(CL Sin φ - CD Cos φ)             (2.18) 

Equating Eqs. 2.17 and 2.18 yields another equation in the two unknowns a and a′. The 

nonlinear system resulting by equating the two expressions of CT and CQ for each strip need to 

be solved with an iterative routine based for instance on Newton’s method or the method of 

successive substitution. The two-dimensional (2D) CL and CD data are stored in tables as 

functions of Re and α, and such data are computed in a pre-processing step. Once the flow state 

of each strip is known, the elemental power dP can be computed. The non-dimensional local 

power coefficient CP = dP/(0.5ρU3dA) can be expressed as follows: 

 

Cp =
𝜎𝑟.(1−𝑎)2𝜆𝑟

𝑠𝑖𝑛2 𝜑
 (CL Sin φ - CD Cos φ)                (2.19) 

 

 

Fig. 2.9 Geometric and aerodynamic parameters of a generic blade strip. Image reproduced 

from [29]. 

The mechanical power of a given rotor corresponding to a particular value of U and Ω is 

determined by integrating dP from the blade root to its tip. 
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2.5.1 BEM theory corrections 

Due to its simplicity, the BEM theory has several limitations. First of all, BEM calculations are 

static. This assumes that the flow field around the airfoils is always in equilibrium, and the flow 

accelerates instantaneously to adjust to new inflow or turbine operating conditions. In practice, 

however, the time taken by the flow-field to reach a steady-state can be relatively long, and, as 

explained below, the unsteady aerodynamic effects can play an important role in defining wind 

turbine operating conditions. Alternative methods based on the generalized dynamic wake 

model [30] have been used to overcome this limitation. Another limitation is tied to the fact 

that the BEM theory assumes that momentum is balanced in a plane parallel to the rotor. In the 

presence of large blade deflections this assumption will lead to inaccurate aerodynamic 

predictions. Moreover, BEM theory assumes the forces acting on the blade are essentially 2D, 

neglecting the complex 3D phenomena occurring over the rotating blades. As discussed in Sect. 

2.2, this limitation is circumvented by means of corrections directly applied on the static force 

coefficients of the airfoils. Other limitations, described below, come from the inability of BEM 

theory to model tip and hub losses, flows characterized by high induction factors, and skewed 

inflow. 

2.5.2 Tip and hub loss correction.  

As shown in Fig. 2.10, helical vortices are shed from the blade tips into the wake. Tip vortices 

play an important role in defining the induced velocity field around the rotor. The most 

common approach to include tip loss in the BEM theory is 
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Fig. 2.10 Tip vortex pattern. Image reproduced from [31]. 

the one developed by Prandtl [29]. This method accounts for tip loss by means of a correction 

factor Ftip defined as follows: 

 

Ftip = (
2

𝜋
)arccos (𝑒𝑥𝑝 [− {

𝑁𝑏(𝑅−𝑟)

2𝑟 sin 𝜑 
}])                (2.20) 

 

where R is the tip radius. When the tip correction is used, Ftip increases as the radial position 

approaches the blade tip, ranging from zero near the root to unity at the tip. To account for the 

vortices being shed at the blade hub, a correction for hub loss was developed. This correction 

is based on a correction factor Fhub expressed as: 

 

Fhub = (
2

𝜋
)arccos (𝑒𝑥𝑝 [− {

𝑁𝑏(𝑟−𝑅ℎ𝑢𝑏)

2𝑅ℎ𝑢𝑏 𝑆𝑖𝑛 𝜑 
}])             (2.21) 

 

where Rhub is the hub radius. The combined effect of tip and hub losses is taken into account 

by means of the Prandtl’s correction factor FPr defined as: 
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              FPr = Ftip Fhub                                                     (2.22) 

 

FPr is used to modify the momentum part of the BEM theory, replacing Eqns. 2.15 and 2.17 

with the following ones: 

CT = 4FPra(1−a)                   (2.23) 

CQ = 4FPra′(1−a) λr                  (2.24) 

2.5.3 Glauert correction. 

During normal operation, wind turbines typically work in the windmill state, in which the axial 

induction factor ranges from 0 to 0.5. When wind turbines operate at higher tip-speed ratios1 

(for example during start up or shut down), the rotor enters in the so-called turbulent wake state 

[29], in which the axial induction factor is greater than 0.5. For axial induction factors greater 

than 0.5, BEM theory is no longer valid as, according to momentum theory, this operating state 

results when some of the flow in the far wake starts to propagate upstream. Flow reversal is 

not physically possible, and what actually happens is that the flow patterns through the wind 

turbine become much more complex than those predicted by momentum theory. Above an axial 

induction factor of 0.5, measured data indicate that thrust coefficient increases up to about 2 at 

an axial induction factor of 1. To compensate for this limitation Glauert [32] developed a 

correction to the rotor thrust coefficient based on experimental measurements. As shown in 

Fig. 2.11, in the windmill state, for axial induction factors up to 0.4, the mathematical relation 

between CT and a is expressed by the classical momentum equation. For axial induction factors 

greater than 0.4, the Glauert correction takes over, intersecting tangentially the classical 

momentum curve. A numerical problem arises when the Prandtl’s correction factor FPr is 

included in the classical momentum theory, as shown in Eq. 2.23. In this case, the application 

of the classical Glauert formulation leads to a gap between the classical momentum curve and 

the empirical one. In practice, the classical momentum curve and the Glauert curve do not 
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intersect each other anymore. This gap creates a numerical discontinuity when a computer is 

used to iterate for the induction factor. To deal with this problem, Buhl [33] derived a 

modification of the 

 

 

Fig. 2.11 Thrust coefficient versus axial induction factor. Image reproduced from [42]. 

Glauert correction including the Prandtl’s correction factor as follows: 

 

CT = 
8

9
 + (4𝐹𝑝𝑟 −  

40

9
)a + (

50

9
 –  4𝐹𝑝𝑟 )a2                (2.25) 

Taking into account the value of FPr explicitly, Eq. 2.25 always guarantees continuity between 

the classical momentum curve and the Glauert one. 

2.5.4 Skewed wake correction. 

Wind turbines often operate with a non-zero yaw angle relative to the wind inflow. This 

determines a skewed wake behind the rotor. BEM theory needs to be corrected to account for 

such operating condition. Most of the available skewed wake corrections are based on an 

equation developed by Glauert [34]. This equation corrects the axial induction factor as 

follows: 
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askew = a[1 +  𝐾𝑠𝑘𝑒𝑤  
𝑟

𝑅
cos(𝛹)]              (2.26) 

 

where Kskew is a function of the skew angle and ψ is the azimuth angle. In this case, since the 

axial induction factor depends on the value of ψ, the BEM equations outlined above need to be 

solved for each azimuth position. This correction has a limitation primarily due to the fact that 

it assumes a cylindrical wake, which is true only for lightly loaded rotors. Better predictions of 

the aerodynamics of wind turbines operating in yaw conditions can be achieved by using 

alternative methods based on the generalized dynamic wake model [30]. 

2.5.5 Unsteady aerodynamic effects.  

The turbulence associated with the wind and unsteady aerodynamic effects cause rapid 

fluctuations in the aerodynamic forces acting over the rotor blades, generating vibrations and 

important material fatigue. In particular, unsteady aerodynamic effects, such as those related 

to the tower shadow, dynamic stall and dynamic inflow (shortly described below), play a 

fundamental role on wind turbine operation, and their modelling can improve the accuracy of 

wind turbine rotor aerodynamic analysis. 

2.5.6 Tower shadow.  

The wind speed experiences a deficit behind the tower. In downwind turbines, this causes a 

rapid drop in the power extracted by the rotor blades, and structural vibrations. A model 

accounting for the tower influence has been developed by Bak et al. [35]. This method models 

the influence of the tower on the local velocity field at all points around the tower. Fig. 2.12 

shows the tower shadow model at a given point. According to this model, the tower wake 

decays in strength and grows in width as the distance from the tower increases. 
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Fig. 2.12 Tower shadow model at a given point. In this picture, U∞ is the freestream wind 

velocity, and d represents a characteristic length of the model. Image reproduced from [31]. 

 

2.5.7 Dynamic stall 

 When rapid changes in the AoA occur, for example when the rotor blades of a downwind 

turbine encounter the tower wake or due to the effects of rotor yaw, wind shear and turbulence, 

turbine blades can experience lift forces that are different (normally larger [36]) than those 

expected in static conditions. This effect is tied to the blade stall behaviour, and it is normally 

referred to as dynamic stall. Dynamic stall is an unsteady mechanism than can occur when the 

AoA of an airfoil increases rapidly from below to above the static stall AoA. In this case, the 

flow over the airfoil can remain attached at angles of attack above the angle at which steady-

state flow separation normally occurs. As shown in Fig. 2.13, under these circumstances, the 

airfoil can generate a higher lift coefficient than that it would generate in the static cases. In 

extreme cases, dynamic stall can increase the lift. 
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Fig. 2.13 Dynamic stall behaviour. Cl and α represent the lift coefficient and the AoA, 

respectively. Image reproduced from [37]. 

coefficient by a factor of three [36]. The flow over the airfoil can then separate suddenly with 

the result that the lift coefficient drops and the drag coefficient increases. The loads experienced 

by a blade subject to dynamic stall can be large, causing significant fatigue damage. Dynamic 

stall also causes sudden variations of the pitching moment, resulting in important loads on the 

rolling bearings for the blade pitch motion. Several methods have been developed to model 

dynamic stall, such as those of Gormont [38] and Beddoes [39]. Details on the formulation of 

the Beddoes’s model and its interaction within a BEM code can be found in the AeroDyn’s 

theory manual [31]. Dynamic stall methods are not included in the design framework reported 

below. 

 

2.5.8 Dynamic inflow.  

Dynamic inflow is related to the flow field response to turbulence and changes in rotor 

operation conditions (for example due to changes in the blade pitch angle or rotor speed). 

According to steady state aerodynamics, these changes should result in instantaneous changes 
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in the flow field upstream and downstream of the rotor. However, during rapid changes the 

flow field cannot respond quickly enough to instantly establish steady state conditions. This 

results in aerodynamic conditions which may be different from the expected ones. The time 

scale of dynamic flow effects is on the order of D/U, the ratio of the rotor diameter to the mean 

ambient flow velocity [29]. Therefore, the time scale of these effects is of the order of about 

10 seconds [40]. Phenomena occurring slower than this can be treated using a steady state 

analysis. More details on dynamic inflow and its modelling can be found in [40–42]. Dynamic 

inflow methods are not included in the design framework reported below. 

2.6 Structural analysis of the rotor blades 

The design of wind turbine blades is an involved process mainly due to the complexity of their 

aerodynamic shape and internal structural characteristics. Indeed, wind turbine blades are made 

of composite laminates, constituted by anisotropic layup distributed non-uniformly along the 

blade span. This means that the internal structural layup of composite laminates varies across 

the blade span from root to tip. As mentioned above, the structural analysis of rotor blades are 

primarily required to compute mode shape and distributed stiffness and inertial properties 

needed by wind turbine aeroelastic codes. Moreover, the structural analysis of the blades are 

needed to verify their structural integrity against ultimate and fatigue limits. 

Ultimate load analysis refers to the assessment of material strength (through a stress-strain 

analysis), blade tip deflection and structural stability (i.e., buckling), while fatigue load analysis 

concerns fatigue strength. The extraction of the structural properties of the blade and the stress-

strain, blade tip deflection and buckling analyses are normally carried out using structural 

codes. Fatigue calculations involve the use of specific algorithms to process load histories in 

order to determine the damage accumulation. The initial part of this section deals with different 

methods commonly used to perform the structural analysis of wind turbine blades and fatigue 

calculations. 
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The realistic ultimate and fatigue loads, that turbine components are subjected to, need to be 

accurately assessed. Such loads are normally generated by running a series of aeroelastic 

simulations under different operating and environmental conditions, covering most of the 

situations that wind turbines likely experience during their lifetime. As mentioned in Chapter 

1, these conditions are prescribed by standards, such as the IEC standard [43]. Wind conditions 

considered by these standards are normally fed into aeroelastic codes by means of wind input 

files. The concluding part of this section will describe the structure of such files, and explain 

how they can be generated. 

2.6.1 Methods for the structural analysis of wind turbine blades 

Finite element method (FEM) codes, such as ANSYS [44], Abaqus [45], SolidWorks [46] and 

NuMAD [47], can be used to perform the structural analysis of wind turbine blades, accurately 

accounting for complex geometric shapes and composite structural layup. FEMs rely on 

numerical approximation techniques that divide a component or structure into discrete regions 

(the finite elements) and the response is described by a set of functions that represent the 

displacements or stresses in those regions [48]. These models are able to accurately provide 

the span-variant properties of the blades, and describe the strain-stress fields in detail. The use 

of FEM techniques is however computationally expensive, requiring the generation of a 

computational mesh, and complex post-processing. In the preliminary design stages, where a 

huge number of different configurations may be evaluated, FEM approaches may become 

impractical. Therefore, the structural analysis in the aeroelastic design optimization of wind 

turbine rotors generally relies on simpler and faster models. The rest of this section will review 

some of these simplified structural models tailored towards composite rotor blades, and 

featuring various solution techniques. 

PreComp [49] is a popular NREL code developed to provide span-variant structural properties 

for composite blades. These structural properties encompass: flap, lag (edgewise), axial (with 
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respect to the blade pitch axis), and torsion stiffness’s, as well as orientation of principal axes, 

density, and moments of inertia. This code is based on the classical lamination theory (CLT) 

with a shear-flow approach. Details on the CLT and the shear-flow theory can be found 

respectively in [50, 51] and [52]. It should be noted that PreComp cannot be used to perform 

stress-strain analysis. Therefore, in the framework of this research, alternative structural codes, 

not based on FEMs, yet featuring stress-strain analysis capabilities, have been reviewed. 

Co-Blade [53] is a computationally efficient open source structural analysis and design code 

developed by Sale. This code includes all of the same capabilities of PreComp, adding analysis 

of load induced strain, stress, deflection, buckling, optimization capabilities, and graphical 

post-processing capabilities. Making use of a blend of CLT, Euler-Bernoulli theory [52, 54, 

55] and shear flow theory applied to composite beams, Co-Blade predicts both the distributed 

structural properties of composite wind turbine blades, and their deformation and material 

stress fields. The Co-Blade’s technical approach models the turbine blade as a cantilever beam 

subject to aerodynamic loads, self-weight, buoyancy, and centrifugal forces. As a consequence, 

the beam undergoes bending, axial deflection (i.e., tension and compression along the 

longitudinal axis of the beam), and twist (i.e. torsion about the longitudinal axis of the beam). 

The linear differential equations of equilibrium for a cantilever beam are then used to determine 

the shear force and bending moment distributions along the beam length. Co-Blade considers 

the beam cross sections are assumed to be thin-walled, closed, and single- or multi-cellular. 

The cross-section of the cantilever beam is discretized as a connection of flat composite 

laminates, as illustrated in Fig. 2.14. 
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Fig. 2.14 Modelling of the turbine blade cross-section. Each section is discretized as a 

connection of composite laminate plates, each made up of a number of different laminas (θ 

represent the orientation of each lamina’s principal material direction with respect to the 

blade axis). Image reproduced from [53]. 

Although each composite laminate is a stack of a number of different laminas (each 

characterized by its own material and constitutive properties), the CLT is used to evaluate the 

effective mechanical properties (i.e., Young’s modulus, shear modulus, Poisson’s ratio, 

thickness, and density) of each laminate, treating it as a single structural element. Therefore, 

the beam cross-section is made up of a number of discrete areas, or panels, of homogeneous 

material (represented through different colours in Fig. 2.14). The panels, made up of consistent 

flat composite laminates, are characterized by the effective mechanical properties computed 

via CLT. Each panel then contributes to the global cross-sectional properties, which are 

computed by the method of Young’s modulus weighted properties [54, 55]. Once that global 

cross-sectional properties are known, the deflections and the beam effective axial stress and 

effective beam shear stress are computed under the assumption of a Euler-Bernoulli beam. The 

calculation of the beam effective shear stress is based on a shear flow approach. The 

distributions of the effective beam stresses from the Euler-Bernoulli theory are eventually 

converted into the equivalent in-plane distributed loads on the flat composite laminates, so that 

the strains and stresses of each lamina can be recovered by means of CLT. Co-Blade follows 
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the approach described in [56, 57] to perform the linear buckling analysis of the blade. In this 

approach the top and the bottom surfaces of the blade are modelled as curved plates subject to 

a combination of compression and shear loads, while the shear webs (connecting the top surface 

to the bottom one) are modelled as flat plates subject to combined bending and shear. 

Practically, panel buckling is treated by means of a buckling criteria R expressed by a 

dimensionless number which is lower than 1 if the effective stresses in a panel have not 

exceeded the critical buckling stresses. 

Another simple and fast structural code has been developed and presented by Ashuri et al. [58]. 

This code, based on the Euler-Bernoulli theory, enables both the extraction of structural 

properties of a composite wind turbine blade and the calculation of its bending stress field. In 

fact, unlike Precomp, this code includes the calculation of the cross-sectional area moments of 

inertia, allowing one to determine the bending stresses σ. For this purpose, the classic formula 

for determining σ, in a beam under simple bending, can be used as follows: 

 

σ = 
𝑀𝑦

𝐼𝑥
                      (2.27) 

where M is the moment about the neutral axis, y is the perpendicular distance to the neutral 

axis, and Ix is the cross-sectional area moments of inertia about the neutral axis. 

As mentioned above, blade mode shapes are required to perform rotor aeroelastic simulations 

by means of aeroelastic codes. Moreover, to avoid blade resonance issues, rotor blades should 

be designed considering their natural frequencies. As explained in Chapter 6, the first natural 

frequency of the blade should be above the maximum rotor blade passing frequency. All the 

structural codes described in this section cannot cope with the calculation of either the blade 

mode shapes or the blade natural frequencies. The pre-processor BModes [59] is a NREL tool 

able to generate coupled modes and natural frequencies for a turbine blade or a tower. BModes 

uses distributed inertial and stiffness properties of the blade and tower along their longitudinal 
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axis. For blade mode shapes calculation, BModes also requires the rotational speed of the blade 

to calculate the rotational stiffening and its pitch angle as input. From the solution of the 

associated eigenvectors, polynomial expressions of the mode shapes are calculated. The 

calculation of the natural frequencies is carried out in the same way, including the stiffening 

effects of rotation. 

2.6.2 Fatigue 

Fatigue is defined as the progressive and localized structural damage that occurs when a 

material is subject to cyclic loading. Due to the spatiotemporal variability of the wind and the 

rotation of the rotor, wind turbine components, such as the rotor blades, tower and drive train, 

indeed experience cycling loads throughout their lifespan, and therefore they need to be 

designed against fatigue. The most common approach to design wind turbine mechanical parts 

against fatigue is to keep structural stress below threshold of fatigue limit, normally represented 

by a parameter indicating the fatigue damage accumulation. 

Fatigue analysis for wind turbines is typically carried out by running a large number of 

aeroelastic (time-domain) simulations under different wind conditions, determining the fatigue 

loads expected over the lifetime of the turbine. Fatigue loads on each primary component of 

the turbine is then post-processed. MLife [60] is a NREL code, created to compute fatigue 

estimates resulting from time-series load data files. This code accumulates fatigue damage due 

to fluctuating loads. These fluctuating loads are broken down into individual hysteresis cycles 

each characterized by a load mean and range, using the rain flow counting method according 

to the ASTM standard [61]. In practice, the rain flow counting algorithm reduces a complex 

spectrum of varying loads into a simple set (or series) of cycles defined by a given mean and 

amplitude. MLife assumes that the fatigue damage accumulates linearly and independently for 

each of these cycles according to the Miner’s rule [62]. Thus, the total damage resulting from 

all cycles is given by: 
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D = ∑
𝑛𝑖

𝑁𝑖(𝐿𝑖
𝑅𝐹)

  𝑖                   (2.28) 

where Li
RF denotes a given cycle’s load range about a fixed load-mean value and Ni(Li

RF ) 

represents the number of cycles, characterized by Li
RF , that would lead to failure. ni represents 

the actual count of cycles characterized by Li
RF . When ni is equal to Ni(Li

RF ) failure occurs, 

and this corresponds to D equal to 1. Load ranges are related to cycles to failure by means of 

the S-N curve (or Woler curve) which can be modeled as follows: 

Ni = (
𝐿𝑢𝑙𝑡−|𝐿𝑀𝐹|

(
1

2
𝐿𝑖

𝑅𝐹)
)

𝑚

                     (2.29) 

where Lult is the ultimate design load of the component, LMF is the fixed lead mean and m is 

the Woler exponent, depending on the considered component. 
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CHAPTER 3 

RESEARCH METHODOLOGY  

3.1 Fundamental Equations 

Laws of conservation of physics are represented by governing equations of fluid flow through 

mathematical statements. 

 According to newton’s 2nd law, Summation of forces on a fluid particle is equal to the 

change in rate of momentum. 

 Fluid mass is conserved. 

 According to 1st law of thermodynamics, rate of change of energy is equal to the 

summation of heat added to a fluid particle and total work done on it. 

Using Navier Strokes equations, these conservation laws can be applied to a control volume or 

a small fluid element. 

3.1.1 Navier Stokes Equations 

As shown by Pope et al. [42], theoretical basis of the problems starts from conservation of mass 

and momentum as follows : 

𝜕𝜌

𝜕𝑡
 + ∇. (𝜌�⃗�) = 0                                                                          (3.1) 

 

ρ
D𝑈𝑗

D𝑡
 = 

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
 – 𝜌 

𝜕𝛹

𝜕𝑥𝑗
                                                                       (3.2) 

where, 

        𝑣⃗= 3-D velocity vector 
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         𝜕𝜏𝑖𝑗 = stress tensor 

         Ψ = external body force vector 

Presence of non-linearities restricts the direct numerical solution to these equations which leads 

to assumptions of turbulent viscosity theory in this solution. Averaged form of continuity and 

momentum equations can be written using substitutions of the Reynolds decomposition as 

𝑈 (𝑥, 𝑡) = {𝑈 (𝑥, 𝑡)} + 𝑢 (𝑥, 𝑡)                                                       (3.3) 

where, the vector x represents stream wise in x direction, span wise in y direction, and vertical 

in z direction.  

The stress tensor is shown below, 

𝜏𝑖𝑗 = 𝑃𝛿𝑖𝑗 + 𝜇 (
𝛿𝑈𝑖

𝛿𝑥𝑗
+

𝜕𝑈𝑖

𝜕𝑥𝑗
)                                                           (3.4) 

3.1.2 k-ω Standard model  

Wilcox [56] developed the k- ω Standard model to analyse turbulent viscosity (Menter et.al.) 

using transport equations of k- ω, the turbulence kinetic energy and ω, the turbulence 

frequency. These transport equations are: 

𝐷(𝜌𝑘)

𝐷𝑡
 = P – β*ρωk + 

𝜕

𝜕𝑥𝑗
 [ (μ +  𝜎𝑘

𝜌𝑘

𝜔
 )

𝜕𝑘

𝜕𝑥𝑗
]                         (3.5) 

 

𝐷(𝜌𝜔)

𝐷𝑡
 = 

𝑎𝜔

𝑘
 P – βρω2 + 

𝜕

𝜕𝑥𝑗
[ (μ +  𝜎𝜔

𝜌𝑘

𝜔
 )

𝜕𝜔

𝜕𝑥𝑗
]                     (3.6) 

k-ω turbulence model equations used RANS equation as shown above to solve three 

dimensional turbulent steady state incompressible flow. 

3.2 Model Description  

SolidWorks was used to develop the geometry of GE 1.5xle reference turbine [55]. Further it 

was exported to Ansys Design Modeler, where its domain geometry was developed. GE 1.5xle 
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turbine is one of the best in its class and hence is widely used. Steady state one way FSI (Fluid-

Structure Interaction) analysis is used to show deformation due to aerodynamic loading of wind 

turbine. Blade length is 43.2 metres long which starts with a cylindrical shape at the root and 

further transitions to S818, S825, S826 airfoils at root, body and tip respectively. The pitch of 

this blade varies as a function of radius which gives it a twist and has pitch angle of 4 degrees 

at blade tip. All the technical details of the GE 1.5xle blade is given in table 3.1. 

Table 3.1 Technical details of GE’s 1.5xle [55] 

Electrical parameters  

Voltage 690 V 

Frequency 50/60 Hz 

Tower  

Hub Height 80 m 

Rated Capacity 1500 W 

Rated Wind Speed 11.5 m/s 

Cut in Wind Speed 3.5 m/s 

Cut out Wind Speed 20 m/s 

Rotor  

Rotor Diameter 86.4 m 

Swept Area 5348 m2 
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3.2.1 Governing equations 

Time-averaged momentum equations (RANS equations [20]) in accordance with time-

averaged continuity are the governing equations of fluid flow. These relations are as follows: 

𝜕ū𝑖

𝜕𝑥𝑖
 = 0                                                                   (3.7) 

 

𝜕ū𝑖

𝜕𝑡
+ ūj

𝜕ū𝑖

𝜕𝑥𝑗
 = 

1

𝜌
 

𝜕

𝜕𝑥𝑗
 (𝜏𝑖𝑗

𝑒𝑓𝑓)+ Ḡi                                               (3.8) 

 

𝜏𝑖𝑗
𝑒𝑓𝑓 = - ṕδij + μ(

𝜕ū𝑖

𝜕𝑥𝑗
 +

𝜕ū𝑗

𝜕𝑥𝑖
  ) – ρ u’iu’j               (3.9) 

Last term in equation 3 is Reynold’s stress which is modelled by turbulence model. The 

standard k-ω model used here is a turbulence model in which turbulence viscosity is related to 

turbulence kinetic energy and turbulence frequency as shown below: 

μt = 
𝜌𝑘

𝜔
 

3.2.2 Boundary conditions  

Inlet and outlet boundary conditions are set as velocity inlet and pressure outlet respectively. 

Boundaries are set to be as 90 m in front and 180 m behind the rotor respectively. Dimensional 

angles are set as 60 degrees each. Dimensional radius is set to be at 120 m and 240 m for 

velocity inlet and pressure outlet respectively. 

The fluid is taken as incompressible air of density 1.225 kg/m3 at 25°C and its reference 

pressure is considered as 101325 pa. 

3.3 CFD Designing 

It’s a tool of modelling a fluid flow around a blade by disintegrating the geometry into various 

small cells which comprises a mesh. An algorithm is developed for each cell to compute for 
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the fluid flow around the cells. Navier-strokes equations or Euler can be used for the 

computation depending on the nature of flow. 

It comprises of various steps:  

Step 1: Problem Identification 

 Define goals and objectives 

 Identify the domain in which it exists. 

Step 2: Pre- processing  

 Geometry construction 

 Mesh formation 

 Physics setup  

 Solver setting 

Step 3: Solve Equation 

 Calculate solution 

Step 4: Post-processing 

 analyse results 

3.3.1 Model Formation 

A modelling software called solid works is used to generate GE’s 1.5xle turbine blade using 

the coordinates from [17]. Model generated was further imported to Ansys software. Blade 

geometry imported to Ansys is shown in figure 3.1. 
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Figure 3.1 Blade Geometry of GE’s 1.5xle 

3.3.2 Meshing 

Geometry is break down into smaller parts such as nodes, elements etc using discretization 

scheme. This resultant discretized geometry which comprise of many smaller computations 

parts is termed as mesh. 
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Figure 3.2 Tetrahedral Mesh 

3.3.3 Mesh Metrics 

Mesh metrics is use to judge the quality of mesh as a bad mesh can lead to bad results. 

Maximum skewness should be kept lower than 0.95 for a good quality mesh. Having poor cells 

or elements can lead to false simulation results. The following table 3.2 can help you gauge the 

quality of your mesh. 

 

Table 3.2 Skewness range 

Skewness: 

Excellent Very Good Good Sufficient Bad Inappropriate 

0-0.25 0.25-0.50 0.50-0.80 0.80-0.95 0.95-0.98 0.98-1.00 
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Figure 3.3 Skewness 

As shown in above figure 3.3, skewness for our mesh is below 0.5 for most of the elements 

which is good and assure it as a good quality mesh.  

3.4 FEA Simulation 

Now the solid mechanics aspects of wind turbine come into play for which FEA simulation is 

performed. Pressure load which are calculated in the fluent are imported to Ansys Mechanical 

and stress and deformations on the blade are calculated. 

 

Figure 3.4 Wind turbine blade structure 
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Blade is composed of an outer surface and an inner spar as shown in above figure 3.4. 

Composite materials are used now a day to produce wind turbine blades so as to reduce the 

weight of huge machines. For the simplification of structural analysis, we assume the following 

material properties of our composite material. 

Table 3.3 These values are approximated as the composite properties which are generally 

found in real wind turbine blades. 

Density (kg/m^3) 1550 

Young's Modulus-X (Pa) 1.1375E+11 

Young's Modulus-Y (Pa) 7.583E+09 

Young's Modulus-Z (Pa) 7.583E+09 

Poisson's Ratio-XY 0.32 

Poisson's Ratio-YZ 0.37 

Poisson's Ratio-XZ 0.35 

Shear Modulus-XY (Pa) 5.446E+09 

Shear Modulus-YZ (Pa) 2.964E+09 

Shear Modulus-XZ (Pa) 2.964E+09 
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Proper meshing of wind turbine blade is performed in Mechanical as shown below. 

 

 

Figure 3.5 Mesh of wind turbine blade structural analysis 

3.5 Numerical Setup 

Summary of steps undergone in CFD 

1. Solution Methods 

a. Select Coupled option for Scheme 

b. Standard pressure is selected 

c. Check Pseudo transient and High Order term relaxation 

2. Set Monitors 

a. Residuals in all parameters is changed to 1e-6. 

b. Surface monitor is created 

c. Check Plot & write 

d. Select Blade surface 
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3. Solution Initialization 

a. Choose Standard initialization 

i. Compute from inlet 

4. Run Calculation 

a. Iterations = 1500. 

b. Initialize solution 

c. Run calculation 

In FEA for structure analysis, to obtain the numerical solution, click solve. ANSYS formed the 

stiffness matrix for each element, assembled the global stiffness matrix and inverted it to get 

the nodal displacements. This is the bulk of the computation that ANSYS performs. All the 

results that we look at next such as the deformed shape and the stresses are derived from these 

nodal displacements.  
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Examine the effects of scaling on structural parameters 

The GE’s 1.5xle wind turbine is used as large turbine and its scaled down model to 4 times 

is simulated in Ansys software for CFD and FEA analysis. After simulation is completed 

for both at various speed, structural parameters resulted from simulation and results 

predicted by similarity theory as stated before is compared for further analysis. Several 

simulations were performed at different wind speeds which is set to be 7,10,12,15,17.5 and 

20 m/s. Fig. 4.1 shows the force reaction resulted after simulation for large scale 

turbine(LST) and the predictions by similarity theory which were calculated from scaling 

relations as shown in Table 2.1. Table 4.1 shows the Force reaction values for large scale 

turbine, values predicted by similarity theory and small scale turbine. Here, Values obtained 

by simulating the large scale turbine are in complete agreement with the results predicted 

by similarity theory as the relative error between them is below 1%.  

Table 4.1 Values of Force Reaction from LST and Predicted by Similarity 

S. No. Wind Speed 

(m/s) 

Force Reaction 

LST,  

(kN) 

Force Reaction 

Similarity Theory 

(kN) 

Force 

Reaction SST 

(kN) 

Error 

(%) 

1 7 1578 1578.9 98.68 0.057 

2 10 1579 1579.56 98.72 0.036 
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3 12 1579.8 1580.36 98.77 0.035 

4 15 1581.2 1581.25 98.82 0.0032 

5 17.5 1582.2 1582.59 98.91 0.025 

6 20 1583.2 1583.75 98.99 0.034 

 

 

Figure 4.1 Comparison of Force Reaction value obtained from simulation and values 

predicted by similarity theory 

Table 4.2 shows the blade mass values for large scale turbine, values predicted by similarity 

theory and small scale turbine. Error between blade mass values of large scale turbine and 

values predicted by similarity theories are found to be less than 1% which further confirm 

that results of the simulation completely follow the values predicted by similarity theory. 

In fig 4.2, a graph is plotted between the values of LST and values predicted by similarity 

theory to show the variation at different wind speeds. 
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Table 4.2 Comparison of Blade Mass from LST and Predicted by Similarity Theory 

S. No. Wind Speed 

(m/s) 

Mass LST, 

(kg) 

Mass Similarity Theory 

(kg) 

Mass SST  

(kg) 

Error 

(%) 

1 7 22473 22668.51 354.19 0.87 

2 10 22473 22668.51 354.19 0.87 

3 12 22473 22668.51 354.19 0.87 

4 15 22473 22668.51 354.19 0.87 

5 17.5 22473 22668.51 354.19 0.87 

6 20 22473 22668.51 354.19 0.87 

 

Figure 4.2 Comparison of Blade Mass value obtained from simulation and values 

predicted by similarity theory 
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Table 4.3 shows the Equivalent Stress values for large scale turbine, values predicted by 

similarity theory and small scale turbine. Error between equivalent stress values of large 

scale turbine and values predicted by similarity theories are found to be less than 1% for 

all wind speed except for 7 m/s for which it is found to be close to 8%. This large variation 

between the values of large scale turbine and values predicted by similarity theory is due 

to incompatibility between the fluid flow in real condition and fully turbulent model for 

small scale turbine. In fig 4.3, a graph is plotted between the values of LST and values 

predicted by similarity theory to show the variation at different wind speeds. 

 

Table 4.3 Comparison of Equivalent Stress from LST and Predicted by Similarity 

S. No. Wind Speed 

(m/s) 

Equivalent 

Stress LST, 

(MPa) 

Equivalent Stress 

Similarity Theory 

(Mpa) 

Equivalent 

Stress SST, 

(MPa) 

Error 

(%) 

1 7 19.561 21.12 1.32 7.9 

2 10 28.722 29 1.81 0.96 

3 12 34.13 34.813 2.17 2.0 

4 15 40.991 41.195 2.57 0.497 

5 17.5 44.359 45.024 2.81 1.49 

6 20 45.914 46.832 2.92 1.9 
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Figure 4.3 Comparison of Equivalent Stress value obtained from simulation and values 

predicted by similarity theory 

Table 4.4 shows the Moment values for large scale turbine, values predicted by similarity 

theory and small scale turbine. Error between moment values of large scale turbine and 

values predicted by similarity theories are found to be less than 3% for all wind speed 

except for 7 m/s for which it is found to be close to 7%. This large variation between the 

values of large scale turbine and values predicted by similarity theory is same as that 

explained in equivalent stress condition which is due to incompatibility between the fluid 

flow in real condition and fully turbulent model for small scale turbine. In fig 4.4, a graph 

is plotted between the values of LST and values predicted by similarity theory to show the 

variation at different wind speeds. 
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Table 4.4 Comparison of Moment from LST and Predicted by Similarity 

S. No. Wind Speed 

(m/s) 

Moment LST, 

(N-m)*1006 

Moment Similarity 

Theory 

(N-m) *1006 

Moment SST, 

(N-m)*1006 

Error 

(%) 

1 7 1.2147 1.3 0.02 7.02 

2 10 2.042 2.035 0.031 0.343 

3 12 2.5235 2.537 0.039 0.534 

4 15 3.0998 3.138 0.049 1.29 

5 17.5 3.348 3.399 0.053 2.42 

6 20 3.529 3.559 0.055 0.85 

 

 

Figure 4.4 Comparison of Moment value obtained from simulation and values predicted 

by similarity theory 
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From the results obtained in this section, mass and moment increases with the cube of 

change in rotor diameter as stated in the traditional similarity theory rules whereas force 

reaction and stress increases with square of change in rotor diameter as per similarity theory 

rules. Also keep in mind that, Similarity theory rules are valid only when the flow condition 

such as triangles of velocity and relative velocity angles are kept same for both large and 

small wind turbines. 

 

Figure 4.5 Equivalent Stress variation cross-section of blade at velocity 12m/s 
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Figure 4.5 Moment and Force Reaction of Blade for velocity 12 m/s 
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CHAPTER 5 

CONCLUSION 

5.1 Summary 

In this thesis, effects of scaling the wind turbine blade on various structural parameters 

which include Force reaction, Blade mass, Equivalent stress and moment were investigated 

on the blade. Values predicted by similarity theory are in complete agreement with the 

results of the simulation for all wind speeds except for low wind speed where there is a 

visible difference between predictions of similarity and simulation results. Reason behind 

this difference is due to the incompatibility between fully turbulent model employed to 

simulate the flow and the real flow regime which is not fully turbulent in some regions of 

blade span. Further conclusion can be drawn from this investigation 

 Increase in Force reaction due to scaling up of wind turbine increases with square 

of change in rotor diameter. 

 Increase in mass due to scaling up of wind turbine increases with cube of change in 

rotor diameter which necessitates the development of stronger and lighter materials 

so as to construct large wind turbine blades to extract more energy without 

increasing much of the blade weight and increase cost and complexity. 

 Increase in moment due to scaling up of wind turbine increases with cube of change 

in rotor diameter which limits the length of wind turbine blades. 

 Increase in equivalent stress due to scaling up of wind turbine increases with square 

of change in rotor diameter. 

 Structural analysis is unaffected by closely spaced rotor. 
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5.2 Future Works 

Further study can be done in multi rotor wind turbine(MRWT) design and scaling effects 

are investigated to improve its design for better performance of wind turbine blade. From 

economic prospects, cost optimization study can be done for wind turbine. 
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