
 1

A

Dissertation

On

An Engineering Framework to Implement Security in

Software System

Submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

By

SHRUTI JAISWAL

(University Roll no. 2K11/Ph.D./CO/10)

Under the supervision of:

Dr. Daya Gupta

Professor, Dept. of Computer Engineering, Delhi Technological University (DTU)

To the

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI -110042

2018

 1

Copyright Delhi Technological University- 2017

All rights reserved

 I

DECLARATION

I, Shruti Jaiswal, Ph.D. student (Roll No. 2K11/PhD/CO/10), hereby declare that the

thesis entitled “An Engineering Framework to Implement Security in Software

System” which is being submitted for the award of the degree of Doctor of Philosophy

in Computer Engineering, is a record of bonafide research work carried out by me in

the Department of Computer Engineering, Delhi Technological University. I further

declare that the work presented in the thesis had not been submitted to any University

or Institution for any degree or diploma.

Date:

Place: New Delhi Shruti Jaiswal

 (Candidate)

 2K11/Ph.D./CO/10

 Department of Computer Engineering

 Delhi Technological University (DTU)

 New Delhi -110042

 II

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

CERTIFICATE

Date: ___________

This is to certify that the work embodied in the thesis entitled “An Engineering

Framework to Implement Security in Software System” submitted by Shruti Jaiswal

with Roll no. 2K11/PhD/CO/10 as a full-time research scholar in the Department of

Computer Engineering, Delhi Technological University, is an authentic work carried

out by her under my guidance and is submitted to Delhi Technological University for

the award of the Degree of Doctor of Philosophy.

This work is original research and has not been submitted, in part or full, to any other

University or Institute for the award of any degree.

Supervisor

Dr. Daya Gupta

Professor,

Department of Computer Engineering

Delhi Technological University

Delhi-110042

SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042, INDIA

OFF.:91-11-27871018 FAX: +91-11-27871023 WEBSITE: www.dtu.ac.in

 III

ACKNOWLEDGEMENT

After an intensive journey of my dissertation, first and foremost I address my deepest

thank to Almighty God, for his showers of blessings that provide me patience,

calmness and motivated me throughout the dissertation.

I would like to express my sincere gratitude to my research supervisor, Dr. Daya

Gupta, for giving me the opportunity to do research and providing invaluable

guidance throughout this research. Her guidance, vision, and motivation have deeply

inspired me. Throughout my thesis, she provided encouragement, sound advice, deep

guidance and lots of good ideas that help me to improve myself and my work.

I extend my gratitude to Prof. S.K. Garg (DRC Chairman), Prof. H.C. Taneja

(Dean, PG), Dr. Anil Kumar (AR, PG), Prof. Yogesh Singh (Vice Chancellor),

Prof. O.P.Verma and other faculty members and staff of the Computer Engineering

Department for providing me an healthy environment to complete my research at

Delhi Technological University.

I am extremely grateful to my fellow researchers and my M.Tech scholars, Mr.

Ashish Kumar Tripathi, Mr. Shubham Jain, Mr. Surya Kant Josyula, Ms. Aanchal

Punia, and Mr. Gautam Verma for their valuable assistance, co-operation and great

source of learning. I would also like to thank my roommates, Shagufta Khan and

Nikita Gupta, who supported and inspired me during my stay in Delhi Technological

University. They always made me intuitive and inquisitive which helps me a lot. I am

likewise thankful to who have directly or indirectly helped me to finish my

dissertation study.

 IV

Last but not the least I am extremely grateful to my loving and caring husband, Mr.

Ankur Gupta. My parents in law, Mrs. Geeta Rani, Dr. Rakesh Gupta, and parents,

Mrs. Kusum Jaiswal, Mr. Shiva Shanker, for their support, love, care and sacrifices

for educating and preparing me for my future endeavor.

Shruti Jaiswal

May, 2018

 V

ABSTRACT

Secure software development is the need of today’s world because of the rise in the

incidences of security breach like data theft, man in the middle attack, and others.

Many techniques are available for handling security issues in software systems.

However, it is recognized that none of the current proposals has complete engineering

process to implement security in software system development. Also, a seamless

integration of security engineering in the software development process is required.

This thesis addresses the issues by providing a methodology to develop a secure

software system. The solution starts by developing a three-phase framework for

security engineering, namely security requirements engineering, security design

engineering, and security testing. Phases of the novel proposal are not independent

they work together to achieve our goal of secure software development.

During the security requirements engineering phase, in addition to functional and

non-functional requirements security requirements are also elicited, analyzed,

prioritized and specified. During the design phase, efficient algorithms for

implementation of security requirements are selected based on the applicable domain

constraints. After that, testing of system security level is done to ensure that most of

the security threats are mitigated.

The proposed generic framework is applied to new emerging domains like cloud

computing, internet of things and big data databases. These new domains are

vulnerable to various new threats and issues. These fields are becoming very

common, as they have numerous functionalities, assets, threats, etc. To cater the need

 VI

of handling issues, repositories are made for easy access instead of tedious manual

task.

Further, a tool to automate the process of secure software development is built to help

the users in knowing system security needs and standards.

 VII

PUBLICATIONS FROM THE THESIS

International Journal:

1. Jaiswal, S., and Gupta, D. (2017). Engineering and validating security to make

cloud secure. International Journal of System Assurance Engineering and

Management, pp. 1-23, DOI: 10.1007/s13198-017-0612-x.

 [Scopus Indexed]

2. Jaiswal, S., and Gupta, D. (2017). Security Engineering Methods: In-Depth

Analysis. International Journal of Information and Computer Security, 9 (3), 180-

211.

[Scopus Indexed]

3. Jaiswal, S., and Gupta, D. (2016). Measuring Security: A step towards Enhancing

Security of System. International Journal of Information Systems in the Service

Sector (IJISSS). (accepted)

 [ESCI, Scopus Indexed]

International Conference:

4. Gupta, D., Chatterjee, K., and Jaiswal, S. (2013). A Framework for Security Testing.

ICCSA- 2013, published by Springer-Verlag in Lecture Notes for Computer

Science. [Scopus Indexed]

5. Jaiswal, S., and Gupta, D. (2014). Security Requirements Engineering: A Challenge

for Cloud System. Proceedings of ‘Second International Conference on Emerging

 VIII

Research in Computing, Information, Communication and Applications’(ERCICA-

14), by Elsevier.

6. Jaiswal, S., and Gupta, D. (2016). Security Requirements for Internet of Things

(IOT). ComNet-2016 Issues and Challenges with IOT Revolution’, published in

ASIC series by Springer. [Scopus Indexed]

 IX

LIST OF ABBREVIATIONS

AAA Authentication, Authorization, Accounting

ACID Atomicity, Consistency, Integrity, Durability

ACL Access Control List

AES Advance Encryption Standard

AOMDV-IoT Ad-hoc on demand Multipath Distance Vector routing protocol

for IoT

API Application Program Interface

CBC Cipher Block Chaining

CC Common Criteria

CCTA Central Computer and Telecommunications Agency

CIA Confidentiality, Integrity, and Availability

CMS Content Management System

CP Cloud Provider

CPU Central Processing Unit

CRAMM CCTA Risk Analysis and Management Method

CRUD Create, Read, Update, Delete

CSA Cloud Security Standard

CSP Cloud Service Provider

CSRF Cross Site Request Forgery

CSU Cloud Service User

CVE Common Vulnerabilities and Exposures

DAC Discretionary Access Control

DB Data Base

DBMS Database Management System

 X

DDoS Distributed Denial of Service

DES Data Encryption Standard

DoS Denial of Service

DSA Digital Signature Algorithm

EC2 Elastic Computer Cloud

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECG Electrocardiogram

ECIES Elliptic Curve Integrated Encryption Scheme

ENISA European Network and Information Security Agency

EARA Energy-aware Ant Routing Algorithm

FAST Facilitated Application Specification Technique

GAE Google App Engine

GCM Galois/Counter Mode

GSM Global System for Mobile

HECC Hyper Elliptic Curve Cryptography

HECDSA Hyper Elliptic Curve Digital Signature Algorithm

HIPAA Health Insurance Portability and Accountability Act

HIV Human Immunodeficiency Virus

HR Human Resource

IaaS Infrastructure as a Service

IDC International Data Corporation

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

 XI

IoT Internet of Things

IPS Intrusion Prevention System

IPSec Internet Protocol Security

ISAE International Standard in Assurance Engagements

ISO International Organization for Standardization

JSON Java Script Object Notation

KDC Key Distribution Center

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MAC Mandatory Access Control

MD5 Message Digest 5

MITM Man in the Middle

NoSQL No Structured Query Language

NIST National Institute of Standard Technology

OS Operating System

OWASP Open Web Application Security Project

PaaS Platform as a Service

PAIR Pruned Adaptive IoT Routing

PB Peta Bytes

PCI-DSS Payment Card Industry Data Security Standard

PKI Public Key Infrastructure

RBAC Role-Based Access Control

RDBMS Relational Database Management System

RE Requirements Engineering

REL Routing protocol based on Energy and Link Quality

 XII

RFID Radio Frequency Identification

RnR Roles and Responsibility

RPC Remote Procedure Call

RPL Routing protocol over low power and lossy networks

RSA Rivest, Shamir, and Adleman

SaaS Software as a Service

SAS Statement on Auditing Standards

SCRAM Salted Challenge Response Authentication Mechanism

SDLC Software Development Life Cycle

SHA1 Secure Hash Algorithm 1

SI Security Index

SLA Security Level Agreement

SMRP Secure Multihop Routing Protocol

SR Security Requirement

SSAE Statement on Standards for Attestation Engagement

SSL Secure Socket Layer

StaaS Storage as a Service

SQL Structured Query Language

SQUARE Software Quality Requirements Engineering

SREP Software Requirements Engineering Process

SRR Security Resource Repository

SRS Software Requirements Specification

TB Tera Bytes

TCP Transmission Control Protocol

TLS Transport Layer Security

https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/Leonard_Adleman

 XIII

UID Unique Identification Scheme

VP Viewpoint

WAN Wireless Area Network

WLAN Wireless LAN

WSN Wireless Sensor Network

XML eXtensible Markup Language

XSS Cross Site Scripting

 XIV

CONTENTS

Acknowledgement………………………………………………………………….III

Abstract………………………………………………………………………...…...V

Publications from the Thesis…………………………………………………...….VII

List of Abbreviations…………………………………………………………….....IX

Contents…………………………………………………………………………….XIV

List of Figures……………………………………………………………………....XIX

List of Table…………………………………………………………………….......XXII

Chapter 1 .. 1

Introduction .. 1

1.1 Software Development Life Cycle... 1

1.2 Requirements Engineering ... 3

 1.2.1 Requirements ... 3

 1.2.2 Requirements Engineering Process .. 6

1.3 Design Engineering .. 9

1.4 Testing.. 10

1.5 Security .. 11

1.6 Security Requirements ... 12

1.7 Related Work ... 19

1.8 Synthesizing the "Problem Statement" .. 24

1.9 Proposed Solution .. 29

1.10 Outline of the Thesis .. 33

Chapter 2 .. 35

Literature Survey ... 35

 XV

2.1 Overview .. 35

2.2 Use Case Based Approach ... 36

2.3 Goal Oriented Approach .. 42

2.4 Process Oriented Approach.. 48

2.5 Evaluation of Security Engineering Methods .. 55

Summary .. 58

Chapter 3 .. 61

Framework for Security Engineering .. 61

3.1 Security Engineering Framework .. 61

3.2 Security Requirements Engineering Phase .. 63

 3.2.1 Security Requirements Elicitation ... 65

 3.2.2 Security Requirements Prioritization and Specification 72

3.3 Security Design Engineering ... 76

3.4 Security Testing ... 81

3.5 Case Study: Content Management System .. 84

 3.5.1 Security Requirements Engineering .. 85

 3.5.2 Security Requirements Prioritization and Specification 93

 3.5.3 Security Design Engineering ... 94

 3.5.4 Security Testing ... 98

3.6 Case Study of Open Source Software: WordPress……………………………….99

Summary .. 106

Chapter 4 .. 109

Security Framework for Cloud Systems .. 109

4.1 Security Issues in Cloud... 109

 4.1.1 Cloud Architecture ... 110

 XVI

 4.1.2 Security Issues ... 112

4.2 Existing Proposals for Cloud-based Systems .. 115

4.3 Need for New Framework ... 117

4.4 Proposed Framework for Cloud-based systems ... 118

 4.4.1 Specification .. 119

 4.4.2 Prioritization .. 132

 4.4.3 Implementation and Validation.. 134

4.5 Application of Proposed Framework on Cloud Storage Model........................... 138

 4.5.1 Security Requirements Specification .. 138

 4.5.2 Prioritization .. 142

 4.5.3 Implementation and Validation.. 143

4.6 Evaluation of the Existing Cloud Storage Models ... 147

4.7 Case Study of Open Source Software: ownCloud ... 151

Summary .. 153

Novel Contribution of the Chapter .. 154

Chapter 5 .. 156

Security Framework for IoT systems ... 156

5.1 Internet of Things ... 156

 5.1.1 IoT Architecture ... 158

 5.1.2 Difference between IoT Security and Network Security 159

5.2 Security Issues in IoT... 161

5.3 Existing Proposals in IoT Security .. 163

5.4 Need for New Framework ... 166

5.5 Security Engineering framework for IoT based Systems 167

 5.5.1 Identification and Specification ... 167

 XVII

 5.5.2 Design and Validation.. 183

5.6 Case Study: Patient Monitoring System .. 188

 5.6.1 Identification and Specification ... 189

 5.6.2 Design and Validation.. 197

Summary .. 198

Novel Contribution of the Chapter .. 199

Chapter 6 .. 201

Security Engineering Framework for Big Data Databases 201

6.1 Security Issues in Big Data Databases ... 201

 6.1.1 Overview .. 202

 6.1.2 Security Issues ... 204

6.2 Need for New Framework ... 206

6.3 Proposed Security engineering Methodology for Big Data Databases 207

 6.3.1 Security Requirements Engineering .. 207

 6.3.2 Security Design Engineering ... 215

6.4 Security Analysis of MongoDB ... 220

Summary .. 225

Novel Contribution of the Chapter .. 225

Chapter 7 .. 226

Implementation .. 226

7.1 Overview .. 226

7.2 Security Requirements Elicitation Prioritization Specification 227

7.3 Security Design engineering .. 234

Summary .. 237

Chapter 8 ... 238

 XVIII

Conclusions, Contributions and Future Scope .. 238

 Contributions of the Thesis ... 242

 Future Scope and Open Problems ... 245

References ... 246

Biography of Author .. 257

 XIX

LIST OF FIGURES

Figure 1.1 Different types of Stakeholders 7

Figure 1.2 Classification of Security Requirements 12

Figure 2.1 Abuse Case for Actor Traveler in Railway Reservation System 37

Figure 2.2 Misuse Case for Railway Reservation System 39

Figure 2.3 Security Use Case for Railway Reservation System 40

Figure 2.4 Traveler Profile for Book Ticket Functionality 41

Figure 2.5 Refinement of Security Goals as Security Requirements 43

Figure 2.6 Attack Tree for Login Functionality 44

Figure 2.7 Intentional Anti Model for Railway Reservation System 45

Figure 2.8 Secure Tropos for Railway Reservation system 47

Figure 3.1 Security Engineering Framework 62

Figure 3.2 Security Requirements Engineering Process 63

Figure 3.3 Scenario using Sequence Diagram for ‘Login’ Functionality 67

Figure 3.4 Security Design Engineering Process 77

Figure 3.5 Categorization of Domain Constraints 80

Figure 3.6 Process of Security Testing 81

Figure 3.7 Test Scenario for ‘Login’ Functionality 82

Figure 3.8 Sample Test Report 84

Figure 3.9 Test Report for Content Management System 99

Figure 3.10 Vulnerabilities over the year for WordPress 100

Figure 3.11 Main Page of showing Dashboard 100

Figure 3.12 Theme Purchase for Repair on Website 101

Figure 3.13 Showing the price information for different users 101

Figure 3.14 Showing Services provided by Website 102

 XX

Figure 3.15 Another screen of website 102

Figure 3.16 Screen Showing the Items available with its price 103

Figure 3.17 Checkout Screen 103

Figure 3.18 Accunetix Scan Result Window 104

Figure 4.1 Cloud Reference Architecture 110

Figure 4.2 Proposed Framework for Cloud-Based Systems 120

Figure 4.3 Vulnerability over the years for ownCloud 151

Figure 5.1 Architecture of IoT 158

Figure 5.2 Proposed Framework for IoT-Based Systems 168

Figure 5.3 Process for Prioritization of Threats 178

Figure 5.4 Remote Patient Monitoring System 189

Figure 6.1 Security engineering Framework for Big Data Databases 208

Figure 6.2 Vulnerabilities over the years for MongoDB 223

Figure 7.1 Architecture of SREPS 227

Figure 7.2 Login Page of Tool 228

Figure 7.3 Window showing fields required for elicitation process 229

Figure 7.4 Elicited Security Requirements 229

Figure 7.5 Prioritized Security Requirements 230

Figure 7.6 Specified Security Requirements 230

Figure 7.7 (a) Back end Architecture of SREPS 231

Figure 7.7 (b) Back end Architecture of SREPS 231

Figure 7.8 Threats corresponding to selected Vulnerability 232

Figure 7.9 Vulnerability-Threat Mapping Repository 233

Figure 7.10 Repository of Threats affecting Assets 233

Figure 7.11(a) Architecture of SDE 234

 XXI

Figure 7.11(b) Architecture of SDE 234

Figure 7.12 Repository of Security Mechanisms and Security Requirements

Mapping

235

Figure 7.13 Selection of Domain Constraints 236

Figure 7.14 Suggested Security algorithm for Implementation 237

Figure 8.1 Generic Security Engineering Framework 240

 XXII

LIST OF TABLES

Table 2.1 Summary of Contributions 56

Table 3.1 Vulnerability Mapping Table for Web-based System 70

Table 3.2 Criteria for Assigning Threat Rating 74

Table 3.3 Comparison of SRS 76

Table 3.4 Repository of Algorithm 78

Table 3.5 Functional and Non-Functional Requirements 86

Table 3.6 Vulnerabilities, Threats, Affected Assets and Security

Requirements for CMS

87

Table 3.7 Threats and its Rating 92

Table 3.8 Assets Evaluation for CMS 93

Table 3.9 Risk Calculation and Security Requirements Prioritization 94

Table 3.10 Mapping of Security Requirements to Security Services 95

Table 3.11 Threat Analysis Repository 96

Table 3.12 Domain Constraint Analysis 97

Table 3.13 Design Template 97

Table 3.14 Threat Comparison 104

Table 4.1 Functionality-Asset Association for Cloud-based Systems 121

Table 4.2 Vulnerabilities-Threats Mapping for Cloud Systems 125

Table 4.3 Category of Threats Based on Risk Values 134

Table 4.4 Mapping of Security Requirements with Security Services 135

Table 4.5 Constraints for Cloud-Based System 137

Table 4.6 Functional Requirements for different Cloud Actors 139

Table 4.7 Vulnerabilities, Threats, Assets for Customers Functionalities 140

 XXIII

Table 4.8 Calculation of Security Requirements Priority 143

Table 4.9 Attack Analysis Repository for Cloud Systems 145

Table 4.10 Security Guidelines for Cloud-Based Systems 146

Table 4.11 Security Algorithm Employed by Cloud Storage Systems 148

Table 4.12 Threat Comparison 152

Table 5.1 Comparison of IoT Security and Network Security 160

Table 5.2 Assets at Various Layers of IoT 169

Table 5.3 Identified Vulnerabilities for Assets 173

Table 5.4 Vulnerability-Threats Mapping Table 174

Table 5.5 Threats and Affected Assets 179

Table 5.6 Mapping of Threats to Security Services and Mechanism 184

Table 5.7 Available Security Mechanisms 185

Table 5.8 Threats to Mechanism Mapping 186

Table 5.9 Constraints in Different Layers of IoT 187

Table 5.10 Involved Assets with their Roles 189

Table 5.11 Vulnerabilities and Threats for Assets 190

Table 5.12 Evaluation of Assets 192

Table 5.13 Calculation of Risk Value for Potential Threats 192

Table 5.14 Categorized Threats 194

Table 5.15 Elicited and Prioritized Security Requirements 196

Table 5.16 Recommended Security Techniques 197

Table 6.1 List of Direct Stakeholders 209

Table 6.2 Operations for Stakeholders 209

Table 6.3 Vulnerabilities for CRUD operation 210

Table 6.4 Vulnerabilities-Threats Mapping Tables for Big Data Databases 212

 XXIV

Table 6.5 Security Requirements Mapping to Threats 213

Table 6.6 Mapping of Security Services with Security Requirements 216

Table 6.7 Metric Showing the Constraints and Possible Values 217

Table 6.8 Source of Origin of Data Analysis 218

Table 6.9 Decision Template 219

Table 6.10 Guidelines for Stakeholders to Handle Security Properly 220

Table 6.11 Security Features in MongoDB 222

Table 6.12 Comparison of Threats 223

 1

CHAPTER 1

INTRODUCTION

The present software development process follows conventional methodologies that

induce security gaps while the software development is going through various phases.

A solution must exist and amalgamated with the existing, software development

processes to address such security vulnerabilities. The present chapter gives an

overview of the current software development life cycle processes followed by the

definitions and importance of Requirements Engineering, Requirements,

Requirements Engineering Process, Design Engineering and Testing. Then, the need

for security is presented, followed by an overview of Security Requirements and

presents related work in the area of Security Engineering. Using this discussion, the

problem statement for the thesis is captured.

1.1 Software Development Life Cycle

Software Development Life Cycle (SDLC) is a process used to develop and engineer

high-quality software. High quality means software should meet customer

expectations, completes within time and budget. SDLC consists of a detailed plan

describing how to develop, maintain, change and modify or improve the specific

software. A typical Software Development life cycle consists of the following phases:

Phase 1: Requirements Engineering: Requirements engineering refers to the

process of gathering, analyzing, defining, documenting and maintaining software

requirements from client. The goal of this phase is to develop and maintain refined

and descriptive Software Requirements Specification (SRS) document.

 2

Phase 2: Design: Objective of the design phase is to translate SRS into blueprint

which can be used for Software Construction. It is a multi-step process that focuses on

(i) Creation of Data Structure required to implement Software; (ii) Building Software

Architecture which considers how the subsystems are making up the system and their

relationship, modular framework of a Software; (iii) Interface Design that considers

how software communicates with itself in each subsystem and how it interface with

another subsystem; (iv) Procedure Detail which includes the procedural description of

software components.

Phase 4: Building or Developing: In this phase, actual development starts and the

product is built. The code is generated as per the decision was taken during the design

phase. If the designing is done in a detailed and organized manner, code generation

can be accomplished without much hassle.

Phase 5: Testing: It is usually a subset of all the phases. In the modern SDLC

models, the testing activities are mostly involved in all the phases of SDLC. However,

this phase refers to the testing of only those stages of the product where defects are

reported, tracked, fixed and retested, until the product reaches the quality standards as

defined in the SRS.

Various process models are available for software development some are linear such

as waterfall model; others are iterative like the incremental model and spiral model.

Among these models, Spiral model is very popular as it does the project planning and

considers risk.

 3

1.2 Requirements Engineering

Definitions

Definition 1: Requirements Engineering (RE) is defined by IEEE (IEEE Standard,

610.12, 1990) as “the systemic process of developing requirements through an

iterative cooperative process of analyzing the problem, documenting the resulting

observations in a variety of representation formats and checking the accuracy of

understanding gained.”

Definition 2: Requirements engineering defined in (Sommerville, 2004) as “The

process of establishing services required by the customers from a system and

constraints under which it operates and developed. The requirements themselves are

the descriptions of the system services and constrictions that are generated during the

requirements engineering process.”

1.2.1 Requirements

Definition 1: A requirement as defined in (IEEE Standard, 610.12, 1990) is “(i) A

condition or capability needed by a user to solve a problem or achieve an objective,

(ii) A condition or capability that must be met or possessed by a system or system

components to satisfy a contract, standard, specification or other formally imposed

documents, (iii) A document representation of a condition as in (1) or in (2).”

Requirements thus arise from the user, general organization, standards, and

government bodies. These requirements are then documented.

 4

Definition 2: As defined by Davis (Hickey & Davis, 2003) “Requirements are high-

level abstractions of the services the system shall provide and the constraints imposed

on the system.”

Types of Requirements:

Requirements have been classified as:

 Functional Requirements

 Non-Functional Requirements

 Domain Requirements

 Functional requirements

Functional requirement as defined by IEEE (IEEE Standard, 610.12, 1990) “is a

requirement that specifies a function that a system or system component must

be able to perform.”

Functional requirements depend on the type of software, expected users and the

type of system where the software is used.

 Non-functional requirements

Non-functional Requirements are those that define system properties and

constraints. For example, reliability, response time, storage requirements, input-

output device capability, and system representations.

“Non-functional requirements may be more critical than functional

requirements. If these are not met, the system is useless.”

Non-functional requirements are further categorized into three classes:

 5

o Product requirements

Requirements which specify that the delivered product must behave in a

particular way e.g. performance requirements (execution speed), reliability,

and portability.

o Organizational requirements

Requirements which are a consequence of organizational policies and

procedures e.g. process standards used, implementation requirements, etc.

o External requirements

Requirements which arise from factors external to the system and its

development process e.g. interoperability requirements, legislative (privacy,

safety) requirements, etc.

 Domain Requirements

Domain requirements are derived from the application domain and describe

system characteristics and features that reflect the domain. Domain

requirements can be new functional requirements, constraints on existing

requirements or define specific computations. Again the problem with domain

requirements is if they are not satisfied, the system may be unworkable.

Requirements play a vital role in software development; software requirements

are a description of features and functionalities of the target system.

Requirements convey the expectations of users from the software product. The

requirements can be obvious or hidden, known or unknown, expected or

unexpected from client’s point of view.

 6

1.2.2 Requirements Engineering Process

Requirements engineering is a difficult task, and any fault or error in this activity will

lead to the development of the software systems that will either not work properly or

may fail under some circumstances. Software systems developers realized that

inadequate attention paid to requirements formulation is a major factor that leads to

systems failure (Coman & Ronen, 2010) (Flyvbjerg & Budzierkdsjfk, 2011). Boehm

and Papaccio (Boehm & Papaccio, 1988) said that the cost of correcting requirements

errors is five times when done during the design phase, ten times during

implementation phase, twenty times during testing and two hundred times after the

system has been delivered. Thus, the process of requirements engineering should be

done properly to develop a high quality and reliable system.

Requirements Engineering Process consist of following activities:

 Requirements Elicitation: Operational capability needed from the system, the

applicable constraints and the characteristics of the environment are identified.

Additionally, it may bring out quality factors or risk management factors. The

goal of this activity can be achieved by using traditional techniques such as

interviews, brainstorming, introspection, questionnaires, Delphi technique, and

FAST. But, traditional techniques suffer from certain disadvantages such as, the

interaction between the requirements engineer and the stakeholder can be based

on assumptions (Goguen & Linde, 1993), possibility of ambiguity in

understanding the questions (Suchman & Jordan, 1990), and a tendency of over-

analyzing may result in the system too constrained (Hickey & Davis, 2003). The

disadvantages seen with traditional techniques are noticed when one moves to

systems with increasing complexity (Lapouchnian, 2005). So, new techniques are

 7

developed such as viewpoint-oriented approach, Goal-oriented approaches,

Agent-oriented approaches, Aspect-oriented approaches. The viewpoint

approach for requirements elicitation which is used in the thesis is described in

detail here, and others are omitted due to lack of space.

 Viewpoint-Oriented Approach

In viewpoint-oriented approach (Kotonya & Sommerville, 1996) (Sommerville,

2004), a different class of stakeholders is identified. The requirements from

these stakeholders are collected. They structure the requirement, group related

requirement, and organize them into coherent requirements. A Stakeholder is a

person or group who is affected by the system directly or indirectly. Different

categories of actors are specified as shown in Figure 1.1.

Figure 1.1 Different Types of Stakeholders (Kotonya & Sommerville, 1996)

o Direct Actor: These actors directly interact with the system to receive

services and may send control information and data to the system. For

example, customer, manager, staff, and database operator.

 8

o Indirect Actor: These actors have an interest in system services, but they do

not interact directly with it. For example, security staff, marketing manager,

hardware and software maintenance engineer.

o Domain Actor: These actors deal with the domain characteristics and

constraints which influence the requirements. For example, Regulatory

bodies, people who make standards, etc.

 Requirements Analysis: Requirements Analysis is the process of analyzing

customers’ needs to acquire a complete understanding of the system to be

developed. During requirements analysis following points are checked:

o Domain: Analyze application domain for different requirements.

o Conflict: Finding out and resolving various conflicts when several

stakeholders are associated with a requirement.

o Completeness: Are all functions required by the customer included?

o Validity: Does the system provide the functions which best support the

client’s needs?

o Realism: Can the requirements be implemented in given available budget and

technology?

o Conformance to standards: Review the system as per security standards.

 Definition and Specifications: Requirements are documented for use in the

subsequent development process. Formal specification languages, knowledge

representation, are used to document requirements. Any inconsistencies,

missing requirements found during the validation phase can also be fed back

into this task. From the Specification and documentation task, one can go to the

 9

negotiation task (e.g. if conflicting requirements were found) or elicitation task

(if more information is required).

 Requirements Validation: Here requirements document is reviewed by the

project manager to ensure, system provide the functions which best support

customer needs.

1.3 Design Engineering

Definition 1: A Design is defined in (IEEE Standard, 610.12, 1990) as “The process

of defining the architecture, components, interfaces, and other characteristics of a

system or component.”

It focuses on four distinct attributes of software that are Data Structure, Software

Architecture, Interface Design and Procedure Details. It is the basis of detailed

implementation; here important decisions are made which affect the quality of

software such as minimize the coupling, maximize the cohesion based on domain/

environment. It is a multilevel process where the system is designed from high-level

view and progressively refined into the more detailed design.

To develop a complete design specification, four design models are needed. These

models are listed below.

 Data Design: Data structures are specified for implementing the software by

converting data objects and their relationships which are identified during the

analysis phase.

 10

 Architectural Design: The relationship between the structural elements of the

software, architectural styles, design patterns, and the factors affecting the way

in which architecture can be implemented are specified.

 Component-level Design: Provides the detailed description of how structural

elements of software will be implemented.

 Interface Design: Depicts how the software communicates with the end-users’

and the system that interoperates with it.

1.4 Testing

Definition 1: Software testing is a process of executing a program or application with

the intent of finding the software bugs. It can also be stated as the procedure of

validating and verifying that a software program or application meets the business and

technical requirements that guided its design and development.

Goals of testing are (1) Detect faults; (2) Establish confidence in software; (3)

Evaluate properties of software such as Reliability, Performance, Memory Usage,

Security, and Usability.

Activities in Testing process consists of Test Planning, Test Case design, Running the

Test Case, and Evaluating the Test Result. The testing process is also known as levels

of testing that are:

 Unit Testing. Individual units of software are tested to find the differences

between specified units and their implementation. Test cases designed for the

interface, local data structures, independent paths, boundary conditions, and error

handling.

 11

 Integration Testing. After testing the modules individually, modules are

integrated as per the integration plan, and the partially integrated system is tested

at each integration step. The objective here is to expose problems arising from the

combination.

 System Testing. It focuses on the testing of product as a whole by verifying its

working with the original requirements specification document. Also, non-

functional requirements such as performance, usability, security are tested.

 Acceptance Testing. Acceptance Testing is used when the software is developed

for a specific customer. A series of tests are conducted to enable the customer to

validate all requirements. These tests are managed by the end user /client and

may range from ad-hoc tests to well-planned series of tests. The objective of this

testing is to ensure that end users are satisfied.

1.5 Security

Security of Software systems is defined as technological and managerial procedures

applied to computer systems to ensure CIA (Confidentiality, Integrity, and

Availability) of system resources.

Security is gaining much popularity in recent years because of increased penetration

of ubiquitous devices in software systems. Almost every real-world computation and

transaction has become dependent on these devices. These devices are prone to get

infected by intruders, virus, malicious crackers and other threats because they are

handling security in an ad-hoc manner. Damage caused to system assets is not

affordable, as they are carrying business and mission critical data. Also, the need to

focus on security has become a priority task because of a sudden rise in the security

 12

attacks on organizational assets is reported in various reports (Department for

Business Innovation & Skills, 2014) (Verizon, 2014) (Symantec, 2013). Also, new

domains such as Cloud Computing, Internet of Things, and Big Data have emerged to

connect people by providing a vast range of services. However, people are not using

them because these new domains are vulnerable to security attacks.

Traditionally, security in software systems is handled during the design phase of the

development process, which may cause performance related issues or sometimes it

may cause failure of the system. To overcome these difficulties, software engineering

community suggests that the security requirements should be elicited and then

implemented to ensure the better implementation of security. It has led to the

emergence of a new dimension in the classification of requirements known as

Security Requirements as shown in Figure 1.2.

Figure 1.2 Classification of Security Requirements

1.6 Security Requirements

Definition: Security requirements are defined in (Firesmith, Engineering Security

Requirements, 2003) as “high-level requirements that give a detailed specification of

any system behavior that is not acceptable.”

Functional

Requirements

Non- Functional

Requirements
Security

Requirements

Requirements

 13

Initially, security requirements are considered to be part of non-functional

requirements. However, due to increased use of ubiquitous devices attacks have

grown multifold. Therefore, security requirements need to be addressed adequately.

Also, Security Requirements should be differentiated from architectural constraints

which are the security techniques to eliminate threats such as encryption, access

control, authentication, etc.

Security requirements are related to functional requirements and are different from

architectural constraints:

 Security requirements are related to functional requirements, as it represents the

threats on assets which are used by functional requirements.

 Security requirements are different from architectural constraints which represent

the protection measures implemented to mitigate the threats. These architectural

constraints should be optimally specified; otherwise, it can make the system

unnecessarily constrained and insecure.

Different types of security requirements proposed by researcher Firesmith (Firesmith,

Engineering Security Requirements, 2003) are:

 Identification Security Requirement

Identification security requirement signifies the extent to which software systems

should identify its external entities before allowing them to interact or use its

services.

 14

 For Example

o The software system shall identify all the stakeholders, external application

beforehand, who will either interact with the system or with whom system

will interact.

o Architectural constraint to implement the requirement: ‘Users are provided

with user identifier and password or any digital possession.’

 Authentication Security Requirement

Authentication security requirement signifies that software systems should verify

the identity of its externals. Verification is done to have confidence that externals

are actually who or what they claim to be.

For Example

o The software system shall verify the identify all the stakeholders who will

interact with the system beforehand.

o The application shall verify the identity of all the external software or

application that are going to use them, or they are using it.

o The application shall verify the identity of each entity who are going to do any

addition/ modification/ deletion to either their information or system

capabilities.

o Architectural constraint to implement the requirement: ‘User shall be

authenticated by his name and social security number.’ or ‘The system shall

verify the user password twice before allowing it to use the system.’

 15

 Authorization Security Requirement

Authorization security requirement signifies that only authenticated externals

can access software system only if they have been explicitly authorized to do so

by the administrator of the application.

For Example

o Access right to use or update system capabilities shall be defined.

o A user can have access to his data only not of others.

o Corresponding architectural constraints to implementing the requirement:

‘System shall maintain authorization database or commercial intrusion

prevention system to prevent infection by intruders.’

 Immunity Security Requirement

Immunity security requirement represents that software system shall protect

itself from infection by illegal, undesirable programs (e.g., computer viruses,

worms, and Trojans).

For Example

o Software application shall protect itself from infection by computer viruses,

Trojan horses, worms and other related harmful programs.

o Architectural constraints to implementing the requirements: ‘the use of

commercial antivirus programs, Firewall’; ‘Prohibition of type-unsafe

languages such as C that allow buffer overflow’; ‘Use of Programming

standards.’

 16

 Integrity Security Requirement

Integrity security requirement represents that any data in software system does

not get corrupted via unauthorized creation, deletion, and modification.

For Example

o Software system shall prevent unauthorized corruption of data (email

attachment, data from external sources or present in the data center) in the

system.

o Integrity Requirement can be implemented: ‘Using Cryptographic Techniques

or Hash Functions.’

 Intrusion Detection Security Requirements

Intrusion detection security requirement represents that if the intruders have

attacked the software system, then it should be detected and recorded so that the

administrator can take necessary action.

For Example

o The system shall find and record all failed attempts to the identification,

authentication, and authorization requirements.

o The architectural constraint to implement requirements: ‘The use of Alarms,

event reporting, intrusion detection system (IDS) and Intrusion Prevention

System (IPS).’

 Non-repudiation Security Requirements

Non-repudiation security requirement represents that either the external should

not deny after interacting (e.g. message, transaction) with all or part of the

system.

 17

For Example

o The system shall keep the complete time-based record of all the activities

encountered by the system.

o The architectural constraint for implementation: ‘The use Digital Signature (to

identify the parties), Timestamps (to capture dates and times).’

 Privacy Security Requirements

Privacy security requirement represents that the software system should keep its

data and communications private from unauthorized individuals and programs.

For Example

o The software system shall keep a record of its user information,

communication and stored data from unauthorized individuals.

o Architectural constraints for implementation: ‘The use of public or private key

cryptography techniques.’

 Security Auditing Security Requirements

Security auditing security requirement represents that an application shall

enable security personnel to audit the status and use of its security mechanisms.

For Example

o The system shall collect, organize and summarize the status of security

requirements and make report regularly.

o The architectural constraint to implement the requirements: ‘The use of event

log and Audit trails.’

 18

 Survivability Security Requirements

Survivability security requirement represents that an application should work

possibly in degraded mode even if some destruction has occurred in the

application.

For Example

o Some backup mechanism shall be deployed which can be used in case of

failure.

o The architectural constraint to implement the requirement: ‘Use of Hardware

redundancy, data center redundancy, and failover software.’

 System Maintenance Security Requirements

System Maintenance security requirement represents that how the authorized

modifications in the system can be done without affecting the deployed security

mechanism.

For Examples

o The system shall not affect its security requirements because of any upgrade in

data, software or hardware components.

o The architectural constraint for implementation: ‘The use of maintenance and

enhancement procedures, training program related to system maintenance.’

 Physical Protection Security Requirements

Physical Protection security requirement represents how an application shall

protect itself from substantial damage.

 19

For Example

o Protection of hardware components from physical damage, theft, and

destruction shall be provided.

o Architectural constraints to implementing the requirements: ‘Deploying locks,

security guards at entry points.’

1.7 Related Work

Various security methodologies were present in the literature for handling security

issues of software systems. These methodologies are categorized into three classes

namely use case-based approaches, goal-oriented approaches, and process-oriented

approaches.

Use case based security methodologies are the extension of Use Case diagrams.

Methodologies under this class are used to elicit threats and broadly suggests

constraints to mitigate threats. Some methodologies in this category are abuse cases,

misuse cases, common criteria, security use cases. Abuse cases (McDermott & Fox,

1999) represents the malicious functionality (threats) executed by unintended actors

in the system. Misuse Cases (Alexander, 2003) (Sindre & Opdahl, 2005) models the

threats and specifies some use cases to prevent and detect the threats occurring in the

system. Common Criteria (Ware, Bowles, & Eastman, 2006) identifies threats

applicable to functionality and suggests security mechanism to mitigate threats.

Security Use Cases (Firesmith, Security Use Cases, 2003) identifies threats/ attacks

associated with use-cases and represent it as misuse case. Further, Security Use Cases

such as ensure privacy, control access, ensure integrity, ensure repudiation are

 20

specified to protect assets from security threats. These methodologies focus on

identification of threats and help in elicitation of security requirements.

Goal-oriented methodologies represent the attacks or requirements as a goal. Goals

are intended behavior and perspective statement of intent about the system. Security

Goals are the abstract representation of security concerns to the assets of the system.

For example, ‘Privacy’ security goal signifies that asset ‘Patient Health Information’

should remain private and confidential from misusers. Security goals are classified as

Integrity, Confidentiality, and Availability goals (Lamsweerde, 2004). Security goal

defines very general statement about the security of assets. For instance, the patient in

the Hospital system has Confidentiality goal which expresses ‘his health parameters

should remain confidential.’ Similarly, Integrity goal by Hospital Authority conveys

that ‘malicious actors should not change doctor assigned to the patient.’ Security

Requirements are a detailed description of security concern, or they give detailed

statement about system behavior that is not acceptable. Security goals are refined as

security requirements. For example, Security Goal Confidentiality can be refined as

Identification, Authentication, and Authorization Security Requirements. Some

Methodologies based on goal-oriented approach are attack trees, intentional anti-

model, secure tropos. Attack Trees (Ellison, 2005) models the attack scenario in the

form of a tree where root represents the attacker goal, and leafs shows the vulnerable

point of attacks. The goal of the attacker is decomposed until the leaf node

representing the exact vulnerable point where an attack can occur is reached.

Intentional Anti-model (Lamsweerde, 2004), models the scenario of a threat to

security goals at the application layer. Threats are represented as antigoals such as,

‘achieve’ is an antigoal showing ‘thief comes to know payment medium of the client.’

 21

This antigoal is the negation of relevant instance of the goal, ‘avoid’ is a goal which

expresses ‘Account Number and PIN is unknown to Unauthorized Agents’ of the

system. They refine the antigoals by building attack trees to get the detailed

vulnerabilities. They end up specifying the security measures to mitigate antigoals.

For instance, ‘put a limitation on a number of PIN entries attempt’ to avoid exhaustive

PIN search by a thief. Secure tropos methodology (Mouratidis H., 2002), is an

extension of Tropos methodology. They define the security goals and identify the

threats associated with it. During the early requirements phase, security goal classified

as privacy, safety, accountability, availability, and integrity of the system are

identified. Afterward, during the late requirements phase, threats/ attacks to security

goals are explored. For example, spoofing, man-in-the-middle attacks are possible to

security goal ‘privacy.’ Finally, security mechanisms like encryption and decryption

are listed to achieve the security goal privacy.

The goal-oriented methodologies define security goals and origin of security

goals which are attacks and vulnerabilities. They end up specifying possible

broad measures to achieve the security goal, without specifying the security

requirements.

Recently, Process-Oriented approaches have emerged which deal with identification,

analysis, and prioritization of security requirements. Some methodologies under this

category are SQUARE, SREP, a framework by Haley et al. and a proposal by Fabian

et al. Software Quality Requirements Engineering (SQUARE) (Mead, 2005) process

starts with the identification of security goals such as Confidentiality, Accuracy, and

Integrity of the system. Next, the goals are analyzed to get vulnerable points and

 22

threats using diagrams like the architectural diagram, use cases, and misuse cases.

Afterward, based on the identified threats, security requirements are defined in the

form of constraints. For example, ‘The system is required to have strong

authentication measure in place at all system gateway/ entrance points.’ After that,

security requirement is categorized as the system level, software level, etc. Finally,

prioritization is done based on categorized requirements and risk assessment results

using methods such as Triage, Win-Win, etc. Security Requirements Engineering

Process (SREP) (Mellado, Medina, & Piattini, 2007) uses common criteria approach

to identify the security requirements. A Security Resource Repository (SRR) of threat,

vulnerability and related information corresponding to the assets from existing

systems are maintained. SRR is used for identifying the vulnerable points and threats

of critical assets of the current system. If the asset is not present in SRR, then threats

and vulnerable points are modeled using some use case based technique such as

misuse case, abuse case, etc. Information related to the new asset is added to the SRR.

After identification of threats, risk assessment is done, and security requirements are

defined and prioritized. In the framework by Haley et. al (Haley, Laney, Moffett, &

Nuseibeh, 2008) for security requirements elicitation process is as follows: First, the

functional requirements are defined. Secondly, security goals to protect assets

associated with functionality are defined. Lastly, security measures are specified in

the form of constraints to functional requirements for achieving the security goals,

such as the system shall provide personal information (function) only to

(constraint) members of HR department. Fabian et al. (Fabian, Gurses, Heisel,

Santen, & Schmidt, 2010) have also presented a framework for elicitation and

analysis of security requirements. Here, first, different stakeholders are identified.

After that, functional requirements with corresponding assets and non-functional

 23

requirements associated with stakeholders are identified. Security goals are defined,

which are further refined as security requirements based on the assets, its misuser and

its context of use. Once the security requirements are defined at stakeholder level,

they are compiled at the system level to avoid the conflict because of a different

viewpoint. Finally, based on risk analysis results they suggest broad security

mechanisms to implement the security requirements.

Thus, process-oriented approaches focus on defining security goals, derives

vulnerability/ threats which are the cause of security goals. They end up

specifying security requirements in the form of architectural constraint, which

are mainly security measures to mitigate the threats. Also, prioritization of

security goals based on the risk associated with threats in the system is done.

None of these proposals explicitly specifies the security requirements.

Thus, all the above methodologies focus on the identification of security goals,

originating from threats, attack, vulnerability to the asset. They specify the security

requirements in the form of protection measures which can deploy the security goals.

They are not specifying the security requirements which are a refinement of

security goals such as identification, authentication, authorization, non-

repudiation, etc. defined by Firesmith (Firesmith, Engineering Security

Requirements, 2003). Further, they do not recommend any particular security

mechanism to mitigate the threats associated with the security goals. In addition,

they do not consider domain constraints while suggesting security algorithms.

Also, none of them does the testing of system security level.

 24

1.8 Synthesizing the "Problem Statement"

As implementation of security in a software system is a complex task, therefore, an

engineering approach is necessary for efficient implementation of security during the

software development process, where first the security requirements are elicited,

analyzed, prioritized, and specified. Based on various constraints an efficient

algorithm for implementation should be chosen, and finally, the system security level

should be validated. Consequently, a new field of Security Engineering has emerged,

which is concerned with the development of processes and methods for implementing

security in software systems. In other words, it is an engineering approach that

identifies the security requirements and provides/ suggest the algorithms to implement

them efficiently (Chatterjee, Gupta, & De, 2013). Ideally, it should consist of three

phases namely security requirements engineering, security design engineering, and

security testing. These phases should be tightly coupled with the three phases of

traditional development approach. During Requirements Engineering phase, the

Security Requirements should be elicited based on threats/ attacks on the asset related

to the functionality of the system, after that these requirements may be analyzed for

consistency, correctness and then prioritized. Finally, they should be specified

explicitly. During the Design Phase, for efficient implementation of the security

requirements, security measures/ algorithms should be suggested based on the various

applicable constraints such as memory, encryption speed, complexity, power, etc.

Finally, in Testing phase, the system should be evaluated for security goals.

From the preceding section, it is drawn that:

 None of the present proposals include all the activities of requirements

engineering that is elicitation, analysis, specification, and prioritization. Use case

 25

approach focuses on elicitation of threats; they do not analyze, prioritize or

specify the security requirements. The goal-oriented approach identifies the

security goals, threats, vulnerable point and security requirements in the form of

security measures such as encryption, password, etc. They do not specify, analyze

and prioritize the requirements or goals. Process-oriented approaches attempt to

address the different task of the security requirements engineering, but none of

them explicitly specifies the security requirements. They express the security

requirements as a constraint to achieving the security goals. In addition to this

some of them like SREP, SQUARE do not associate the security requirements

with the functional requirements. Even, Haley et. al does not prioritize the

security requirement. Though Fabian et al. associate security goals with

functional and non-functional requirements, but they specify the security

requirements as an architectural constraint. As it is mentioned in section 1.6 that

security requirements are different from architectural constraints. Therefore,

security requirements which are a refinement of the security goals should be

explicitly specified before specifying the security measures.

As described in Section 1.6 Security Requirements are not independent of

functional and non-functional requirements. Therefore, they should be elicited,

analyzed and prioritized along with the system requirements. In this way,

Security Requirements Engineering process can be embedded into traditional

Requirements Engineering process.

 Current proposals specify broad protection measures to implement security

requirements. They should consider constraints such as environment, memory,

 26

power, computation speed, etc. while choosing the security mechanism such as

cryptography algorithms for attaining the security goals like confidentiality,

privacy, authentication, etc. Selecting an algorithm without considering the

domain parameters may result in unnecessary constraints to the system.

Therefore, optimal security techniques/ algorithms must be identified during the

design phase by considering domain constraints.

 None of the approaches validates security goals at the end. Analogous to the

traditional software engineering the system must be validated for the embedded

security.

 Most of the methodologies focus on web-based systems; they do not consider the

emerging domains like Cloud Computing, Internet of Things (IoT), Big Data

Databases. Cloud has specific security issues such as Shared Environment, Multi-

location Data placement, and Trust. Similarly, IoT which also has additional

security issues such as Data Freshness, Trust, and Liability. Also, big data

databases have various constraints such as data is unstructured, the rate of data

generation is very high, etc. The current proposal in these areas is suggesting the

security algorithms for implementation of threats without considering different

domain constraints. Hence, it calls for a generic methodology which can be

adapted to these new emerging areas.

Hence, the problem statement of the thesis is:

 27

Develop a Security Engineering framework that focuses on the development of

Secure Software Systems, which can be integrated into conventional software

development process.

This problem statement consists of the following research goals:

i) Security Requirements Engineering Framework

The first research goal is to extend the traditional requirements engineering process

of SDLC to include the elicitation of security requirements. Also, like other

functional and non-functional requirements, they should be analyzed for

consistency, correctness, and completeness. Since all requirements cannot be

implemented due to the budget and time constraint, therefore, they should be

prioritized. Hence, the first research goal is to develop “Security Requirements

Engineering process” which can become an integral part of traditional

Requirements Engineering Process. Thus, it should have activities of

identification, analysis, prioritization, and specification of security

requirements along with the functional and non-functional requirements.

ii) Security Design Engineering Framework

During the design phase of any traditional SDLC, the objective is to divide the

system into an optimal number of components/ sub-modules for meeting the

principle of minimizing the coupling and maximizing the cohesion. Also, decide

the algorithms for each component based on the applicable domain constraints so

that system can correctly and efficiently implement all the functions. Therefore,

design engineering needs to be extended for incorporating the selection of

 28

cryptography algorithms to implement the security requirements efficiently.

Hence, the second research goal of the thesis is to develop “Security Design

Engineering process” that will choose the appropriate security algorithms to

attain security goals based on different domain constraints.

iii) Security Testing

Finally, it is essential to validate the security of the system. If a metric can be

defined that would measure the level of security embedded in the system, it would

assure the developer and users to take further necessary steps while developing or

using the system. Hence, the third research goal of the thesis is to develop

“Security Testing process” that will evaluate the security of the system by

generating a metric.

iv) Application of Security Engineering to Cloud Systems

In the recent past, cloud system has become a popular media for information

sharing. Besides many issues in successful cloud systems, security is a big issue as

stakeholders are sharing information, infrastructure, and software. Compared to

web-based systems there are new challenges like trust, multi-location data

placement, etc. in the cloud system. Existing proposals did not consider the new

security issues and defined the security measures without considering the domain

constraints. Hence, the fourth research goal of the thesis is to “adapt Security

Engineering Framework for Cloud-based System” that should address new

security issues related to the cloud-based system and suggests efficient

algorithms pertaining to the domain constraints and finally, evaluate the

system security.

 29

v) Application of Security Engineering to Internet of Things (IoT)

Recently Internet of Things (IoT) has gained popularity with increased deployment

of IoT devices in various domains such as e-Health, e-Home, and e-Commerce.

Security issues like Data Freshness, Liability, Trust are left unexplored in previous

studies. Also, compared to network security, providing security to the IoT-based

network is difficult because devices in IoT system have constraints. Again existing

proposals do not consider new security issues and domain constraints pertaining to

IoT systems. Hence, the fifth research goal of the thesis is to “adapt Security

Engineering Framework for the development of Secure IoT-based Systems.”

This process should address new security issues, consider domain constraints

during the design phase and finally, test the deployed security.

vi) Application of Security Engineering to Big Data Databases

Researchers have been focusing on security in big data databases because of the

rise in the use of social networking, data analytics, etc. Data generated from these

sources has volume, velocity, variety, has no defined structure, etc. These

characteristics make it difficult to incorporate security into the system. Hence, the

sixth research goal of the thesis is to “adapt our Generic Framework of

Security Engineering for Big Data Databases.”

1.9 Proposed Solution

The above sub-problems are handled by developing a three-phase framework of

Security Engineering, that becomes an integral part of any software development

process. Phases of proposed framework are not independent but are related to each

 30

other, and each of these works towards guiding research to its goal. Also, the

proposed framework is applied to new domains such as Cloud Computing, Internet of

Things and Big Data Databases.

i) Development of Security Requirements Engineering Phase. The thesis attempts

to establish/ propose a methodology, which consists of different activities starting

from identification of stakeholders to specification of the security requirements. In

this phase different stakeholders are identified using viewpoint-oriented approach

(Sommerville, 2004) (Kotonya & Sommerville, 1996), then functional

requirements of each direct stakeholder are conceptualized. Based on the

functionality execution sequence, various vulnerable points are identified with

potential threats. These identified threats are now specified in terms of security

requirements as defined by researcher Firesmith (Firesmith, Engineering Security

Requirements, 2003). Then, the specified security requirements are analyzed and

prioritized to get a concrete set of requirements which represents the overall

scenario of security in the system.

ii) Development of Security Design Engineering Phase. In the process of

developing a Security Engineering Framework, the thesis attempts to modify the

existing design process by incorporating activities for selecting/ suggesting the

Security Algorithm for implementation of Security Requirements. Based on the

identified and prioritized Security Requirements, Security Mechanisms

(Cryptography Algorithm) are selected, to protect the system assets. The process

starts with the mapping of prioritized Security Requirements with the defined

Security Services; this mapping would eventually help in implementing the system

 31

security. Now among the available security algorithms for implementing different

security services, set of best algorithms are chosen based on: (1) number of threats

they mitigate (to achieve this repository of attack mitigated by different algorithm

is maintained) and (2) consideration of domain constraints (communicational

constraints such as bandwidth, energy, etc.; computational constraints such as

memory, encryption speed, etc. and type of device (Low-end or High-end)).

iii) Development of Security Testing Phase. Based on the necessity to evaluate the

system security goals an attempt is made to measure the effectiveness of selected

Security Algorithm. Security Testing is done to validate if the selected Security

Algorithms can mitigate the potential threats to the system. A metric is generated

showing the effectiveness of selected security algorithm. The metric would help in

making a decision whether the selected algorithms are sufficient to achieve the

security goals or revision is required. If the revision is needed, it backtracks to the

design phase and select another applicable algorithm or modifies the applicable

algorithms to mitigate the live threats. Also, this metric evaluates or measure the

security of developed systems.

iv) Application of Security Engineering to Emerging Domains

Based on the need for handling security issues in emerging domains, we have

adopted our generic proposal for different software systems namely Cloud

Systems, IoT, and Big Data Databases. Therefore, the proposal of Security

Engineering is modified to make it adaptable for various domains:

 32

a) Cloud Computing. After analysis of cloud architecture provided by NIST

(Liu, et al., 2011), thesis finds that security issues in cloud system are complex

due to the presence of numerous functionality and assets. To deal with the

situation, various repositories functionality-assets, vulnerabilities-threats

mapping are developed that would help in identification of assets,

vulnerability, and threats. Again during design phase, different domain

constraints applicable to cloud systems are drawn, and a suitable algorithm is

chosen. Our approach is illustrated for cloud-based storage system such as

Dropbox, Mega, etc. For these cloud systems, it is illustrated that deployed

security algorithms are not efficient pertaining to domain constraints.

b) IoT. With the automation of various sectors, a shift to IoT systems has been

made. IoT systems have layered architecture, and each layer has its own

complexity which gives rise to various security issues. To deal with these

problems our Generic Framework for Security Engineering is adapted where

repositories of assets at each layer with its applicable vulnerabilities and

threats have been developed. The repository will help in the identification and

handling of security requirements. The Security Engineering framework is

applied to the IoT-based healthcare system. Further, it is drawn that existing

security algorithms are not suitable. Hence, new security algorithms are

suggested.

c) Big data Databases. With the tremendous increase in the use of social

networking, e-commerce and related domains need to handle a huge amount of

data generated from these sources arise. Also, data generated from these

 33

sources may not be structured, the speed of data generation is very high, etc.

issues are present. To cater the above needs of data handling and processing

NoSQL databases (a Big Data Database) have evolved. Hence, to handle the

issues in a structured manner, thesis adapted the generic Security Engineering

Framework for NoSQL Databases. The process steps have been applied to

MongoDB a NoSQL database.

1.10 Outline of the Thesis

In Chapter 2, we present a state-of-art review of various methodologies available for

handling security issues in software development. All the existing methodologies are

critically evaluated along with the various parameters like Security Engineering

activities covered (Security Requirements Engineering, Security Design Engineering,

and Security Testing), and application domain. The chapter would serve as a

backbone for our proposal of security engineering and the rest of the chapters.

In Chapter 3, we discuss our proposal for Security Engineering. The chapter starts

with the elaboration of Security Requirements Engineering phase of our framework

and then Security Design Engineering phase. Finally, we come to Security Testing

phase. We will highlight each activity of our proposal in detail with the help of

examples.

In Chapter 4, we have adapted our generic security engineering framework for Cloud

Computing. The chapter starts with the brief introduction of cloud computing, then an

overview of existing work available in the literature is provided. After that,

elaboration of our proposed framework for cloud systems with highlights of

 34

modifications required in our generic framework to make it adaptable for cloud

systems is presented.

In Chapter 5, we have adapted our generic framework of security engineering for

Internet of Things (IoT). Chapter starts with the brief introduction of IoT, previous

work available in the area of security is discussed. Then, adaption of our proposed

framework for IoT system is presented. Also, we will highlight modifications required

in our generic proposal to make it adaptable for IoT systems.

In Chapter 6, we have adapted our framework for Big Data Databases. We start with

the brief introduction of big databases, a brief overview of existing work, then

adaptation of our proposed framework for Big Data Database is discussed. Also, we

will highlight modifications required in our basic proposal to make it adaptable for

big data databases.

In Chapter 7, the implementation of a tool to help the developer is presented. The

approach is based on the models and techniques discussed in Chapters 3, 4, 5 and 6.

Explanation of working on the different components of the tools is described. To get a

feel of the tools several screenshots have also been included.

In Chapter 8, we summarize the contribution of the thesis, present the conclusions

and discuss the future scope of our work.

References: This section gives the references details of the thesis.

 35

CHAPTER 2

LITERATURE SURVEY

Present chapter provides insight of security engineering methodologies available in

the literature. Firstly, the overview of Use case-based methodologies is provided,

followed by a discussion on Goal-oriented approaches, after that Process-oriented

approach is discussed. Finally, each of the discussed methodologies is evaluated.

2.1 Overview

Security is gaining more attention because of a surge in security attacks. Therefore,

handling of security attacks along with the activities of information system

development process becomes an indeed activity. Various methodologies were

present in the literature for handling security such as Secure Tropos (Mouratidis H.,

2002), SQUARE (Mead, 2005), SREP (Mellado, Medina, & Piattini, 2007), Haley

et.al framework (Haley, Laney, Moffett, & Nuseibeh, 2008) are to name few.

Available methodologies are categorized according to the type of development

approach they follow. Here three class of development approaches are taken:

 Use Case-based Approach

 Goal-Oriented Approach

 Process-Oriented Approach

Methodologies available in the literature has their procedure to handle security issues.

Some are having detailed steps for elicitation, analysis, and prioritization of security

requirements. Few of them suggest broad security measures, and some methodologies

only model the security threats.

 36

In the forthcoming sections, each of the mentioned approaches is explained with

methodologies that fall in particular class. Moreover, each of the methodologies

would be elaborated and explained with a common case study of the Railway

Reservation System.

2.2 Use Case Based Approach

The term ‘use cases’ were first introduced by Ivar Jacobson in object-oriented

development methodology, later Larry Constantine and others have used use cases for

requirements analysis and design. In a use case diagram, use cases describe a

circumstance in which a user interacts with the system to accomplish some task. Use

cases are extended to elicit security threats and sometimes broadly suggest

mechanisms to mitigate threats. It mainly helps in threat modeling and risk analysis.

Various Security Engineering Methodologies are available in the literature based on

use case-based approach. Some of them are Abuse Cases (McDermott & Fox, 1999),

Misuse Cases (Alexander, 2003) (Sindre & Opdahl, 2005), Security Use Cases

(Firesmith, Security Use Cases, 2003), and Common Criteria (Ware, Bowles, &

Eastman, 2006). Each of the mentioned methodologies is now discussed below in

detail:

(i) Abuse Cases –Abuse case is an extension of ‘Use Cases,’ Abuse Cases are

explained using the same notations as used for use cases. Proper labeling of

diagrams distinguishes the two models. An Abuse Case gives complete knowledge

of the interaction between a system and actors, where the result of the interaction is

harmful to system resources (assets). The abuse case provides a description of each

 37

actor with what is required and what is not required (threats) from the system. The

actor’s description consists of required resources (assets), skills and objectives.

Abuse Cases are drawn by having total control of the goal machine and modifying

the system software. A brief note of the harm caused because of the attacker is also

included.

Use Cases are used to identify and represent the functional requirements of actors,

whereas Abuse Cases are used to represent and identify the possible harmful

interaction (threats) present in the system due to malicious actors. It also includes

the actor’s descriptions which help in security analysis. Abuse case approach has

following steps:

a) Identify Malicious actors

b) Identify functional (harmful) requirements of malicious actors

c) Include short description of harm with malicious actor descriptions

Figure 2.1 shows an abuse case for the Railway Reservation System, where

‘Malicious Traveler’ is the abuser (attacker) and the oval depicts the threats that can

be made by the attacker.

Figure 2.1 Abuse Case for Actor Traveler in Railway Reservation System

 38

Analysis: It is a traditional approach which depicts the malicious actors and threats

executed by them. They do not specify security requirements and security

mechanism to mitigate the threats. Only a short description of the attacker and abuse

cases which includes their skills and resources is added.

(ii)Misuse Cases –Misuse Cases are also derived from Use Case diagrams. The Use

Case diagram is an effective tool for eliciting and describing functional requirements

of system-to-be, whereas Misuse Cases captures the threats based on the behavior of

the system that is undesirable. The Use Cases are derived from goals of the system,

on the other hand, Misuse Case are derived from system threats. Misuse Case

approach has following steps:

a) Identify the actors and their functional requirements (use cases).

b) Identify the misusers and their functionalities (misuse cases); misuse cases are

black in color to distinguish it from use cases.

c) Identify the new use cases which are related to existing use cases with

‘include’ relationship and misuse cases using two new relations ‘Detect’ or

‘Prevent.’ New relations will show whether a new use case can detect or prevent

the activation of misuse cases respectively.

d) New use-cases are documented as security requirements.

Figure 2.2 shows a Misuse Case for the Railway Reservation System, where white

color ovals represent the functionalities executed by the intended user and the black

color ovals represent the threats that can be executed by attackers (misuser).

 39

Analysis: Misuse cases models the broad security measures in the form of use cases.

These use cases are related to the functional use cases with include relation and

misuse cases with the relation detect or prevent. They do not identify the security

requirements but identifies the threats on functionality that are then used to propose

security measures in an ad-hoc manner. The new use case introduced in step (c) such

as ‘encrypt,’ represents an ad-hoc mechanism to mitigate threats.

Figure 2.2 Misuse Case for Railway Reservation System

(iii)Security Use Cases – Security Use Cases are proposed by researcher Firesmith;

which are used for analysis and specification of security requirements. It protects the

application from security threats by eliciting the security requirements for

implementation. It has following steps:

a) Identify the Actor and their use cases

b) Identify the misusers and functionality (misuse cases) executed by them.

c) Identify the security use cases required to protect the system from misuse

cases/ threats.

 40

Figure 2.3 shows a Security Use Case for the Railway Reservation System, which

represents the functionalities executed by the actor ‘Traveler,’ threats executed by

the misusers as misuse cases and the security use cases showing how the

functionalities can be protected from threats.

Figure 2.3 Security Use Case for Railway Reservation System

Analysis: It depicts the security requirements in the form of use cases and relates it

to functional use cases and misuse cases. The process of identification of security

requirements is systematic, but it does not analyze or prioritize the requirements. It

is assumed that during the design phase they would select appropriate security

algorithms to implement security use cases.

(iv) Common Criteria (CC) – This methodology relates Common Criteria (Common

Criteria Implementation Board, 1999) with Use Cases, to handle security issues in

Information Technology products during the Software Engineering Process. The

approach followed by the process is as follows:

a) Identify the primary actor and supporting actor corresponding to the

functionality.

 41

b) Fill the actor profile consisting of seven fields (actor, use case, type, location,

secret exchange, private exchange, and association).

c) Based on actor profile threats are extracted from a predefined repository.

d) Security techniques are defined to mitigate the identified threats, such as

Non-Repudiation security technique is elicited to mitigate threat Repudiate

Send.

An example, Traveler functionality “Book ticket” of the Railway Reservation

System is considered. The actor (Traveler) profile is shown in Figure 2.4.

Following threats are extracted:

 T.Flooding

 T.Privacy Violated

 T.Change Data

 T.Repudiate Receive

Now threats are mapped to security techniques, such as Flooding is mapped to

security technique O.Check User id and O.Password.

Actor Traveler

Use case Book

Ticket

Type Human

Location Remote

Secret

Exchange

Yes

Private

Exchange

Yes

Association Read Write

Figure 2.4 Traveler Profile for Book Ticket Functionality

 42

Analysis: In common criteria approach, the threats on the functional requirements

are identified systematically; the clear relation of a threat to the functionality is

depicted. Security techniques are defined to mitigate identified threats are very

abstract. No formal specification of security requirements is done; neither the

security requirements are analyzed or prioritized.

Summary Use Case-based Approach: Based on analysis following conclusions is

drawn about the Use Case-based approach:

a) These are traditional and basic approaches.

b) They mainly identify the functional requirements and possible threats to

requirements.

c) Some methodology namely security use cases and common criteria under this

approach broadly suggests the security algorithms to mitigate threats.

d) They do not prioritize the requirements.

e) No domain constraints (environmental and device constraints) are considered

while defining the security algorithm.

2.3 Goal Oriented Approach

Goal-Oriented approach views the target system and its environment as a collection of

active components. It helps in early requirements analysis; where goals represent the

complete set of requirements. Goal refinement provides traceability from high-level

strategic objectives to low-level technical requirements. It helps in:

 Structuring complex requirements documents.

 Detection and management of conflicts among requirements.

 Communicating with the customers regarding requirements.

 43

 Choosing among the available alternatives.

Goal-oriented methodologies represent the attacks or requirements as a goal. Goals

are intended behavior and perspective statement of intent about the system. Security

Goals are an abstract representation of security concerns to the assets of the system.

For example, ‘Privacy’ security goal signifies that asset ‘Patient Health Information’

should remain private and confidential from misusers. Security goals are classified as

Integrity, Confidentiality, and Availability goals (Lamsweerde, 2004). Security goal

defines very general statement about the security of assets. For instance, the patient in

the Hospital system has Confidentiality goal which expresses ‘his health parameters

should remain confidential.’ Similarly, Integrity goal by Hospital Authority conveys

that ‘malicious actors should not change doctor assigned to the patient.’ Security

Requirements are a detailed description of security concern, or they give detailed

statement about system behavior that is not acceptable. Further, Security Goals are

refined as Security Requirements as shown in Figure 2.5. For example, Security Goal

Confidentiality can be refined as Identification, Authentication, and Authorization.

Some Methodologies based on goal-oriented approach are attack trees, intentional

anti-model, secure tropos. The detail of each approach is as follows:

Figure 2.5 Refinement of Security Goals as Security Requirements

SECURITY

GOALS

SECURITY

REQUIREMENT n

SECURITY

REQUIREMENT 1

SECURITY

REQUIREMENT 2

 44

(i) Attack Trees –Attacks Trees are used to identify the possible attacks which

further helps in risk analysis and in turn can be used for security analysis of the

system. Attack Tree is a formal method for describing the security of a system based

on varying attacks. The goal of the attacker is placed at the root node and ways of

achieving goals as leaf nodes. Satisfaction of goal is represented by either

satisfaction of all leaves (AND) or by the satisfaction of a single leaf (OR). Here, the

overall goal of the attacker with preconditions, steps followed for attack and post

conditions are specified. Figure 2.6 shows an Attack Tree for Login functionality in

the Railway Reservation System.

Figure 2.6 Attack Tree for Login Functionality

Analysis: In Attack Trees methodology, attacks are represented in the form of a

tree; it depicts how an intruder can reach its goal by exploiting the vulnerable points

of the system. They do not specify, analyze, and prioritize the security requirements.

(ii) Intentional Anti-models – It is an incremental methodology which focuses on

defining the security measures for mitigation of threats to the system. The process

starts with the elaboration of attacker goal by building two different models

 45

iteratively and concurrently: (a) A model of the system-to-be that covers software

and its environment with their goals, objects, agents, requirements, operations, and

assumptions. (b) An intentional anti-model which starts with an anti-goal that is a

threat to the initial goal of the model described in (a). After that, the trees are

derived systematically through anti-goal refinement until leaf nodes representing

either the vulnerabilities observable by the attacker or anti-requirements

implementable by the attacker is reached. Then, the original model is enriched with

new security measures derived from the anti-model. The process is repeated

iteratively till it encapsulates all security goals. An example, Figure 2.7 shows an

Intentional Anti-Model for the Railway Reservation System.

Figure 2.7 Intentional Anti-Model for Railway Reservation System

For instance, vulnerability:

 ‘Repeatable Password Check from Login Detail’

 46

is identified against the anti-requirements:

‘Login Name Known & Matching Password Found’

Moreover, then the original system is modified by adding new security goal:

Avoid [Repeatable Password Check from Login Detail].

Analysis: In Intentional Antimodel methodology, first the goals and corresponding

antigoals are identified. These antigoals are decomposed iteratively to get the

detailed vulnerabilities or anti-requirements which exist in the system. Then new

security measures are added to the system to protect vulnerable points. No

prioritization is done, and no domain constraints are considered while defining the

broad security measures.

(iii) Secure Tropos – It is an extension of Tropos methodology and adopts a

hierarchical approach for security implementation. The methodology has the

following steps:

a) Identify the actors, their functionalities, and dependency.

b) During early requirement phase actors specify the security goals such as

privacy, authentication.

c) In Late requirement phase Security diagram is constructed which depict the

following information:

a. Security goals as the starting point (root)

b. Possible attacks to security goal are added to the diagram.

c. Protection measures are identified and added to the diagram to mitigate the

attacks.

 47

d) Test scenarios are generated at design time for testing the security of the system

as mentioned in their later work (Mouratidis & Giorgini, 2007).

Security diagram using Secure Tropos for the Railway Reservation System is shown

in Figure 2.8. Oval represents the actors, where the traveler is related to railway

management for the execution of functionality ‘Book Ticket’ (represented as a

rounded rectangle). Cloud represent the security goal that traveler has imposed on

the system for login functionality.

Figure 2.8 Secure Tropos for Railway Reservation System

Analysis: The given approach effectively identifies the actors, functionalities, and

dependencies that exist between them. The security goals are initially specified by

the actors. Later they are refined, analyzed with the help of security diagram, and

broad security measures are defined to protect the system from threats. However,

they do not prioritize the security requirements which are expressed as security goals

and does not take any domain constraints into consideration while suggesting the

security measures for implementation.

Summary Goal Oriented Approach: Based on the analysis following conclusions is

drawn about the goal-oriented approach:

a) Identifies the goals, and attacks/ threats to the goal of the system.

b) Identifies the detailed security vulnerabilities present in the system.

 48

c) Attack trees and Intentional antimodel methodologies only model the

vulnerable point in the system that may be used in defining the security

measures.

d) Secure tropos recommends broad security measures to attain the security goals

of the system.

e) They do not analyze or prioritize the security goals. Even they are not

specifying the security requirements.

f) None of the above proposals consider domain constraints while defining the

security measures.

2.4 Process Oriented Approach

The approach has detailed steps for Information System development. It contains all

necessary information regarding how and when data is moved and processed by an

Information System. Some methodologies under this category are Software Quality

Requirements Engineering (SQUARE) (Mead, 2005), Security Requirements

Engineering Process (SREP) (Mellado, Medina, & Piattini, 2007), a framework for

security requirements elicitation presented by Haley et. al (Haley, Laney, Moffett, &

Nuseibeh, 2008), and framework by Fabian et al. (Fabian, Gurses, Heisel, Santen, &

Schmidt, 2010) for elicitation and analysis of security requirements. Now mentioned

methodologies are elaborated:

(i)Security Quality Requirement Engineering (SQUARE) - SQUARE methodology

has steps for elicitation, categorization, and prioritization of Security Requirements

of software projects. The process has the following steps:

 49

a) Security goals such as Confidentiality, Accuracy, and Integrity are laid down that

conforms to organization overall business goal.

b) Security goals are analyzed to get the vulnerable points and threats present in the

system using an architectural diagram, use cases, misuse cases, etc.

c) Based on identified threats various security requirements are defined as a

constraint to the system.

d) Security requirements are categorized according to levels (system, software, etc.).

e) Security requirements are prioritized based on risk assessment results using

methods such as Triage, Win-Win, etc.

An example, SQUARE process for the functionality ‘Book Ticket’ executed by

stakeholder ‘Traveler’ for Railway Reservation System:

 Business Goal: To provide an application that supports ticket booking.

 Security Goals

o The reservation system will be available for ticket booking and other

functions.

o Management will control system configuration and usage.

 Elicited Security Requirements

o (R1) Availability of System

o (R2) Authentication and Authorization of users

o (R3) Privacy should be maintained

 Prioritized Security Requirements based on risk assessment

o R3>R2>R1

 50

Analysis: A systematic process for elicitation and prioritization of security

requirements as a constraint to the system is defined. Security requirements are

defined as a constraint to the system. No security algorithm/ mechanisms are

suggested for implementation of security threats.

(ii) Security Requirements Engineering Process (SREP) –SREP methodology is

proposed and applied by Daniel M. et al. It consists of various activities; which are

repeatedly applied and specified to the iteration of the Unified Process model. SREP

embeds the concept of Common Criteria which helps in Threat Modeling and

identification of Security measures. They are using repository named security

resource repository (SRR) which is created using already developed systems. SRR

contains security related information like vulnerable point, threats, security goals,

etc. related to assets.

SREP has the following set of activities:

a) Identify the Critical Assets: Identify the assets of the system. Assets can be

extracted from SRR based on similarity of the domain, function, etc. of the

current system.

b) Identify Security Goals: Firstly, SRR is checked if the asset is already

available in it, then security goal is retrieved directly from SRR else, the

security goal are determined for each asset.

c) Identify the Vulnerabilities and Threats: If the asset is already present in SSR,

then vulnerabilities and threats are retrieved directly from it otherwise use

cases based techniques like misuse cases, abuse cases, etc. are used for

vulnerability and threat identification.

 51

d) Risk Assessment: Risk is calculated using the probability of threat

occurrences.

e) Elicit Security Requirements: Security Requirements are defined as

constraints to the system by analysis of security goals and related threats.

f) Prioritize Requirements: Security Requirements are ranked based on the

results of risk assessment.

g) Requirements Inspection: Verification of security requirements is done to

check the correctness, completeness, unambiguity, etc.

h) Repository Improvement: At the end of each phase of Unified Process

repositories are extended with new information.

An example, the above process for the functionality ‘Book Ticket’ executed by

stakeholder ‘Traveler’ for Railway Reservation System:

 Vulnerable/ Critical Assets:

o Traveler Information

o Ticket Information

o Card Information

 Security Goals

o System Availability

o Privacy/ Confidentiality of Information

o Authentication/ Authorization of persons involved

 Threats Identified

o Unavailability of network

o Password Leak

o Information Theft

 52

 Security Requirements

o The session should expire when the system is unattended for specified

amount of time.

o Block repeated login attempt.

o Ensure Privacy of information.

At last, prioritization is done based on risk assessment results, and new findings

are updated in the repositories.

Analysis: It covers elicitation, analysis, and prioritization of security requirements.

Here security requirements are expressed as constraints which are architectural

constraints. They do not analyze the various domain constraints.

(iii)Framework by Haley et al. –An iterative process presented by Haley et al. has

the following steps:

a) Identify the functional requirements and associated assets.

b) Security goals are determined to protect the assets.

c) Threats corresponding to security goals are determined.

d) Security Requirements are identified as constraints to the functional

requirements for achieving the security goals.

An example, the above process for the functionality ‘Book Ticket’ executed by

stakeholder ‘Traveler’ for Railway Reservation System:

 Functional requirements and assets

o Book Ticket.

 53

o Assets (traveler information, ticket information, credit card details) shall

be protected.

 Security Goals

o (SG1) Traveler and ticket details should be private.

 Threats

o (T1) Data gets leaked

o (T2) Data is not available

 Security Requirements (constraints)

o (SR1) Traveler and Ticket data is given only to members of booking

system.

Analysis: They identify the functional requirements, assets and corresponding

security goals. They elicit the security requirements as constraints to security goals.

They do not prioritize the security goals. No security algorithm is suggested/ chosen

to implement the security requirements, and no domain constraints are considered.

(iv)Framework by Fabian et al. –Fabian et al. have proposed a framework for

security requirements elicitation and analysis. The proposed framework has the

following steps:

a) First, the involved stakeholders of the system are identified.

b) Functional requirements and non-functional requirements with associated

assets are identified for each stakeholder.

c) Next security goals are defined to protect the asset.

d) Identified security goals are refined and represented as security requirements.

 54

e) Security requirements are defined and analyzed based on the assets, its

misusers and its context of use.

f) Once the security requirements are defined at stakeholder’s level, they are

compiled at the system level by combining their viewpoints, to resolve the

conflict and to arrive at a consistent set of system requirements.

g) Risk analysis is done by considering the vulnerable points, attackers, and

related attacks. Based on the results of risk analysis security measures are

defined to implement the security requirements.

An example, the above process for the functionality ‘Book Ticket’ executed by

stakeholder ‘Traveler’ for Railway Reservation System:

 Functional Requirements and assets

o Get Ticket Booked

o Assets: Ticket information, Traveler information, Credit Card

information shall be protected

 Security Goals

o Confidentiality

o Availability

 Security Requirement

o Customer ticket details should not be disclosed to the third party.

 All functional and other requirements are documented.

Analysis: Security Requirements are elicited and analyzed firstly at the individual

level and then at the system level. The framework effectively deals with the conflict

between the requirements arising due to different viewpoints of stakeholders. It

 55

identifies the vulnerable points, threats with security measures in an ad-hoc manner.

No prioritization of security requirements is done, and security measures are defined

without considering the environmental and device constraints.

Summary of Process Oriented Approach: Based on the analysis following

conclusions is drawn about the process-oriented approach:

a) Identifies the security goal.

b) Identifies the vulnerabilities and threats.

c) Identifies the security requirements in the form of constraint to functional

requirements. Formal specification or categorization of security requirements

is missing. A formal specification of security requirements as done by

Firesmith (Firesmith, Engineering Security Requirements, 2003) is necessary

to compute the generic form of SRS by adding one more section.

d) SQUARE and SERP methodologies prioritize the security requirements.

e) Some methodologies namely framework by Fabian et. al and proposal by

Haley et. al suggests broad security measures such as provide access control,

perform encryption, etc. for implementation but do not consider the various

domain constraints while defining security algorithms.

2.5 Evaluations of Security Engineering Methods

In this section, we evaluate the foregoing methodologies on different parameters of

security engineering. We classify our evaluation into three phases namely security

requirements engineering, security design engineering, and security testing. The

security requirements engineering phase is further classified as elicitation, analysis,

prioritization, threat modeling, and risk analysis. Security design engineering phase is

 56

classified as consideration of domain constraints and suggestion of security algorithm.

Security testing phase whether the testing activity to check security embedded in the

system is done or not. Another parameter domain of application is also considered.

Table 2.1 shows a summary of contributions of available frameworks.

Table 2.1 Summary of the Contributions

Method

ology

Security Engineering Activities Domain of

Application

Main Contribution

Security

Requirements

Engineering

Security Design

Engineering

Security

Testing

Abuse

Cases

Elicitation: No Environment:

No

They did

not

consider

the

security

testing

part.

Internet-

based

Informatio

n Security

Lab

 It is only helpful in

identifying threats.

Analysis: No Device: No

Prioritization: No No mechanisms

are suggested to

mitigate threats.

Threat Modeling: Yes

Risk Analysis: No

Misuse

Cases

Elicitation: Abstract Environment:

No

They did

not

consider

the

security

testing

part.

E-

commerce

Systems

 It helps in the

modeling of

threats and a broad

mechanism to

implement them

are specified.

Analysis: No Device: No

Prioritization: No Broad security

mechanisms are

suggested to

mitigate threats

in the form of

new use cases.

Threat Modeling: Yes

Risk Analysis: No

Security

Use

Cases

Elicitation: Yes Environment:

No

They did

not

consider

the

security

testing

part.

Banking

System

 A novel method

for elicitation of

Security

Requirements.

Analysis: No Device: No

Prioritization: No Done during the

design phase

(assumption).

Threat Modeling: Yes

Risk Analysis: No

Common

Criteria

Elicitation: Yes Environment:

No

They did

not

consider

Student

Manageme

nt System

 Threats are

modeled based on

Analysis: No Device: No

 57

Prioritization: No Abstract security

measures for

implementation

are specified.

the

security

testing

part.

functional

requirements and

its user, and

abstract measures

are identified to

mitigate threats.

Threat Modeling: Yes

Risk Analysis: No

Attack

Trees

Elicitation: No Environment:

No

Testing

part is not

covered.

Web-based

System

 Identify the

vulnerable points

of attack. Analysis: No Device: No

Prioritization: No No consideration

of this phase. Threat Modeling: Yes

Risk Analysis: No

Intentio

nal

Anti-

model

Elicitation: No Environment:

No

No clues

for doing

security

testing.

Web Based

Banking

System

 Only threats and

vulnerable points

are identified and

analyzed.

 Broad measures of

implementing

security are listed.

Analysis: No Device: No

Prioritization: No No consideration

of this phase. Threat Modeling: Yes

Risk Analysis: No

Secure

Troops

Elicitation: Yes Environment:

No

Attack

scenarios

are

generated

at design

time to

help

testers

during

testing.

e-SAP

deals with

facilities

provided to

older

persons.

 Security

Requirements are

identified as

constraints to the

system.

 Broad measures

are suggested for

implementation.

 Test scenarios are

generated at

design time.

Analysis: No Device: No

Prioritization: No Broad security

mechanisms are

specified.

Threat Modeling: Yes

Risk Analysis: No

SQUARE Elicitation: Yes Environment:

No

Testing

part is not

covered.

Asset

Manageme

nt System

 This methodology

has steps for

Elicitation and

Prioritization. But

they specify the

security

requirements as

constraints.

Analysis: No Device: No

Prioritization: Yes Done in an ad-

hoc manner Threat Modeling: Yes

Risk Analysis: Yes

 58

SREP Elicitation: Yes Environment:

No

Inspection

is done to

check the

correctnes

s,

consistenc

y, etc. of

security

requireme

nts.

No case

study

considered

 Vulnerable assets

are considered.

 Various threats

applicable to

assets are

identified, and risk

assessment is

done. Security

requirements are

identified and

prioritized.

Analysis: No Device: No

Prioritization: Yes Broad measures

are suggested. Threat Modeling: Yes

Risk Analysis: Yes

Framew

ork by

Haley et

al.

Elicitation: Yes Environment:

No

Testing

part is not

covered.

Air Traffic

Control

 Security

requirements are

defined as

constraints to the

functional

requirement.

Analysis: No Device: No

Prioritization: No Broad

mechanisms are

specified.

Threat Modeling: Yes

Risk Analysis: No

Framew

ork by

Fabian

et al.

Elicitation: Yes Environment:

No

No

provision

of

verificatio

n or

validation

is adopted.

No case

study

considered

 Security

Requirements are

identified and

analyzed both at

stakeholder level

and system level

to avoid conflicts.

 Security measures

are defined in an

ad-hoc manner.

Analysis: Yes Device: No

Prioritization: No Broad measures

are defined to

implement the

security.

Threat Modeling: Yes

Risk Analysis: Yes

Summary

 Use case-based methodologies: They focus on identification of threats

associated with the functional requirements. They do not analyze or prioritize

the threats.

 Goal-oriented methodologies: Deal with the identification of security goals

(confidentiality, integrity, authentication), attacks, vulnerable points and

 59

sometimes may suggest broad measures of security. They do not analyze and

prioritize the security goals. Possible attacks, antigoals, vulnerable points to

the security goals are identified. They are not either doing the prioritization of

security threats or security goals. Some of them (Lamsweerde, 2004)

(Mouratidis H., 2002) specify the broad security measures for mitigation of

threats.

 Recent process-oriented approaches: Attempt to address the different task of

requirements engineering such as elicitation, analysis, prioritization,

specification of security requirements. The major gap is that they specify the

security requirements as a constraint but fails to formally specify the security

requirements or categorize them. In addition to this, some of them (Mellado,

Medina, & Piattini, 2007) (Fabian, Gurses, Heisel, Santen, & Schmidt, 2010)

suggests broad measures without considering the different domains.

 From Table 2.1 we can see that most of the methodologies focus on web-

based systems, they do not consider the new emerging domains such as cloud

computing, Internet of Things (IoT) which has specific security issues such as

Shared Environment, Multi-location Data placement, Trust, Data Freshness,

Trust, and Liability.

Hence it is established that existing proposals define the security mechanism without

considering the design constraints. This may unnecessarily constrain the system.

Secondly, none of the proposals evaluate the embedded security. If security can be

measured, it can help in mitigation of live threats by physical measures or by new

 60

security algorithm. Also, these proposals focus on web-based applications. In the next

chapter, we propose a security engineering framework which will address these

problems.

Publication from this work

1. Jaiswal, S., and Gupta, D. (2016). Security Engineering Methods: In-Depth

Analysis. International Journal of Information and Computer Security (in press).

[Scopus Indexed]

 61

CHAPTER 3

FRAMEWORK FOR SECURITY ENGINEERING

With the increase in the use of software system, security becomes an emergent area of

study. Most of the software engineering processes deals with security issues during

the design or implementation phase which may result into unnecessary constrained

system. So, there is a need for a new process which deals with security issues from

requirement engineering phase and then selects appropriate algorithms for

implementation of security issues. So, here in this chapter, we provide a framework

for Security Engineering for handling issues in a structured manner. First, the

explanation of novel framework for handling security issues in software systems is

given. Then the different phases of proposed framework are explained. After that, a

case study of Content Management System is presented to explain the activities of our

novel framework in detail.

3.1 Security Engineering Framework

The proposed novel framework of security engineering for identification and handling

of security issues is depicted in Figure 3.1. The proposed framework consists of three

phases:

 Security Requirements Engineering

 Security Design Engineering

 Security Testing

 62

Figure 3.1 Security Engineering Framework

 Security Requirements Engineering. In this phase, security requirements

required to mitigate threats are identified, analyzed and prioritized along with the

functional and non-functional requirements. Activities of this phase start with the

identification of actors, their functional requirements, non- functional

requirements and associated assets. Next, threats applicable to system assets at

vulnerable points are identified. After that, identified threats are represented in the

form of security requirements. Then, the threats are evaluated using risk analysis

method and based on it security requirements are prioritized.

 Security Design Engineering. In this phase, efficient mechanisms to implement

the security requirements are identified. These mechanisms are basically security

algorithms which are identified to implement the security requirements or to

mitigate the threats of the system. Algorithms are suggested based on number of

threats mitigated by the algorithm and various domain constraints namely

encryption speed, bandwidth, memory requirements, power, throughput, etc.

Finally, a template is generated showing the details related to this phase.

 Security Testing. In this phase, deployed algorithms are tested to check if all

potential threats are mitigated. Overall security assessment of the system is done

by generating a metric showing system security level.

 63

Subsequent sections explain each phase of proposed framework in detail.

3.2 Security Requirements Engineering Phase

This sub section of thesis will present a novel security requirements engineering

framework, as a first contribution of the thesis. This phase consists of different

activities:

(i) Security Requirements Elicitation

(ii) Security Requirements Prioritization and Specification

These activities are integrated into a single framework as shown in Figure 3.2.

Figure 3.2 Security Requirements Engineering Process

SECURITY REQUIREMENTS ELICITATION

Identify the

Functional

Requirements

Identification of Vulnerable Points

Identify the

Stakeholders

Trace the

Sequence of

Events

Extract the

Vulnerable

Points

Map Assets to

Vulnerable Points

Threat Identification and Evaluation

Identify the

Threats

Assign

Threats

Rating

Security

Requirements

Elicitation

SECURITY REQUIREMENTS PRIORITIZATION AND SECIFICATION

Calculate Risk Value

for each Threat

Calculate Security

Requirements Priority

Security Requirements

Specification

 64

As discussed in the previous chapter various methodologies like SQUARE (Mead,

2005), SREP (Mellado, Medina, & Piattini, 2007), Helay (Haley, Laney, Moffett, &

Nuseibeh, 2008), Fabin (Fabian, Gurses, Heisel, Santen, & Schmidt, 2010) are present

in the literature for performing different activities of security requirements

engineering (requirements elicitation, analysis and prioritization). But none of them

include all the activities of requirements engineering in a single framework. SQUARE

proposes a process for elicitation and prioritization of security requirements. Here,

security requirements are presented as a constraint to the system, also they are not

suggesting any security algorithm/ mechanisms to implement the security threats.

SREP covers elicitation, analysis, and prioritization of security requirements. Here,

security requirements are expressed as architectural constraints. Also, they do not

analyze various domain constraints. Helay et. al identifies the functional

requirements, assets and corresponding security goals. They elicit the security

requirements as constraints to security goals. They do not prioritize the security goals

and no security algorithm is suggested/ chosen to implement the security

requirements. In the proposal by Fabian, Security Requirements are elicited and

analyzed both at the individual level and at the system level. The framework

effectively deals with the conflict between the requirements arising due to different

viewpoints of stakeholders. It identifies the vulnerable points, threats with security

measures in an ad-hoc manner. No prioritization of security requirements is done, and

security measures are defined without considering the environmental and device

constraints.

In short all the present methodologies identify the security requirements in the form of

constraint to functional requirements. Formal specification or categorization of

 65

security requirements is missing. A formal specification of security requirements as

done by Firesmith (Firesmith, Engineering Security Requirements, 2003) is necessary

to enhance the generic form of SRS document prescribed by IEEE (IEEE 830, 1998).

This document would be augmented with additional section specifying the detailed

security requirements.

Different activities of proposed Security Requirements Engineering framework which

consists of two main phases: (i) Security Requirements Elicitation, (ii) Security

Requirements Prioritization and Specification are discussed below in detail:

3.2.1 Security Requirements Elicitation

As shown in the Figure 3.2, activity of security requirements elicitation

consists of different sub- activities:

(i) identify the Stakeholders

(ii) Identify the functional Requirements

(iii) Identification of Vulnerable Points

(iv) Threat Identification and Evaluation

(v) Security Requirements Elicitation.

All these sub- activities are now discussed below in detail:

 Identify the Stakeholders: Stakeholders are those who are directly or indirectly

interacting with the system and using its services. Stakeholders of the system are

identified using Viewpoint (VP) approach (Kotonya & Sommerville, 1996), here

two class of actors are identified, direct and indirect actors. VP approach is chosen

as it clearly distinguishes the direct and indirect actors to avoid conflict arising

 66

because of different viewpoints. Direct actors are directly interacting/ using the

system services whereas indirect actors are involved in back-end operations, such

as development and maintenance team members. Here, our attention is only on the

direct actors because they are directly interacting with the system functionalities,

so require security. For instance, in the Web-Based Banking system, direct actors

are a customer, banker, and bank DBMS; indirect actors are administrator, vendor,

etc.

 Identify the Functional Requirements: Functional requirement represents the

true functionalities which stakeholder needs/ expect from the system. Therefore,

functional requirements for all direct actors are identified. With the identification

of functional requirements, different associated non-functional requirements and

assets are also identified. For example, functional requirement of direct stakeholder

for a customer in the Web-Based Banking system can be Registration, Login,

Deposit Money, Withdraw Money. Non-functional requirements are reliability,

performance and assets are customer login information, smart card information,

account information.

 Identification of Vulnerable Points: Vulnerability is the weakness in the system

environment, which may be exploited by an attacker to cause damage to system

assets (Uzunov, Falkner, & Fernandez, 2015) (Mayer, Heymans, & Matulevicius,

2007) (Stoneburner, Alice, & Feringa, 2002). Functional requirements give rise to

vulnerable points. Therefore, all the vulnerable points analogous to the functional

requirements of the system are identified. Vulnerable point identification consists

of following sub-activities:

 67

(i) Trace the Sequence of Events. Trace the sequence of events which occurs in

the execution of functionality, event trace is generated by drawing the

sequence diagram for identified functionality. Sequence diagram depicts the

interaction between the involved objects for a given functionality. A sample

sequence diagram for ‘Login’ functionality is shown in Figure 3.3. A sequence

diagram is enriched with additional information like assets used by the

functionality and note of any private and secret data exchange, which are

required for embedding security in the system.

Figure 3.3 Scenario using Sequence Diagram for ‘Login’ Functionality

(ii) Extract the Vulnerable Points. Vulnerable points are extracted from the

sequence trace generated in the previous activity. Points where input or output

is provided and communication between objects occurs are considered to be

vulnerable points for attack. Therefore, all such points are extracted for all

functional requirements, and vulnerabilities are mapped to identified

vulnerable points. Continuing our example, vulnerable point for above

functionality ‘Login’ are: (i) while sending the request (ii) while entering the

login details (iii) during the authentication. Mapped vulnerabilities to these

Assets Involved

 User Login Info

Fetching of Personal
Information (Private
Exchange)

 68

points are AAA, Insecure Interface, Remote Access, Communication

Encryption, Lack of weak encryption of archive and data in transit.

(iii) Map Assets to Vulnerable Points. An asset can be anything that has value to

the organization; it may be tangible (infrastructure) or intangible (customer

information, trust). Assets mapping is necessary because it is the target of

attackers and needs protection. So, all the identified assets are mapped to

different vulnerable points for further analysis.

 Threats Identification and Evaluation: Threats are circumstances that have

potential to cause harm to system assets. Threat occurs at vulnerable points to

cause damage to system assets. Threats identification and evaluation consists of

following sub-activities:

(i) Identify the Threats. Repository of potential threats similar to common

criteria (Common Criteria Implementation Board, 1999), CVE database

(Ozkan) is created after analyzing existing software systems. Sample

repository is shown in Table 3.1, column of table represents the vulnerabilities

and row represents the threats possible in the system. ‘X’ in the table shows

the occurrence of threat on given vulnerability. Threats to vulnerable points

are extracted from a predefined repository based on following parameters: the

actor’s functionality, type of data (private and secret) involved in

functionality, and type of functionality (read, write, read-write). The threat list

can be updated further if some new threat is identified or reported.

 69

Let’s take an example, as it can be seen form Table 3.1 on vulnerability

‘AAA’ following threats are possible: password cracking, impersonate,

disclose data, repudiate, data theft, password reuse, insider, MITM,

Operational Log Compromise, Security Log Compromise, Privilege Abuse,

Data Leakage, Management Interface Compromise. So, here for threat

extraction criteria is as follows:

o Functionality is ‘Login’

o Type of Data is ‘Secret’

o Type of Functionality is ‘read-write’

Based on these parameters threat extracted from repository is ‘Password

Cracking.’

(ii) Assign Threats Rating. Threat rating depicts the occurrence probability of

threat; it is the rough measure of how likely a threat would exploit the

vulnerabilities of the system to gain access to system assets. Threat rating is

calculated by checking number of vulnerabilities exploited by a threat in

Vulnerability/ Threat mapping table shown in Table 3.1. For instance Threat

Rating for threat ‘T.Password Cracking’ is ‘1’ as it exploits only

vulnerability ‘V. AAA’.

 70

Table 3.1 Vulnerabilities-Threats Mapping Table for web-based system

 Vulnerability

 Threats

1 2 3 4 5 6 7 8 9 10 11

V.AAA V.User

Provisionin

g

V.User De-

Provisioning

V.Remote

Access to

Manageme

nt Interface

V.Communicati

on Encryption

Vulnerabilities

V.Lack of

Weak

Encryption of

Archive and

Data in

Transit

V.Impossibili

ty of

Processing

Data in

encrypted

form

V.Poor Key

Manageme

nt

Procedures

V.Misconfi

guration

V.System/

OS

Vulnerabilit

ies

V.Lack of

Poor and

Untested

Business

Continuity

and Disaster

Recovery

Plan

1 T.Password Cracking X

2 T.Impersonate X X

3 T.Sniffing X

4 T.Social Engineer X X

5 T.Disclose Data X

6 T.Malicious code X X X

7 T.Repudiate X X X

8 T.Change Data X X X X X

9 T.Data Theft X X X X X

10 T.Password Reuse X

11 T.Insider X X

12 T.MITM X X X X

13 T.Spoofing X X

14 T.Network Issues X X X X X

15 T.DoS X X X

16 T.DDoS X X X

17 T.Sabotage

18 T.Operational Logs

Compromise

X X X X

19 T.Security Log Compromise X X X X

20 T.Data Deletion

21 T.Priviledge Abuse X X X X

22 T.Unauthorized Physical

Access

23 T.Natural Disaster X

24 T.Data Leakage X X X

25 T.Loss of Encryption Keys X X

26 T.Management Interface

Copmpromise

X X X

X

 71

Table 3.1 Continued

 Vulnerability

Threats

12 13 14 15 16 17 18 19 20 21 Threat

Rating V.Inadequate

Resource

Provisioning

and Investments

in

Infrastructures

V.Storage of

Data in

Multiple

Jurisdiction

and Lack of

Transparency

V.Lack of

Completeness

and

Transparency

in Terms of

Use

V.Lack of

Security

Awareness

V.Unclear

Roles and

Responsibilities

V.Lack

of

Forensic

Readines

s

V.Need-To-

Know

Principle

Not Applied

V.Inadequate

Physical

Security

Procedures

V.Lack of

Policy or Poor

Procedures for

Log Collection

and Retention

V.Inadequate/

Misconfigured

Filtering

Resources

1 T.Password Cracking 1

2 T.Impersonate 2

3 T.Sniffing X 2

4 T.Social Engineer X 3

5 T.Disclose Data 1

6 T.Malicious code 3

7 T.Repudiate X X X 6

8 T.Change Data 5

9 T.Data Theft 5

10 T.Password Reuse 1

11 T.Insider X X 4

12 T.MITM X 5

13 T.Spoofing X 3

14 T.Network Issues X 6

15 T.DoS X X X X 7

16 T.DDoS X X X X 7

17 T.Sabotage X X 2

18 T.Operational Logs

Compromise

 X X 6

19 T.Security Log Compromise X X 6

20 T.Data Deletion X 1

21 T.Priviledge Abuse X 5

22 T.Unauthorized Physical

Access

 X 1

23 T.Natural Disaster X 2

24 T.Data Leakage 3

25 T.Loss of Encryption Keys X 3

26 T.Management Interface

Copmpromise

X X X 7

 72

 Security Requirements Elicitation: Security Requirements (Firesmith,

Engineering Security Requirements, 2003) expresses the measures needed to

protect the assets from threats. Threats are mapped to security requirements listed

in section 1.6 on page number 12, through analysis and experience of requirement

engineers. For example, Security requirements to mitigate threat ‘Password

Cracking’ are ‘Identification’ and ‘Authentication.’

3.2.2 Security Requirements Prioritization and Specification

This phase has two main activities (a) Analysis of Security Requirements and (b)

Prioritization of Security Requirements.

Security requirements identified in the previous step are analyzed, prioritized and

specified to get a concrete set of important security requirements. During analysis

following sub activities are performed:

(i) All security requirements are checked for completeness and

consistency.

(ii) Similar requirements are grouped together.

(iii) Conflicting requirements are dealt carefully, and if any conflict is

found would be removed immediately.

Elicited security requirements are not of equal importance for an organization because

of following reasons:

(a) Organization has time and budget constraint

(b) One algorithm is not sufficient to implement all the security requirements.

Therefore, prioritization of security requirements is done, and high priority security

requirements are implemented/ handled first. Also, prioritization would help the

 73

developer/ user in knowing which security requirements are more important and need

immediate focus. Following steps are followed in prioritization of security

requirements:

 Calculate Risk Value for each Threat. Risk shows the system exposure to

harm. The risk value is calculated for all identified threats using equation (3.1)

provided by OWASP (OWASP, 2004).

Risk = Threat Rating * Impact (3.1)

In equation (3.1), Threat rating depicts the occurrence probability of threat

whose value is taken directly from the previous step. The impact is the

consequence of a successful exploit of the vulnerable point by threat. So, impact

value is calculated by analyzing the assets affected by the occurrence of threat.

Assets are the possession which needs to be protected from threats. We have

associated a value with each assets showing its importance known as asset rating.

Value for asset will vary from one application to another, values are assigned

based on the importance of asset for the stakeholders by taking their view.

Therefore, the impact would be the summation of rating of affected assets.

Calculation of asset rating is explained below:

 Calculation of Asset Rating. Evaluation of asset is done to know its

importance for the organization and protection of assets is the aim of our

research. In most of the risk analysis methods such as CRAMM (CRAMM,

2005), CORAS (Braberl, Hogganvik, Lund, Stølen, & Vraalsen, 2007) assets

are assigned value based on its importance for the organization. But, we

conjecture that if asset values are allocated by taking the view of each

concerned or involved stakeholders, it will be more accurate. Stakeholders

 74

may need different assets, and different stakeholder can use a single asset.

Therefore, M: N mapping exist between the asset and stakeholder.

 Rate the Assets. Each direct stakeholder assigns a value on the scale of (0-

10) to the involved assets. Values are assigned based on the asset importance

and its criticality for the user. Scale to assign value is shown in Table 3.2.

Hence, asset value assigned are similar to existing proposals but they are

more accurate as they have been validated by multiple actors. For illustration

consider an asset ‘User Login Information’ which is rated by the

Stakeholder's Customer as (8), Bank Employee as (6) and Bank DBMS as

(6).

 Table 3.2 Criteria for Assigning Asset Rating

Criticality Asset Rating

Critical 9-10

Very Important 6-8

Important 4-5

Normal 2-3

No Influence 0

 Calculate Final Assets Rating. Final asset value is calculated by analyzing

the view of involved stakeholders. It would give more accurate values for

assets as they have been validated by multiple actors. For example, asset

‘User Login Information’ value comes to be ‘6’ (calculated by taking an

average of three values specified in above step).

 Calculate Security Requirements Priority. The security requirements

priority is computed by using the security requirements value. Security

Requirements value is computed by adding the risk values of threats mitigated

 75

by the corresponding security requirements. Security requirements value is

computed as:

Case1: Simple Value – If security requirement is mitigating the single threat.

Then, its value is simply the risk value of threat mitigated.

Case2: Complex Value – If the security requirement is mitigating more than

one threat then the security requirement value will be computed by adding the

risk values of corresponding threats mitigated.

Then, based on security requirements value priority of security requirements is

decided, higher the security requirement value higher is the priority. After this

finalized security requirement are documented for further processing.

 Security Requirements Specification. After the elicitation, analysis, and

prioritization of Security Requirements, specification of security requirements is

done by incorporating one more section after functional requirements. Existing

SRS document prescribed by IEEE (IEEE 830, 1998) includes the Security

under Specific Requirements, where they are specifying the factors to protect

the software from accidental or malicious access, use, modification, destruction,

or disclosure. As per IEEE standard, the Specific requirements includes:

a) Utilize certain cryptographical techniques;  

b) Keep specific log or history of data sets;  

c) Assign certain functions to different modules;  

d) Restrict communications between some areas of the program;  

e) Check data integrity for critical variables.  

As mentioned in point (a) above specifying cryptographical algorithm here in

requirements engineering phase may constrain the system. As requirements

engineers are good in specifying the requirements not the design algorithm. So,

 76

specifying the algorithm here is not the good choice. As selection of algorithm

is done by design engineer based on the design constraints, algorithm specified

here in this phase may not be the optimal algorithm for implementation.

Proposed SRS format is compared with existing IEEE SRS format in Table 3.3.

Table 3.3 Comparison of SRS

IEEE 830 SRS Format Improved SRS Format

1. Introduction 

1.1 Purpose 

1.2 Scope 

1.3 Definitions, acronyms, and

abbreviations

1.4 References

1.5 Overview 

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

3.1 External interfaces

3.2 Functions

3.3 Performance requirements

3.4 Logical database requirements

3.5 Design constraints

3.5.1 Standards compliance

3.6 Software system attributes

3.6.1 Reliability

3.6.2 Availability

3.6.3 Security

3.6.4 Maintainability

3.6.5 Portability

1. Introduction 

1.1 Purpose 

1.2 Scope 

1.3 Definitions, acronyms, and

abbreviations

1.4 References

1.5 Overview 

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

3.1 External interfaces

3.2 Functions

3.3 Performance requirements

3.4 Logical database requirements

3.5 Design constraints

3.5.1 Standards compliance

3.6 Software system attributes

3.6.1 Reliability

3.6.2 Availability

3.6.3 Maintainability

3.6.4 Portability

 3.7 Security Requirements

 3.7.1 Vulnerabilities

 3.7.2 Threats

 3.7.3 Assets

 3.7.4 Risk

3.3 Security Design Engineering

This phase deals with designing a software structure that realizes the specified

security requirements. Security measures are chosen here, to implement the identified

 77

security requirements to meet the desired/ required security level in the system.

Security mechanisms are the popular algorithm such as cryptography algorithms,

physical security mechanisms, etc. which are required to implement security services.

Bad decisions made during the design phase can lead to design flaws that can leave

the system vulnerable to security threats. Analysis of security mechanisms which

exist to implement the security services is done on various domain constraints such as

computational and communicational constraints, and threats they mitigate. Based on

the analysis, most suitable algorithms for implementing security in the system are

identified. Activities of this phase are depicted in Figure 3.4 and explained as follows:

Figure 3.4. Security Design Engineering Process

 Mapping of Security Requirements with Security Services. Prioritized

security requirements are mapped to the security services. Key security services

are data confidentiality, data integrity, authentication, non-repudiation and

access control (Forouzan, 2007). Mapping would help in the selection of

suitable cryptographic technique pertaining to a particular class of security

service.

 SECURITY DESIGN ENGINEERING

Prioritized

Security

Requirement

Security

Services

Mapped-to
Analysis

Selected

Algorithm

Domain

Constraints

Threat

Match

 78

 Security Design Analysis. Many techniques are available for the

implementation of security services, so comprehensive evaluation of each is

required for the selection of efficient algorithm. Analysis of algorithm depend on

following:

(i) Threat Match. Security algorithms are analyzed based on the threats

they mitigate. To achieve this goal, a repository is created by studying and

analyzing different cryptography algorithms (Forouzan, 2008) (Stallings,

2006). The repository will contain the detail of each algorithm regarding

threat it mitigates and other threats. A sample repository for password

based authentication in a wireless environment is shown in Table 3.4. So,

from here algorithms with highest (maximum) mitigated threat match are

selected.

Table 3.4 Repository of Algorithm

Threats

Suitable Cryptography Algorithm

Asymmetric

Algorithm

Symmetric

Algorithm

Hashing

Algorithm
Signature Algorithm

RSA ECC HECC AES DES
Triple

DES
MD5 SHA1

 RSA+

 DSA
ECDSA HECDSA

DoS Y Y Y N N N N N N N N

Impersonate N Y Y N N N Y Y Y N N

Change Data N Y Y N N N Y Y Y Y Y

Repudiate N N N N N N N N Y Y Y

Password

Cracking
N Y Y N N N Y Y Y Y Y

Spoofing N Y Y N N N Y Y Y N N

Malicious

Code
Y Y Y N N N Y Y N N N

Data Theft N Y Y N N N Y Y Y Y Y

Disclose

Data
N Y Y N N N Y Y Y Y Y

Data

Deletion
Y Y Y N N N Y Y N N N

Sniffing N Y Y N Y Y Y Y Y Y Y

Impact 3 10 10 0 2 2 12 12 11 9 9

 79

Applicability of the threat/ attacks on an algorithm shows that whether the

algorithm resists the attack or not. An entry ‘Y’ in Table 3.4 means that

algorithm can resist the attack and ‘N’ entry shows algorithm is unable to

resist the attack. Total Impact of each algorithm is calculated, which is the

sum of ‘Y’ occurrences for each algorithm. The value of Total Impact

would help in the identification of algorithms with highest threat match

(high impact value). Similarly, we have calculated the impact of all the

specified algorithms for authentication scheme.

 Domain Constraints. After threat analysis, algorithms with highest threat

match are evaluated based on domain constraints. Domain constraints

depend on implementation environment like wireless, mobile, mobile ad-

hoc. Based on implementation environment two type of constraints are

considered: (a) communicational constraints which are fundamental

requirements for the system such as bandwidth, response time, throughput,

power, etc. and (b) computational constraints which are related to resources

involved in the computation such as memory, encryption speed, energy, etc.

Both communicational and computational constraints are need to be

considered while choosing the algorithm. Consideration of communication

constraint in selection of algorithm and other efficiency parameters are

supported in literature (Hankerson, Hernandez, & Meneze, 2000) (Maurice,

Heemels, R. Teel, Wouw, & Dragan, 2010). For example, some algorithm

need more power and bandwidth for its processing as compared to other,

such as RSA require more power compared to ECC. Also change of

environment causes change in communicational parameter values, such as

 80

sensor network has limited power and processing capability while the web-

based system does not have any such constraint. Consideration of

computational parameters is done to check the efficiency of selected

algorithm which are impacted by communicational constraints. In short we

can say that communicational parameters are the base of computational

parameters. The computational and communication parameters are further

categorized based on the type of device (low-end or high-end).

Categorization of domain constraints is shown in Figure 3.5.

As these parameters are very critical for effective working of any security

techniques. Every algorithm does not work in its optimal capacity under

constrained environment. Such as Low-end devices have Power,

Complexity, and Memory constraints whereas High-end devices do not

have such constraint. Therefore, these parameters require careful

consideration.

Figure 3.5 Categorization of Domain Constraints

SELECT ENVIRONMENT

(wireless, mobile, mobile ad-hoc, etc.)

CONSTRAINTS

 Communication Computation

(channel capacity, (memory,

bandwidth, encryption

throughput, etc.) speed, etc.)

TYPE OF DEVICE

(Low- end or High- end)

DOMAIN CONSTRAINTS

 81

 Selection of Algorithm: Based on the results from previous activities,

suitable security algorithms are selected for implementation. As all threats

cannot be mitigated by a single technique alone so, it needs to be used in

conjunction with other techniques. After that, a design template is generated,

the template would contain all the design phase related information like

threats mitigated, constraints accounted for selection of algorithm, etc.

3.4 Security Testing

The process of security testing starts once the prioritized security requirements are

implemented using suggested security algorithms. Security testing is the process to

evaluate chosen security algorithms for implementing the prioritized security

requirements. For the purpose of assessment, a metric (Security Index) is calculated

which estimates the gap left in security. The metric value helps the software

developer in deciding whether an enhancement or revision in the algorithm is

required. Finally, a test report that contains all related information about security

activities is generated. Proposed process of Security Testing is shown in Figure 3.6,

and various activities of the process are as follows:

Figure 3.6 Process of Security Testing

 Generate the Test Scenario. Test scenarios are created from the sequence

diagram drawn during the vulnerable point identification process. The test scenario

is produced for all the functionality. It depicts the possible Threats on different

Generate

the Test

Scenario

Check

Threat

Mitigation

Calculate

Security

Index

Generate

Test

Report

 82

Vulnerable Points with assets affected and corresponding risk values. Continuing

our example a sample test scenario for Login is shown in Figure 3.7.

Figure 3.7 Test Scenario for ‘Login’ functionality

 Check Threat Mitigation. Threats identified for functionality is validated for its

mitigation from the threat analysis of deployed cryptography algorithms. Here, all

the remaining threats are considered as live/ active threats. Live threats analogous

to functionality are assembled by analyzing the scenario diagram. A Vulnerability

Metric (Vi) is calculated using equation (3.2) for each functionality.

(3.2)

 Calculate the Security Index. Security index shows the gap in the security of the

system. Gap in security is identified or calculated based on how many threats are

mitigated and how many are live after the application of security algorithm.

Security index is simply the ratio of summation of risk values of live threats to the

total risk value of threats corresponding to functionality. Hence, mathematically

equation to calculate Security Index is depicted by the proposed equation (3.3).

Vulnerable

Points for

Security Breach

List of Asset Involved

And List of Potential

Threats (Risk Value)

are mentioned at each

vulnerable point

Credentials

Customer Data

T.Impersonate (4.22)

Credentials

T.Password Cracking (2.74)

 83

Where Vi is the vulnerability metric of live threats for the functionality Fi

 Ri is the total risk value of functionality Fi

 n is a number of Functionality considered.

The value of security index will act as a quality parameter showing the threat

proneness of the system. Lower is the security index value higher will be the

security and vice versa. Hence, the Security Index value indicates the

effectiveness of chosen security algorithms. Next, the security index is compared

with the Reference Value. The reference value is defined by the administrator

based on the domain of application, level of CIA required, criticality of the

system. Its value may change from one system to other based on its domain

constraints.

 If (SI ≤ Reference)

Then the system is in a safe state.

 Otherwise, the system is in an unsafe state.

Unsafe state means design decision need to be modified, which can be handled by:

Case 1: Replace the existing algorithm with the new algorithm to mitigate the

live threats.

Case 2: Choose a new algorithm and implement it along with the existing

algorithm to handle the live threats.

 84

SI value is said to be high or low based on the rating of threats which are alive

inspite of security algorithm adopted. For example, (a) if threat ‘Password

Cracking’ is alive and its risk value is ‘High’, then SI value is High. (b) if threat

‘Password Cracking’ is alive and its risk value is ‘Low’, then SI value is Low.

 Generate Test Report. The test report is generated for the system under test

representing the summary of testing activities. The template will help the developer

to decide further activities as it contains all the security related information. The

template has fields like Name of Functionality under Test, Security Algorithms

Applied, Threats Identified and a measure of Risk, Threats mitigated and Threats

live, Result and Remarks. A sample test report for the system under test is shown

in Figure 3.8.

System under Test

Security

Algorithms

Applied

Efficient algorithms identified and chosen during

security design engineering phase for implementation.

Threats Identified

and value of Risk

List of threats at various vulnerable points with their

calculated risk values.

Threats Mitigated List of threats mitigated

Threats Live List of threats left after application of security

algorithms

Result The value of Security Index

Remarks Any suggestion or recommendation required for

enhancing the level of security in the system

Figure 3.8 Sample Test Report

3.5 Case Study: Content Management System

In this section, the proposed framework is applied to a case study of Content

Management System for a detailed explanation of our proposed framework. A

computer application which provides the platform for the conception and adjustment

of digital content is known as Content Management System (CMS). CMS specifies

 85

various features such as Web-based publishing, format management, history editing

and version control, indexing, search, and retrieval. Various CMS are available such

as Joomla, Drupal, Wordpress and others. Now each phase of our proposal is

discussed in detail for CMS:

3.5.1 Security Requirements Engineering

 Security Requirements Elicitation

 Identify the Stakeholder. Direct stakeholders for CMS are Vendor, System

Developer, Author, Site User.

 Vendor. Vendors are the CMS providers such as Wordpress, Joomla. They

are providing the platform for development and receive payment

for services provided.

 System Developer. System developers are those who are making the

website, blog, etc. using the services provided by vendor. System

developers are paying to vendor for the services used.

 Author. Authors are those who are creating, posting their blog on website

and paying for it.

 Viewer/ Site User. Site user is the one who is just using the provided

features or reading, commenting, and liking the blog posts.

 Identify the Functional Requirements. Different functional requirements, non-

functional requirements, and associated assets are identified for all direct actors.

Identified information related to actors are listed in Table 3.5.

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Search_algorithm

 86

Table 3.5 Functional and Non-Functional Requirements for CMS

Stakeholders Functional

Requirements

Non-functional

Requirements

Assets

Vendor 1. Login/Logout

2. Update Profile

3. Change Account

Password

4. Manage

Developers

5. Manage

Applications

6. Manage Content

7. Manage Content

Category

8. Maintain Database

9. Transaction of

Money

1. Reliability

2. Correctness

3. Robustness

4. Scalable

5. Integrity

6. Response time

7. Execution Time

 Login Details

 Personal

Information

 Developers

Information

 Application Details

 Content Details

 Payment

Information

 IT Infrastructure

System Developer 1. Login/Logout

2. Update Profile

3. Change Account

Password

4. Manage Comment

5. Manage Blog

6. Manage Web Page

7. Manage Authors

8. Manage Plugins

9. Transaction of

money

1. Correctness

2. Response Time

3. Robustness

4. Scalable

5. Response Time

i. Login Details

ii.Personal

Information

iii. Authors and User

Information

iv. Application Details

v. Web Content

vi. Payment

Information

vii. IT Infrastructure

Author 1. Login/Logout

2. Update Profile

3. Change Account

Password

4. Create Content

5. Publish Content

6. Manage Comments

7. Transaction of

Money

1. Reliability

2. Response Time

3. Integrity

i. Login Details

ii. Personal

Information

iii. User Information

iv. Payment

Information

v. IT Infrastructure

Viewer/Site User 1. Login/Logout

2. Update Profile

3. Change Account

Password

4. View Content

5. Comment on

Content

6. Like Content

1. Correctness

2. Response Time

3. Robustness

4. Response Time

1. Login Details

2. Viewer Details

3. Application

Details

4. IT Infrastructure

 87

 Identification of Vulnerable Points: Vulnerable points are identified for all

functional requirements executed by direct actors specified in the previous

activity. Identified vulnerabilities are depicted in Table 3.6.

Table 3.6 Vulnerabilities, Threats, Affected Assets and Security Requirements of CMS

SNo Functionality Sequence

Trace

Vulnerabilities Threats Affected Assets Security

Requirement

Vendor

1 Login/

Logout

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

Verification

While

Retrieval

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

1. Password

Cracking

Login Details (1) Identification

Authentication

2, 3 Update

Profile,

Change

Account

Password

1. Change Data

2. Data Theft

3. Impersonate

4. Deny Service

5. Malicious

Code

6. Sniffing

Login Details (1,2,3,6)

Personal Information

(1,2,3,5,6)

IT Infrastructure (3,4,5)

Authentication

Authorization

Integrity

Immunity

Intrusion

Detection

Privacy

4 Manage

Developers

While

Opening

Dashboard

While

Updating/

Editing

Information

While

Verification

During Data

Transmission

While

Retrieval

1. AAA

2. User Provisioning

3. User De-

provisioning

4. Remote Access to

management

Interface

5. Communication

Encryption

Vulnerabilities

6. Lack of weak

encryption of

archive and data

in transit

7. Lack of Security

Awareness

8. Lack of Policy or

Poor Procedures

1. Deny Service

2. Disclose Data

3. Repudiate

4. Data Theft

5. Social

Engineer

6. Privilege

Abuse

7. Management

Interface

Compromise

8. Sniffing

9. Change Data

Developer Information

(2,3,4,5,6,8,9)

IT Infrastructure (1,6,7)

Authentication

Authorization

Intrusion

Detection

Immunity

Non-

Repudiation

Physical

Protection

Identification

Privacy

5 Manage

Applications

1. Deny Service

2. Disclose Data

3. Repudiate

4. Data Theft

Application Specific

Data (1,2,3,4,5,6,7)

IT Infrastructure (1,5)

Authentication

Authorization

Identification

Physical

 88

During

Information

Processing

While Storing

Information

While Serving

to Enquiry

for Log Collection

and Retention

9. Audit or

Certification Not

Available to

Customer

5. Management

Interface

Compromise

6. Sniffing

7. Change Data

Protection

Intrusion

Detection

Immunity

Non-

Repudiation

6, 7 Manage

Content,

Manage

Content

Category

1. Deny Service

2. Impersonate

3. Insider

4. Operational

Log

Compromise

5. Data Deletion

6. Disclose Data

7. Repudiate

8. Data Theft

9. Privilege

Abuse

10. Sniffing

11. Malicious

Code

Content

(2,3,5,6,7,8,9,10,11)

IT Infrastructure

(1,4,9,11)

Authentication

Authorization

Privacy

Intrusion

Detection

Immunity

Non-

Repudiation

Integrity

8 Currency

Transaction

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

Verification

While

Retrieval

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

6. Lack of Security

Awareness

7. Lack of Policy or

Poor Procedures

for Log Collection

and Retention

1. Password

Cracking

2. Malicious

Code

3. Disclose Data

4. Sniffing

5. Spoofing

6. Impersonate

7. Repudiate

Payment Details

(2,3,4,5,6,7)

Login Details (1,3,4,5,6)

IT Infrastructure (2)

Identification

Authentication

Authorization

Intrusion

Detection

Privacy

Immunity

Non-

Repudiation

System Developer

1 Login/

Logout

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

6. Lack of Security

Awareness

1. Password

Cracking

Login Details (1)

Identification

Authentication

2, 3 Update

Profile,

Change

Account

Password

1. Change

Data

2. Impersonate

3. Deny Service

4. Malicious

Code

5. Sniffing

6. Data Theft

Login Details (1,2,5,6)

Personal Information

(1,2,5,6)

IT Infrastructure (2,3,4)

Authentication

Authorization

Immunity

Intrusion

Detection

Privacy

 89

Information

While

Verification

While

Retrieval

7. Lack of Policy or

Poor Procedures for

Log Collection and

Retention

4 Manage

Authors

While

Opening

Dashboard

While

Updating/

Editing

Information

While

Verification

During Data

Transmission

While

Retrieval

During

Information

Processing

While Storing

Information

While Serving

to Enquiry

1. AAA

2. Remote Access to

Management

Interface

3. Communication

Encryption

Vulnerabilities

4. Lack of Standard

Technologies and

Solutions

5. Unclear Roles and

Responsibility

6. Poor Enforcement

of Role Definition

1. Deny Service

2. Disclose Data

3. Repudiate

4. Data Theft

5. Social

Engineer

6. Privilege

Abuse

7. Management

Interface

Compromise

8. Sniffing

9. Change Data

Developer Information

(2,3,4,5,6,7,8,9)

IT Infrastructure

(1,4,6,7)

Authentication

Authorization

Identification

Physical

Protection

Privacy

Intrusion

Detection

Immunity

Non-

Repudiation

5,6,

7,8

Manage

Comment,

Manage Blog,

Manage Web

Page,

Manage

Plugins

1. Impersonate

2. Repudiate

3. Data Theft

4. Data Deletion

5. Privilege

Abuse

6. Malicious

Code

IT Infrastructure (5,6)

Content (3,4,5)

Personal Information

(6)

Authentication

Non-

Repudiation

Authorization

Integrity

Intrusion

Detection

Immunity

9 Currency

Transaction

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

Verification

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

6. Lack of Security

Awareness

7. Lack of Policy or

Poor Procedures

for Log Collection

and Retention

1. Password

Cracking

2. Malicious

Code

3. Disclose Data

4. Sniffing

5. Spoofing

6. Impersonate

7. Repudiate

Payment Details

(2,3,4,5,6,7)

Login Details (1,3,4,5,6)

Identification

Authentication

Authorization

Intrusion

Detection

Immunity

Privacy

Non-

Repudiation

 90

While

Retrieval

Author

1 Login/

Logout

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

Verification

While

Retrieval

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

6. Lack of Security

Awareness

1. Password

Cracking

Login Details (1)

Identification

Authentication

2, 3 Update

Profile,

Change

Account

Password

1. Impersonate

2. Deny Service

3. Malicious

Code

4. Change Data

5. Sniffing

Login Details (1,2,5)

Personal Information

(1,3,4,5)

IT Infrastructure (2)

Authentication

Authorization

Immunity

Intrusion

Detection

Privacy

4,5,

6

Create

Content,

Publish

Content,

Manage

Comments

While creation

While

communicatio

n

While posting

data on server

Validation on

server

While

updating

While deletion

1. AAA

2. Inadequate

Resource

Provisioning and

Investment in

Infrastructure

3. Lack of Security

Awareness

4. Inadequate Physical

Security

Procedures

1. Impersonate

2. Repudiate

3. Data Theft

4. Malicious

Code

5. Change Data

IT Infrastructure (4)

Content (1,2,3,5)

Personal Information

(1,2,3,5)

Authentication

Authorization

Non-

Repudiation

Immunity

Intrusion

Detection

7 Currency

Transaction

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of weak

encryption of

archive and data in

transit

6. Lack of Security

Awareness

7. Lack of Policy or

Poor Procedures

for Log Collection

1. Password

Cracking

2. Malicious

Code

3. Disclose Data

4. Sniffing

5. Spoofing

6. Impersonate

7. Repudiate

Payment Details

(2,3,4,5,6,7)

Login Details (1,3,5,6)

Identification

Authentication

Authorization

Intrusion

Detection

Immunity

Privacy

Integrity

Non-

Repudiate

 91

Verification

While

Retrieval

and Retention

Viewer/ Site User

1 Login/

Logout

While

Entering

Details for

Registration/

Login

During Data

Transmission

While

Updating

Information

While

Verification

While

Retrieval

1. AAA

2. Insecure Interface

3. Remote Access

4. Communication

Encryption

5. Lack of Security

Awareness

1. Password

Cracking

Login Details (1)

Identification

Authentication

2, 3 Update

Profile,

Change

Account

Password

1. Impersonate

2. Deny Service

3. Malicious

Code

4. Sniffing

Login Details (1,3)

Personal Information

(1,3)

IT Infrastructure (2)

Authentication

Authorization

Immunity

Intrusion

Detection

Privacy

4,5,6 View

Content,

Like Content,

Comment on

Content

While opening

the content

While reading

the content

While

submitting the

like

During

transmission

While entering

the comment

While

transmission

While saving

1. AAA

2. Lack of Security

Awareness

3. Inadequate Physical

Security

Procedures

4. Remote Access to

management

Interface

5. Lack of Security

Awareness

6. Communication

Encryption

Vulnerabilities

1. Deny Service

2. Repudiate

3. Impersonate

4. Sniffing

5. Data Theft

6. Malicious

Code

IT Infrastructure (1,6)

Content (2,3,4,5,6)

Authentication

Authorization

Non-

Repudiation

Privacy

Intrusion

Detection

Immunity

 92

 Threats Identification and Evaluation. Threats are identified for various

vulnerable points, are shown in Table 3.6. After that, threats are evaluated, and

Threat Rating is shown in Table 3.7. Threat Rating is calculated by analyzing the

occurrence of a given threat at different vulnerable points.

 Security Requirements Elicitation: Security requirements are elicited to

mitigate threats based on the knowledge of requirements engineer. Elicited

security requirements for CMS are shown in Table 3.6.

Table 3.7 Threat and its Rating

Threats Threat Rating

Deny Service 7

Password Cracking 1

Impersonate 2

Sniffing 2

Malicious Code 3

Disclose Data 1

Spoofing 3

Data Theft 5

Repudiate 6

Social Engineer 3

Privilege Abuse 5

Management Interface Compromise 7

Insider 4

Operational Log Compromise 6

Data Deletion 1

Change Data 5

 93

3.5.2 Security Requirements Prioritization and Specification

 Calculate Risk Value for each Threat. Risk values for identified threats are

calculated using equation (3.1), calculated risk value for threats are shown in

Table 3.9.

 Calculation of Asset Rating. Calculation of assets rating require an evaluation of

involved assets. Evaluation of threats are shown in Table 3.8.

Table 3.8 Assets Evaluation for Content Management System

Asset View of involved Stakeholders Asset

Value
Vendor System Developer Author Site User

Login Details 9 7 7 3 7

Personal

Information

6 6 6 6 6

Payment Details 9 8 8 4 8

Developers

Information

6 9 4 4 6

Application

Details

7 8 8 5 7

Content Details 8 8 7 5 7

IT Infrastructure 7 6 6 5 6

 Security Requirements Priority. The priority value of each security

requirement is shown in Table 3.9. First, the security requirements values are

calculated which is the summation of risk value of threats mitigated by security

requirements. Summation of security requirements value is done by considering

the cases mentioned in section 3.2.2. Then, based on security requirements value,

priority of security requirements are decided. Higher the security requirements

value is higher is the priority.

Prioritized security requirements are shown in Table 3.9.

 94

Table 3.9 Risk Calculation and Security Requirements Prioritization

Security

Requirements

Threats Threat

Rating

Impact Risk Security

Requirements

Value

Priority

Identification Password Cracking 1 7 7 112 3

Social Engineer 3 6 18

Management

Interface

Compromise

7 6 42

Spoofing 3 15 45

Authentication Disclose Data 1 15 15 199 1

Impersonate 2 15 30

Deny Service 7 6 42

Password Cracking 1 7 7

Social Engineer 3 6 18

Spoofing 3 15 45

Management

Interface

Compromise

7 6 42

Authorization Deny Service 7 6 42 164 2

Disclose Data 1 15 15

Data Theft 5 7 35

Data Deletion 1 7 7

Privilege Abuse 5 13 65

Integrity Data Deletion 1 7 7 7 8

Intrusion

Detection

Sniffing 2 7 14 53 4

Malicious Code 3 13 39

Privacy Sniffing 2 7 14 50 5

Operational Log

Compromise

6 6 36

Immunity Malicious Code 3 13 39 39 7

Physical

Protection

Management

Interface

Compromise

7 6 42 42 6

Non Repudiation Repudiate 6 7 42 42 6

3.5.3 Security Design Engineering

 Mapping of Security Requirements with Security Services. Mapping of

security requirements to security services is shown in Table 3.10 to enable the

start of security design engineering phase. Possible security algorithm to

implement each security service is also mentioned in Table 3.10.

 95

Table 3.10 Mapping of Security Requirements to Security Services

Security

services

Security

requirement Possible Security Algorithms

Confidentiality

Privacy
Cryptography Techniques, Two- Factor Authentication,

Multi- factor Authentication

Immunity

Authentication

Identification

Integrity Integrity
Physical Protection Mechanism, Need-to-know

Principle Enforcement, RnR Clarity

Non-

Repudiation
Non-repudiation

Digital Signature, Notarization

Access Control
Intrusion Detection

Access Control Mechanism
Authorization

 Security Design Analysis. To achieve the goal of this activity Repository of

threat for cryptographic algorithms is maintained. Threat analysis of algorithms

for password based authentication in a wireless environment is shown in

Table 3.11, from this repository algorithm with maximum threats match is

selected for implementation.

Applicability of the attacks on an algorithm shows that whether the algorithm

resists the attack or not. An entry ‘Y’ in Table 3.11 means that algorithm can

resist the attack and ‘N’ entry shows algorithm is unable to resist the attack.

Total Impact of each algorithm is calculated, which is the sum of ‘Y’

occurrences for each algorithm. The value of Total Impact would help in the

identification of algorithms with highest threat match (high impact value).

Similarly, we have calculated the impact of all the specified algorithms for

authentication scheme.

 96

Table 3.11 Threats Analysis Repository

Threats

Suitable Cryptography Algorithm

Asymmetric

Algorithm

Symmetric

Algorithm

Hashing

Algorithm
Signature Algorithm

RSA ECC HECC AES DES
Triple

DES
MD5 SHA1

 RSA+

 DSA
ECDSA HECDSA

DoS Y Y Y N N N N N N N N

Impersonate N Y Y N N N Y Y Y N N

Change Data N Y Y N N N Y Y Y Y Y

Repudiate N N N N N N N N Y Y Y

Password

Cracking
N Y Y N N N Y Y Y Y Y

Spoofing N Y Y N N N Y Y Y N N

Malicious

Code
Y Y Y N N N Y Y N N N

Data Theft N Y Y N N N Y Y Y Y Y

Disclose

Data
N Y Y N N N Y Y Y Y Y

Replay

attacks
N Y Y N Y Y Y Y Y Y Y

Data

Deletion
Y Y Y N N N Y Y N N N

Password

Reuse
Y Y Y N N N Y Y Y Y Y

Sniffing N Y Y N Y Y Y Y Y Y Y

Impact 4 13 13 0 2 2 12 12 11 9 9

 Domain Constraints. Evaluation of domain parameter is shown in Table 3.12.

Here, the environment is considered to be wireless, and devices are high end.

 Selection of Algorithm. Based on above steps ECC is suggested for

implementation among the available algorithms ECC, HECC, MD5, and SHA1.

As MD5 and SHA1 are not appropriate for providing authentication. HECC is

more complex and requires more computation time under given constraints as

compared to ECC. Hence, ECC is suggested for Content Management System.

Finally, the design template is generated, as shown in Table 3.13.

 97

Table 3.12 Domain Constraint Analysis

Domain Attributes Priority (Low,

Medium, High)

Bandwidth Medium

Response Time Medium

Throughput High

Power Low

Memory High

Encryption Speed High

Energy High

Power Consumption Low

Network Availability Medium

OS Independence High

Compatibility High

Table 3.13 Design Template

Design Template

Security Mechanism Threats Mitigated

ECC Sniffing

DoS

Impersonate

Change Data

Password Cracking

Spoofing

Malicious Code

Data Theft

Disclose Data

Two Factor Authentication/

Multi-Factor Authentication

Unauthorized Access, Insider, Social

Engineer

Physical Protection Mechanisms Unauthorized Physical Access, Natural

Disaster (to some extent)

Need-to-know Principle

Enforcement

Insider, Social Engineer

Roles and Responsibility (RnR)

Clarity

Privilege Abuse, Insider, Repudiate

Code Review

Employ Secure Programming

Overflow

Memory Corruption

Bug

Malicious Code

Analysis. Currently, the system is using password based authentication

scheme which is vulnerable to password cracking and Change Data attacks.

Here, our framework suggests public key cryptography scheme, Elliptic Curve

 98

Cryptography (ECC) for implementation based on domain constraints. As

content management system uses high-end devices where the security is the

ultimate concern. In such cases, public key techniques are preferable for its

small key size and high security. In this environment, ECC is one of the best

public key technique for its small key size and high security for password

based authentication.

3.5.4 Security Testing

 Check Threat Mitigation. Only threat ‘Repudiate’ is left unmitigated. Hence,

the Vulnerability Metric (Vi) value is calculated using equation (3.2) specified

in section 3.4. The value of V would be for live threat ‘Repudiate’:

V = 115

 Calculate the Security Index. SI value is calculated using equation (3.3)

specified in Section 3.3.

SI = (115/ 1043) * 100 = 11.02

As the value of SI is 11% approximately which is high because ‘Repudiate’ is a

high-risk threat. So to remove repudiate threat system need to incorporate a

Digital Signature algorithm in the system. Hence, with Asymmetric Algorithm,

‘ECC’ system need to implement the Signature algorithm for complete

protection of system from potential threats.

 Generate Test Report. Test report for Content Management System is shown

in Figure 3.9.

 99

Content Management System

Security

Algorithms

Applied

ECC

Threats Identified

and measure of

Risk

Sniffing, DoS, Impersonate, Change Data, Password

Cracking, Spoofing, Malicious Code, Data Theft,

Disclose Data, Repudiate

Threats Mitigated Sniffing, DoS, Impersonate, Change Data, Password

Cracking, Spoofing, Malicious Code, Data Theft,

Disclose Data

Threats Live Repudiate

Result SI value is 11% (approx.)

Remarks Need to implement the Signature algorithm for

complete protection of system

Figure 3.9 Test Report for Content Management System

3.6 Case Study of Open Source Software: Wordpress

Various CMS are available in the market such as Joomla, Drupal, Wordpress and

others. But here for further explanation we have chosen Wordpress because it is the

most widely used CMS by websites as reported in (W3Techs). According to the

sources approximately 28% of websites are developed using it (Bate, 2017).

Wordpress has evolved in the year 2003 with its initial version 0.70. Further, it has

launched updated versions to incorporate new functionalities of the modern world

along with the various patches for the reported security vulnerabilities. Since the

inception of wordpress many vulnerabilities have been reported by the researchers

working on it, which are then fixed by wordpress team. The count of vulnerabilities

over the year for wordpress (CVE, 2004) is depicted in the Figure 3.10.

We have developed a website using wordpress version 2.1.5 for mobile repair shop.

Some screenshots of website are shown in Figure 3.11- 3.17. Various software’s are

available of vulnerability scanning such as Nexpose, Acunetix, etc. but here we are

 100

using Acunetix. Scan result window is shown in Figure 3.18. Vulnerabilities found by

scanning our developed website are shown in Table 3.14.

Figure 3.10 Vulnerabilities over the year for Wordpress

Figure 3.11 Main Page of showing Dashboard

 101

Figure 3.12 Theme Purchase for Repair on Website

Figure 3.13 Showing the price information for different users

 102

Figure 3.14 Showing Services provided by Website

Figure 3.15 Another screen of website

 103

Figure 3.16 Screen Showing the Items available with its price

Figure 3.17 Checkout Screen

 104

Figure 3.18 Acunetix Scan Result Window

We have made a comparison of threats identified using our approach with the threats

possible on previous versions of wordpress, threats reported by CVE for wordpress

and threats present in our developed website using Acunetix, as shown in Table 3.14.

it can be noted from table that, threats reported by CVE have already been accounted

in our approach. In addition, we have identified more threats and suggested security

mechanism to mitigate them.

Table 3.14 Threat Comparison

S.No Possible Threats Threats

possible on

previous

versions of

Wordpress

Threats

reported by

CVE for

Wordpress

Threats

identified

by Acunetix

on our

website

Threats

identified by

Security

Engineering

Framework

1 Deny Service

(DoS)

YES YES NO YES

2 Password

Cracking

YES NO YES YES

 105

3 Impersonate NO NO YES YES

4 Sniffing YES YES NO YES

5 Malicious Code* YES YES YES YES

6 Disclose Data NO NO NO YES

7 Spoofing NO NO NO YES

8 Data Theft YES YES YES YES

9 Repudiate YES NO NO YES

10 Social Engineer NO YES YES YES

11 Privilege Abuse YES YES NO YES

12 Management

Interface

Compromise

NO YES NO YES

13 Insider NO NO NO YES

14 Operational Log

Compromise

NO NO NO YES

15 Data Deletion YES NO NO YES

16 Change Data YES YES NO YES

17 Password Reuse NO NO NO NO

18 MITM NO NO NO NO

19 Network Issues NO NO NO NO

20 DDoS NO NO NO NO

21 Sabotage NO NO NO NO

22 Security Log

Compromise

NO NO NO NO

23 Unauthorized

Physical Access

NO NO NO NO

24 Management

Interface

Compromise

NO NO NO NO

25 Natural Disaster NO NO NO NO

26 Data Leakage NO NO NO NO

 Overflow**

Memory

Corruption**

* Malicious Code: It refers to the change in the source code with an intention of

security breach. It can be created by inserting SQL queries having untrusted data, or

by exploiting an existing bug in the code, or by adding camouflaging XML scripts in

dynamic web pages. Threats Code Execution, Sql Injection, XSS (Cross Site

Scripting), Http Response Splitting, Cross Site Request Forgery (CSRF) are comes

 106

under Malicious Code.

** Programming errors like Overflow and Memory Corruption can lead to abnormal

working of the software systems. Presence of such errors can make system vulnerable

to attack.

Threats on previous version are possible because initial version is not equipped with

suitable/ optimal security mechanisms. For instance, password encryption is enabled

in version 1.2. password protection of posts are also introduced in version 0.72,

Unauthenticated Privilege Escalation is empowered in version 4.7.2, etc. If they have

used our approach these vulnerabilities have been avoided, as our approach

suggests suitable security algorithms for implementation.

Summary

 A process for security requirements engineering is presented where elicitation,

analysis, prioritization and specification of Security Requirements is done along

with the functional and non-functional requirements. Existing methodologies are

not specifying the Security Recruitments explicitly. Our proposal of explicit

specification of security requirements will improve the SRS document.

 Our proposal identifies threats and vulnerabilities in a structured manner which

helps in uncovering the various security breaches possible in the software system.

It can be seen from Table 3.14, threats identified by our approach covers almost

all the threats listed by CVE, and also the threats identified by the scan report

using tool Acunetix for our website developed using wordpress. Our proposal

 107

identifies almost all vulnerabilities beforehand which will save the resources

required in release of new versions of software.

 As indicated in Figure 3.10, the number of vulnerabilities identified over the year

for wordpress has increased whereas our proposal has identified all these

vulnerabilities in the first phase of software development lifecycle. Hence, it can

be said that if our proposal is used then all these efforts of incorporating security

patches would have been saved.

 Based on prioritized and specified security requirements for given domain

constraint near optimal security techniques are identified for deployment of

security threats. The thesis also tests the deployed security mechanism for various

threats and evaluate the Security Index (SI) showing the risk of live threats. This

SI is checked with a reference value to test the suitability of the algorithm. If (SI

 Reference) then another acceptable algorithm can be chosen from the design

phase.

 Hence, the given security engineering framework presents a methodology that

can be embedded in the traditional software development proposals to embed

security from requirements engineering phase. To cater the need of providing

security we have developed a vulnerability threat mapping table. The mapping

table will ease the requirements engineer in identifying the potential threats to the

system.

 108

 There is a software myth: “Software defects are high during the initial phases and

further it will improve and later it become obsolete.” So if our framework is

adopted in conjunction to phases of software development, high defect during the

initial time span of software system will get reduced. This will ultimately

improve the performance of the software system.

In this way, the first, second and third goals of thesis specified in Section 1.8 are

successfully addressed. In later chapters’ thesis will try to show that the proposed

framework can be applied to a cloud system, IoT systems, and big data databases.

Publication from this work:

(a) Jaiswal, S., and Gupta, D. (2016). Measuring Security: A step towards

Enhancing Security of System. International Journal of Information Systems in

the Service Sector (IJISSS). (accepted) [ESCI, Scopus Indexed]

(b) Gupta, D., Chatterjee, K., and Jaiswal, S. (2013). A Framework for Security

Testing. ICCSA-2013, published by Springer-Verlag in Lecture Notes for

Computer Science. [Scopus Indexed]

 109

CHAPTER 4

SECURITY FRAMEWORK FOR CLOUD SYSTEM

With ever increasing demand for cloud computing services, the rate for the security

threats has amplified drastically, and this cannot be overlooked. Cloud-based systems

can be used for storing and processing highly confidential data. These threats create a

chaotic situation which makes customer hesitant to develop the trust. The chapter

starts with the brief overview of Cloud Computing Architecture to extract knowledge

about different threats in the cloud system. It surfs the existing proposals to further

establish the research gap in the cloud system. This knowledge is used to enhance

generic security engineering framework to elicit, analyze, prioritize and specify the

security requirements in the cloud system. Thereafter, the efficient algorithms are

selected based on domain constraints and security index is calculated. The framework

is illustrated for cloud-based storage systems.

4.1 Security Issues in Cloud

Providing security in cloud computing architecture is much more difficult and

challenging as compared to a network system, because of underlying complex

architecture that has a wider range of new concepts such as multi-location data

placement, multi-tenancy, trust. Providing security in the cloud system requires effort

from both cloud developer and cloud customer. Therefore, in this section, we see the

generic architecture, and then the security issues present in cloud-based systems is

discussed.

 110

4.1.1 Cloud Architecture

Cloud architecture provided by NIST (Liu, et al., 2011) is depicted in Figure 4.1.

Conceptual view of the architecture presents the involved actors their roles, how they

communicate, and other necessary components of the cloud-based system.

Figure 4.1 Cloud Reference Architecture (Liu, et al., 2011)

Involved Actors in Cloud

 Cloud Customer: Cloud customer is individual or organization who uses Cloud

products and services and pay for it.

 Cloud Provider: Who owns, manage and operate the Cloud system to deliver

services, and receive payment from Cloud customers for the services provided.

 Cloud Broker: Cloud Broker acts as the intermediary between customer and

provider. It helps consumers through the complexity of cloud service offerings

and may create value-added cloud services.

 111

 Cloud Auditor: Cloud Auditor provides a valuable function to the government by

conducting the independent performance and security monitoring of cloud

services.

 Cloud Carrier: The Cloud Carrier is the organization which has the

responsibility of transferring the data, somewhat akin to the power distributor for

the electric grid.

Services Models of Cloud

 Infrastructure as a Service (IaaS): IaaS model provides the computing

infrastructure like servers, network equipment, and software. The customer can

install operating system images with applications to create their customized

environment. The Cloud Service Provider (CSP) owns the hardware and is

responsible for housing and maintaining them. Some known IaaS Clouds are

Rackspace, Amazon EC2, Google Compute Engine, GoGrid.

 Platform as a Service (PaaS): PaaS provides the computing platform as on

demand, which is used to develop and deploy applications. In addition to the

computing platform, solution stack consisting of operating systems,

programming language environment, databases and web servers is also provided.

This model is suitable for developers and testers. The purpose of PaaS is to

reduce the cost and complexity of buying and managing underlying hardware

and software components. Clouds in this category are GAE, Force.com,

Windows Azure Compute.

 112

 Software as a Service (SaaS): SaaS provides access to application software to

Cloud Service User (CSU) which is installed and maintained by CSP.

Implementation and Deployment are hidden from the user, only limited set of

configuration control is made available to the customer by the provider. Its

principal advantage is the reduction in hardware cost and software development

and maintenance cost. Major SaaS clouds are Microsoft Office 365, Quickbooks

online, Salesforce.com

Beside the above trivial services here one new service for storage is considered

known as Storage as a Service (StaaS).

 Storage as a Service (StaaS): StaaS provides the storage requirements of various

other service models. Here we are presenting it as a separate model because of its

involvement in each basic service model. Moreover, its growing need gives rise

to various security issues inherent in it. Security of storage is among the key

challenges as mentioned in studies by various researchers (Grobauer,

Walloschek, & Stocker, 2011) (Fernandes, Soares, omes, Freire, & In acio,

2014) (Vu, Pham, Truong, Dustdar, & Asal, 2012) (Xiao & Xiao, 2013).

Therefore, it must be considered separately then the trivial service models.

4.1.2 Security Issues

Cloud computing encompasses many technologies such as networks, operating

systems, databases, resource scheduling, virtualization, transaction management, load

balancing, concurrency control, and memory management. Security issues applicable

to these existing technologies also applies to the cloud system.

 113

Identification and handling of Security issues in cloud system have gained the

attention of researchers because the security of customer’s critical/ personal data is in

the hands of someone else (providers, vendors, broker, etc.). Some important issues

present in cloud system (Sen, 2013) (Jansen, 2011) (Pearson & Benameur, 2010) are

as follows:

 Shared Environment: Shared environment of cloud computing is a potential

point of attack; which may lead to Unauthorized Access to user’s sensitive data

and cause non-fulfillment of confidentiality and integrity goal.

 Insecure Interfaces: Interface of applications to other interacting application,

software, and users are a vulnerable source of the attack, this may lead to limited

monitoring capabilities, reusing credentials and password, improper

authorization.

 Multi-location Data Placement: In a cloud system, client critical data is being

stored at various sites across the globe. Multi-location data placement provides

easy access and low-cost data recovery, but it may result in loss of data and

integrity threats.

 Scavenging: Scavenging refers to the acquisition of leftover data from residue. It

is a serious vulnerability that will give rise to password cracking threat.

 Technological Obsolescence: Use of antiquated and outdated technologies also

leads to various threats.

 Data Security: In traditional system organizations are using on-premises

application deployment model, where critical data is stored within the

organizational boundary. However, in the cloud deployment, the organization

data is stored with cloud providers at some remote location, which makes it a

target for attack.

 114

 Privacy: Privacy is another big concern, as the customer has to trust the cloud

providers for providing security to their data.

 Dependency and vendor lock-in: Dependency on the provider is one of the

major issues of cloud computing, if the customer wants to move from one

provider to another, it could be cumbersome as there is a need to transfer

complete data from one service provider to another.

 Limited control and flexibility: Most of the time users have limited control

over functionality and execution of services since the application and services

are provided by the third party and handled by them only.

 Technical difficulties and downtime: Since customers are linked to the cloud

using the internet, so the problem in network connectivity will make the cloud

set up useless, downtime is possible by even best cloud vendors.

 Increased Vulnerability: Nothing is secure on the internet; private data is the

main target of intruders and hijackers. It increases the vulnerability by increasing

the chance of data breach, data theft, data loss.

 Network Security: All the processing starting from registration to payment is all

on the internet, hence need to secure this network from various attacks is

necessary.

 Trust: Trust is a critical issue in cloud computing; in the present scenario, it

depends on factors such as reputation, services, performance, security, and

privacy. Providing trust in the system is a collective work of various involved

actors in the cloud system. Study of trust in cloud depends on the study of links

between the cloud users to cloud services (or providers) through those

intermediary cloud entities (broker, administrator, auditors).

 115

4.2 Existing Proposals for Security in Cloud-Based Systems

Various proposals (Stocker, robauer, & Walloschek, 2 11) (Fernandes, Soares,

 omes, Freire, & In acio, 2014) presents the survey on security issues presents in

the cloud-based system. Also, (Fernandes, Soares, omes, Freire, & In acio, 2014)

have listed the available techniques to implement the security issues. In one of the

early approach, Islam et al. (Islam, Mouratidis, & Edgar, 2011) has proposed a

goal-oriented risk management technique to assess and manage risks which are

barrier to the adaptation of cloud-based system in an organization. The process

starts with identification of goals of the system. These goals are further refined and

threat, vulnerabilities to goals are identified, and analyzed. Risk assessment is done

to categorize the threats as Low, Medium, High, etc. Finally, treatment plans such

as Encrypt the Confidential Data while storing, employ Strong Key Management

policy, Check User Credentials, etc. are suggested without considering any domain

constraints.

In proposal (Beckers, Cote, Fabbender, Heisel, & Hofbauer, 2013), the authors

have developed information security management system that deals with security,

privacy and legal compliance for cloud systems using ISO 27001 standard. The

process starts with the identification of security goals to the assets of the system.

Thereafter threats to assets are identified, and risk assessment is done. After risk

assessment security policies of ISO 27001 are defined like assets management,

human resources security, access control, physical and environmental security.

They fail to explicitly specify the specific security algorithm used to implement the

security policies.

 116

A recent proposal by Naveed et al. (Naveed & Abbas, 2014) is using security

framework by Haley et al. (Haley, Laney, Moffett, & Nuseibeh, 2008) to elicit and

specify the security goals of the cloud system. Thereafter, security requirements are

defined as a constraint to functionalities. The proposed framework helps the user in

understanding the security need of the system; they are suggesting the control

strategy as a constraint to system functionality. Similar to previous methods they

have specified the control strategies without considering the domain constraints. In

another proposal (Ficco, Palmieri, & Castiglione, 2015), authors have presented a

framework for identification and specification of security requirements. After that,

the broad measures are suggested for implementing security.

Conclusions drawn from existing proposals: In all the above proposals the

security requirements are not specified explicitly. Further none of them considers

the security issue multi-trust which is very important for the generation of trust

among the cloud users. As it can be seen from cloud architecture threats are

multifold compared to network systems. Therefore, it is hard to identify various

assets, functionalities, vulnerabilities, and threats. If repositories for functionality-

asset mapping and vulnerability-threat mapping can be developed, it would guide

the user to identify the requirements efficiently and completely. In turn, security

requirements can be elicited easily. None of them are suggesting the particular

algorithms for implementation of the security requirements. Next section would

present the novel framework for a cloud-based system.

 117

4.3 Need for new Framework

As explained in the foregoing section, security issues in cloud based system are more

complex compared to web based system. Hence, framework proposed in Chapter 3 is

not directly applicable to cloud based system. It needs enhancement for the reasons

mentioned below:

 In web- based systems stakeholders vary form one system too other and their

functionalities vary from application to application. Whereas, in case of cloud-

based system actors are broadly classified into five classes namely customer,

user, auditor, provider, broker as defined by NIST (Liu, et al., 2011).

 The above mentioned stakeholders can execute or do some specific task on the

assets of cloud system.

 Vulnerabilities in cloud- based system are more complicated and vast as

compared to web- based system. Some vulnerabilities of cloud- based system

are Hypervisor Vulnerability, Lack of Resource Isolation, Internal Cloud

Network Probing, Synchronizing Responsibility or Contractual Obligation

External to cloud, Cross- Cloud Application Creating Hidden Dependency,

Certification Schemes Not Adapted to Cloud Infrastructure, Unclear Asset

Ownership, Poor Provider Selection, etc.

 In addition to threats of web based system more threats are present in cloud

system such as Conflict between Customer Provider Hardening Process in

Cloud Environment, Lock-In, Loss of Governance, Compliance Challenges,

Cloud Service Termination, Backup lost Stolen, etc.

 Our initial framework has limited set of threats and vulnerability. Hence, the

database built for web- based system is not sufficient enough for cloud

 118

environment. Also, to tackle the adoption need, new threats and

vulnerabilities, a new security requirement Multi- Trust is proposed.

From above points we conclude that our initial framework needs modification to

make it adaptable for cloud- based system. Modified framework to handle the

security issues in cloud system is presented and discussed in next section.

4.4 Proposed Framework for Cloud-based System

As pointed out in the foregoing section, stakeholders are limited and they can execute

some specific functionalities. Whereas, the list of assets, threats and vulnerabilities

are exponential in number. Therefore, to elicit the security requirements in cloud

system one need to explore the details of assets which gives rise to vulnerable points

that is exploited by threats. Therefore, framework explained here for cloud based

system will incorporate these features.

Architecture provided by NIST (Liu, et al., 2011), has identified five different actors

namely cloud consumer, cloud provider, cloud broker, cloud auditor and cloud carrier.

Here we are focusing only on the actor Customer, which can perform various tasks

such as he can choose a provider and get registered for using services. Services span

from availing software or hardware, storage space, to computing infrastructure.

The novel framework for handling security in a cloud system is depicted in Figure

4.2, which works in three different phases:

 Specification

 Prioritization

 119

 Implementation and Validation

4.4.1 Specification

Similar to the activities of Security Requirements Engineering phase of framework

presented in the previous chapter, here activities in this phase are executed along with

the requirement engineering activities that builds on the understanding of the

requirement engineers who are good at eliciting the functional requirements but are

not well experienced when it comes to security requirements (Firesmith, Engineering

Security Requirements, 2003). In this phase, security requirements are generated by

following the activities shown in Figure 4.2.

 Associate Assets with the Functionality: Functionalities works on assets of

the system, so all the assets required by functionality need to be identified. To

achieve this, we have identified the possible functionalities and assets for

cloud systems and developed a Functionality-Asset association table having a

dimension (34X 22), shown in Table 4.1. Using the association table assets

corresponding to functionalities are identified.

 120

Figure 4.2 Proposed Framework for Cloud-Based Systems

 121

Table 4.1 Functionality-Asset Association for Cloud-Based Systems

Assets

 Functionality

1 2 3 4 5 6 7 8 9 10 11

Personal

Sensitive

Data

Personal

Data

Personal

Data

 Critical

HR Data Service

Delivery

Real Time

Services

Service

Delivery

Access

Control/

Authentication/

Authorization

Credentials User

Directory

(Data)

Cloud Service

Management

Interface

Management

Interface

APIs

1 Registration X X

2 Login/ Update Login X X

3 Manage Encryption Key

4 Store data X X X X X X X X

5 Download Data X X X X X X X X

6 Create Group of Users

7 Share Data (with synchronization) X X X X X X X X

8 Manage Sharing

9 Manage automatic backup X

10 Upgrade storage space X

11 Make/ Receive payment X X

12 Log Collection

13 Security Monitoring

14 Maintenance and Management of Identity

Management System

X X X X

15 Maintenance and Management of

Authentication platform (including

enforcing password policy)

X X X X

16 Maintenance and Management of Data X X X X

17 Data Traffic monitoring for security risk

avoidance

X X X X

18 Delete Data from Cloud X X X X X X

19 Migrate from one Cloud Provider to other X X X X X X

20 End of Subscription X X X X X X

21 Other Security Concerns (firewall rules,

IDS/IPS tuning)

X X X X X X X X

22 Manage Security Patch updates X X X X X

23 Upgrade Hardware/ Software need X X

24 Multitenant Application Separation X X X X

25 Physical Support Infrastructure, Security

and Availability

 X

26 Define Backup Strategy X

27 System Monitoring X

 122

Table 4.1 Continued

Assets

 Functionality

1 2 3 4 5 6 7 8 9 10 11

Personal

Sensitive

Data

Personal

Data

Personal

Data

 Critical

HR

Data

Service

Delivery

Real Time

Services

Service

Delivery

Access

Control/

Authentication/

Authorization

Credentials User

Directory

(Data)

Cloud

Service

Management

Interface

Management

Interface

APIs

28 OS Patch management and Hardening

Procedures

29 Data Processing X X X X X X

30 Manage Hardware and Software X X X X X

31 Manage Account X X X

32 Maintain SLA X X X X X

33 Join Group X X X X

34 Un join the group X X X X

 Assets Rating 10 7 8 8 10 6 8 8 10 5 8

Table 4.1 Continued

Assets

 Functionality

12 13 14 15 16 17 18 19 20 21 22

Network

(connections

, etc.)

Physical

Hardware

Buildings CP

Application

(Source Code)

Operational

Logs

(Customer

and Cloud

Provider)

Security

Logs

Backup

and Archive

Data

Company

Reputation

Customer

Trust

Employee

Loyalty and

Experience

Intellectual

Property

1 Registration X

2 Login/ Update Login X

3 Manage Encryption Key X

4 Store data X X X X

5 Download Data X X X X

6 Create Group of Users X X X

7 Share Data (with synchronization) X X X X

8 Manage Sharing

9 Manage automatic backup X

10 Upgrade storage space X

11 Make/ Receive payment X

12 Log Collection

13 Security Monitoring

 123

Table 4.1 Continued

14 Maintenance and Management of Identity

Management System

X X X X X X

15 Maintenance and Management of

Authentication platform (including

enforcing password policy)

X X X X X X

16 Maintenance and Management of Data X X X X X X

17 Data Traffic monitoring for security risk

avoidance

X X X X X X

18 Delete Data from Cloud X X X X X

19 Migrate from one Cloud Provider to other X X X X X

20 End of Subscription X X X X X

21 Other Security Concerns (firewall rules,

IDS/IPS tuning)

X X X X X X X X

22 Manage Security Patch updates X X X

23 Upgrade Hardware/ Software need X

24 Multitenant Application Separation X X X

25 Physical Support Infrastructure, Security

and Availability

 X X

26 Define Backup Strategy X X X

27 System Monitoring X X X X X

28 OS Patch management and Hardening

Procedures

 X X X

29 Data Processing X X X X

30 Manage Hardware and Software

31 Manage Account X

32 Maintain SLA X X X

33 Join Group X

34 Un join the group X

 Assets Rating 10 5 6 8 6 6 10 10 9 8 8

 124

 Identify the Threats: Threats are circumstances that have potential to cause

harm to system assets. Threats occur at vulnerable points to cause damage to

system assets. Threats to cloud systems are collected after doing the extensive

literature review (Subashini & Kavitha, 2011) (ENISA, 2009) (Armbrust, et al.,

2010) (CSA Cloud Security Alliance, 2010) and stored in the repository. The

threat repository can be updated further if some new threat is identified. Threats

corresponding to the vulnerable point are identified using, the developed

Vulnerability-Threat mapping table of the dimension of (39 X 45) presented in

Table 4.2. Mapping table as shown in Table 4.2 is constructed by reviewing

various sources (ENISA, 2009) (CSA Cloud Security Alliance, 2010) (Cloud

Security Alliance, CSA, 2013) and knowledge-based approach. The mapping

table entry ‘X’ represents the threat occurrence at vulnerable points. The table

contains all promising vulnerabilities that can be exploited by a threat. Therefore,

each row of the table represents the list of all possible vulnerable points that a

threat can exploit, and a column represents the threats that can occur at a

vulnerable point. As various threats are present corresponding to the single

vulnerable point, so threats applicable to the particular functionality is extracted

based on the scenario of functionality created in the previous activity. Threats

corresponding to vulnerability ‘AAA’ are Password Cracking, Impersonate,

Password Reuse which is extracted from the Mapping Table 4.2.

 125

Table 4.2 Vulnerabilities-Threats Mapping for Cloud Systems

 Vulnerability

 Threats

1 2 3 4 5 6 7 8 9 10 11

V.AAA V.User
Provisioning

V.User De-
Provisioning

V.Remote
Access to

Management

Interface

V.Hypervisor
Vulnerabilities

V.Lack of
Resource

Isolation

V.Lack of
Reputational

Isolation

V.Communication
Encryption

Vulnerabilities

V.Lack of
Weak

Encryption

of Archive
and Data in

Transit

V.Impossibility
of Processing

Data in

encrypted form

V.Poor Key

Management

Procedures

1 T.Password Cracking X

2 T.Impersonate X X

3 T.Sniffing X

4 T.Social Engineer X X X

5 T.Disclose Data X

6 T.Malicious code X X X

7 T.Repudiate X

8 T.Change Data X X

9 T.Data Theft X X X

10 T.Password Reuse X

11 T.Insider X X

12 T.MITM X X X

13 T.Replay Attack X X

14 T.Network Issues

15 T.Resource Exhaustion

16 T.DDoS

17 T.Sabotage

18 T.Conflict between Customer
Provider Hardening Process and

Cloud Environment

19 T.LockIn

20 T.Loss of Governance

21 T.Operational Logs Compromise X X X

22 T.Security Log Compromise X X X

23 T.Data Deletion

24 T.Supply Chain Failure

25 T.Compliance Challenges

26 T.Legal Issues X

27 T.Priviledge Abuse X X X X

28 T.Backup Lost Stolen X X X

29 T.Unauthorized Physical Access

 126

Table 4.2 Continued

 Vulnerability

 Threats

1 2 3 4 5 6 7 8 9 10 11

V.AAA V.User
Provisioning

V.User De-
Provisioning

V.Remote
Access to

Management

Interface

V.Hypervisor
Vulnerabilities

V.Lack of
Resource

Isolation

V.Lack of
Reputational

Isolation

V.Communication
Encryption

Vulnerabilities

V.Lack of
Weak

Encryption

of Archive
and Data in

Transit

V.Impossibility
of Processing

Data in

encrypted form

V.Poor Key

Management

Procedures

30 T.Natural Disaster

31 T.Malicious Probes Scans

32 T.Data Leakage X X X

33 T.Side Channel Attack

34 T.Cloud Service Termination

35 T.Loss of Encryption Keys X

36 T.Cloud Provider Acquisition

37 T.Management Interface

Copmpromise

X X

38 T.Compromise Service Engine X X

39 T.Modifying Network Traffic X X X

Table 4.2 Continued

 Vulnerability

 Threats

12 13 14 15 16 17 18 19 20 21 22 23

V.Key

Generation

Low
Entropy for

Random

Number
Generation

V.Lack of

Standard

Technologies
and Solutions

V.No

Source

Escrow
Agreement

V.Inaccurate

Modeling of

Resource
Usage

V.No Control

of

Vulnerability
Assessment

Process

V.Internal

Cloud

Network
Probing

 V.Co-

Residence

Checks

V.Lack of

Forensic

Readiness

V.Senstive

Media

Sanitization

V.Synchronizing

Responsibility or

Contractual
Obligation

External to Cloud

V.Cross-Cloud

Applications

Creating
Hidden

Dependency

 V. SLA

Clauses with

Conflicting
Promises to

different

Stakeholders

1 T.Password Cracking

2 T.Impersonate

3 T.Sniffing

4 T.Social Engineer

5 T.Disclose Data

6 T.Malicious code

7 T.Repudiate

8 T.Change Data

9 T.Data Theft

10 T.Password Reuse

 127

Table 4.2 Continued

 Vulnerability

 Threats

12 13 14 15 16 17 18 19 20 21 22 23

V.Key

Generation
Low Entropy

for Random

Number
Generation

V.Lack of

Standard
Technologies

and Solutions

V.No

Source
Escrow

Agreement

V.Inaccurate

Modeling of
Resource

Usage

V.No Control

of
Vulnerability

Assessment

Process

V.Internal

Cloud
Network

Probing

 V.Co-

Residence
Checks

V.Lack of

Forensic
Readiness

V.Senstive

Media
Sanitization

V.Synchronizing

Responsibility or
Contractual

Obligation

External to Cloud

V.Cross-Cloud

Applications
Creating

Hidden

Dependency

 V. SLA

Clauses with
Conflicting

Promises to

different
Stakeholders

11 T.Insider

12 T.MITM X X

13 T.Replay Attack

14 T.Network Issues X

15 T.Resource Exhaustion X

16 T.DDoS

17 T.Sabotage

18 T.Conflict between Customer
Provider Hardening Process and

Cloud Environment

 X

19 T.LockIn X

20 T.Loss of Governance X X X X X X

21 T.Operational Logs Compromise X

22 T.Security Log Compromise X

23 T.Data Deletion X

24 T.Supply Chain Failure X

25 T.Compliance Challenges X

26 T.Legal Issues

27 T.Priviledge Abuse

28 T.Backup Lost Stolen

29 T.Unauthorized Physical Access

30 T.Natural Disaster

31 T.Malicious Probes Scans X X

32 T.Data Leakage X X

33 T.Side Channel Attack X X

34 T.Cloud Service Termination

35 T.Loss of Encryption Keys X

36 T.Cloud Provider Acquisition

37 T.Management Interface
Copmpromise

38 T.Compromise Service Engine

39 T.Modifying Network Traffic X

 128

Table 4.2 Continued

 Vulnerability

Threats

24 25 26 27 28 29 30 31 32 33 34

V.SLA
Clauses

Containing

Excessive
Business

Risk

V.Audit or
Certification

not Available

to Customer

V.Certification
Schemes Not

Adapted to Cloud

Infrastructure

V.Inadequate
Resource

Provisioning and

Investments in
Infrastructures

 V.No
Policies for

Resource

Capping

V.Storage of
Data in Multiple

Jurisdiction and

Lack of
Transparency

V.Lack of
information on

Jurisdictions

V.Lack of
Completeness

and

Transparency
in Terms of

Use

V.Lack of
Security

Awareness

V.Unclear
Roles and

Responsibilities

V.Poor
Enforcement of

Role

Definitions

1 T.Password Cracking

2 T.Impersonate

3 T.Sniffing X

4 T.Social Engineer

5 T.Disclose Data

6 T.Malicious code

7 T.Repudiate X

8 T.Change Data

9 T.Data Theft

10 T.Password Reuse

11 T.Insider X

12 T.MITM

13 T.Replay Attack X

14 T.Network Issues X X

15 T.Resource Exhaustion X

16 T.DDoS X

17 T.Sabotage X X

18 T.Conflict between Customer

Provider Hardening Process and
Cloud Environment

 X

19 T.LockIn X X X X X X X

20 T.Loss of Governance

21 T.Operational Logs Compromise

22 T.Security Log Compromise

23 T.Data Deletion X

24 T.Supply Chain Failure X X X X X

25 T.Compliance Challenges X X X

26 T.Legal Issues X X

27 T.Priviledge Abuse

28 T.Backup Lost Stolen

29 T.Unauthorized Physical Access

30 T.Natural Disaster

 129

Table 4.2 Continued

 Vulnerability

Threats

24 25 26 27 28 29 30 31 32 33 34

V.SLA

Clauses
Containing

Excessive

Business
Risk

V.Audit or

Certification
not Available

to Customer

V.Certification

Schemes Not
Adapted to Cloud

Infrastructure

V.Inadequate

Resource
Provisioning and

Investments in

Infrastructures

 V.No

Policies for
Resource

Capping

V.Storage of

Data in Multiple
Jurisdiction and

Lack of

Transparency

V.Lack of

information on
Jurisdictions

V.Lack of

Completeness
and

Transparency

in Terms of
Use

V.Lack of

Security
Awareness

V.Unclear

Roles and
Responsibilities

V.Poor

Enforcement of
Role

Definitions

31 T.Malicious Probes Scans

32 T.Data Leakage

33 T.Side Channel Attack X

34 T.Cloud Service Termination

35 T.Loss of Encryption Keys X

36 T.Cloud Provider Acquisition

37 T.Management Interface

Copmpromise

38 T.Compromise Service Engine

39 T.Modifying Network Traffic

Table 4.2 Continued

 Vulnerability

Threats

35 36 37 38 39 40 41 42 43 44 45

V.Need-

To-Know

Principle

Not

Applied

V.Inadequate

Physical

Security

Procedures

V.Misconf

iguration

V.System/OS

Vulnerabilities

V.Lack of Poor

and Untested

Business

Continuity and

Disaster

Recovery Plan

V.Unclear

Asset

Ownership

V.Poor

Provider

Selection

V.Lack of

Supplier

Redundancy

V.Application

Vulnerabilities

or Poor Patch

Management

V.Lack of

Policy or

Poor

Procedures

for Log

Collection

and

Retention

V.Inadequate/

Misconfigured

Filtering

Resources

Threat

Rating

1 T.Password Cracking 1
2 T.Impersonate 2
3 T.Sniffing 1
4 T.Social Engineer X 5
5 T.Disclose Data 1
6 T.Malicious code 3
7 T.Repudiate 1

 130

Table 4.2 Continued

 Vulnerability

Threats

35 36 37 38 39 40 41 42 43 44 45

V.Need-

To-Know

Principle

Not

Applied

V.Inadequate

Physical

Security

Procedures

V.Misco

nfigurati

on

V.System/OS

Vulnerabilities

V.Lack of Poor

and Untested

Business

Continuity and

Disaster

Recovery Plan

V.Unclear

Asset

Ownership

V.Poor

Provider

Selection

V.Lack of

Supplier

Redundancy

V.Application

Vulnerabilities

or Poor Patch

Management

V.Lack of

Policy or Poor

Procedures for

Log Collection

and Retention

V.Inadequate/

Misconfigured

Filtering

Resources

Threat

Rating

8 T.Change Data 3
9 T.Data Theft 3
10 T.Password Reuse 1
11 T.Insider 2
12 T.MITM 6
13 T.Replay Attack 2
14 T.Network Issues X X X 5
15 T.Resource Exhaustion X 4
16 T.DDoS X X X 4
17 T.Sabotage 1
18 T.Conflict between Customer

Provider Hardening Process

and Cloud Environment

 3

19 T.LockIn 2
20 T.Loss of Governance 13
21 T.Operational Logs

Compromise
 X X 6

22 T.Security Log Compromise X X 6
23 T.Data Deletion 1
24 T.Supply Chain Failure X X 4
25 T.Compliance Challenges 6
26 T.Legal Issues 4
27 T.Priviledge Abuse X X 8
28 T.Backup Lost Stolen X 4
29 T.Unauthorized Physical

Access
 X 1

30 T.Natural Disaster X 1
31 T.Malicious Probes Scans 2
32 T.Data Leakage X 6

 131

Table 4.2 Continued

 Vulnerability

Threats

35 36 37 38 39 40 41 42 43 44 45

V.Need-

To-Know

Principle

Not

Applied

V.Inadequate

Physical

Security

Procedures

V.Misco

nfigurati

on

V.System/OS

Vulnerabilities

V.Lack of Poor

and Untested

Business

Continuity and

Disaster

Recovery Plan

V.Unclear

Asset

Ownership

V.Poor

Provider

Selection

V.Lack of

Supplier

Redundancy

V.Application

Vulnerabilities

or Poor Patch

Management

V.Lack of

Policy or Poor

Procedures for

Log Collection

and Retention

V.Inadequate/

Misconfigured

Filtering

Resources

Threat

Rating

33 T.Side Channel Attack 2
34 T.Cloud Service Termination X X 3
35 T.Loss of Encryption Keys 2
36 T.Cloud Provider Acquisition 1
37 T.Management Interface

Copmpromise
 X X

 X 5

38 T.Compromise Service Engine 2
39 T.Modifying Network Traffic 4

 132

 Security Requirements Specification: According to Researcher Firesmith

(Firesmith, Engineering Security Requirements, 2003), Security Requirements

expresses what functionality is required to represent the threats of the system,

twelve security requirements are defined by him for representing threats. Besides

these twelve security requirements, one more security requirement “multi-trust”

is added to the cluster for a cloud-based system. This security requirement would

take care of any breach in SLA (Security Level Agreement) between the Cloud

Provider and the Customer. Security Requirements are mapped to threats through

analysis and experience. For instance, security requirements for threats

‘Password Cracking,’ ‘Impersonate,’ and ‘Password Reuse,’ are ‘Identification’

and ‘Authentication.’

4.4.2 Prioritization

Identified security requirements are prioritized using risk analysis method to get the

ordered list of security requirements that are representing threats with high impact.

One algorithm is not sufficient to implement all the security requirements. Therefore,

prioritization of security requirements is done, and high priority security requirements

are implemented/ handled first. Prioritization would help the developers and users in

knowing which security requirement is more critical and need immediate focus.

Activities of security requirements prioritization are shown in part two of Figure 4.2

and explained as follows:

 Identify the Threat Rating. Threat rating depicts the occurrence probability

of the threat, or it is the rough measure of how likely a threat would exploit the

vulnerabilities of the system to gain access to assets. Threat rating is calculated

 133

by checking number of vulnerabilities exploited by a threat in Vulnerability/

Threat mapping table shown in Table 4.2. Vulnerabilities exploited by a threat

is represented by the presence of ‘X’ in a row of vulnerability/ threat mapping

table, mathematically it is represented by equation (4.1). For instance, Threat

Rating for threat ‘T.Password Cracking’ is ‘1’ as it exploits only vulnerability

‘V. AAA’.

Threat Rating = ∑ (number of occurrence of ‘X’ in a row of vulnerability-

threat mapping table) (4.1)

 Identify the Value of Impact. Impact shows the consequence of a successful

exploit of the vulnerable point. Impact value is calculated by analyzing the

number of assets affected by the occurrence of a threat, as assets are the

possession that needs to be protected from threats. Also, each asset has a value

associated with it known as asset rating, showing its importance. Any exploit

in the system would affect the assets so the impact would be the summation of

assets rating represented by equation (4.2). Here assets rating is taken from the

Table 4.1, the last row of the table depicts the asset rating. Assets rating is

calculated by analyzing the use of the asset by functionalities (number of

occurrence of ‘X’ in a column). Higher use of the asset by functional

requirements depicts the higher rating of the asset.

Impact = ∑ (Asset rating of affected assets by the Threat) (4.2)

 Calculate Risk. The risk is defined as the probability that a threat agent will

exploit system vulnerability (weakness) and thereby create an effect

 134

detrimental to the system, or risk is an unwanted event that has some adverse

consequences on the system. The value of risk is calculated for each threat

using the equation (3.1) defined in Section 3.2.2 of Chapter 3.

The calculated risk values would act as threat value; more is the value of threat

higher is its severity. Thereafter, the Threats are categorized based on their risk

value; the category of threats is mentioned in Table 4.3. Categorization of

threats is necessary to know more prevalent threats and handle them

accordingly.

Table 4.3. Category of Threats Based On Risk Values

Category Risk Range Need of Handling Threat

Catastrophic Risk ≥ 60
Threats are critical as they are impacting various (greater

than three) high-value assets, so need urgent handling.

Important 6 >Risk ≥ 20

These threats are important as they are impacting:

 Various (greater than three) moderate assets

 Either single high-value asset or two moderate assets

So require careful consideration.

Tolerable 2 > Risk ≥ 5
These threats are impacting single, or two average value

assets so can be considered or ignored.

No Influence Risk < 5
These threats are impacting single low-value asset,

therefore ignore them.

 Prioritize the Security Requirements. Security requirements priority is

calculated by adding together the risk values of threats represented by the

security requirements under consideration, higher the security requirement

value higher is the priority.

4.4.3 Implementation and Validation

In this phase, security algorithms are chosen to implement the security requirements

based on the different domain constraints (communication, computational). Then the

selected algorithm is validated by calculating the security index which shows the

 135

effectiveness of selected security algorithms. It consists of following steps as depicted

in part three of Figure 4.2:

 Mapping of Security Requirements with Security Services. Key security

services determined for cloud platforms are confidentiality, integrity,

availability, non-repudiation, access control, auditability, and multi-trust.

Auditability and multi-trust are new security services that are added to the

cluster of existing security services defined in cryptography (Forouzan, 2007).

Prioritized security requirements are mapped to one of the identified security

services. Mapping would further help in the selection of security algorithm by

specifying which cryptography techniques are more suitable for a particular

scenario. Table 4.4 shows the mapping of security requirements to security

services and possible security algorithms available to implement them.

Table 4.4. Mapping of Security Requirements with Security Services

Security

services

Security

requirement Possible Security Algorithms

Confidentiality

Privacy

Cryptography Techniques, Two Factor Authentication

Immunity

Authentication

Identification

Integrity Integrity
Physical Protection Mechanism, Need-to-know

Principle Enforcement, RnR Clarity

Availability

Physical Protection Vulnerability Assessment Tools, Physical Protection

Mechanism, Key management protocol

System Maintenance

Survivability

Non-

Repudiation
Non-repudiation

Digital Signature, Notarization

Access Control
Intrusion Detection

Access Control Mechanism
Authorization

Audit ability Auditing
Auditing Mechanisms

Multi-Trust Multi-Trust RnR Clarity, SLA Strengthening, Data Portability

 136

 Security Design Analysis. Many techniques are available for the

implementation of security services, so comprehensive evaluation of each is

required. Analysis of algorithm consists of following sub-activities:

o Threat Match. Security algorithms are analyzed based on the threats they

mitigate. To achieve this goal, a pre-defined repository is created by

analyzing different algorithms. The repository contains the list of attacks

mitigated and not- mitigated by algorithms. So, from here algorithms with

highest threat match are selected.

o Domain Constraints. After attack analysis, algorithms with highest threat

match are evaluated on various domain parameters as mentioned in Section

3.3.

Perceived value of domain constraints for different cloud-based service

models for the wireless environment is shown in Table 4.5.

 Selection of Algorithm: Based on the results of previous activities, suitable

security algorithm is selected for implementation. As all threats cannot be

mitigated by a single technique alone so, it needs to be used in conjunction with

other mitigation techniques and a design template is generated. The template

would contain all the design phase related information like threats mitigated,

constraints accounted for selection of algorithm, and others.

 137

Table 4.5 Constraints for Cloud-Based System

Domain

Attributes

IaaS PaaS SaaS

Cloud User Customer

Complexity Priority Complexity Priority Complexity Priority Complexity Priority

Runtime

Performance

High High High High High High High High

Low Memory

Footprint

Medium Medium Medium Medium Medium Medium High High

Power

Consumption

Medium Low Medium Low Medium Medium High High

Network

Availability

High High High High High High High Medium

Security

Objectives

High High High High High High High High

Scalable without

affecting current

functioning

High High High High High High High Medium

OS Independence Medium High High High High Medium Medium High

Compatibility High High High High High Medium High Medium

Programmability High Low High High Medium Medium Medium Low

Cost of Chosen

Solution

Medium High Medium High Medium High Medium High

 Validation. Security algorithm chosen for implementation is validated to

check if the potential threats are mitigated or not. For the purpose of validation,

a Security Index value is calculated, which shows the gap in the security of the

system. Security index is calculated using equation (3.2) and (3.3) mentioned

in Section 3.4 of Chapter 3. Next, the SI value is compared with the reference

value. The comparison is done in the same manner as mentioned in section 3.4

of Chapter 3.

After the selection of appropriate security algorithm, further, phases of software

development are followed.

 138

4.5 Application of Proposed Framework to Cloud Storage model

In this section methodology described in the previous section is applied and explained

for a cloud-based storage system. Here an assumption is made that we are designing a

new cloud-based storage system that provides the storage space to customers. Storage

model is chosen for illustration of our proposal among the available service models

because it is the most widely used service and requires high security. Everyone is

using it knowingly or unknowingly, for instance, Google Drive is being used for

information sharing and storage with Gmail. Here, functionalities are taken based on

our study conducted for dropbox, google drive, mega, and one drive.

4.5.1 Security Requirements Specification

The security needs of the system are derived from functional requirements and

represented in the form of security requirements. In a cloud-based storage system,

different stakeholders are Cloud Customer, Cloud User, Cloud Service Provider.

Functional requirements of all stakeholders are shown in Table 4.6. Only one actor

that is Cloud Customer is considered for illustration of further activities, as cloud user

functionalities are the subset of customer functionalities, the provider is serving to

customer requests. Therefore, all security issues are dependent on the functionalities

related to cloud customer. Functionality, asset, vulnerability, threats and security

requirements for the system are shown in Table 4.7.

 139

Table 4.6 Functional Requirements for different Cloud Actors

Actors Functional Requirements Non Functional

Requirements

Cloud

Customer

1. Registration & Login

2. Update Login Details

3. Store data into Cloud

4. Manage automatic backup

5. Manage Sharing with cloud user

6. Download data stored in the cloud

7. Select storage location

8. Make payment for services used

9. Maintenance of identity management system

10. Identity management system

 11.Authentication platform management (including

enforcing password policy)

12. Data and Traffic monitoring for security risk

avoidance

1.Reliability

2. Less Response Time

3.Scalable

4.Correctness

5.Consistency

6. Recovery

7. Lawfulness of

content

8. Compliance with

data protection law

9. Personnel Security

10.Supply Chain

Assurance

Cloud

Users

1. Registration & Login

2.View shared data based on permission

3. Submit request to join the group

4.Unjoin a group

1. Reliability

2. Less Response Time

3. Scalable

4. Correctness

5. Consistency

6. Recovery

Cloud

Service

Provider

1. Manage Cloud Customer’s Account

2. Manage Customer Data

3. Manage cloud hardware and software

4. Receive cloud usage payment

5. Maintain SLA

6. Data Processing

7. Physical support infrastructure, security and

availability

8.OS patch management and hardening procedures

9.Security platform management and configuration

(Firewall rules, IDS/IPS tuning, etc.)

10. Systems monitoring

11. Log Collection & security monitoring

12. Define Backup Strategy

1.Reliability

2. Integrity

3. Recovery

4.Performance

5. Data and Traffic

monitoring for

security risk

avoidance

6.Personnel Security

7.Supply Chain

Assurance

8.Scalability

9. Response Time

10. Restricted access

to concerned cloud

customer enterprise

 140

Table 4.7 Vulnerabilities, Threats, Assets for Customers Functionalities

S.No Functionality Vulnerabilities

Extracted

Threats Affected Assets Security

Requirement

1. Registration

(new

Customer)/

Login (Existing

Customer) and

Update Login

Detail

AAA

1. Password

Cracking

2. Impersonate

3. Password Reuse

Personal Data (2)

Personal Sensitive Data

(2)

Credentials (1,3)

Identification

Authentication

2.

Store data/

Download

Data/ Share

Data

Lack of Resource

Isolation

Lack of

Reputational

Isolation

Communication

Encryption

Vulnerabilities

Lack of or weak

Encryption or

Archives and Data

in Transit

Sensitive Media

Sanitization

Storage of Data in

Multiple

Jurisdictions and

lack of

Transparency about

this

Misconfiguration

Lack of, or a poor

and untested,

Business Continuity

and Disaster

Recovery Plan

1. Social Engineer

2. Change Data

3. Sniffing

4. Data Theft

5. MITM

6. Replay Attack

7. Data Leakage

8. Modifying

Network Traffic

9. Data Deletion

10. Loss of

Governance

11. Compliance

Challenge

12. Legal Issues

13. Network Issues

14. DDoS

15. Privilege Abuse

16. Natural Disaster

17. Loss of

Encryption Keys

Company Reputation

(2,10,11,12,16)

Employee Loyalty and

Experience (2,15)

Personal Sensitive Data

(3,4,5,7)

Personal Data

(3,4,5,7,17)

HR Data (3,4,5)

Service Delivery- real

time services (14, 16)

Service Delivery (14)

Credentials (1,6)

User Directory (data)

(3,4,9,16)

Cloud Service

Management Interface

(6,11)

Network (connections,

etc) (3,5,8,13,16)

Backup or Archive Data

(3,4,7,9,10,11,12,16,17)

Identification

Authentication

Immunity

Integrity

Intrusion Detection

Privacy

Survivability

Multi-Trust

System Maintenance

Authorization

Physical Protection

3.
Manage

automatic

backup

Sensitive Media

Sanitization

Untrusted Software

1. Data Deletion

2. Malicious Code

User Directory (data)

(1,2)

Backup Archive Data

(1,2)

Integrity

Immunity

Intrusion Detection

4.

Upgrade

storage space

No Policies for

Resource Capping

Resource

Consumption

Vulnerabilities

1. DDoS

2. Resource

Exhaustion

User Directory (data)

(1)

Backup or Archive Data

(1,2)

Immunity

Survivability

5.

Make payment

AAA 1. Password

Cracking

2. Impersonate

3. Password Reuse

Personal Data (2,4)

Credentials (1,3)

Identification

Authentication

Authorization

 141

4. Insider

6.
Maintenance

and

Management of

Identity

Management

System/

Authentication

platform

(including

enforcing

password

policy)/ Data

and Traffic

monitoring for

security risk

avoidance

AAA 1. Password

Cracking

2. Impersonate

3. Disclose Data

4. Repudiate

5. Data Theft

6. Password Reuse

7. Insider

8. Operational Log

Compromise

9. Security Log

Compromise

10. Privilege Abuse

11. Data Leakage

Company Reputation

(2,4)

Employee Loyalty and

Experience (3,4,7,10)

Personal Sensitive Data

(2,3,5,11)

Personal Data (3,5,7,11)

Credentials (1,2,4,6)

User Directory (data)

(5,11)

Cloud Service

Management Interface

(14)

Operational Logs (5,8)

Security Logs (5,9)

Backup or Archive Data

(3,11)

Identification

Authentication

Privacy

Immunity

Non-Repudiation

Authorization

Security Auditing

7.

Delete Data

from Cloud/

Migrate from

one Cloud

Provider to

other/ End of

Subscription

AAA

User De-

Provisioning

1. Repudiate

2. Data Theft

3. Password Reuse

4. Insider

5. Operational Log

Compromise

6. Security Log

Compromise

7. Backup Lost

Stolen

8. Modifying

Network Traffic

Employee Loyalty and

Experience (1,4)

Personal Sensitive Data

(2,4,7)

Personal Data (2,4,7)

HR Data (2,7)

Credentials (1,3)

User Directory (data)

(2,7)

Operational Logs (5)

Security Logs (6)

Backup or Archive Data

(2,7)

Network (connections,

etc) (8)

Non-Repudiation

Privacy

Authentication

Authorization

Security Auditing

Integrity

Physical Protection

Intrusion Detection

Survivability

8.

Other Security

Concerns (not

specific to

functionality)

Impossibility of

processing data in

Encrypted format

No Control on

Vulnerability

Assessment Process

Cross Cloud

Applications

Creating Hidden

Dependency

SLA clauses with

conflicting promises

to different

stakeholders

SLA clauses

containing excessive

business Risk

No policies for

Resource Capping

Lack of Information

on Jurisdictions

1. Insider

2. Data Leakage

3. Loss of

Governance

4. Modifying

Network Traffic

5. Supply Chain

Failure

6. Conflict between

Customer Provider

Hardening Process

and Cloud

Environment

7. Resource

Exhaustion

8. DDoS

9. Sabotage

10. Compliance

Challenges

11. Legal Issues

12. Privilege Abuse

13. Backup Lost

Stolen

14. Unauthorized

Physical Access

15. Network Issues

16. Operational Log

Company Reputation

(3,5,7,10,11,18,19)

Employee Loyalty and

Experience (1,2,12)

Personal Sensitive Data

(1,13,18)

Personal Data

(1,2,13,18)

HR Data (13,18)

Service Delivery- real

time services (5,6,8,19)

Service Delivery (5,6,8)

Credentials (19)

User Directory

(data)(9,13,18,20)

Cloud Service

Management Interface

(10,19)

Network (connections,

etc) (4,15)

Backup or Archive Data

(10,11,13,18,20)

Intellectual Property

(11)

Physical Hardware

(7,9,14)

Operational Logs

Authorization

Immunity

Multi Trust

Intrusion Detection

Survivability

System Maintenance

Integrity

Physical Protection

Security Auditing

 142

Unclear Roles and

Responsibilities

Poor Enforcement

of Role Definitions

Need- to- Know

Principle Not

Applied

Inadequate Physical

Security Procedures

System or OS

Vulnerabilities

Lack of or

incomplete or

Inaccurate Asset

Inventory

Lack of or

incomplete or

Inaccurate Asset

Classification

Poor Identification

of Project

Requirements

Application

Vulnerabilities or

Poor Patch

Management

Lack of Policy or

poor Procedures for

Logs Collection and

Retention

Compromise

17. Security Log

Compromise

18. Lock In

19. Management

Interface

Compromise

20. Side Channel

Attack

(13,16)

Security logs (13,17)

4.5.2 Prioritization

Security requirements identified during the previous activity are now prioritized.

Table 4.8 shows the priority value calculation for Identification Security requirement:

 Risk values for threats mitigated are calculated using equation (3.1)

described in section 3.2.2, are shown in Table 4.8.

 All the risk values are summed together and assigned to Identification

Security Requirement Value (SR Value) [10+60+50+64] = 184. Similarly, all

 143

other values are calculated, shown in Table 4.8; higher number represents

higher priority and vice versa.

 Depending on SR Value Security Requirements Priority (SR Priority) is

decided.

4.5.3 Implementation and Validation

Based on the identified and prioritized set of security requirements, most efficient

algorithm to implement the security requirements is identified based on various

domain constraints. It consists of following steps:

 Mapping of Security Requirements with Security Services. Security

requirements are mapped to identified security services already shown in Table

4.4.

Table 4.8 Calculation of Security Requirement Priority

Security

Requirements

Threats Mitigated Threat

Rating

Impact Risk

Value

SR

Value

SR

Priority

Identification T.Password Cracking 1 10 10 184 7

T.Impersonate 2 30 60

T.Social Engineer 5 10 50

T.Priviledge Abuse 8 8 64

Authorization T.Priviledge Abuse 8 8 64 119 5

T.Insider 2 25 50

Unauthorized Physical

Access

1 5 5

Authentication T.Password Cracking 1 10 10 60 2

T.Password Reuse 1 10 10

T.Replay Attack 2 20 40

Auditing T.Operational Logs

Compromise

6 6 36 72 3

 144

T.Security Log

Compromise

6 6 36

Integrity T.Data Deletion 1 18 18 198 8

Backup Lost Stolen 4 45 180

Intrusion

Detection

T.Malicious Code 3 18 54 303 11

T.Sniffing 1 51 51

MITM 6 33 198

Survivability T.Loss of Encryption

Keys

2 17 34 230 9

Modifying Network

Traffic

4 8 32

Supply Chain Failure 4 26 104

T.Resource

Exhaustion

4 15 60

Multi-Trust T.Loss of Governance 13 20 260 622 13

T.Compliance

Challenges

6 30 180

T.Legal Issues 4 28 112

T.Lock In 2 35 70

Immunity T.DDoS 4 18 72 535 12

T.Malicious Code 3 18 54

T.MITM 6 33 198

T.Data Leakage 6 27 162

T.Sabotage 1 13 13

T.Side Channel Attack 2 18 36

Physical

Protection

T.Backup Lost Stolen 4 45 180 231 10

T.Natural Disaster 1 46 46

T.Unauthorized

Physical Access

1 5 5

System

Maintenance

T.Conflict between

Customer Provider

Hardening Process and

Cloud Environment

3 16 48 88 4

T.Network Issues 5 8 40

Non-

Repudiation

T.Repudiate 1 28 28 28 1

Privacy T.Data Theft 3 43 129 164 6

T.Disclose Data 1 35 35

 145

 Analysis and Selection

o Threat Match. Continuing our example based attack analysis result

ECC/HECC algorithm will be chosen. Attack analysis for cloud-based

system is shown in Table 4.9

Table 4.9 Attack Analysis Repository for Cloud Systems

Attacks

Suitable Cryptography Algorithm

Asymmetric

Algorithm

Symmetric

Algorithm

Hashing

Algorithm
Signature Algorithm

RSA ECC HECC AES DES
Triple

DES
MD5 SHA1

RSA

+

DSA

ECDSA HECDSA

Data Leakage Y N N Y Y Y N N Y N N

MITM Y N N Y Y Y N N N N N

DDoS N N N Y Y Y Y Y Y Y Y

Replay

attacks
Y N N Y N N N N N N N

Side Channel

attack
Y N N Y Y Y N N Y Y Y

Password

Cracking
Y N N Y Y Y N N N N N

Impersonate Y N N Y Y Y N N N Y Y

Password

Reuse
Y Y Y N N N Y Y Y Y Y

Sniffing Y N N Y Y Y N N N N N

Impact 8 1 1 8 7 7 2 2 4 4 4

o Domain Constraints. Different constraints pertaining to cloud systems are

mentioned in Table 4.5.

 Selection of Algorithm

 Analysis of Algorithm. Based on the domain attributes HECC algorithm is

chosen for encryption among the ECC and HECC. As HECC is more

efficient based on runtime constraints as compared to the algorithm ECC.

 146

Moreover, various other algorithms are needed, and guidelines are made for

providers and customers are listed in Table 4.10.

Table 4.10 Security Guidelines for Cloud-Based System

Security

Algorithm

Purpose Threats Mitigated Providers End Customers End

HECC As a cryptography

protocol to secure data

from various threats

Data Leakage,

MITM, DDoS,

Replay attacks, Side

Channel Attack,

Password Cracking,

Impersonate,

Sniffing

The developer should

implement the

algorithm for protecting

customer data.

Nothing to be

done

Two Factor

Authentication/

Multi-Factor

Authentication

For authentication Unauthorized

Access, Insider,

Social Engineer

To be implemented by

providing another layer

of security on

authentication (mainly

used when customer/

user is using different

device other than the

registered one for data

access)

Nothing to be

done

Diffie-hellman

key exchange

with Kerberos

For network

authentication by

allowing nodes to

communicate over an

insecure network to

prove identity to each

other in a secure manner.

Loss of Encryption

Key

Must be implemented

for session

management and secure

key exchange between

the parties.

Nothing to be

done

Physical

Protection

Mechanisms

For protecting physical

resources from theft and

physical assaults

Backup Lost Stolen,

Unauthorized

Physical Access,

Natural Disaster (to

some extent)

Must have physical

protection algorithms

such as retina scan,

fingerprint scanning,

and others to avoid

theft and unauthorized

physical access

The customer

should also

provide an

algorithm at his

end also to

prevent any theft

and loss because

of physical

assaults.

Need-to-know

Principle

Enforcement

For providing protection

from malicious insider

Insider What need to be done

and how should be

clearly defined.

Nothing to be

done

Roles and

Responsibility

(RnR) Clarity

Roles and

responsibilities should be

clearly mentioned

Privilege Abuse,

Insider, Repudiate

The developer should

clearly define the role

of each employee for

proper working and

mitigating threats like

an insider, privilege

abuse, unauthorized

The customer

should also

define the role of

each user or

employee as a

client can be an

organization.

 147

 Validation. Chosen security algorithms are mitigating all the threats.

Security Index, SI = (2)

As the SI value is zero, need not to compare it with any reference value. If this is the

case, the system is in a safe state.

4.6 Evaluation of the Existing Cloud Storage Models

We have studied existing cloud-based storage providers and evaluated them to know

the level of security provided by them to users. Various security incidents and threats

are reported in the past (Kuppuswamy & Al-Khalidi, 2014) (Dropbox: Yes, We Were

physical access and so

on.

Vulnerability

Assessment Tools

For detection and

protection from malware

and cracking attempts

Password Cracking,

Malicious Code,

Password Reuse,

Network Issues

Need to monitor any

attempt to unauthorized

access to customer

data.

Customer must

install some

antivirus

software to

detect any

malware

attempt.

Auditing

Algorithms

(SSAE 16/ SAS-

70)

For auditing purpose Security Log and

Operational Log

Compromise

For Manual auditing Nothing to be

done

SLA

Strengthening

Provide clauses for

proper functioning

Loss of

Governance,

Compliance

Challenges, Legal

Issues, Lock In,

Sniffing, Sabotage

Legal document and

must be carefully

designed by the cloud

developer

must be

carefully studied

and understood

by the cloud

customer

Data Portability Provided to mitigate

LOCK-IN threat by

using Standard set of

APIs

Lock In Should be provided

using standard APIs

and protocols for

implementation, data

storage, and replication

Nothing to be

done

Quota It is the restriction

imposed by the

government on goods

that can be imported or

exported during a

particular period.

Resource

Exhaustion

Developer should

specify the limit that

the customer cannot

cross in the form of

some terms and

conditions

Nothing to be

done

 148

Hacked, 2012) (DropBox storage service, 2012) (Newton, 2011) on cloud storage

systems.

Security algorithms implemented by different cloud storage providers are shown in

Table 4.11. Here we are only considering the Login and Store Data functionalities.

Now the security index value is calculated for each cloud storage specified in Table

4.11 (main focus is on the authentication and encryption part).

Table 4.11 Security Algorithm Employed by Cloud Storage Systems

Storage

Service

Personal

Encryption

(user manage

their

encryption key

or password;

provider is not

able to access

user data)

Transmission Storage

Encryption

2 Step

Authentication

SI

Value

Remarks

DropBox

(initial

version)

No AES-128,

SSL/TLS

AES-256 No 71.5 SI very high

DropBox

(later

version)

No AES-128,

SSL/TLS

AES-256 Yes 18.7 SI is not

acceptable

MEGA Yes AES-256 TLS

and RSA

AES-128 No 0 SI is nil but if

the user lost

the encryption

key he is not

able to retrieve

its data.

Google

Drive

No 256-SSL/

TLS

AES-128 Yes 18.7 SI is not

acceptable

iCloud --- AES-128 SSL AES-128 Yes --- As all security

algorithms are

not known

a) Dropbox

Initial Version:

Dropbox provides TLS secure communication channel for both registration and

 149

login process. Customers are allowed to enter first and last name, email address

and desired password during the registration process. Email address is used to

login into Dropbox and password length should be of six characters. It shows the

already registered e-mail address error warning to users during the registration

process which in addition to weak password strength makes ‘T.Password

Cracking’ threat easy and it would lead to ‘T.Password Reuse’ and ‘T.Social

Engineering’ threats. It also does not send any activation emails after the

registration to customers, resulting in ‘T.Impersonate’ threat possible on it.

It uses AES-128-bit encryption algorithm for the encryption of customer data

stored on its servers, but only at server side using its encryption key to which the

client is unaware. Hence, a ‘T.Change Data’ and ‘T.Data Theft’ threat applies on

Dropbox.

SI = 0.715

The SI value is divided by two as we have considered two functionalities.

Therefore, the security index comes to be a combination of two functionalities.

Therefore, SI is 0.715 that is 71.5% which is very high that shows system is not

safe. As various security breaches are possible, so Dropbox has added new

security feature in a later version.

 150

Later Version:

SI = 0.187

Again the SI value is not low (18.7%), so we can say that if the control of

encryption key is with provider system is susceptible to a security breach which

is not acceptable.

b) MEGA

Security Index = 0/ 64.98 = 0

In the case of MEGA encryption control is with the user, so it is secure.

However, the problem with MEGA is that if the user forgets the key, he cannot

make access to the storage system.

Hence from the Table 4.11 and calculated the value of security index, we can

conclude that initial version of Dropbox lacks in security. Also, the later version is

also not that much secure as it should be. As we can see from Table 4.11 that various

other cloud providers are providing encryption to data at rest but are keeping the

control of encryption key with them. That leads to severe threats and is not

acceptable because we are storing our personal, private, financial data in these cloud

storages.

 151

4.7 Case Study of Open Source Software: ownCloud

ownCloud is a suite of client–server software for creating file hosting services and

using them. Its functionality is very similar to the widely used Dropbox, with the

primary functional difference being that the Server Edition of ownCloud is free and

open-source, and thereby allowing anyone to install and operate it without charge on a

private server. Various vulnerabilities are reported for ownCloud by CVE over the

years (CVE Details, 2012). Frequency of vulnerability occurrence can be seen from

the graph shown in Figure 4.3.

Figure 4.3 Vulnerability to ownCloud over the years

We have made a comparison of threats identified for our case study of cloud based

storage system with the threats reported by CVE for ownCloud. Result of comparison

is shown in Table 4.12.

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/File_hosting_service
https://en.wikipedia.org/wiki/Dropbox_(service)
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Private_server

 152

Table 4.12 Threat Comparison

SNO. Possible Threats Threats reported by

CVE for ownCloud

Threats identified Using

Security Engineering

Framework

1 Distributed Denial of Service

(DDoS)

NO YES

2 Denial of Service (DoS) YES YES

3 Password Cracking NO YES

4 Password Reuse NO YES

5 MITM NO YES

6 Replay Attack NO YES

7 Data Leakage NO YES

8 Impersonate NO YES

9 Lock In NO YES

10 Sniffing NO YES

11 Malicious Code* YES YES

12 Data Theft YES YES

13 Repudiate NO YES

14 Social Engineer YES YES

15 Privilege Abuse YES YES

16 Management Interface

Compromise

YES YES

17 Insider NO YES

18 Operational Log Compromise NO YES

19 Security Log Compromise NO YES

20 Data Deletion NO YES

21 Side Channel Attack NO YES

22 Change Data YES YES

23 Modifying Network Traffic NO YES

24 Loss of Governance NO YES

25 Compliance Challenges NO YES

26 Legal Issues NO YES

27 Network Issues NO YES

28 Natural Disaster NO YES

29 Loss of Encryption Keys NO YES

30 Resource Exhaustion NO YES

31 Backup Lost Stolen NO YES

32 Supply Chain Failure NO YES

33 Conflict between Customer

Provider Hardening Process and

NO YES

 153

Cloud Environment

34 Sabotage NO YES

35 Unauthorized Physical Access NO YES

36 Disclose Data NO NO

37 Cloud Service Termination NO NO

38 Cloud Provider Acquisition NO NO

39 Compromise Service Engine NO NO

Malicious Code: It refers to the change in the source code with an intention of

security breach. It can be created by inserting SQL queries having untrusted data, or

by exploiting an existing bug in the code, or by adding camouflaging XML scripts in

dynamic web pages. Threats Code Execution, Sql Injection, XSS (Cross Site

Scripting), Http Response Splitting, Cross Site Request Forgery (CSRF) are comes

under Malicious Code.

From the list of threats reported on ownCloud by CVE and the threats addressed by

our framework. Threats identified by our approach is much more than the threats

reported by CVE. In addition to this, proper security mechanisms are suggested to

handle the reported/ identified threats. Hence, we can say that our framework aids

the identification of threat and vulnerabilities at right time and try to handle them

accordingly. It will also reduce the problems that may occur in future due to security

negligence.

Summary

We have modified the generic framework of security engineering to enact novel

security framework for cloud-based systems. The framework does its work in three

phases that are specification, prioritization, and implementation & validation. In

specification and prioritization phase security requirements are elicited, analyzed and

 154

prioritized. In implementation and validation phase optimal algorithm is selected

based on domain constraints, and system security level is tested. We have illustrated

our proposal for cloud storage model such as ‘Dropbox,’ ‘ME A,’ and others.

Novel contributions of the Chapter:

The proposed framework differs from the framework proposed in foregoing chapter,

as it has following distinguished features:

a) A new security requirement named multi-trust is added to the cluster of

security requirements defined by researcher Firesmith.

b) During the requirements engineering phase to elicit the security requirements

we have generated a Functionality-Asset mapping table having a dimension

(34X 22) and a vulnerability-threat mapping table of dimension of the (39

X 45). This would guide the user in handling a large number of assets, threats,

vulnerabilities associated with actors.

c) Security algorithms are chosen considering various domain constraints

(environmental consideration, communicational and computational parameters,

and type of devices used) during the design engineering phase. For example,

our proposal has recommended HECC algorithm for implementation based on

domain constraints. Whereas currently available proposals like Dropbox has

employed AES-128 bit encryption which is vulnerable to “T.Change Data” and

“T.Data Theft” threats.

 155

d) An open source file hosting service provider ‘owncloud’ has been

evaluated for the purpose of validation of our proposal. And it is found that

our proposal identifies more threats.

e) Also, major cloud-based storage providers such as Dropbox, MEGA,

Google Drive, iCloud were evaluated for checking the security level by

generating security metric. It was established from the case studies that our

proposed framework can provide more security.

f) The proposed framework can be used for implementing security in the

development of new cloud system.

Publications from the work

(a) Shruti Jaiswal, Daya Gupta, “Engineering and validating security to make

cloud secure”, International Journal of System Assurance Engineering and

Management, pp. 1-23, DOI: 10.1007/s13198-017-0612-x.]

(b) Shruti Jaiswal, Daya Gupta, “Security Requirements Engineering: A

Challenge for Cloud System”, in Proceedings of ‘Second International

Conference on Emerging Research in Computing, Information, Communication

and Applications’(ERCICA-14), published in Elsevier proceedings.

 156

CHAPTER 5

SECURITY FRAMEWORK FOR IOT SYSTEMS

Internet of Things (IoT) is a network of physical objects embedded with sensors,

software, and network connectivity, which enables them to collect and exchange data.

IoT network allows sensing and controlling of objects remotely across existing

network infrastructure. The Internet of Things (IoT) is an exhortation applied in

various domains such as healthcare, education & research, home automation,

manufacturing, and transportation, which contributes to our everyday life. Security is

a serious concern in the IoT-based system. As a customer has to trust on the devices

and a third party for management and protection of their confidential and private data

from attacks. In this chapter, we first identify the assets at different layers of IoT

system, then threats to assets and security requirements to mitigate the threats are

identified. Based on domain constraints security algorithm is chosen and finally,

system security is tested by generating a security index. The chapter starts with a brief

discussion about IoT and security issues present in IoT-based systems. In the next

part, novel security engineering framework is presented for IoT systems. Finally, the

framework is explained for the IoT-based healthcare system.

5.1 Internet of Things

Internet of Things is a concept of future development of Internet intending to connect

everyday objects to it. It is a proposed network of “things” or physical objects

embedded with sensors, electronics, software and network connectivity enabling these

devices to communicate. IoT enables objects/things/devices/sensors to be controlled

and sensed remotely across the network, creating more opportunities for interaction

 157

between computer-based systems and physical world resulting in more business

opportunities, economic benefit, and ease of living.

Kevin Ashton, a British entrepreneur, first used the term in 1999 while working at

Auto-ID Labs (which was originally called Auto-ID centers) -referring to a network

of connected objects globally, based on RFID (Radio-frequency identification).

Reports published in (IDC, 2016, [online]) (O'Donnell, 2016, [online]) has predicted

that IoT spending will reach $1.7 trillion by 2020. Gartner (Gartner, 2015) has

forecasted that a hefty 21 billion IoT devices will be in place.

"Things" in Internet of Things, refers to a wide variety of sensors/devices like biochip

transponders on farm animals, heart monitoring implants, automobiles with built-in

sensors, electric clams in coastal waters, or field operation devices that help

firefighters in rescue and search operations. These devices collect useful information

with the help of several existing technologies. The collected data may flow

autonomously between the devices. Present market examples include washer/dryers

and smart thermostat systems having built-in sensors, actuators, internet connectivity

and ability to exchange data using Wi-Fi or other technologies. Virtually all devices

can be part of IoT which can connect to the internet but those that have sensing or

actuating capabilities are preferred.

IoT will help organizations and industries in reducing cost by improving productivity,

efficiency and resource utilization. By using IoT systems many tasks could be

performed remotely without risk to human life, reduce travel time providing real-time

insights, informed decisions can be taken. All these will help in making smarter

 158

decisions creating opportunities for people and industries.

As more and more things are connected to the Internet, it calls for a security check.

Due to the constraints involved with IoT devices and the high stakes associated with

the working of these devices. It can cause a lot of harm and financial loss if the

security is not dealt early in the development cycle. Security is one of the key factors

and concern area for the success of IoT (Miorandi, Sicari, Pellegrini, & Chlamtac,

2012) (Rose, Eldridge, & Chapin, 2015) (Trappe, Howard, & Moore, 2015).

5.1.1 IoT Architecture

Internet of things has a layered architecture shown in Figure 5.1, consisting of three

layers namely user interface layer, network layer, and sensing layer.

Figure 5.1. Architecture of IoT

Layer 1. Sensing Layer It consists of sensors, actuators, tags which are fitted in

things to acquire data about the things characteristics and its environment. Sensors are

 159

the base of IoT systems as they collect the data and store it in the database for

processing. Thereafter, processing of information is done as per the context of use,

which varies from actor to actor. For instance, in a room, temperature sensors are

fitted which senses the temperature every minute and store it in the local database.

Upper layers can use the collected data in a different context such as (1) by the air

conditioner to know when to increase/ decrease the temperature. (2) use to predict the

how is the day (hot/ cold/ moderate) based on the average temperature of the day.

Layer 2. Network/ Communication Layer Network layer consists of various

communication mediums to enable the sensors, devices, users, and others to

communicate with each other. The communication medium can be a low power blue

tooth for sensors, Zigbee for short distance, internet, WLAN, LAN and other

technologies to enable communication and transfer of data/ information over the

globe.

Layer 3. Application/ User Interface Layer Application layer provides interaction

of the user with the system. The interface of the user to the system can be provided

using mobile applications, web applications, through some device or using other

mechanisms. Here, the user will vary depending on the domain such as in the case of

the healthcare domain the users can be doctors, nurses, patients and in smart home

users can be a house owner, guests, people living, and servants.

5.1.2 Difference between IoT Security and Network Security

At first glance, one can think of IoT is same as network system and security

techniques applicable to existing network systems can be applied to IoT systems. But,

 160

IoT is a fusion of heterogeneous networks, which not only involves the same security

problems as present in the existing network. However, more particular ones like

privacy protection problem, heterogeneous network authentication and access control,

information storage, and management, need to be handled. Our research shows that

IoT security is different from Internet security (Islam, Kwak, Kabir, Hossain, &

Kwak, 2015), it is far more complicated. Table 5.1 elaborates how IoT is more

complex than network security, here for explaining the difference healthcare domain

is considered.

Table 5.1 Comparison of IoT Security and Network Security

Design Parameters IoT Security Network Security

Memory constraints The on-device memory of IoT devices is very low.

They mainly use embedded operating system (OS), r

the system software. Therefore, the system does not

have enough memory to execute complicated security

protocols.

No such memory

constraint.

Speed of

Computation and

Resource

constraints

Low-speed processors are available for IoT devices.

The central processing unit (CPU) in such devices is

not very fast. Therefore, finding a security solution

that works on it, is a difficult task.

High-speed CPUs are

available

Energy Limitations

or

Power consumption

An IoT network includes small health devices with

limited battery power and has low CPU speed. They

use the power-saving mode to conserve energy when

sensors are idle. Therefore, the energy constraint

makes finding security solution challenging task.

No battery problem.

They are equipped

with power backups

Scalability There is a gradual increase in number of devices.

Therefore, need to select scalable security algorithm

becomes a challenging task.

They are connected by

reliable wired links

and have established

wireless links also

which are scalable.

Communications

Channel

IoT devices are mainly connected to the network

through wireless links such as Zigbee, Z-Wave,

Bluetooth, Bluetooth Low Energy, WiFi, GSM,

WiMax, and 3G/4G. Therefore, it is difficult to have a

security protocol that works for wireless links and

provides security comparable to wired links.

Less number of

mobile devices

Security Updates Need to keep security protocols up-to-date to mitigate

potential vulnerabilities, Automatic updating of

security protocol is difficult.

They have the

established system for

security.

 161

5.2 Security Issues in IoT

IoT encompasses many technologies – networks, cloud system, operating systems,

databases, resource scheduling, virtualization, transaction management, load

balancing, concurrency control, and memory management. Security concerns

pertaining to these technologies may apply to an IoT system. The network that

connects the systems in the IoT has to be secure, and mapping of virtual machines to

the physical machines needs to be carried out securely. Data security via encryption

and appropriate policy enforcement for data sharing must be in place with secure

resource allocation and memory management policies.

Some important issues present in IoT systems, extracted from different sources

(Granjal, Monteiro, & Silva, 2015) (Roman, Najera, & Lopez, 2011) (Stankovic,

2014) (Sood, Yu, & Xiang, 2015) are as follows:

Identification / Authentication / Authorization: Authentication in IoT is very

difficult as it involves authentication of a heterogeneous network. Identification and

authentication of Things (sensors) must be done before they join the network. IoT

requires a unique identification code or a global unique identifier (UID) for each

entity in the network. Once the identification and authentication is done, authorization

of user should be done i.e. set of rules can be provided which are permitted to him.

Confidentiality & Privacy: Need to ensure that the personal and sensitive information

is not accessible to unauthorized users. In addition, confidential& private messages

should not be revealed to eavesdroppers.

 162

Resilience: In IoT, if some interconnected nodes are compromised, then the system

should still protect the network/ device/information from attacks.

Fault Tolerance: The system should be able to function with relevant security

services in case of a fault such as a device compromise or failure.

Self-Healing: If a sensor in an IoT network fails then, the other devices must be able

to provide a minimum level of security.

Heterogeneity / Standardization / Interoperability: The devices used in IoT are

mostly standalone, they are made for a specific purpose. Thousands of devices having

different architectures and following different protocols, constitute an IoT network.

Also, there is a lack of standardization between these devices. Interoperability

between the devices is also a serious concern. This requires a proper security design

process which needs to be followed to mitigate security problems arising from

Heterogeneity, lack of Standardization and Interoperability.

Data Freshness: For any IoT network to work in an efficient manner nodes must

have access to recent (fresh) messages or data. For example, to analyze the

functionality of patient heart, the doctor needs the most recent ECG readings in a

remote patient monitoring system.

Liability: In the case of any misuse, loss, theft or unusual event some liability or

accountability should be provided.

 163

Big Data: When the devices in IoT system communicate with themselves or with

external entities a large amount of data is generated. Secure handling of this data

needs to be ensured.

Constraints: IoT devices are constrained they have limited resources. Providing

security with limited resources is a challenging task.

Trust: Trust should be present which determines a user’s willingness to use the

system. If a user is ensured that the system is not compromised, he is more willing to

use the system.

Anonymity: Anonymity should be maintained. In some cases, the user does not want

to disclose their identity. For example, in a Remote Patient Monitoring system, many

medical patients do not want to disclose their identity or reports to anyone.

5.3 Existing Proposals in IoT for Security

Our dependence on IoT has created immense apprehension for study, analysis, and

implementation of information security in IoT-based systems. As mentioned by

Charles Renert (Websence Security Lab, 2015), vice president Websence Security

Labs “The Internet of Things means consumer products from TVs to refrigerators

are now digitally connected. While the enterprise need not fear the implications of

an interconnected home appliance, every new employee’s internet-connected

device, application and upgrade is a potential threat vector.” Iot has a layered

structure and security threats are affecting the working of IoT at each layer.

Researchers have identified various threats like man in middle attack, eavesdropping,

 164

malware attacks. It is gaining the attention of investigators to work on the different

aspect of security to make IoT system free from various security lapses. A range of

techniques is identified to prevent the security attacks. However, selecting a

technique/ algorithm that best suits the given condition is a complex task.

Researchers are working on the security aspect of IoT and proposed techniques for

identification of threats at different layers of IoT architecture (Li, Tryfonas, & Li,

2016) (Roman, Najera, & Lopez, 2011) (Jing, Vasilakos, Wan, Lu, & Qiu, 2014). In

(Li, Tryfonas, & Li, 2016), researchers have identified potential threats at different

layers of IoT architecture but left the solution aspect unexplored. In another research

(Jing, Vasilakos, Wan, Lu, & Qiu, 2014), researchers have identified threats at each

layer and focused on some cross-layer threats. Researchers have given some available

solutions to handle threats such as Physical based schemes, password based schemes,

permissions, frameworks have been proposed for privacy protection (Jing, Vasilakos,

Wan, Lu, & Qui, 2014) (Valera, Zamora, & Skarmeta, 2010); RFID is the basic unit

of IoT which can be easily forged, hence tag authentication is required, RFID tracking

and inventorying are the two main privacy concerns (Jules, 2006). They have left the

overall security architecture with the complete solution to an open issue for further

research.

Conclusions are drawn from Existing Proposals

Classical ways of providing security are not sufficient in IoT environment. Traditional

communication techniques TCP, WAN, IPSec, are used at transportation layer. The

security issues in these techniques also pose a threat to IoT security. For example, (a)

Denial of service attacks can lead to unavailability of the system, (b) Man-in-the-

 165

middle attack causes an information breach, (c) Network paralysis attacks can halt the

ongoing traffic. Therefore, secure routing is needed. Data need to be secured when

processing using different techniques.

Need physical mechanism to handle theft and misplacement of different sensor nodes

(mobile phones, embedded chips, RFID tags) deployed. If theft occurs, then steps

should be taken to immediately block the stolen device to avoid any unauthorized

access to the sensitive data. As physical security is a great concern in IoT-based

network. The interoperability among various networks (WSN, LAN, RFID, sensor)

might pose some risk to the security, privacy, and trust. Therefore, there is a need to

explore security solutions during interoperability.

All papers revolve around the identification of threats, and they have devised the

solution approaches in an ad hoc way. There is no precise method available that

identifies security requirements and specify them. Therefore, it calls for a process that

identifies the security requirements efficiently by providing guidelines to handle them

appropriately.

In short, security of IoT is very important as its roots are growing exponentially. For

its positive growth, the shortcomings have to be removed to build and gain the

confidence (trust) of the users. Every solution has its strengths and limitations. New

techniques should be discovered which can give maximum throughput and have

minimum limitations. The security solutions should be dynamic and adaptive.

Security solutions for implementing security issues of IoT system are required which

should be (a) Light weight (Consume less power/ energy, require less computation),

 166

(d) Need less storage space, and (e) Need to work with things such as RFID tags,

embedded systems, sensors etc. which has less computational. In the following

section, we modify the Generic Security Engineering framework that will address

new security issues in IoT and consider foregoing domain constraints.

5.4 Need for new Framework

Since the IOT systems are heterogeneous networks, its security issues are difficult to

handle compared to any other system. Hence, framework proposed in previous

chapters require modification. Some of the reasons for improvement are listed below:

 In web- based systems and cloud based system our process starts with the

stakeholder’s identification. But, in IOT based system we are focusing on

assets because IOT system focuses on communication between physical

devices which are known as ‘things’. Things are the asset of the system.

 Instead of identifying vulnerabilities for functional requirements, here

vulnerabilities are identified for assets based on its role for the user.

 Some new vulnerabilities and threats are considered here such as Monitoring

Absence, Untrained Users, Unsecured API Firmware, Obsolete system, etc. So

threats and vulnerabilities of our previous frameworks have to be updated.

 Also, new security services are applicable for IOT based systems such as Data

Freshness and Trust to tackle the adoption need and new threats and

vulnerabilities.

 Some new hybrid algorithms are also available for IOT based systems. So,

algorithm and threat repository should be changed.

 Also domain constraints are to be modified based on the layer at which

security is to be considered.

 167

From the above points, we conclude that our previous framework requires

modification to make it adaptable for IOT- based system. Modified framework to

handle the security issues of IOT system is presented and discussed in next

section.

5.5 Security Engineering Framework for IoT-based Systems

The novel security engineering framework for IoT-based systems is shown in Figure

5.2. It works in two phases, in first phase security issues present in the system are

identified and represented in the form of security requirements. In the next phase,

different techniques to implement the identified security requirements are suggested

or recommended based on domain constraints.

5.5.1 Identification and Specification. In IoT- based systems requirements engineer

focuses on asset identification in contrast to identification of stakeholders as done in

previous frameworks. Therefore, in the first phase generic assets of IoT-based

systems are identified. IoT architecture has three layers and each layer is filled with

assets (hardware and software’s) which needs protection (see Table 5.2). Hence, focus

should be on assets identification and then based on role of assets potential points of

attacks (vulnerabilities) are identified. Once the vulnerabilities are known, potential

threats to system assets are identified. Thereafter, identified threats are evaluated to

deduce their severity by estimating the risk values. Finally, security requirements are

elicited, prioritized and specified. Different activities of identification and

specification phase are elaborated below:

 168

Figure 5.2 Proposed Framework for IoT-Based Systems

IDENTIFICTION AND SPECIFICATION

Identify the Assets

Identify the

Vulnerability

Security

Requirements

Elicitation and

Prioritization

Threats

Specification

Evaluate the Threats

Identify the Threats

Assets present at each layer is defined with its role

and constraints

Vulnerabilities are extracted from maintained

database based on the Role of Asset

Potential threats are identified using the developed

Mapping Tables.

Categorization and Specification of Threats done

based on Risk Value

Risk Value of threats are calculated

Elicitation and Prioritization of Security

Requirements based on Threats and its Priority

Further Activities

Mapping of Threats

and Security

Requirements to

Security Services

Identifying the

Available Security

Algorithms

Check the Threat

Match

Consider the Domain

Constraints

Recommend the

Security Algorithms

Validation

Is System

Safe

Threats and Security Requirements are mapped to

Security Services

YES

NO

Available Security Mechanisms to Implement the

Security Services are Identified

Identified and Categorized threats of previous phase

are matched to threats mitigated stored in the

repository

Domain Constraints are identified for each layer of

IoT

Based on Threat match and Domain Constraints

Effective Algorithms Are Suggested

Level of Security Provided is Checked against the

defined Reference Level required by the System

DESIGN AND VALIDATION

 169

(i) Identify the Assets. Thesis aim is to secure assets of the system so that hassle-

free services can be provided to users. An asset can be anything that has value to

the organization it may be tangible (infrastructure) or intangible (customer

information, trust). Functionalities work on the assets and are always the target of

attackers. Therefore, generic assets associated with different layers of IoT

architecture are identified with their roles. Assets are identified by analyzing

various domains where IoT is implemented such as smart home, healthcare,

vehicle tracking, and transportation. Further, assets are classified based on its

types (if available). Also, possible constraints/limitation applicable to assets are

identified. Identification of constraints on an asset is an important activity as it

plays a vital role when it comes to suggesting efficient security solutions for

implementing security requirements. A repository of assets present at different

layers is built, and if some new asset is identified, it is added to the list. List of

assets at various layers of IoT with suitable constraints and role are depicted in

Table 5.2.

Table 5.2 Assets at various Layers of IoT

S.No Layer Assets Further Sub-Categorization Constraints Role

1. Sensing

Layer

Sensors/

Actuators/

Controllers

 Environment Sensors (Light,

Temperature, Humidity/

moisture)

 Body Sensors (ECG, Blood

Pressure, etc.)

 Motion Sensors

 Microphone Sensors

 Gas/ Smoke Sensors

 Electrical Current/ ON-OFF

Sensors

 Door (magnet) Sensors

 Physiological sensors

 Low power

 Low in Battery power

 Low memory

 Low computational

speed

 Low communication

bandwidth

Used for

acquiring

data

through

sensing

 170

2. Tags and

Markers

 RFID

 NFC

 Security tokens

 Chip cards

 SIM

 Low power

 Low in Battery power

 Low memory

 Low computational

speed

 Low communication

bandwidth

For

identificati

on of

devices

3. Information

Storage

 In-house server

 Cloud storage

 Removable resources

 Bulky/ Huge data

 No Fixed Structure

(Structured,

Unstructured)

 Confidential data

 Generated from

different sources

 Different format

 Availability

For storing

huge

amount of

data being

generated

and

created

4. Appliances Home (Refrigerator, Washing

machine, and others)

 Hospital (Different

Machines)

 Displays

 Speakers

 Availability

 Environment

Constraints

 Battery/ Power/

Charging

Appliances

that are

dependent

or attached

to IoT

network

5. Communicat

ion Layer

Networking

 Internet connection (wired,

wireless)

 Networking components

(Routers, Bridge, Repeaters,

Gateway, Firewall, Switch,

and others)

 Limited bandwidth

depending on the

devices

For

efficient

communic

ation

between

devices,

data

centers,

and other

involved

equipment.

6. User

Interface

layer

Human-

machine

interface

device

 Specialized terminal

 Interface to gateway

 Remote control handset

 Smartphone

 Smart TV

 Tablet computer

 Desktop computer/PC

 Battery/

Power/charging

 Availability

 Environment

Constraints

Mode of

interaction

 171

 SOS/Emergency button

 Set-top-box user interface

 Calendar/Reminder device

7. Between

interface of

two Layers

Software Operating system(s)

 Device drivers

 Applications

 Firmware

 Auto update

 Security Patch

Update

 Compatibility

 Battery/ Power/

Charging

For Data

Processing

8. At each

layer

Information Access and payment

credential for external

accounts

 Smart (home, hospital, city)

setup/ structure/ inventory

information

 Status information

 Users preferences

 Value/IPRs

 Security

 Passwords

 User identification

 Privacy

 User biometrics

 Behavioral patterns and

trends

 Resources

 Music

 A/V media

 Pictures

 Documents

 Distributed

 Bulky/ Huge

 Confidential

 Generated from

different sources

 Different formats

Crucial

and

important

data for

processing

9. Miscellaneo

us

Physical

Resources

 Building

 Hardware (Air conditioners,

Meters, Lighting and others)

 Physical constraints Provides

Infrastruct

ure

10. People/

Users

People/ User End users

 Providers

 Customers

 From different

technical background

 May/may not have

security knowledge

They will

access and

manage

the system.

 172

(ii) Identification of Vulnerabilities. Vulnerabilities present in the system give rise

to threats, they are the weak points of the system which are exploited by the

attackers to gain access to system resources (assets). Therefore, the presence of

such points should be identified to protect assets from attackers. Vulnerabilities

are collected and stored in the repository by doing extensive literature survey

(Barnard-Wills, Marinos, & Portesi, 2014) (Mitrokotsa, Beye, & Peris-Lopez,

2010) (Jing, V. Vasilakos, Wan, Lu, & Qiu, 2014). Vulnerabilities corresponding

to assets are extracted from the repository by considering their roles. Vulnerability

for identified assets and are depicted in Table 5.3 which acts as a repository. For

convenience and easy distinction, Vulnerabilities are prefixed with “V.”

Vulnerabilities are extracted from a repository based on the role (function) of

assets for involved stakeholder, to do this a scenario diagram as explained in

Section 3.2.1 of Chapter 3 is created which depicts when the assets are accessed

and used. If a new vulnerability is reported, its details are accounted in the

repository for further use.

(iii)Identify the Threats. To provide security to the system assets, one need to know

the potential attacks to the system assets. Therefore, potential threats at different

vulnerable points need to be identified, to do this a mapping table is proposed as

shown in Table 5.4. Mapping table shows the probable threats at different

vulnerable points. An “X” in the mapping table means that the threat can occur at

given vulnerable point. Therefore, threats are extracted from the mapping table

using the information (private exchange, assets involved and their role). For

example, threat, T.Identity Fraud is possible due to vulnerabilities in column 1, 2,

9, 14, 21 corresponding to V.Weak Access Control, V.Inadequate Logging,

 173

V.Untrained User, V.Old Data, and V.Insufficient Security Configuration. For

convenience and easy distinction, Threats are prefixed with “T.”.

Table 5.3 Identified Vulnerabilities for Assets

S.No Assets Vulnerabilities S.No Assets Vulnerabilities

1 Sensors V.Weak Access Control

V.Unencrypted Data

V.Physical Security

V.Misconfiguration

V.Insecure Interfaces

V.Insufficient Security

Configurability

V.Remote Access

V.System Misuse

V.Monitoring Absence

V.Inadequate Logging

V.Lack of Standards

 6 Tags and

Markers

V.Weak Access Control

V.Unencrypted Data

V.Physical Security

V.Misconfiguration

V.Unsecured API Firmware

V.Insufficient Security

Configurability

V.Remote Access

V.Inadequate Logging

V.Lack of Standards

2 Software V.Inadequate Logging

V.Misconfigurations

V.Unsecured API Firmware

V.Obsolete System

V.Lack of Standards

V.Intrusion Detection

 7 Networking V.Weak Access Control

V.Unencrypted Data

V.Breached Firewall

V.Insecure Network services

V.Insufficient Security

Configurability

3 Human-

machine

interface

device

V.Untrained Users

V.Misconfigurations

V.Unsecured Interface

V.Obsolete System

V.System Misuse

 8 Information

Storage

V.Weak Access Control

V.Unencrypted Data

V.Misconfigurations

V.Insecure Interfaces

V.Insufficient Security

Configurability

V.System Misuse

V.Intrusion Detection

4 Information V.Old Data

V.Inadequate Logging

V.Weak Access Control

V.Lack of Standards

V.Legal Audit

 9 Appliances V.Weak Access Control

V.Monitoring Absence

V.Physical Security

V.Misconfigurations

V.Obsolete System

V.Lack of Standards

V.Intrusion Detection

5 Physical

Resources

V.Monitoring Absence

V.Physical Security

V.Misconfigurations

V.Obsolete System

V.Insufficient Security

Configurability

 10 People/ Users V.Untrained Users

V.System Misuse

 174

Table 5.4 Vulnerability-Threat Mapping Table for IoT systems

 Vulnerabilities

 Threats

1 2 3 4 5 6 7 8 9 10 11

 V.Weak

Access

Control

V.Inadequate

Logging

V.Breached

Firewall

V.Unvalidated

Input

V.Unsecured

API

Firmware

V.Obsolete

System

V.Misconfig

uration

V.Unencrypted

Data

V.Untrained

User

V.Monitoring

Absence

V.Unsecured

Network

1 T.Identity Fraud X X X

2 T.Infected e-mail X X X

3 T.Denial of Service X

4 T.Information Leakage X X

5 T.Generation and use of Rouge

Certificates

X X

6 T.Manipulation of Hardware and

Software

7 T.Manipulation of information X X X X X

8 T.Misuse of Audit Tools X X

9 T.Falsification of Records X X X X

10 T.Unauthorized use of

Administration of devices and

systems

X X

11 T.Unauthorized access to

information system

X X X

12 T.Unauthorized use of software X X X

13 T.Unauthorized installation of

software

X X X X

14 T.Compromising Confidential

Information

 X

15 T.Credential Theft X X

16 T.Abuse of personal Data X

17 T.Malware X X X X X

18 T.Communication Infiltration X X

19 T.Eavesdropping X X

20 T.Replay Message X X X

21 T.Man in the Middle X X

22 T.Repudiation X

 175

Table 5.4 Continued

 Vulnerabilities

 Threats

1 2 3 4 5 6 7 8 9 10 11

 V.Weak

Access

Control

V.Inadequate

Logging

V.Breached

Firewall

V.Unvalidated

Input

V.Unsecured

API

Firmware

V.Obsolete

System

V.Misconfig

uration

V.Unencrypted

Data

V.Untrained

User

V.Monitoring

Absence

V.Unsecured

Network

23 T.Hardware Failure X

24 T.Lack of Resources (water,

electricity supply)

 X

25 T.Internet Outage X

26 T.Loss of Support Services X

27 T.Violation of Law or Regulations

28 T.Physical Attacks X

29 T.Unintentional Damages X

30 T.Natural Disaster

31 T.Environmental Disaster

32 T.Faliure and Malfunctions X X

33 T.Privacy Violated X

34 T.Insider X X X X X X X

35 T.Phishing X X X

36 T.Human Error X X

37 T.Spoofing X X X

38 T.Node Capture

39 T.Fake Node X X

40 T.Obsolete Data

Table 5.4 Continued

 Vulnerabilities

 Threats

12 13 14 15 16 17 18 19 20 21 22

V.Intrusion

Detection

V.Physical

Security

V.Old

Data

V.System

Misuse

V.Legal

Audit

Issues

V.Lack of

Standards

V.Resource

Isolation

V.Poor Key

Management

V.Remote

Access

V.Insufficient

Security

Configurability

V.Insecure

Interfaces

Threat

Rating

1 T.Identity Fraud X X 5

2 T.Infected e-mail X 4

3 T.Denial of Service X 2

 176

Table 5.4 Continued

 Vulnerabilities

 Threats

12 13 14 15 16 17 18 19 20 21 22

V.Intrusion

Detection

V.Physical

Security

V.Old

Data

V.System

Misuse

V.Legal

Audit

Issues

V.Lack of

Standards

V.Resource

Isolation

V.Poor Key

Management

V.Remote

Access

V.Insufficient

Security

Configurability

V.Insecure

Interfaces

Threat

Rating

4 T.Information Leakage X X 4

5 T.Generation and use of Rouge

Certificates

 X X X 5

6 T.Manipulation of Hardware and

Software

 X X X 3

7 T.Manipulation of information X X 7

8 T.Misuse of Audit Tools X 3

9 T.Falsification of Records X X 6

10 T.Unauthorized use of

Administration of devices and

systems

 2

11 T.Unauthorized access to information

system

 X X 4

12 T.Unauthorized use of software X 4

13 T.Unauthorized installation of

software

 X X 6

14 T.Compromising Confidential

Information

 X X 3

15 T.Credential Theft X X X 5

16 T.Abuse of personal Data X 2

17 T.Malware 5

18 T.Communication Infiltration X X 4

19 T.Eavesdropping X X X 5

20 T.Replay Message X X X X X 8

21 T.Man in the Middle X X X 5

22 T.Repudiation X X X X 5

23 T.Hardware Failure X 2

24 T.Lack of Resources (water,

electricity supply)

 X 2

25 T.Internet Outage X 2

26 T.Loss of Support Services X 2

 177

Table 5.4 Continued

 Vulnerabilities

 Threats

12 13 14 15 16 17 18 19 20 21 22

V.Intrusion

Detection

V.Physical

Security

V.Old

Data

V.System

Misuse

V.Legal

Audit

Issues

V.Lack of

Standards

V.Resource

Isolation

V.Poor Key

Management

V.Remote

Access

V.Insufficient

Security

Configurability

V.Insecure

Interfaces

Threat

Rating

27 T.Violation of Law or Regulations X X X 3

28 T.Physical Attacks X 2

29 T.Unintentional Damages X X X 4

30 T.Natural Disaster X 1

31 T.Environmental Disaster X 1

32 T.Faliure and Malfunctions X X 4

33 T.Privacy Violated X X X 4

34 T.Insider X X X 10

35 T.Phishing X X X 6

36 T.Human Error X X X 5

36 T.Spoofing X X X X 7

38 T.Node Capture X X 2

39 T.Fake Node X X 4

40 T.Obsolete Data X 1

 178

(iv) Evaluate the Threat. Evaluation of threats is a necessary activity as it helps us to

know the severity (impact) of threat in the system. Here we are prioritizing the threats

based on the associated risk values. Following sub-activities need to be followed for

prioritization of threats as depicted in Figure 5.3 and explained further:

Figure 5.3 Process for Prioritization of Threats

(a) Identify the Threat Rating. Threat rating shows the occurrence frequency of a

threat in the system. Threat rating is assigned by analyzing the incidence of ‘X’ in

a row of vulnerability/ threat mapping table presented in Table 5.4. The presence

of ‘X’ denotes, a threat can occur at given vulnerable point, represented by

equation (4.1) in the Section 4.3.2 of Chapter 4. For instance, threat T.Indentity

Fraud is occurring at weak points V.Weak Access Control, V.Inadequate Logging,

V.Untrained User, V.Old Data, V.Insufficient Security Configuration so its threat

rating would be ‘5’ as ‘X’ occurs at five weak points.

(b) Identify the Impact. The impact of a threat on the system is estimated using the

equation (4.1) presented in Section 4.3.2 of Chapter 4. The process for impact

Threat

Rating

Impact

Values from

Mapping Table

View of involved

Stakeholders

Asset Rating

Risk Threat Priority

 179

calculation is same as mentioned in previous chapters. To calculate the impact

value, a repository of assets affected by potential threats are maintained which is

shown in Table 5.5.

Table 5.5 Threats and Affected Assets

Threats Affected Assets Threats Affected Assets

T.Identity

Fraud

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Infected e-

mail

Software

Tags and Markers

Networking

Information Storage

Appliances

T.Manipulatio

n of

Hardware and

Software

Sensors

Software

Human-machine interface device

Tags and Markers

Information Storage

T.Information

Leakage

Sensors

Physical Resources

Tags and Markers

Networking

Information Storage

T.Generation

and use of

Rouge

Certificates

Sensors

Software

Human-machine interface device

Information

Tags and Markers

Networking

Information Storage

Appliances

T.Manipulati

on of

information

Sensors

Software

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Denial of

Service

Sensors

Software

Physical Resources

Tags and Markers

Information Storage

Appliances

T.Misuse of

Audit Tools

Sensors

Human-machine interface device

Information

Tags and Markers

Networking

Information Storage

Appliances

T.Falsificatio

n of Records

Sensors

Software

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Unauthoriz

ed access to

information

system

Sensors

Software

Information

Tags and Markers

Networking

Information Storage

Appliances

 180

T.Unauthoriz

ed use of

Administratio

n of devices

and systems

Sensors

Software

Information

Tags and Markers

Networking

Information Storage

Appliances

T.Unauthoriz

ed use of

software

Sensors

Software

Information

Tags and Markers

Networking

Information Storage

Appliances

T.Unauthoriz

ed installation

of software

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Credential

Theft

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Compromis

ing

Confidential

Information

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Networking

Information Storage

T.Malware

Sensors

Software

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Abuse of

personal Data

Software

Human-machine interface device

Tags and Markers

Information Storage

T.Communic

ation

Infiltration

Sensors

Physical Resources

Tags and Markers

Networking

Information Storage

T.Eavesdropp

ing

Sensors

Software

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Man in the

Middle

Sensors

Software

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Replay

Message

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Repudiatio

n

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Hardware

Failure

Software

Human-machine interface device

Physical Resources

Networking

Appliances

T.Internet

Outage

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Information Storage

Appliances

 181

T.Lack of

Resources

(water,

electricity

supply, etc)

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Information Storage

Appliances

T.Loss of

Support

Services

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Information Storage

Appliances

T.Violation of

Law or

Regulations

Sensors

Software

Human-machine interface device

Information

Tags and Markers

Appliances

T.Natural

Disaster

Sensors

Physical Resources

Tags and Markers

Appliances

T.Physical

Attacks

Sensors

Physical Resources

Tags and Markers

Appliances

T.Environme

ntal Disaster

Sensors

Physical Resources

Tags and Markers

Appliances

T.Unintention

al Damages

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Faliure and

Malfunctions

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Privacy

Violated

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Networking

Information Storage

T.Insider

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Phishing

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

Appliances

T.Human

Error

Sensors

Software

Human-machine interface device

Information

Tags and Markers

Appliances

T.Spoofing

Sensors

Software

Human-machine interface device

Information

Physical Resources

Tags and Markers

Networking

Information Storage

T.Fake Node

Sensors

Software

Human-machine interface device

Physical Resources

Tags and Markers

Appliances

 182

Appliances

T.Node

Capture

Sensors

Physical Resources

Tags and Markers

Appliances

T.Obsolete

Data

Information

(c) Calculate the Risk. Risk shows the damage caused to the system assets by the

occurrence of threats. The risk is the function of threat rating and impact as given

by OWASP (OWASP, 2004) represented by equation (3.1) in section 3.2.2 of

Chapter 3. For instance, Risk value for threat T.Identity Fraud is 70 (5*14); where

‘5’ is threat rating of threat T.Identity Fraud and ‘14’ is its impact (calculated in

the previous step). So, the risk value of all potential threats to the system is

calculated.

(d) Threat Specification. Threat specification means a clear and precise

representation of threats. After the calculation of risk values, categorization and

prioritization of threats are done based on the identified risk values. Then the

prioritized and categorized threats are stored to take further necessary action during

design and validation phase. A criterion for categorization of threats based on risk

values is already discussed in Table 4.3. Based on the category, essential and

important threats are handled first, and then tolerable threats may be considered

based on the time and budget available for the system. Threats in no influence

category can be ignored for further handling.

e) Security Requirements Identification and Prioritization. Security Requirements

are elicited to represent the threats. After the elicitation, security requirements are

prioritized based on threats priority. Finally, the prioritized security requirements

are specified for further activities.

 183

5.5.2 Design and Validation. After the security requirements are prioritized and

specified, we proceed to the next phase of the security engineering process. During the

design and validation phase, appropriate security algorithms for the implementation of

threats are identified. Selection of security algorithm depends on (i) Number of threats

mitigated and (ii) appropriateness of algorithm under given domain constraints. Moreover,

after selection of all required security algorithms validation is done, to check if all

potential threats are mitigated. Different activities of this phase are elaborated below:

(i) Mapping of Threats and Security Requirements to Security Services. Threats and

security requirements are mapped to various security services (Forouzan, 2007) such

as Confidentiality, Integrity, Availability, Non-Repudiation and Access Control. This

would eventually help in the later stages of design and validation process, by

specifying the suitable security mechanism for implementation. However, here besides

the basic security services two more security services Trust and Data Freshness are

considered for IoT systems. Trust security service would take care of issues pertaining

to building the confidence of customers/ users in IoT-enabled systems. Data Freshness

will take care of access to the latest and fresh data for use. Mapping of threats to

security services is shown in Table 5.6.

(ii) Identifying the available Security Algorithms. Various security algorithms

available to implement the security mechanisms/ services are identified as shown in

Table 5.7. Design and security team members will analyze the algorithms based on

domain constraints, and most appropriate technique is chosen for implementation.

 184

Table 5.6 Mapping of Threats to Security Services and Mechanism

Security

Services

Security

Requirements

Threats Security Mechanism

Available

Data

Confidentiality

Privacy

Immunity

Authentication

Identification

T.Unauthorized use of software

T.Unauthorized Installation of Software

T.Compromise of Confidential

Information

T.Communication Infiltration

T.Evesdropping

T.Man in the Middle

T.Privacy Violated

T.Malicious Insider

T.Identity Fraud

Encryption, Routing

Control

Data Integrity Integrity

T.Infected e-mail

T.Information Leakage

T.Manipulation of Hardware and

Software

T.Manipulation of Information

T.Falsification of Records

T.Credential Theft

T.Abuse of Personal Data

Encryption, Digital

Signature, Data

Integrity

Availability System

Maintenance

Survivability

T.Replay Messages

T.Denial of Service

T.Malware

T.Hardware Failure

T.Lack of Resources

T.Internet Outage

T.Unintentioanl Damages

T.Human Error

T.Failure and Malfunction

Encryption, Digital

Signature,

Authentication

Exchanges

Non-

Repudiation

Non-Repudiation T.Generation and use of Rouge

Certificates

T.Repudiation

Digital Signature, Data

Integrity, Notarization

Access Control Intrusion

Detection

Authorization

T.Unauthorized use of Administration

of Devices and /systems

T.Unauthorized Access to Information

system

T.Misuse of Audit Tools

T.Node Capture

T.Fake Node

Access Control

Mechanism

Data

Freshness

--- T.Obsolete Data

T.Modified Data

It is part of availability, but here it is

considered separately as it is always

required to access to latest data when

predicting something about the

system behavior.

Associate some

Counter Mechanism

Trust --- T.Phishing

T.Spoofing

T.Violation of Law and Regulation

T.Lost of Support Services

By Implementing all

other Security

Services, Arranging

training sessions for

users to make them

understand the system

and its benefits.

Physical

Security

Physical

Protection

T.Physical Attacks

T.Natural Disaster

T.Environmenatal Disaster

T.Theft

T.Node Failure

Using physical

protection mechanisms

 185

Table 5.7 Available Security Mechanisms

Security Mechanism Possible Techniques Algorithm Characteristic

Encryption Asymmetric

 AES

 DES

 Triple DES

Symmetric

 RSA

 Rabin’s Scheme

 ECC

 HECC

Asymmetric

 Every node has its own set

of keys (no complicated key

management protocol

required)

 Good scalability

 Takes more power because

of computational

complexity

Symmetric

 Simple calculation so takes

less power

 Require complex key

management protocol

 Confidentiality of key

Authentication takes more

power

Routing Control Ad-hoc on demand Multipath

Distance Vector routing protocol for

IoT (AOMDV-IoT)

Secure Multihop Routing Protocol

(SMRP)

Energy-aware Ant Routing Algorithm

(EARA)

Routing protocol over low power and

lossy networks(RPL)

Multiparent routing in RPL

PAIR (Pruned Adaptive IoT Routing)

REL (Routing protocol based on

Energy and Link Quality)

 Prevent routing attacks such

as spoofing, sink hole and

selective forwarding.

Digital Signature RSA + DSA

ECDSA

HECDSA

 Authentication takes more

power because extra space

is required to transmit the

digest.

Data Integrity Hashing Algorithms

 MD5

 SHA1

 Power requirement

Authentication

Exchanges

2 Step Authentication

Multi-Step Authentication

 Complexity

Notarization Build a Notary Server Complexity

Access Control

Mechanism

Discretionary Access Control

(DAC)

Mandatory Access Control (MAC)

Role-Based Access Control (RBAC)

 Scalability

 Manageability

 Effectiveness

 Resource constrained

devices

Physical Protection

Mechanisms

Hardware security primitive

Anti-theft policies

 Cost

 186

(iii)Check the Threat Match. Attack analysis repository of various security algorithms is

maintained. So specified threats are checked in the repository and algorithm mitigating

maximum threats are selected. A sample repository for confidentiality is shown in

Table 5.8. A ‘Y’ in Table 5.8 denotes the security technique is able to handle the

corresponding threat. For example, Technique AES under Asymmetric category is

mitigating the T.Unauthorized use of software, T.Unauthorized Installation of

Software, T.Communication Infiltration, T.Man in-the-Middle, T.Privacy Violated

Threats, T.Compromising Confidential Information, T.Credential Theft, and

T.Information Leakage. Last row of Table 5.8 contains values showing the total

impact means number of threats corresponding techniques is mitigating.

Table 5.8 Threats to Mechanism Mapping

 Asymmetric Symmetric Hybrid

 Techniques

Threats

AES DES Triple-

DES

RSA ECC HECC ECIES

T.Unauthorized use of software Y Y Y Y Y Y Y

T.Unauthorized Installation of

Software

Y Y Y Y Y Y Y

T.Compromise of Confidential

Information

N N N N N N Y

T.Communication Infiltrations Y N N N Y Y Y

T.Evesdropping N N N N N N Y

T.Man in the Middle Y N N N Y Y Y

T.Privacy Violated Y Y Y Y Y Y Y

T.Malicious Insider N N N N N N Y

T.Identity Fraud N N N Y Y N Y

T.Compromising Confidential

Information

Y N N N Y Y Y

T.Credential Theft Y N N N Y Y Y

T.Information Leakage Y N N N Y Y Y

TOTAL IMPACT 8 3 3 4 9 8 12

(iv) Consider the Domain Constraints. As algorithms are selected based on the number

of threat matches, so further analysis of algorithm on constraints imposed by domain is

required to be done. As all algorithms cannot be applied in every scenario, selected

 187

algorithms should be evaluated based on the domain constraints such as light-weight

(power/ energy requirements, the speed of computation), memory needed, etc.

Constraints pertaining to different layers of IoT system is shown in Table 5.9.

Table 5.9 Constraints in Different Layers of IoT

Constraints Sensing Layer Communication

Layer

User Interface

Layer

Performance Parameters

Memory Low Medium High

Speed of

Computation

Low Medium High

Energy / Power Low Medium-High High

Run Time

performance

Medium High High

Other Parameters

Security

Objectives

High High High

Mobility

Compatibility

High High Medium-High

Scalability High High High

Cost of chosen

solution

Low Low Low

Portability High High High

(v) Recommend the Security Algorithm. Based on the above two steps of threat match

and domain constraints, efficient security algorithms are identified and recommended

for implementation.

(vi) Validation. Now validation of selected algorithm is done to check if potential threats

to the system are mitigated or not. For the purpose of validation, Security Index value

is calculated which shows the security gap left in the system. Security index is the

ratio of live threats to a total number of threats identified (potential threats) in the

system. SI is calculated using equation (3.2) and (3.3) given in Section 3.4 of Chapter

3.

 188

If the value of SI is low (tending towards 0) means the system is safe and if it is high

(tending towards 100) system is unsafe and requires modification in chosen security

algorithm. For performing any modification in the systems security decision, the

developer needs to go back to starting of design and validation phase to choose

another algorithm for implementation.

5.6 CASE STUDY: Patient Monitoring System

Remote Patient Monitoring System shown in Figure 5.4 is a part of the healthcare system

has following components:

(i) Wireless body Area Network. It is the patient body having wearable sensors capable

of storing small information or sending it to a remote location.

(ii) E-Health Gateway. It would forward the packets from Wireless Body Network to

remote servers and data centers over the Internet.

(iii) Internet. A communication network that would carry information.

(iv) Healthcare Data Centre. Store all the information that sensors in body generate. Data

generated would be voluminous and need proper handling.

(v) Medical Service. Medical Facility such as doctor consultation, insurance service and

medicines provided to the patient.

In the remote patient monitoring system, users/ actors are Patient, Doctor, and Insurance

Service Providers. Therefore, asset role will vary from one user to other; here we are

considering the abstract of all roles for further explanation.

 189

Figure 5.4 Remote Patient Monitoring System

5.6.1 Identification and Specification

(i) Identify the Assets. Assets involved in remote patient monitoring system are Body

Sensors, Information storage, network and connections, Human machine interface devices

(Smartphone, tablet, etc.), information (Patient, Doctor, etc.). Involved assets in the

system with its role is depicted in Table 5.10.

Table 5.10 Involved Assets with their roles

S.No. Asset Role

1 Body Sensors Fitted on Patient Body for sensing body parameters and sending it to

either remote storage or remote diagnostic and treatment machines for

processing.

2 Information Storage Store collected data in a cloud-based storage

3 Network and connections For communication between nodes

4 Human machine interface

devices (Smartphone,

tablet, etc.)

For user interaction

5 Information (Patient,

Doctor, etc.).

Patient personal/ health information which is processed by the system.

(ii) Identification of vulnerabilities. Vulnerabilities extracted for the system from

developed repository shown in Table 5.3 are listed in Table 5.11.

 190

Table 5.11 Vulnerabilities and Threats for Assets

Assets Vulnerability Threats

Body Sensors V.Weak Access Control

V.Unencrypted Data

V.Physical Security

V.Misconfiguration

V.Insecure Interfaces

V.Insufficient Security

Configurability

V.Remote Access

T.Manipulation of Information

T.Falsification of Records

T.Infomation Leakage

T.Physical Attacks

T.Failure and Malfunctions

T.Compromise of Confidential

Information

T.Abuse of Personal Data

T.Repudiation

T.Unintentional Damages

Information Storage V.Weak Access Control

V.Unencrypted Data

V.Misconfigurations

V.Insecure Interfaces

V.Insufficient Security

Configurability

V.System Misuse

V.Intrusion Detection

T.Manipulation of Information

T.Misuse of Audit Tools

T.Falsification of Records

T.Unauthorized access to information

system

T.Unauthorized use of software

T.Credential Theft

T.Malicious Insider

T.Phishing

T.Spoofing

T.Infomation Leakage

T.Physical Attacks

T.Natural Disaster

T.Environmental Disaster

T.Node Capture

T.Fake Node

T.Failure and Malfunctions

T.Compromise of Confidential

Information

T.Abuse of Personal Data

T.Violation of Law and Regulations

T.Unintentional Damages

T.Privacy Violated

T.Denial of Service

Network and

connections

V.Weak Access Control

V.Unencrypted Data

V.Breached Firewall

V.Insecure Network services

V.Insufficient Security

Configurability

T.Identity Fraud

T.Generation and use of Rouge

Certificates

T.Manipulation of Information

T.Falsification of Records

T.Unauthorized use of Administration of

devices and systems

T.Replay Message

T.Phishing

T.Spoofing

T.Infomation Leakage

T.Communication Infiltration

T.Eavesdropping

T.Man in the Middle

T.Infected email

 191

(iii) Identify the Threats. Threats identified for Remote Patient Monitoring system using

threat/ vulnerability mapping table established in Table 5.4 are shown in Table 5.11.

(iv) Evaluate the Threats. As threats are prioritized based on its impact on assets of the

system. Sub-activities of prioritization are:

T.Malware

T.Fake Node

T.Compromise of confidential

Information

T.Repudiation

T.Unintentional Damages

T.Failure and Malfunctions

Human machine

interface devices

(Smartphone, tablet,

etc.)

V.Untrained Users

V.Misconfigurations

V.Unsecured Interface

V.Obsolete System

V.System Misuse

T.Identity Fraud

T.Manipulation of Information

T.Unintentional Damages

T.Privacy Violated

T.Human Error

T.Unauthorized installation of software

T.Loss of Support Services

T.Failure and Malfunctions

T.Compromise of Confidential

Information

T.Credential Theft

T.Abuse of Personal Data

T.Replay Messages

T.Repudiation

T.Violation of law and Regulations

T.Hardware Failure

T.Generation and use of Rouge

Certificates

Information (Patient,

Doctor, etc.).

V.Old Data

V.Inadequate Logging

V.Weak Access Control

V.Lack of Standards

V.Legal Audit

T.Identity Fraud

T.Generation and use of Rouge

Certificates

T.Falsification of Records

T.Manipulation of Information

T.Credential Theft

T.Repudiation

T.Malicious Insider

T.Phishing

T.Spoofing

T.Violation of law and Regulations

T.Unintentional Damages

T.Obsolete Data

 192

a) Identify the Threats Rating. Threat rating of all the identified threats is taken

from vulnerability/ threat mapping table shown in Table 5.4. Threat ratings are

depicted in Table 5.13.

b) Identify the Impact. To calculate the impact of threat on the system, we first

need to calculate the asset values. Therefore, evaluation of identified system

assets by involved stakeholders is shown in Table 5.12. Using these asset

ratings, the impact is calculated as shown in Table 5.13.

c) Calculate the Risk. A risk value of identified threats is shown in Table 5.13.

Table 5.12 Evaluation of Assets

Asset View of involved Stakeholders Asset Rating

Patient Doctor Insurance

Provider

Body Sensors 8 9 7 8

Interface Device

(Smart Phone with

application)

8 8 8 8

Patient Information 9 8 7 8

Network and

Connections

7 7 8 7

Information Storage 8 9 9 9

Table 5.13 Calculation of Risk Value for Potential Threats

Threats Affected Assets Threat

Rating

Impact Risk

T.Identity Fraud

Sensors

Interface device

Information

Networking

Information Storage

5 40 200

T.Denial of Service
Sensors

Information Storage

2 17 34

T.Generation and use of

Rouge Certificates

Sensors

Interface device

Information

Networking

Information Storage

5 40 200

 193

T.Falsification of Records

Sensors

Information

Networking

Information Storage

6 32 192

T.Unauthorized use of

Administration of devices

and systems

Sensors

Information

Networking

Information Storage

2 32 64

T.Unauthorized

installation of software

Sensors

Interface device

Information

Networking

Information Storage

6 40 240

T.Compromising

Confidential Information

Sensors

Interface device

Networking

Information Storage

3 32 96

T.Credential Theft

Sensors

Interface device

Information

Networking

Information Storage

5 40 200

T.Eavesdropping

Sensors

Networking

Information Storage

5 24 120

T.Replay Message

Sensors

Interface device

Information

Networking

Information Storage

8 40 320

T.Hardware Failure
Interface device

Networking

2 15 30

T.Violation of Law or

Regulations

Sensors

Interface device

Information

3 24 72

T.Physical Attacks Sensors 2 8 16

T.Unintentional Damages

Sensors

Interface device

Information

Networking

Information Storage

4 40 160

T.Privacy Violated

Sensors

Interface device

Networking

Information Storage

4 32 128

T.Phishing

Sensors

Interface device

Information

Networking

Information Storage

6 40 240

T.Spoofing
Sensors

Interface device

7 40 280

 194

Information

Networking

Information Storage

T.Fake Node
Sensors

Interface device

4 16 64

T.Manipulation of

Information

Sensors

Information

Networking

Information Storage

7 32 224

T.Information Leakage

Sensors

Networking

Information Storage

4 24 96

T.Failure and

Malfunctions

Sensors

Interface device

Networking

Information Storage

4 32 128

T.Abuse of Personal Data
Interface device

Information Storage

2 17 34

T.Repudiation

Sensors

Interface device

Information

Networking

Information Storage

5 40 200

T.Misuse of Audit Tools

Sensors

Interface device

Information

Networking

Information Storage

3 40 120

T.Unauthorized Access to

Information System

Sensors

Information

Networking

Information Storage

4 32 128

T.Unauthorized use of

software

Sensors

Information

Networking

Information Storage

4 32 128

T.Malicious Insider

Sensors

Interface device

Information

10 24 240

T.Natural Disaster Sensors 1 8 8

T.Environmenetal

Disaster

Sensors 1 8 8

T.Node Capture Sensors 2 8 16

T.Communication

Infiltration

Sensors

Networking

Information Storage

4 24 96

T.Man in the Middle

Sensors

Networking

Information Storage

5 24 120

T.Infected Email
Networking

Information Storage

4 16 64

T.Malware Sensors 5 24 120

 195

Networking

Information Storage

T.Human Error

Sensors

Interface device

Information

Networking

Information Storage

5 40 200

T.Loss of Support

Services

Sensors

Interface device

Information Storage

2 25 50

T.Obsolete Data Information 1 8 8

d) Threat Specification. Threats are categorized based on the calculated risk

values. Categorized threats are shown in Table 5.14.

Table 5.14 Categorized Threats

S.No Category Threats

1. Catastrophic T.Identity Frauds, T.Generation and use of Rogue

Certificates, T.Falsification of Records,

T.Unauthorized use of Administration of devices

and systems, T.Unauthorized installation of

software, T.Compromising Confidential

Information, T.Credential Theft, T.Eavesdropping,

T.Replay Message, T.Violation of Law or

Regulations, T.Unintentional Damages, T.Privacy

Violated, T.Phishing, T.Spoofing, T.Fake Node,

T.Manipulation of Information, T.Information

Leakage, T.Failure and Malfunctions,

T.Repudiation, T.Misuse of Audit Tools,

T.Unauthorized Access to Information System,

T.Unauthorized use of software, T.Malicious

Insider, T.Communication Infiltration, T.Man in the

Middle, T.Infected Email, T.Malware, T.Human

Error

2. Important T.Denial of Service, T.Hardware Failure, T.Abuse

of Personal Data, T.Loss of Support Services

3. Tolerable T.Physical Attacks, T.Natural Disaster,

T.Environmenetal Disaster, T.Node Capture,

4. No influence (negligible) Nil

 196

e) Security Requirements Identification and Prioritization. Elicited security

requirements are shown in Table 5.15 with threats they represent and their

priority. A higher value represents higher priority.

Table 5.15 Elicited and Prioritized Security Requirements

Security

Requirements

Threats Handled Risk Security

Requirements

Priority

Identification

T.Communication Infiltration

T.Evesdropping

T.Man in the Middle

T.Malicious Insider

T.Identity Fraud

96

120

120

240

200

776

Authentication

T.Identity Fraud

T.Man in the Middle

T.Unauthorized use of software

T.Unauthorized Installation of

Software

200

120

128

240

688

Privacy

T.Privacy Violated

T.Compromise of Confidential

Information

T.Communication Infiltration

128

96

96

320

Immunity

T.Malicious Insider

T.Communication Infiltration

240

96

336

Integrity

T.Infected e-mail

T.Information Leakage

T.Manipulation of Information

T.Falsification of Records

T.Credential Theft

T.Abuse of Personal Data

64

96

224

192

200

34

810

System

Maintenance

T.Hardware Failure

T.Unintentioanl Damages

T.Human Error

T.Failure and Malfunction

30

160

200

128

518

Survivability

T.Replay Messages

T.Denial of Service

T.Malware

320

34

120

474

Non-Repudiation T.Generation and use of Rouge

Certificates

T.Repudiation

200

200

400

Intrusion Detection

T.Unauthorized use of Administration

of Devices and /systems

T.Unauthorized Access to Information

system

T.Misuse of Audit Tools

T.Node Capture

64

128

120

16

392

 197

T.Fake Node 64

Authorization T.Unauthorized use of Administration

of Devices and /systems

T.Unauthorized Access to Information

system

T.Fake Node

64

128

64

256

Data Freshness T.Obsolete Data 8 8

Trust T.Phishing

T.Spoofing

T.Violation of Law and Regulation

T.Lost of Support Services

240

280

72

50

642

Physical Protection

T.Physical Attacks

T.Natural Disaster

T.Environmenatal Disaster

16

8

8

32

5.6.2 Design and Validation

(i) Mapping of threats to Security Requirements and Security Services. Mapping of

threats to security requirements and services are already mentioned in Table 5.6.

(ii) Identifying the available Security Mechanisms. Available security mechanisms are

already mentioned in Table 5.7.

(iii) Recommend Security Algorithm. Based on the specified match and constraints

algorithms are suggested for implementation as shown in Table 5.16.

Table 5.16 Recommended Security Techniques

Security Mechanism Techniques Recommended

Encryption Asymmetric

 AES

Symmetric

 ECC

Hybrid

 ECIES

Routing Control Energy-aware Ant Routing Algorithm

(EARA)

Digital Signature ECDSA

Data Integrity MD5

Authentication

Exchanges
2 Step Authentication

Notarization Build a Notary Server

Access Control

Mechanism
Role-Based Access Control (RBAC)

Physical Protection

Mechanisms
Lock, Guarding

 198

(vi) Validation. For ensuring Confidentiality

Threats to confidentiality are:

 T.Identity Frauds

 T.Falsification of Records

 T.Unauthorized installation of software

 T.Compromising Confidential Information

 T.Credential Theft

 T.Eavesdropping

 T.Privacy Violated

 T.Manipulation of Information

 T.Information Leakage

 T.Unauthorized use of software

 T.Communication Infiltration

 T.Man in the Middle

Asymmetric Technique: AES is chosen

 SI = 5/ 12 * 100 = 41.67 %

Symmetric Technique: ECC is chosen

 SI = 4/ 12 * 100 = 33.33%

But both of the algorithms is not sufficient to provide protection. Hence hybrid

techniques are required. A hybrid technique ECIES is chosen.

 SI = 3/ 12 * 100 = 25%

A hybrid algorithm is much better than the existing algorithms. But, more algorithms

are required for effective working.

Summary

Security Engineering in IoT is in infancy stage. Hence, no open source software or tool is

available for the purpose of validation. But, we conjecture that our proposal identifies

maximum threats that are present in current scenario.

 199

 Elicitation, analysis, and prioritization of Security Threats for IoT systems is

presented. Here threats to assets are identified instead of functional

requirements. After specification of Security Threats, they are mapped to

security requirements. Security algorithms are chosen based on various domain

constraints such as Light weight (Consume less power, require less computation

time), Need less storage space, etc. Finally, a metric is generated showing

system security level. The process is explained for IoT-enabled Healthcare

domain for remote patient monitoring.

To achieve the above-said goals following activities are being done:

 Various assets at different layers of IoT is identified with probable

vulnerabilities and threats.

 Various threats that can affect assets of the system are identified and

mapping table of dimension 39 X 30 (approx.), is generated which helps

in risk assessment.

 Security mechanism is suggested based on domain constraints.

 It can be noted that the result of Security Index is very high, which suggests that

existing security algorithms are not suitable. It requires the development of new

algorithms which are hybrid of existing elliptic curve based algorithms.

Novel contributions of the Chapter

a) The framework elicits, analyzes, prioritizes, and specify the threats to assets.

Security Requirements are also specified to represent the threats.

b) Two new security services namely data freshness and trust are added to the

cluster of existing security services.

 200

c) During the requirements engineering phase, identification and specification of

threats to assets are done. To elicit the security threats, we have generated a

repository of:

1) Assets at each layer of IoT architecture

2) A vulnerability threat mapping table is constructed of dimension 39 X 22

3) Threats affecting assets of the system whose dimension is approximately

39 X 30.

This would help in handling various assets, functionality, threats, vulnerabilities.

d) Security algorithms are chosen considering various domain constraints pertaining

to different layers of IoT during the design and validation phase.

e) Finally, a security metric is generated showing system security level. In case of

remote health monitoring system, new hybrid algorithm is required for

implementation of security requirements security metric value is very high.

 201

CHAPTER 6

SECURITY ENGINEERING FRAMEWORK FOR BIG DATA

DATABASES

In the current scenario, big data databases have gained a lot of attention due to its nature

of providing highly scalable storage space to the organization for data storage and use.

These databases are mainly known as NoSQL databases which are required to fulfill the

three V’s that are volume, velocity, and variety need of Big Data environment. The most

important challenge of these databases is the security issues that are inherent in it because

of schema-less design which makes it different from traditional databases. Security

challenges make client data at risk; these issues provide intruders a chance to attack for

stealing client’s personal and confidential information. Therefore, security concerns

should be addressed to protect the confidential data stored in databases. Here a security

methodology for handling security issues of NoSQL databases, a big data store. Therefore,

the chapter starts with the discussion on Big Data with its security issues. The discussion

is followed by the framework for security engineering for big data system, and further, a

case study of MongoDB is presented.

6.1 Security Issues in Big Data Databases

Providing security in big data databases is very difficult and challenging because of

various constraints like they do not has defined schema, the amount of data is very huge,

data consists of a variety of media, etc. Therefore, in this section, we present the overview

of big data databases and then the security issues present in it is discussed.

 202

6.1.1 Overview

Big data environment is characterized by 3 V’s (Volume, Variety, Velocity) of data. It is

changing the society by its tremendous use in various sectors such as healthcare, finance,

and social networking. Data generated from these sources are in hundreds of terabyte (TB)

to petabytes (PB) with a high rate of data generation. In addition to this, the data generated

from these sources are mainly unstructured or semi-structured. Traditional RDBMS

systems can not handle these issues. Therefore, to handle all these issues NoSQL

databases have evolved.

As the database contains the valuable asset ‘data’ of the organization, access to which by

an intruder is always a major security threat. Also, Integrity, Confidentiality, and

Availability of data are need to be ensured. Ensuring CIA is a difficult task in Big Data

environment, because of inherent vulnerabilities like distributed nature, data

fragmentation, inadequate logging facility, etc. These vulnerabilities are cause for various

attacks such as impersonation, repudiation, DoS, communication interception. Therefore,

a security methodology is required which deals with such vulnerabilities and threats.

“Big Data is data whose scale, diversity and complexity requires new architecture,

techniques, algorithms, and analytics to manage it and extract value and hidden

knowledge from it” (Finkelstein & Fuks, 1989) (T & Kumar, 2013). Data produced by

social networking or e-commerce organizations including Facebook, Google, LinkedIn,

Twitter or Amazon are analyzing user status and search terms to trigger targeted

advertising on user pages. Some examples of Big databases are MongoDB, Cassandra,

CouchDB, and Redis. All these databases are NoSQL because they do not have defined

structure as RDBMS.

 203

Previously our needs were being fulfilled by RDBMS systems, but now they are not able

to handle the growing needs. Hence, a shift is made to handle the need as discussed above.

The RDBMS systems are following ACID properties as they can fulfill security needs.

During the initial years of NoSQL development, it is designed to cater the need of

organizations neglecting the security aspect. But, with the growing demand for Big Data

need to handle security in NoSQL databases are arises. Big data storage techniques have

presented a breakthrough in achieving scalability, cost reduction, performance and

flexibility in the management of the tremendous amount of data. NoSQL data stores are

vulnerable to the same security risks as traditional RDBMS data stores, so the usual best

practices for storing sensitive data should be applied when developing a NoSQL-based

application. Besides the security issues related to RDBMS other constraints specific to big

data environment are no defined schema, a huge amount of data, data consists of a variety

of media, etc. are need to be considered.

The privacy of Big Data is a growing concern. The customer or user information is

collected and used for value added services without user awareness. Integration of large

data sets involving personal information may lead to the inference of new facts about the

person which may be confidential. These facts may be secretive, and the person might

want them to be hidden from other users or organizations. Some Big Data application like

Healthcare has strict laws governing the privacy of data like the HIPAA. Disclosure of

personal health information of a patient can have permanent effects which cannot be

undone. Patients may be stigmatized if their HIV status is involuntarily disclosed.

However, all stakeholders have a responsibility to maintain the privacy of sensitive data.

 204

Papers are found in the literature focusing on access control, integrity and other security

aspects in traditional databases (Bertino & Sandhu, 2005) (Ambhore, Waghmare, &

Meshram, 2007) (Pan, 2009). Our research shows that security aspect of NoSQL databases

is left unexplored in detail. Security issues present in NoSQL databases are found in some

papers (Vormetric, 2012) (Katal, Wazid, & Goudar, 2013). However, these papers only

identify the security issues present in NoSQL databases; they do not focus on how to

handle them. In the literature, no papers were found that proposes a process/ method/

methodology/ framework to handle security issues in NoSQL databases.

6.1.2 Security Issues

The amount, diversity, and rate of data being generated for processing and storage results

in sheer masses of data that need to be secured. Data generated in Big Data environment

are in the hands of organizations are highly valuable, and are subject to privacy laws and

compliance regulations, hence need to be protected. The following are some security

issues of Big Data environment.

i) Distributed nature: Nodes within the Big Data environment are distributed which

makes it an easy target for attack affecting the data stored in nodes.

ii) Integrity of data: The protection of integrity is much harder in Big Data

environments because of its heterogeneous nature, the absence of central control and

its schema-less nature.

iii) Communication between nodes: Interactions between distributed nodes rely on RPC

over TCP/IP, which makes RPC ports vulnerable. Security concerns emanate as nodes

interact through message passing.

 205

iv) Fragmentation and sharing of data: NoSQL databases horizontally fragments the

data known as shards and share them across multiple servers. These shards are

replicated across the nodes. Maintenance of replicated shards of data that includes

passwords is computationally expensive, prone to error and increases the risk of theft.

As the model is not centralized, securing data is difficult because of replication of

data.

v) Lack of central management security: Clients accessing NoSQL databases are in

contact with resource managers and nodes directly. In situations where malicious data

get propagated from a single compromised location, the entire system is compromised.

Protecting nodes, name servers, and clients become difficult, especially when there is

no central management security point.

vi) Encryption of data: Some NoSQL databases keeps the data in unencrypted form, in

such type of databases some applications are requested to encrypt private data

explicitly before storing in a database. Example: Cassandra database.

vii) Enforcing access control: The NoSQL databases have schema-less structure makes

Role-based access control difficult to enforce. Because different types of data are

stored at one huge database.

viii) Authenticating Clients: Kerberos can be used to authenticate clients, Data Node,

and Name Node in the Big Data environment. Malicious Clients or Nodes can gain

unauthorized access to the Big Data environments upon stealing or duplicating the

Kerberos ticket.

ix) Auditing and logging: Audits are performed, and logs are created to aid the discovery

of malicious activities in the database system. However, without actually looking at

the data timely and developing policies to detect malicious activities, logging is not

 206

useful. Also, the frequency at which Audits are carried out can impact on system

effectiveness.

x) Monitoring, input validation, and blocking: Big Data collect data from different

sources. Existing Big Data monitoring tools lacks the capability of identifying

malicious queries, misuse activities and blocking. Monitoring undertaken by several

tools in the Big Data environment, mostly perform their task at the API.

xi) API security: APIs may be subjected to several attacks such as Code injection, buffer

overflows, command injection as they access the NoSQL databases. The APIs for big

data clusters need to be protected from code and command injection, buffer overflow

attacks, and other web service attacks.

xii) Inference problem: Big data management usually involves applying data mining and

analytics. It brings many security concerns related to sharing of big data analytics as

there is a risk of loss of privacy and confidentiality of data. If there is no proper

control, this may create an inference problem where, despite de-identification of data,

some identities may still be deduced from released analytics data.

6.2 Need for New Framework

Big data comprises of schema less and scalable data storage spaces, therefore data is of

utmost concern. Since big data concentrates on large volume of data with high rate of

generation and variety. Initial framework should be enhanced so that is can cope up with

the characteristic of big data. Reasons in support of this modification are mentioned

below:

 Need to handle security issues such as Fragmentation and sharing, Encryption of

data, Enforcing access control, etc.

 207

 Limited stakeholders with limited functionality has to deal with large amount of

data.

 In contrast to variety of assets in previous domains, here data is only asset in

NoSQL databases.

 Domain constraints vary from previous considered frameworks. The domains

constraint for big data are source of data and its complexity, type of information,

structured or unstructured data, etc.

Form above points we conclude that our initial framework needs modification to make it

adaptable for big data domain. Modified framework to handle the issues listed above is

presented in the next section.

6.3 Proposed Security Engineering Framework for Big Data Databases

As NoSQL databases has limited set of functionalities that can be performed on the only

asset ‘Data’ available. In big data databases domain constraints (source of data generation,

type of data, complexity of data, etc.) are very much different from the previous ones

(bandwidth, memory, energy, speed, etc.). Hence, for incorporating above features a

modified framework for Security Engineering for Big Data Databases or NoSQL

databases is depicted in Figure 6.1, it consists of two phases that are identification and

design. Each phase is described here in detail.

6.3.1 Identification Phase. Security requirements to mitigate the threats present in the

system are identified, analyzed, and prioritized. Various activities involved in the

identification of Security Requirements depicted in Figure 6.1 are discussed below:

 208

 Security Requirements Elicitation: Security requirements are important for

implementing security in the system so its elicitation is necessary. Therefore, the

process for elicitation of security requirements consists of following activities:

Figure 6.1 Security Engineering Framework for Big Data Databases

 Stakeholder Identification: Stakeholders are identified using view-point

approach (Kotonya & Sommerville, 1996). Direct stakeholders for big data

 209

databases is user which is further classified as Human, Cooperative and

Autonomous. Details of each are listed in Table 6.1.

Table 6.1 List of Direct Stakeholders

Stakeholder Description

Human User Human actors are active entities that interact directly with the information

system.

Cooperative User DMBS must cooperate with the primary actor, such as if the data is being

generated or transferred from some other data source.

Autonomous User Act independently of the information system but have connections to it.

Data generated from some devices such as medical sensors, monitoring

devices, and others.

 Operation Identification: Operations are performed by all the specified direct

actors for interacting with databases. CRUD (Create, Read, Update and Delete)

operations are used by stakeholders for manipulating data in databases. Access

to the database is provided by these generic operations. Details of specific

operation are defined in Table 6.2.

Table 6.2 Operations for Stakeholders

Stakeholder Generic Operations Description

For all

Stakeholders

Create/ Insert/ Put/

Post

Adding new entries to the database

Read/ Retrieve/

Select/ Get

Retrieve, search, or view existing entries without

changing the data

Update/ Modify/

Update/ Put/ Patch

Edit or modify existing entries (changes the data

values by insertion, deletion or update)

Delete/ Destroy Remove or deactivate existing entries

 Vulnerability identification: Vulnerability is a flaw or weakness in the system

environment (Stoneburner, Alice, & Feringa, 2002), that a malicious attacker

could exploit to cause damage to the system. It is the vulnerability that enables a

threat to be exercised within the system. In Big Data environment,

 210

vulnerabilities arise due to the complexity brought in by the type and distributed

nature of data involved. Vulnerabilities are preceded with a prefix V. for a clear

distinction. Vulnerabilities are identified by analyzing different system and

available literature. Possible vulnerabilities extracted for CRUD operation of

NoSQL environments are shown in Table 6.3.

Table 6.3 Vulnerabilities for CRUD Operations

Operation Actors Interaction Vulnerability

CREATE User->

Database

Create

Request

1. V.Weak_Access_Control

2. V.Untrained_Users

3. V.Unencrypted_Data

4. V.Unsecured_Network

5. V.Monitoring_Absence

6. V.Network_Partition

7. V.Breached_Firewall

8. V.Inadequate_Logging

Database-

>Database

Create 1. V.Unencrypted_Data

2. V.Breached_Firewall

3. V.Monitoring_Absence

4. V.Physical_Security

5. V.Misconfigurations

6. V.Unsecured_API

Database->

User

Return

Confirmation

1. V.Network_Partition

READ

User -

>Database

Read Request 1. V.Weak_Access_Control

2. V.Untrained_Users

3. V.Monitoring_Absence

4. V.Network_Partition

5. V.Inadequate_Logging

Database-

>Database

Search 1. V.Unsecured_API

2. V.Unencrypted_Data

3. V.Misconfigurations

4. V.Breached_Firewall

5. V.Monitoring_Absence

6. V.Physical_Security

Database->

User

Display result 1. V.Unencrypted_Data

2. V.Unsecured_Network

3. V.Monitoring_Absence

4. V.Network_Partition

5. V.Untrained_Users

6. V.Inadequate_Logging

UPDATE

User -

>Database

Update

Request

1. V.Weak_Access_Control

2. V.Untrained_Users

3. V.Unencrypted_Data

4. V.Unsecured_Network

5. V.Monitoring_Absence

6. V.Network_Partition

7. V.Breached_Firewall

8. V.Inadequate_Logging

 211

7. V.Untrained_Users

Database-

>Database

Update 1. V.Unencrypted_Data

2. V.Breached_Firewall

3. V.Monitoring_Absence

4. V.Physical_Security

5. V.Misconfigurations

6. V.Unsecured_API

7. V.Obsolete_System

Database->

User:

Return

Confirmation

1. V.Network_Partition

DELETE

User -

>Database

Delete

Request

1. V.Weak_Access_Control

2. V.Untrained_Users

3. V.Unsecured_Network

4. V.Monitoring_Absence

5. V.Network_Partition

6. V.Inadequate_Logging

Database-

>Database

Delete Data 1. V.Monitoring_Absence

2. V.Physical_Security

3. V.Misconfigurations

4. V.Inadequate_Logging

Database->

User

Return

Confirmation

1. V.Network_Partition

 Threats Identification: Vulnerability may lead to the occurrence of threats,

mapping of vulnerability to threats is required to be done for detailed risk analysis

of the system. Prefix T. is used with threat name to make a distinguishable and

threat-vulnerability database is maintained from where the mapping of various

threats to vulnerabilities is done. Using Table 6.4 threats are mapped to identifed

vulnerabilities.

 Security Requirements Identification: After the identification of vulnerabilities

and threats, security requirements are elicited to mitigate the threats and protect the

asset. Security requirements are identified according to mapping criteria specified

in Table 6.5.

 212

Table 6.4 Vulnerabilities-Threats Mapping Table for Big Data Databases

 Vulnerability

Threats

1 2 3 4 5 6 7 8 9 10 11 12 13

Threat

Rating
V.Weak

Access

Control

V.Inadequate

Logging

V.Breached

Firewall

V.Unvalidated

Input

V.Unsecured

API

V.Obsolete

System

V.Misc

onfigur

ation

V.Unencrypted

 Data

V.Untrai

ned User

V.Monitoring

Absence

V.Unsecured

Network

V.Network

Partition

V.Physical

Security

T.Change Data X X X X X X 6

T.Data Theft X X X 3

T.Impersonate X 1

T.Social Engineer X X 2

T.Fraud X X 2

T.Privacy Violated X X 2

T.Repudiation Receive X 1

T.Repudiate Send X 1

T.Credential Theft X X 2

T.Phishing X X X 3

T.Insider X X X X X X X X 8

T.Spoofing X X X 3

T.Human Error X X 2

T.Disclose Data X X 2

T.DDoS X X 2

T.Misuse of System

Resources

 X 1

T.Injection Attack X X 2

T.Malware X X X X X 5

T.Communication

Interception

 X X 2

T.Communication
Infiltration

 X X 2

T.Eavesdropping X X 2

T.Technical Failure X X X 3

T.Power Failure X 1

T.Network
Infrastructure Failure

 X 1

T.Hardware Failure X X X 3

T.Unavailability X 1

T.Vandalism X 1

T.Operational Issues X 1

 213

Table 6.5 Security Requirements mapping to Threats for Big Data Database Systems

 Security

 Requirements

Threats

 Identification

Authentication

Authorization

 Immunity

 Integrity

 Intrusion

Detection

Non-

Repudiation

Privacy

 Security

Auditing

 Survivability

Physical

Protection

System

Maintenance

T.Change Data X X X

T.Data Theft X X X

T.Impersonate X X

T.Social Engineer X X

T.Fraud X

T.Privacy Violated X

T.Repudiation Receive X

T.Repudiate Send X

T.Credential Theft X

T.Phishing X X

T.Insider X X X X X

T.Spoofing X X X X

T.Human Error X

T.Disclose Data X X

T.DDoS X X X

T.Misuse of System Resources X

T.Injection Attack X X X

T.Malware X X

T.Communication Interception X

T.Communication Infiltration X

T.Eavesdropping X

T.Technical Failure X

T.Power Failure X

T.Network Infrastructure Failure X

T.Hardware Failure X

T.Unavailability X

T.Vandalism X

T.Operational Issues X

 214

 Security Requirements Analysis and Prioritization

After elicitation of security requirements analysis and prioritization is done. During

analysis elicited security requirements are analyzed for Completeness and

Consistency, and if any conflict occurs it would be removed immediately. Also, the

security requirements with similar characteristics are grouped together.

As all requirements cannot be implemented so, prioritization is done. Elicited security

requirements are prioritized, so that depending on available resources; high priority

requirements are implemented first. Following activities are followed for

prioritization:

 Likelihood Estimation: Likelihood shows the rough measure of how likely a

threat would occur in the system. Likelihood ratings are estimated for each threat

based on the degree of satisfaction of vulnerability. Therefore, the value of threat

rating is taken as the total number of vulnerabilities exploited by particular threat

in vulnerability-threat mapping table shown in Table 6.4.

 Impact Estimation. The impact is usually calculated using the number of assets

affected. As here our asset is only data. Therefore, impact value would be taken

same for all the threats. Here Impact is taken as unity.

 Security Requirements Prioritization. Risk is calculated using equation (3.1)

defined in Section 3.2.2 of chapter 3.

 215

Here, Impact is taken as unity because only asset ‘data’ is considered whose value

would be same. Therefore, the risk is equal to likelihood value.

After the calculation of risk value, security requirements priority is calculated by

summing up the risk value of all the threats mitigated by security requirements

under consideration. For instance, security requirement ‘Identification’ mitigates

threats ‘Change Data’ and ‘Data Theft’ whose threat rating is ‘6’ and ‘3’

respectively. So, its priority value is 9 (6+ 3) which is the summation of all risk

values.

6.3.2 Design Phase: Security mechanism to implement the security requirements are

identified in this phase. The security mechanism is the popular algorithms such as

cryptography algorithms, physical security mechanisms, etc. which are required to

implement the security requirements. The security algorithms are identified, and

detailed analysis is done on domain parameters. It consists of following activities:

 Mapping of Security Requirements with security services. Prioritized

security requirements are mapped to security services provided by

cryptography. Also, possible security mechanisms that exist for the

implementation of Security services are listed as depicted in Table 6.6.

 Identify and Analyze Domain Constraints. Various techniques are available

for the implementation of security requirements, so comprehensive evaluation

of algorithms under given domain constraints is done for choosing best

 216

algorithm for security requirements implementation. The outcome of this step

would show a detailed analysis of different constraints.

Table 6.6 Mapping of Security Services with Security Requirements

Security Services Security Requirements Security Mechanisms

Confidentiality Privacy Encryption, Digital Signature

Integrity Integrity

Intrusion Detection

Immunity

Encryption, Digital Signature,

Data Integrity

Authentication Authentication

Authentication Exchanges, Two

Factor Authentication

Non repudiation Identification

Non Repudiation

Digital Signature, Data Integrity,

Notarization

Access Control Authorization Need-to-know Principle

Enforcement, RnR Clarity

Others (Required

for smooth running

of system)

Auditing

Survivability

Physical Protection

System Maintenance

Physical Security, Auditing, and

related certifications

In the case of NoSQL databases, constraints are based on the environment of big data

such as:

 From where the data to be stored is generated (social networking site, sensors,

satellites, or other sources)

 Type of data generated (structured, semi-structured and unstructured).

 Type of Information (Personal, Financial, and others)

 Complexity of Data

 Performance needed from database (throughput)

The Table 6.7 shows the predictive value for each criterion based on analysis of the

various system and Table 6.8 shows analysis of various data origination source.

 217

Table 6.7 Metric showing the Constraints and Possible Value

Criteria Category Predictive Value Reason

Source of Data

Generation

Social Network

Medical Sensors

Financial Transactions

Satellite Data

Mobile Data

 Organization Data

Website content

Type of

Information

Personal (data related to user

personal information),

Critical (financial data),

Normal (other than personal and

critical)

Medium to High

High

Low to Medium

Data is

confidential/

private to user

Contains transfer of

money, smart card

details and other

sensitive

information

These are a normal

website, sensor

(used at some

entrance, or in the

device) data.

Complexity of

Data

Data generated media type

 Text only

 Image only

 Video only

 Audio only

 Mixture of two or

above-mentioned

categories

Simple

Composite

Consists of single

Media Type

Consists of hybrid

Media Type

Type of Data

Organization

Structured

Semi-Structured

Unstructured

Low

Medium

High

As they follow

ACID property of

RDBMS

Has some structure

such as tag field

based on some

attribute

No defined

structure

Throughput What efficiency is expected for

operations (read, write, update,

delete)

Low

Medium

High

 218

Table 6.8 Source of Origin of Data Analysis

Source of Data Description Type of Data Possible Constraints

Social Networking Site This data is generated

from the social media

platforms such as

YouTube, Facebook,

Twitter, LinkedIn, and

Flickr

Semi-structured

(Human Generated)

Contains Personal

Information

Medical Sensor Data There is a huge

explosion in the

number of sensors

producing streams of

data all around us.

Semi-Structured Contains personal

Information related to

Medical Problems

Financial Transactions

(payment)

Payment made to

various e-commerce

and social sites

Semi-Structured Contains credit card and

other account details

Satellite images It includes weather

data or the data that the

government captures in

its satellite surveillance

imagery. Just think

how about Google

Earth haves instant

access to locations.

Semi-structured

(machine

generated)

Contains Sensitive Data

Organizational

Information

Think of all the text

within documents,

logs, survey results,

and e-mails. Enterprise

information represents

a large percent of the

text information in the

world today.

Unstructured

(human generated)

Contains company

confidential Information

Mobile Data It includes data such as

text messages and

location information.

Unstructured

(human generated)

Contains personal

Information

Website content It comes from any site

delivering unstructured

content, like YouTube,

Flickr, or Instagram.

Unstructured

(human generated)

Contains general

Information such as news,

educational materials,

movies, and others

Therefore, to protect personal, confidential and critical data, it is required to focus on

every aspect of security.

 219

 Security Design Decision. Based on above two steps proper security

algorithms are suggested for implementation. A decision template and

guideline is generated in this step. A decision template is generated as shown in

Table 6.9, which contains all security related algorithms for implementation.

Table 6.9 Decision Template

 Mechanism Selected Reasoning

Encryption AES-256 For data at rest, the algorithm can

encrypt all type of data at rest

SSL/ TLS For network

Digital Signature RSA+DSA For Confidentiality of Information

Data Integrity Tokenization It is appended to the end of message to

ensure data integrity

Authentication

Exchanges

Password protection

2 step Authentication

Kerberos

Enforce strong policy for password

management such as regular password

change/ update.

Where access to sensitive data is

occurring 2-step authentication should

be used. Here some secret code is sent

to user’s mobile or on email.

Notarization Delegation of task (for key

distribution, identification, and

authentication of user, employee)

For management of encryption key

using some third party system as KDC

(key distribution center) used in

Kerberos.

Access Control

Mechanisms

Define Roles (Role-based Access

Control)

2 step Authentication

Assign strict roles to everyone

Some authorization mechanism should

be implemented such as

 2 step authentication

 OTP system can be implemented

Physical Security Guarding, Locking, Fencing, and

others

Deploy necessary physical security in

the premises

Auditing Implement some technique for it It looks at the log and identifies any

security issues related to authentication

failure, authorization failure, denial of

service and others. After identification,

it must be reported to the administrator

for proper handling.

Certifications PCI-DSS, SSAE 16, ISAE3402,

ISO 270001:2013

Others R n R Clarity

need to know principal

enforcement

Vulnerability assessment tools

Roles and responsibility must be

defined to each stakeholder.

Sessions must be organized for

stakeholders such that they would know

what they require from the system

Some vulnerability scanning tool must

be provided for continuous monitoring

of system for identification of any

vulnerable points in the database.

 220

 Generate Security Guidelines: Here guideline for security is generated it

would help all the stakeholders in understanding the security need of the

system. As providing security in NoSQL databases is the responsibility of all

involved stakeholders. Table 6.10 shows a brief guideline template.

Table 6.10 Guidelines for Stakeholders to handle Security Properly

Stakeholder Expected Security Action

Common for All

Stakeholders

 Do not share password

 Access only data for which authorization is provided

 Get educated about basic security standards

 Log of all interaction should be maintained

Human User Keep password strong and change it after certain time interval

 Get educated about security aspects and implement it

Cooperative User It must be authenticated first and then only allowed to interact with

and user or database

Autonomous User All devices, sensors, nodes should be authenticated before interaction

with the database.

6.4 Security Analysis of MongoDB

MongoDB is a highly flexible, scalable, schema-less, a document-oriented database

developed in C++ programming language at 10Gen by Geir Magnusson and Dwight

Merriman. The database handles sets of “schema-less JSON-like documents that

allow data to be nested in complex hierarchies and still be Query-able and index-able”

(Okman, Gal-Oz, Gonen, Gudes, & Abramov, 2011). MongoDB claims to put

together the features of the RDBMS, document databases, key-value stores and object

databases.

MongoDB is chosen here because (1) It is one of the most widely used NoSQL

databases it is being used by a large spectrum of organizations such as SourceForge,

Bitly, Foursquare, GitHub, Shutterfly, Evite, The New York Times, Etsy, and much

 221

more. (2) It has very clear and organized documentation available freely on the

internet which explains everything (MongoDB, 2014) (MongoDB). Table 6.10 shows

the security mechanism employed by MongoDB in the current version as well as the

deficiencies in previous versions.

Loopholes in Mongo DB are identified by researching the various available versions.

Our identification is shown in Table 6.11. As seen from the Table 6.11, initial

versions of MongoDB lacked a lot of basic security features required by the system

and caused various security breaches in the past. These security breaches caused

information leaks, loss of reputation, and other major issues. Whereas, if our

framework would be adopted and followed all security related issues are handled

during the initial development. As we have considered maximum viewpoint and

identified and analyzed all security related issues in detail. Also, all the available

security mechanisms are analyzed and evaluated based on the environment constraints

of application and chosen the best algorithms for implementation that fits the

identified set of constraints. Also, it can be noted as whatever algorithms are

identified using our approach is almost same as used in the current version of

MongoDB. It proves that our framework is effective as it can identify all security

algorithms required by a NoSQL database.

 222

Table 6.11 Security Features in MongoDB

Security Features Security Features in Current

Version

Security Loopholes in the

Previous Version

Encryption Encrypt Connections to the

database (SSL/ TLS)

 Support FIPS 140-2

 Encrypt data at rest (AES 256 bit

in CBC and GCM mode)

 Sign and rotate encryption keys

 No Encryption at rest

 No support for SSL/ TLS.

Authentication Create Unique Security Credential

for developers, admin, DBA

 Nodes are also authenticated

 Enforce Password Policies

 Kerberos

 LDAP

 X.509

 PKI Certificates

 SCRAM-SHA-1

 No support for x.509-based

authentication

 No support to SCRAM-

SHA-1 challenge-response

user authentication

mechanism.

Access Control

(Authorization)

 Grant minimal access to entities

 Group common access privileges

into roles

 Control which action an entity can

perform

 Control access to sensitive data

 Role-based Access Control

 Field Level Redaction

 No support for role-based

access control system

Auditing Track changes to DB

configuration

 Track changes to data (not

keeping track of all read/ write as

they are huge in number)

Environment and Process

Control

 Installation of Firewall or ACL

Routers

 Network Configurations

 Defining File System Permissions

 Creation of Physical Access

Control to IT environment

 Binding of IP Addresses

 Running in VPN’s is limited

 Dedicated OS user account

 File system permissions

Others DBA and Developer Training

 Database Monitoring and Backup

(MONGO STAT and

MONGOTOP)

 Database Maintenance

https://docs.mongodb.org/manual/core/security-scram-sha-1/#authentication-scram-sha-1
https://docs.mongodb.org/manual/core/security-scram-sha-1/#authentication-scram-sha-1

 223

The Figure 6.2 list the vulnerabilities over the year for MongoDB reported by CVE

(CVE, 2013). As evident from the Figure 6.2, we can say that if our framework has

been followed then all these vulnerabilities would have been handled during the initial

versions. Table 6.12 shows the comparison of threats identified using our approach

and threats listed by CVE.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2013 2014 2015 2016 2017

Vulnerabilities	over	the	Year

No	of	Vulnerabilities

Figure 6.2 Vulnerabilities over the year for MongoDB

Our research shows that there are no recent research publications related to the

handling of the security issues in a detailed manner. Previous research mainly focused

on the security issues that exist in the NoSQL environment. No one has proposed a

detailed framework that deals with security issues in a structured manner.

Table 6.12 Comparison of Threats

S.No Threats Identified Using

our Approach

Threats reported by

CVE on MongoDB

Threats Identified using

Security Engineering

Framework

1 T.Change Data NO YES

2 T.Data Theft NO YES

 224

3 T.Impersonate NO YES

4 T.Social Engineer NO YES

5 T.Fraud NO YES

6 T.Privacy Violated NO YES

7 T.Repudiation Receive NO YES

8 T.Repudiate Send NO YES

9 T.Credential Theft NO YES

10 T.Phishing NO YES

11 T.Insider NO YES

12 T.Spoofing NO YES

13 T.Human Error NO YES

14 T.Disclose Data NO YES

15 T.DDoS YES YES

16 T.Misuse of System

Resources
YES YES

17 T.Injection Attack YES YES

18 T.Malware YES YES

19 T.Technical Failure YES YES

20 T.Power Failure NO YES

21 T.Hardware Failure NO YES

22 Privacy Violated NO NO

23 Communication

Interception
NO NO

24 Communication

Infiltration
NO NO

25 Eavesdropping NO NO

26 Network Infrastructure

Failure
NO NO

27 Unavailability NO NO

28 Vandalism NO NO

29 Operational Issues NO NO

 225

Summary

 It identifies, analyzes, and prioritize the security requirements for NoSQL

databases along with the possible operations.

 During the requirements phase, to automate the process of identification of

security requirements we have generated:

 A vulnerability-threat mapping table of dimension (28 X 13) for

identification of vulnerabilities and threats.

 A threat-security requirements mapping table of dimension (28 X 12)

is built to enable easy identification of security requirements.

Novel Contribution of the Chapter

 Various domain constraints pertaining to big data are identified such as

source of data generation, type of data, complexity of data, etc. Their

predictive values are also identified during the design phase. Based on these

constraints best-suited security algorithms are chosen and suggested for

implementation.

 Also, the proposed framework provides the security guidelines to stakeholders

for understanding the security need.

 Finally, security analysis of a commonly used NoSQL database ‘MongoDB’

was presented. And it is found that threats reported by CVE for it are all

covered by our approach. Also, threats identified by our approach are large in

number, and proper security algorithms are also suggested to handle them.

 226

CHAPTER 7

IMPLEMENTATION

Chapter 3 of the thesis presented a generic security engineering framework for

information system development. Further, the framework is adapted for various

emerging domains namely Cloud Systems, Internet of Things (IoT) and Big Data

Databases as explained in Chapters 4, 5, and 6 respectively. This chapter discusses the

implementation of the tool to assist the users in identifying the security related details

for different domains. The chapter starts with the overview of the tool and further

detailed discussion on tools phases is presented. Also, different screen shots of the

tool are presented for clear understanding.

7.1 Overview

As proposed in chapter 3, our framework starts with the identification of actors,

functionality, and assets. Then vulnerability and threats to functional requirements are

identified. Threats are then evaluated based on risk measure. After that, security

requirements are elicited to represent the threats. Further, these requirements are

analyzed and prioritized. Then, in the next phase, security algorithm is chosen to

implement the prioritized security requirements based on domain constraints.

Hence, to automate the whole process, a tool is developed named Security

Engineering Tool (SET). The tool work in two phases which corresponds to two

phases of our generic framework. The first phase of the tool is Security Requirements

Elicitation Prioritization Specification (SREPS), and the second phase is Security

 227

Design Engineering (SDE). In next forthcoming sections, the architecture of both the

phases of our tool is presented.

7.2 Security Requirements Elicitation Prioritization Specification (SREPS)

The architecture of SREPS is shown in Figure 7.1, which consists of two parts:

 Front end part that provides, a user interface for selecting the details for

elicitation, prioritization and specification of security requirements.

 Back end part of tool helps in extraction of information from maintained

repositories based on details provided by the user.

Figure 7.1 Architecture of SREPS

Functionality, Assets base shown in Figure 7.1, contains the functional

requirements and assets of the system. This information is presented to the users

for selection of functionality and needed assets by him, to start the process of

elicitation of security requirements. To start with the process user first need to do

the login, login window is shown in Figure 7.2. After verification of the login

details, authenticated user can get access to the functions of the tool for elicitation,

analysis, prioritization, and specification.

User

Interface

Security

Requirements

Elicitation

Security

Requirements

 Prioritization

Security

Requirements

Specification

Security
Requirements

Base

Functionality

Assets

Base

Vulnerability

Threat

Base

 228

Figure 7.2 Login Page of Tool

Vulnerability, Threat base contains the potential vulnerabilities and threats of the

system. After Login in the system user now select the actors, functionality/ operation

and other related details. Based on the selected details vulnerabilities and threats are

identified from maintained vulnerability, threats base. Further, to mitigate the threats

security requirements are elicited.

Figure 7.3 shows the selection of different fields to start with the elicitation process.

Based on the selection parameters Figure 7.4 shows the elicited security requirements

for the operation ‘Create.’

 229

Figure 7.3 Window showing fields required for elicitation process

Figure 7.4 Elicited Security Requirements

Further, the elicited security requirements are prioritized. Prioritization window is

shown in Figure 7.5.

 230

Figure 7.5 Prioritized Security Requirements

After the elicitation and prioritization of security requirements, these requirements are

specified. Specified security requirements are shown in Figure 7.6. The prioritize and

specified security requirements are stored in the Security Requirements base.

Figure 7.6 Specified Security Requirements

 231

Information Extractor. Different information is extracted from the repositories created.

Back-end architecture of SREPS is shown in Figure 7.7 (a) and Figure 7.7 (b).

Figure 7.7 (a) Back End Architecture of SREPS

Figure 7.7 (b) Back End Architecture of SREPS

Threats corresponding to vulnerabilities are extracted from the database based on the

criteria specified in the form of a matching table as presented in Chapters 4, 5 and 6.

Threats Corresponding to vulnerability ‘V.Weak Access Contol’ is shown in Figure

7.8 for Big Data DB environment.

Elicitation

Vulnerability

Extraction

Threat

Extraction

Identified

Security

Requirement

Vulnerability

Threat

Base

Prioritization

Impact

Calculation

Threat Rating

Extraction

Risk

Identification

Vulnerability
Threat

Base

Asset
Base

Security

Requirements

Priority

Security

Requirements

Base

 232

Figure 7.8 Threats Corresponding to Selected Vulnerability

Repository of vulnerability-threat mapping for IoT system is shown in Figure 7.9. For

the purpose of prioritization of security requirements impact value is calculated. The

impact is calculated using analyzing the information of assets affected by threats.

Figure 7.10 shows the mapping of affected assets by threats for IoT based-systems.

 233

Figure 7.9 Vulnerability-Threat Mapping Repository

Figure 7.10 Repository of Threats affecting Assets

 234

7.3 Security Design Engineering (SDE)

The architecture of SDE is shown in Figure 7.11 (a) and Figure 7.11 (b).

Figure 7.11 (a). Architecture of SDE

Figure 7.11 (b). Architecture of SDE

Cryptography Algorithm base contains the information about attacks mitigated by

various available cryptography algorithms. This would help in the identification

security algorithm for implementation. To achieve this task mapping of security

requirements to security mechanisms is done as shown in Figure 7.12. for IoT-based

User

Interface

Mapping of

Security

Mechanisms

Consideration

of Domain

Constraints

Cryptography

Algorithm

Base
ase

Domain

Constraint

Base
Base

Suggested

Security

Algorithm

Security Requirements and

Security Service Mapping

Security Service and

Available Algorithms

Identification

Attack Analysis

Cryptography

Algorithm

Base

Domain Parameters

Consideration

Domain

Constraint

Base

Suggested

Algorithm

 235

systems. The result of this step would be the algorithm with the highest attack

mitigation rate.

Figure 7.12 Repository of Security Mechanisms and Security Requirements Mapping

Next, the Domain Constraint base contains the applicable list of domain constraints

for the system. Different applicable domain constraints are chosen for the system

under consideration. Figure 7.13 depicts the choosing of domain constraints for IoT-

based systems. This step would help in choosing efficient security algorithm for

implementation.

 236

Based on the application of two repositories ‘ECIES’ is suggested for encryption, as

it mitigates the maximum number of threats and works efficiently under given

domain constraints among the available algorithms. Figure 7.14 depicts the

algorithm with their priority value, an algorithm with highest priority value will be

chosen for implementation. Hence in case of IoT system algorithm, ‘ECIES’ is

selected for implementation.

Figure 7.13 Selection of Domain Constraints

 237

Figure 7.14 Suggested Security Algorithm for Implementation

Summary. This chapter of the thesis discussed the architecture and working of tool

SET: (1) SREPS and (2) SDE. Sample repositories and screen shots of tool are shown

and discussed.

 238

CHAPTER 8

CONCLUSIONS, CONTRIBUTIONS AND FUTURE SCOPE

From the literature review, this research found that existing methodologies focus on

identification of security goals, threats, attack, vulnerability to the asset. They specify

security requirements in the form of protection measures to meet the security goals.

These measures are nothing but the architectural constraints. Thus the present

methodologies do not distinguish between architectural constraints and security

requirements. Developing a secure software is a complex task in the web-based

systems. More challenges are faced in emerging fields of cloud computing, IoT, and

big data. Therefore, an engineering approach to secure software development requires

a methodology which should first elicit, analyze, prioritize, and specify the security

requirements during requirements engineering phase. Then, it should deploy the

security algorithms based on different constraints (computational, communicational,

device) during design engineering phase.

The finding of the thesis has established, that current research has following gaps:

 They elicit, analyze, prioritize the security goals to functional requirements/

assets, but specify the security requirements in the form of architectural

constraints.

 When a security measure is specified as an architectural constraint, it does not

consider the domain constraints such as memory, power, computation speed,

etc. This may result in unnecessary constraints which make the system slow.

 239

 None of the approaches validates deployed security algorithms for identified

threats or attacks. Analogous to traditional software engineering the system

must validate the embedded security.

 Most of the methodologies focus on web-based systems; they do not consider

the emerging domains like cloud computing, Internet of Things (IoT).

While addressing these challenges, the thesis suggests a novel security engineering

framework to handle security issues which are inherent in the system in a structured

manner. The proposed framework can become an integral part of current software

development processes.

 The generic framework presented in Figure 8.1 is divided into three phases

namely security requirements engineering, security design engineering, and

security testing. In security requirements engineering phase, security

requirements are identified, analyzed, prioritized and finally specified. After

that in security design engineering phase, an efficient algorithm is selected

based on different constraints. Finally, during the Security Testing phase, a

metric is generated showing the system security level after deployment of

selected security algorithms. This metric is then compared with the pre-defined

threshold value to check whether the security provided by selected algorithms

is sufficient or not. For the purpose of validation open source software

‘wordpress’ is taken, and found that our proposal is effectively identifying and

recommending suitable security algorithm for implementation.

 240

After that, the proposed framework is applied to various new emerging domains like

cloud computing, IoT, big data. These new emerging fields are chosen because they

have a complex architecture and embedding security is difficult due to the presence of

numerous functionalities and assets.

Figure 8.1 Security Engineering Framework

a) CLOUD COMPUTING

 It elicits, analyzes, prioritizes, and specify the Security Requirements along

with the functional and non- functional requirements.

 To cater the need of handling a large set of functionalities and assets, a

Functionality-Asset mapping table having a dimension (34X 22) has been

developed. The table acts as a repository from where functionalities are chosen

and corresponding assets are listed automatically.

Security

Requirements

Engineering

Security

Design

Engineering

Security Testing

Calculate

Security

Index

 If (SI Ref)

Generate Test

Report

YES

NO

 241

 Another table for vulnerability-threat mapping of the dimension of (39 X 45)

has been developed. This table would help in the identification of potential

threats at different vulnerable points.

 A new security requirement named multi-trust was added to the cluster of

security requirements defined by researcher Firesmith.

 Security algorithms are chosen considering various domain constraints

(environmental consideration, communicational and computational parameters,

and type of devices used) during the design engineering phase.

 Finally, a security metric is generated showing system security level.

 Guidelines are generated for implementing security in the development new

cloud system.

 For the purpose of validation open source software ‘ownCloud’ is taken, and

found that our proposal is efficient in identifying and recommending suitable

security algorithm for implementation.

b) IOT

 As done in the cloud computing, different assets involved at various layers of

IoT are identified and then to cater the identification of vulnerabilities, threats,

security requirements following repositories are built:

 A vulnerability threat mapping table was constructed of a dimension 39

X 22

 Various threats that can affect assets of the system are identified whose

dimension is approximate 39 X 30.

 New security services: Data Freshness and Liability, are added to the pre-

defined cluster of security services.

 242

 Security algorithms are chosen considering various domain constraints

pertaining to different layers of IoT during the design and validation phase.

 Finally, a security metric is generated showing system security level. Also, a

case study of remote health monitoring system scenario is considered for

explanation of our novel proposal.

c) BIG DATA DATABASES

 Possible Security Requirements are identified, analyzed, prioritized, and specified

for NoSQL databases.

 During the requirements engineering phase to automate the process of

identification of security requirements we have generated

 A vulnerability-threat mapping table for identification of

vulnerabilities and threats.

 A threat-security requirements mapping table is built to enable easy

identification of security requirements.

 Based on various constraints (source of data generated, type of data generated,

etc.) best-suited security algorithms are chosen for implementation. Also, security

guidelines for involved stakeholders are generated.

 We have applied and analyzed our proposal on open source software

‘MongoDB’, a commonly used NoSQL database and it is found that our proposal

is effectively identifying and recommending suitable security algorithm for

implementation.

Contributions of the thesis

A summary of the contributions made in the thesis is as follows:

 243

1. A generic framework for security engineering has been proposed for solving the

security issues. The phases of proposed framework work together to achieve the

main goal of the system, which is its security.

2. A Security Requirements Engineering process is established to do the

identification, analysis, prioritization, and specification of security requirements.

3. Similar to functional and non-functional requirements, security requirements are

explicitly embedded in SRS document as a separate section to enable starting of

security consideration from starting phases of SDLC.

4. A process for security design engineering is presented, to identify efficient

algorithms for implementation of security requirements in a structured way based

on domain parameters (computational constraints such as bandwidth, energy, etc.

and device constraints such as memory, power, etc.).

5. The Testing process is developed to measure the effectiveness of selected security

algorithms in terms of a metric denoted by Security Index. Metric is used as

performance measure that will show the threat proneness of the system. Also,

security index value will show the appropriateness of selected security algorithms

based on the number of threats they mitigate.

6. A tool has been developed to assist the user in elicitation of security requirements.

Various repositories mentioned in previous chapters are maintained, from where

with the help of queries data is fetched to assist the user.

7. The proposed process is adapted for various emerging domains namely cloud

systems, IoT, and big data databases.

8. Open source software’s namely wordpress, ownCloud, MongoDB are taken for the

purpose of validation.

 244

a) Cloud-based systems:

 New security requirements Multi-Trust is identified.

 Generated functionality-asset mapping and vulnerability- threat mapping

tables, which guides the user to identify the assets, functionality,

vulnerabilities, threats efficiently. Further, it helps in identification of

security requirements.

 Also, it selects the efficient algorithm for implementation based on domain

constraints.

 Further various cloud storage models are evaluated.

b) IoT systems:

 New security requirements Data Freshness and Trust are identified.

 Generated vulnerability-threat mapping table and database of threats

affecting assets. These repositories would help in identification of assets,

vulnerabilities, threats. This will in turn, help in the identification of

security requirements.

 Constraints for IoT layers are identified such as (a) Light weight, (b)

Consume less power, (c) Require less computation, (d) Less storage space,

and (e) Need to work on things such as RFID tags, embedded systems,

sensors, etc.

 Based on foregoing constraints algorithm is suggested for Remote Health

Monitoring system. But, the suggested algorithm is not efficient, so need to

develop a new hybrid algorithm arises.

c) Big Data Databases:

 245

 Generated vulnerability-threat mapping and threat- security requirements

mapping tables. These tables would help in identification and prioritization

of security requirements.

 Constraints for Big Data environments are identified such as Source of

Data Generation, Type of Information, Complexity of Data, Type of Data

Organization, and Throughput.

 Existing big data database MongoDB is evaluated.

Future work and open problems

The thesis has given a number of directions of future work as follows:

1. During the design phase, optimal algorithms are selected from the set of standard

available algorithms. The standard algorithms can implement specific security

services only. Hence, new hybrid algorithms are required that can implement more

than one security service based on the system’s domain constraints.

2. During the elicitation process, this thesis has considered N: M mapping of threats

and vulnerabilities. But it may be possible that combination of vulnerabilities and

threats may lead to new security issue. Hence, combination of threats and

vulnerabilities need to be considered, as sometime lower order threats may get

combined and create a serious problem.

3. Automation of our process of vulnerability and threat identification, security

requirements elicitation, and appropriate algorithm suggestion can be done by

applying machine learning algorithms. Hence, this area needs to be explored.

 246

REFERENCES

1. Alexander, I. (2003). Misuse Cases: Use Cases with Hostile Intent. IEEE Software,

20(1), 58-66.

2. Ambhore, P., Waghmare, V., & Meshram, B. (2007). A Implementation of Object

Oriented Database Security. International Conference on Software

Engineering Research, Management and Applications, (pp. 359-365).

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., . . .

Zaharia, M. (2010, April). A View of Cloud Computing. Communications of

the ACM, 53(4), 50-58.

4. Barnard-Wills, D., Marinos, L., & Portesi, S. (2014). Threat Landscape and Good

Practice Guide for Smart Home and Converged Media. European Union

Agency for Network and Information Security (ENISA). ENISA.

5. Bate, B. (2017, June 22). wordpress-now-powers-28-websites. Retrieved from

envato.com: https://envato.com/blog/wordpress-now-powers-28-websites/

6. Beckers, K., Cote, I., Fabbender, S., Heisel, M., & Hofbauer, S. (2013). A pattern-

based method for establishing a cloud- specific information security

management system. Requirements Engineering, 18, 343-395.

7. Bertino, E., & Sandhu, R. (2005, January-March). Database Security—Concepts,

Approaches, and Challenges. IEEE Transactions on Dependable and Secure

Computing, 2(1), 2-19.

8. Boehm, B., & Papaccio, P. (1988). Understanding and Controlling Software Costs.

IEEE Transactions on Software Engineering, 14(10), 1462-1477.

9. Braberl, F., Hogganvik, I., Lund, M., Stølen, K., & Vraalsen, F. (2007). Model-

based security analysis in seven steps—a guided tour to the CORAS method.

BT Technology Journal, 25(1), 101–117.

 247

10. Chatterjee, K., Gupta, D., & De, A. (2013, June). A framework for development

of secure software. CSI Transactions on ICT, 1(1), 143-157.

11. Cloud Security Alliance, CSA. (2013). The Notorious Nine Cloud Computing Top

Threats in 2013. CSA. CSA.

 12. Coman, A., & Ronen, B. (2010). Icarus predicament: Managing the pathologies

of overspecification and overdesign. International Journal of Project

Management, 28(3), 237-244.

13. Common Criteria Implementation Board. (1999). Common Criteria for

Information Technology Security Evaluation, Technical Report, CCIMB 99–

031. Technical.

14. CRAMM. (2005). United Kingdom Central Computer and Telecom- munication

Agency (CCTA) Risk analysis and management method, CRAMM user guide,

Issue 5.1. . United Kingdom.

15. CSA Cloud Security Alliance. (2010). Top Threats to Cloud Computing V1.0.

Cloud Security Alliance.

16. CVE. (2004). Wordpress : Vulnerability Statistics. Retrieved from cvedetails:

https://www.cvedetails.com/product/4096/Wordpress-

Wordpress.html?vendor_id=2337

17. CVE Details. (2012). Owncloud: Vulnerability Statistics. Retrieved from

www.cvedetails.com: https://www.cvedetails.com/product/22262/Owncloud-

Owncloud.html?vendor_id=11929

18. CVE. (2013). Mongodb: Vulnerability Statistics. Retrieved from

www.cvedetails.com: https://www.cvedetails.com/product/25450/Mongodb-

Mongodb.html?vendor_id=12752

 248

19. Department for Business Innovation & Skills. (2014). 2013 Information Security

Breaches Survey Technical Report. Retrieved from http://www.pwc.co.uk:

http://www.pwc.co.uk/assets/pdf/cyber-security-2014-technical-report.pdf

20. DropBox storage service. (2012). Retrieved march 2016, from

https://www.dropbox.com/

21. Dropbox: Yes, We Were Hacked. (2012, August). Retrieved december 2015, from

http://gigaom.com/cloud/dropbox-yes-we-were-hacked/

22. IEEE 830. (1998). IEEE Recommended Practice for Software Requirements

Specifications. USA: IEEE.

23. IEEE Standard, 610.12. (1990). IEEE Standard Glossary of Software Engineering

Terminology. IEEE.

24. ENISA. (2009, November). Cloud Computing Benefits, risks and

recommendations for information security. Retrieved from The European

Network and Information Security Agency: http://www.enisa.europa.eu

 25. Ellison, R. J. (2005). Attack Trees. Software Engineering Institute. Carnegie

Mellon University.

26. Fabian, B., Gurses, S., Heisel, M., Santen, T., & Schmidt, H. (2010, March). A

comparison of Security Requirements engineering methods. Requirement

Engineering Journal, 15(1), 7-40.

27. Fernandes, D., Soares, L., omes, ., Freire, M., & In acio, P. (2014). Security

Issues in Cloud Environments — A Survey. International Journal of

Information Security (IJIS), 13(2), 113-170.

28. Ficco, M., Palmieri, F., & Castiglione, A. (2015, April 22). Modeling security

requirements for cloud-based system development’. Concurrency and

Computation: Practice and Experience, 27(8), 2107-2124.

 249

29. Finkelstein, A., & Fuks, H. (1989, May). Multiparty Specification. ACM

SIGSOFT Software Engineering Notes, 14(3), 185-195.

30. Firesmith, D. G. (2003). Security Use Cases. Journal of Object Technology, 2(3),

53-64.

31. Firesmith, D. G. (2003). Engineering Security Requirements. Journal of Object

Technology, 2(1), 53-68.

32. Flyvbjerg, F., & Budzierkdsjfk, A. (2011). Why Your IT Project Might Be Riskier

Than You Think. Harvard Business Review, 89(9), 23-25.

33. Forouzan, B. (2007). Cryptography & Network Security. New York, USA:

McGraw-Hill.

34. Gartner. (2015). Gartner: 21 Billion IoT Devices To Invade By 2020. Retrieved

from Gartner: 21 Billion IoT Devices To Invade By 2020:

http://www.informationweek.com/mobile/mobile-devices/gartner-21-billion-

iot-devices-to-invade-by-2020/d/d-id/1323081

35. Goguen, J., & Linde, C. (1993). Techniques for requirements elicitation.

Proceedings of IEEE International Symposium on Requirements Engineering

(pp. 152-164). San Diego, CA, USA, USA: IEEE.

36. Granjal, J., Monteiro, E., & Silva, J. S. (2015). Security for the Internet of Things:

A Survey of Existing Protocols and Open Research Issues. IEEE

COMMUNICATION SURVEYS & TUTORIALS, 17(3), 1294-1312.

37. Grobauer, B., Walloschek, T., & Stocker, E. (2011). Understanding cloud

computing vulnerabilities. Security Privacy, 9(2), 50-57.

38. Haley, C., Laney, R., Moffett, J., & Nuseibeh, B. (2008). Security Requirements

Engineering: A Framework for Representation and Analysis. IEEE

Transactions on Software Engineering, 34(1), 133-153.

 250

39. Hankerson, D., Hernandez, J. L., & Meneze, A. (2000). Software Implementation

of Elliptic Curve Cryptography over Binary Fields. Koç Ç.K., Paar C. (eds)

Cryptographic Hardware and Embedded Systems — CHES 2000. CHES 2000.

Lecture Notes in Computer Science. 1965, pp. 1-24. Berlin: Springer.

40. Hickey, A., & Davis, A. (2003). Barriers to Transferring Requirements Elicitation

Techniques to Practice. Business Information Systems Conf. IEEE.

41. IDC. (2016, [online]). Explosive Internet of Things Spending to Reach \$1.7

Trillion in 2020. Retrieved from Available:

http://www.idc.com/getdoc.jsp?containerId=prUS25658015.

42. Internet_of_things. (n.d.). Retrieved 2016, from Wikipedia: IoT Wikipedia,

https://en.wikipedia.org/wiki/Internet_of_things

43. Islam, S., Mouratidis, H., & Edgar, R. W. (2011). A Goal- Driven Risk

Management Approach to Support Security and Privacy Analysis of Cloud-

Based System. In E. F.-M. Mario Piattini, Security Engineering for Cloud

Computing. IGI Global.

44. Islam, S., Kwak, D., Kabir, M., Hossain, M., & Kwak, K.-S. (2015). The Internet

of Things for Health Care: A Comprehensive Survey. IEEE Access, 3, 678-

708.

45. Jansen, W. (2011). Cloud Hooks: Security and Privacy Issues in Cloud

Computing. Proceedings of the 44th Hawaii International Conference on

System Sciences, (pp. 1-10).

46. Jing, Q., Vasilakos, A., Wan, J., Lu, J., & Qui, D. (2014, November). Security of

the Internet of Things: perspectives and challenges. Wierless Networks, 20(8),

2481- 2501.

 251

47. Jules, A. (2006, 6 06). RFID security and privacy: a research survey. EEE Journal

On Selected Areas In Communications, 24(2), 381-394.

48. Katal, A., Wazid, M., & Goudar, R. (2013). Big data: Issues, challenges, tools and

Good practices. Sixth International Conference on Contemporary Computing

(IC3) (pp. 404-409). IEEE.

49. Kotonya, G., & Sommerville, I. (1996, January). Requirements engineering with

viewpoints. Software Engineering Journal, 11(1), 5-18.

50. Kuppuswamy, P., & Al-Khalidi, S. (2014). Analysis of Security Threats and

Prevention in Cloud Storage: Review Report. International Journal of

Advanced Research in Engineering and Applied Sciences, Vol. 3, No. 1.

51. Lamsweerde, A. V. (2004). Elaborating Security Requirements by Construction of

Intentional Anti-Models. (pp. 148-157). Washington, DC USA: 26th

International Conference on software engineering (ICSE’ 4).

52. Lapouchnian, A. (2005). Goal-Oriented Requirements Engineering: An Overview

of the Current Research. University Of Toronto, Department of Computer

Science .

53. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011).

NIST Cloud Computing Reference Architecture: Recommendations of the

National Institute of Standards and Technology. Gaithersburg: NIST Special

Publication 500-292.

54. Maurice, W., Heemels, H., R. Teel, A., Wouw, N. v., & Dragan, N. (2010, August

8). Networked Control Systems With Communication Constraints: Tradeoffs

Between Transmission Intervals, Delays and Performance. IEEE

TRANSACTIONS ON AUTOMATIC CONTROL, 55(8), 1781-1796.

 252

55. McDermott, J., & Fox, C. (1999). Using Abuse Case Models for Security

Requirements Analysis. ACSAC '99 Proceedings of the 15th Annual Computer

Security Applications Conference. Washington, DC, USA: IEEE.

56. Mead, N. R. (2005). Security Quality Requirements Engineering (SQUARE)

Methodology. Software Engineering for Secure Systems (SESS05)

proceedings of International Workshop on Requirements for High Assurance

Systems. St. Louis.

57. Mellado, D., Medina, E. F., & Piattini, M. (2007, February). A common criteria

based Security Requirements engineering process for the development of

secure information system. Computer Standards & Interfaces, 29(2), 244-253.

58. Miorandi, D., Sicari, S., Pellegrini, F., & Chlamtac, I. (2012). Internet of Things:

Vision, applications and research challenges. Ad Hoc Networks, 10, 1496-

1516.

59. Mitrokotsa, A., Beye, M., & Peris-Lopez, P. (2010). Classification of RFID

Threats based on Security Principles. 1-27.

60. MongoDB. (2014). MongoDB CRUD Operations Introduction Release 2.2.7.

MongoDB. MongoDB.

61. MongoDB. (2013). MongoDB security features. Retrieved Feburary 16, 2014,

from https://docs.mongodb.org/maual/release-notes

62. Mouratidis H., G. P. (2002). A Natural Extension of Tropos Methodology for

Modeling Security. Agent-Oriented Methodologies Workshop, Annual ACM

Conference on Object Oriented Programming, Systems, Languages

(OOPSLA). Seattle- USA.

 253

63. Mouratidis, H., & Giorgini, P. (2007). Security Attack Testing (SAT)—testing the

security of information systems at design time. Information Systems, 32,

1166–1183.

64. Newton, D. (2011). Dropbox authentication: insecure by design. Retrieved from

dereknewton.com: http://dereknewton.com/2011/04/dropbox-authentication-

static-host-ids/

65. Naveed, R., & Abbas, H. (2014). Security Requirements Specification Framework

for Cloud Users . In Future Information Technology (Vol. 276, pp. 297-305).

Lecture Notes in Electrical Engineering.

66. O'Donnell, L. (2016, [online]). IOT Predictions for 2016. Retrieved from IOT

Predictions for 2016: http://www.crn.com/slide-

shows/networking/300079629/10-iot-predictions-for-2016.htm?itc=refresh

67. Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security

Issues in NoSQL Databases. 10th International Conference on Trust, Security

and Privacy in Computing and Communications (TrustCom) (pp. 341-347).

Changsha, China: IEEE.

 68. OWASP. (2004). OWASP_Risk_Rating_Methodology. Retrieved Feburary 2014,

from OWASP:

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

69. Ozkan, S. (n.d.). CVE Details. Retrieved from CVE Details:

https://www.cvedetails.com/

70. Pan, L. (2009). A Unified Network Security and Fine-Grained Database Access

Control Model. Second International Symposium on Electronic Commerce

and Security, ISECS '09. , (pp. 265-269). Nanchang City, China,.

 254

71. Pearson, S., & Benameur, A. (2010). Privacy, Security and Trust Issues Arising

from Cloud Computing. 2nd IEEE International Conference on Cloud

Computing Technology and Science (pp. 693- 702). IEEE.

72. Roman, R., Najera, P., & Lopez, J. (2011, September 12). Securing the Internet of

Things. Computer, 44(9), 51-58.

73. Rose, K., Eldridge, S., & Chapin, L. (2015). The Internet of Things: An Overview

Understanding the Issues and Challenges of a More Connected World. The

Internet Society. The Internet Society.

74. Sen, J. (2013). Security and Privacy Issues in Cloud Computing. In P. G.-L. Ruiz-

Martinez, Architectures and Protocols for Secure Information Technology.

USA: IGI- Global.

75. Sindre, G., & Opdahl, A. L. (2005, January). Eliciting security requirements with

misuse cases. Requirements Engineering, 10(1), 34-44.

76. Sommerville, I. (2004). Software Engineering (7th Edition). Pearson Addison

Wesley.

77. Sood, K., Yu, S., & Xiang, Y. (2015, September 28). Software Defined Wireless

Networking Opportunities and Challenges for Internet of Things: A Review.

IEEE Internet of Things Journal, 3(4), 453-463.

78. Suchman, L., & Jordan, B. (1990). Interactional troubles in face-to-face survey

interviews. Journal of the American Statistical Association, 85(409), 232-241.

79. Stallings, W. (2006). Cryptography And Network Security: Principles And

Practices, 4th Edition. Pearson.

80. Stankovic, J. (2014, Feburary). Research Directions for the Internet of Things.

IEEE Internet of Things Journal, 1(1), 3-9.

 255

81. Stocker, E., Grobauer, B., & Walloschek, T. (2011, March/ April). Understanding

cloud computing vulnerabilities. IEEE Security & Privacy, 9(2), 50-57.

82. Stoneburner, G., Alice, G., & Feringa, A. (2002). Risk Management Guide for

Information Technology Systems: Recommendations of the National Institute

of Standards and Technology. NIST Special Publication 800-30. Gaithersburg:

NIST.

83. Subashini, S., & Kavitha, V. (2011). A survey on security issues in service

delivery models of cloud computing. Journal of Network and

ComputerApplications, 34, 1-11.

84. Symantec. (2013). Internet Security Threat Report.

85. Trappe, W., Howard, R., & Moore, R. (2015). Low-energy security: Limits and

opportunities in the internet of things. EEE Security & Privacy, 13(1), 14-21.

86. T, S., & Kumar, V. (2013, July). Application of Big Data in Data Mining.

International Journal of Emerging Technology and Advanced Engineering,

3(7), 390-393.

87. Uzunov, A., Falkner, K., & Fernandez, E. (2015). A comprehensive pattern-

oriented approach to engineering security methodologies. Information and

Software Technology, 57, 217-247.

88. Valera, A., Zamora, M., & Skarmeta, A. (2010). An Architecture Based on

Internet of Things to Support Mobility and Security in Medical Environments.

Consumer Communications and Networking Conference (CCNC), 2010 7th

IEEE. IEEE.

89. Verizon. (2014). 2014 DATA BREACH INVESTIGATIONS REPORT.

90. Vormetric. (2012). Securing Big Data: Security Recommendations for Hadoop

and NoSQL Environments. Vormetric.

 256

91. Vu, Q. H., Pham, T.-V., Truong, H.-L., Dustdar, S., & Asal, R. (2012).

DEMODS: A Description Model for Data-as-a-Service. 26th IEEE

International Conference on Advanced Information Networking and

Applications (pp. 605-612). IEEE.

92. W3Techs. (n.d.). World Wide Web Technology Surveys . Retrieved from

https://w3techs.com: https://w3techs.com

93. Websence Security Lab. (2015). 2015 SECURITY PREDICTIONS. Retrieved

from websense.com/securitylabs: http://www.portantier.com/files/websense-

report-2015-security-predictions-en.pdf

94. Ware, M. S., Bowles, J. B., & Eastman, C. M. (2006). Using the Common Criteria

to Elicit Security Requirements with Use Cases. SoutheastCon (pp. 273-278).

IEEE.

 95. Xiao, Z., & Xiao, Y. (2013). Security and Privacy in Cloud Computing. IEEE

Communications Surveys & Tutorials, 15(2), 843-859.

 257

AUTHOR’S BRIEF BIOGRAPHY

Shruti Jaiswal is a Research Scholar in the Computer Engineering Department of

Delhi Technological University (formerly, Delhi College of Engineering), New Delhi

India. She received her ME from the Delhi College of Engineering in Computer

Technology and Application in 2009. Her field of interests is information security,

software engineering, and requirements engineering.

She has full-time teaching experience of 2+ years where she has taught subjects to

undergraduate students. Also, as a research scholar, she has taught many courses to

undergraduate and postgraduate students. These include Operating System, Computer

Graphics, Software Project Management, Computer Organization. She is currently

working as an Assistant Professor in Inderprastha Engineering College, Ghaziabad.

