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ABSTRACT 

In this thesis operational floating current conveyor (OFCC), a current 

mode building block is studied and its application as continuous filter 

has been investigated. There modes of filter presented in this thesis 

using OFCC current mode, trans-impedance mode, voltage mode and 

TA mode. All these filters employ three OFCCs and two grounded 

capacitors. The current mode and trans-impedance mode filters use 

two grounded resistors whereas an additional grounded resistor is 

used in trans-admittance mode and voltage mode filters. The 

grounded resistor is implemented using MOS based structure thereby 

adding electronic tunability to filter parameters. Further low pass(LP) 

and band pass(BP) filters are also implemented using single OFCC 

block in multiple loop feedback topology. All the proposed filters 

functionality is verified through PSPICE simulation using 0.5µm mosis 

agilent technology parameters. 
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CHAPTER 1: INTRODUCTION 

As the technology in VLSI design is progressing , the sizes of electronic circuits are shrinking 

and consequently the voltage supply has also to be reduced in the same ratio in order to 

maintain appropriate power dissipation per area. However , designing of electronics circuits 

with low supply voltages and power dissipation becomes the limiting factor in the design, 

particularly when extreme speed or accurate signal processing is required. The concern to 

meet the simultaneous demands of two contradictory requirements has led to the evolution of 

trade-off solutions which sets the trend for modern era of VLSI. During the last two decades 

analog signal processing applications have found their place in so called current mode [1], 

where signals representing information are in the form of electric currents. 

The current mode approach for analog signal processing has proved itself as a better alternate 

to traditional voltage mode circuits [2] due to their potential performance features like wide 

bandwidth, less circuit complexity, wide dynamic range, low power consumption and high 

operating speed. The current mode circuits are also advantageous for analog signal 

processing requirement because current addition/subtraction does not require additional 

circuit elements. 

The current mode active elements are gaining wide acceptance as building blocks in analog 

circuit design which is evident from the availability of wide variety of current mode active 

elements. The initial set of current mode active elements are voltage feedback 

amplifier(VFA), , current feedback amplifier(CFA) [3] and current conveyor(CC) [4], 

operational transconductance amplifier(OTA) [5]. The initial set of active elements for analog 

signal processing is currently evolving in two directions. The first direction is represented by 

modifying the basic elements such as VFA, CFA, OTA and CC. Some of the modification of 

current conveyors are current conveyor first generation(CCI) [4], current conveyor second 

generation(CCII) [6], current conveyor third generation(CCIII) [7]. The second direction of 

the evolution of the active elements is characterized by appearance of entirely new elements 

which extend the original VFA-CFA-OTA-CC set [8]. Some of these types are operational 

transresistance amplifier(OTRA) [9], current differencing buffered amplifier(CDBA) [10], 

current differencing transconductance amplifier(CDTA) [11] and operational floating current 

conveyor(OFC) [12]. 

In this thesis the current mode active block used to implement continuous time filter is OFCC 

[14]. The operational floating current conveyor(OFCC) is a new two port general purpose 
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analog building block. Its interesting aspect is that of providing features of both the current 

conveyor(CCII) and the current feedback op-amp(CFOA)[13]. Literature survey on OFCC 

based circuits [14–21] shows that voltage mode filter [15–17], variable gain amplifier [18], 

wheat stone bridge [19], and instrumentation amplifier [20] and read out circuit [21] are 

available. The study of current mode filters [22, 25–43] shows that only OFCC based voltage 

mode filter is available in the literature. This thesis aims at presenting different modes of 

continuous time filters using OFCC.    

 The thesis is organised in 6 chapters. Chapter 2 presents the study of OFCC about its 

architecture, CMOS realizations and some existing applications.also simple. In Chapter 3 

current mode and trans-impedance mode filter is presented and its operation is verified 

through simulations. Chapter 4 presents implementation of trans-admittance mode and 

voltage mode filter. Single OFCC based filters are presented in chapter 5. The thesis 

concludes in chapter 6. 

All the results have been verified through SPICE simulation using 0.5μm mosis agilent 

technology parameters.   
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CHAPTER 2: OFCC CURRENT MODE BUILDING BLOCK  

Operational floating current conveyor is one of the latest interests of researchers in domain of 

current mode blocks. The interesting aspect of OFCC lies in the fact that it provides the 

feature of both the current conveyor and the current feedback op-amp (CFOA). This chapter 

aims at familiarizing with the working of OFCC by describing its circuit and port 

relationship. The basic circuit applications are also described. 

 

2.1. INTRODUCTION 

Toumazou and Payne in 1991 proposed a versatile analogue building block and named it 

OFC (operational floating conveyor) having similar properties to a current feedback op-amp 

but with a differential current output which allows accurate current sampling [12]. The 

architecture [12] is based on current feedback op-amp (CFOA) and uses cross coupled 

current mirror circuit to provide additional current outputs. Another structure for OFC [13] is 

proposed which employs a tran- conductance amplifier sandwiched between two CCIIs. The 

realization based on CMOS is also given.  Further a port was added and it was termed as 

OFCC (operational floating current conveyor) which enhanced the versatility of the block 

[14].  

  

The implementation scheme found in literature is either current feedback amplifier with 

transistor array or CMOS structures having block architecture.  

 

The circuit symbol of Operational Floating Current Conveyor (OFCC)[14] is shown in 

Fig.2.1. It has a low impedance current input port X and a high impedance voltage input port 

Y. It also has a low impedance voltage output port W and high impedance current output port 

Z. The output voltage at port W is multiplication of input current at port X and the open loop 

transimpedance gain Zt. The port relationships of the OFCC is characterized by the following 

matrix 
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                       IY  0     0     0     0     0     0     0           VY 

            VX = 1     0     0     0     0     0     0            IX 

            VW   0     Zt    0     0     0     0     0            IW 

                         IZ    0     0     1     0     0     0     0            VZ    

 

 

It may be noted that the voltage at port X is the same as input voltage at port Y so voltage 

tracking action is available at input port. The output current flowing through port W is copied 

to port Z, thereby offering current tracking at the output ports.  

 

Fig. 2.1 OFCC Circuit symbol 

 

2.2. OFCC BASIC ARCHITECTURE 

The basic architectures for implementation of OFCC are described in [18]. The following 

section describes these architectures and their CMOS realizations. 

 

 

 

 

 

(2.1) 
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2.2.1. FIRST REALIZATION 

2.2.1.1. Architecture I 

The first realization for implementing OFCC is shown in Fig. 2.2[18]. It comprises of a series 

connection of two 2nd generation current conveyors of the CCII+ type and one non-inverting 

transimpedance amplifier. The first CCII is used to perform the required voltage following 

action at the input port between terminals Y and X. The second CCII is used to perform the 

required current following action at the output port between terminals W and Z. The input 

current at terminal X is multiplied by the transimpedance amplifier gain to provide the output 

voltage at terminal W[18]. 

 

Fig. 2.2 Architecture I 

 

2.2.1.2. Circuit Description 

The first CMOS realization of the OFCC based on the block diagram shown in Fig. 2.2 is 

given in Fig. 2.3. The group of transistors (M1 and M2), (M3 and M4), (M14 and M15), 

(M16 and M17), (M5 and M18), (M6 and M19), (M11 and M12) as well as (M7 and M20) 

are matched. Assuming that all the transistors operate in saturation region, the operation of 

the circuit can be explained as follows. The first CCII+ (M1-M7) perform the voltage 

following action at the input port between terminals Y and X. The second CCII+ (M14-M20) 

perform the current following action at the output port between terminals W and Z. The 

transimpedance amplifier (M8-M13) multiply the input current at terminal X by large 

transimpedance gain Zt to produce the output voltage at terminal W. The transimpedance 

amplifier operation can be explained as follows. The input current at terminal X is mirrored 

by transistors M3,M4,M6 and M7, and the mirrored current will flow in the equivalent 



DELHI TECHNOLOGICAL UNIVERSITY Page 13 
 

parasitic impedance of the gate terminal of M8, producing a voltage on it. The voltage is then 

amplified to produce the output voltage at terminal W. 

 

 

Fig. 2.3 CMOS realization of Architecture I 

 

 

2.2.2. SECOND REALIZATION 

2.2.2.1. Architecture II 

The second realization of OFCC with block diagram is shown in Fig. 2.4 [18]. In this 

realization the second CCII+ of the first realization is replaced by a simple current follower to 

convey the terminal W current to terminal Z. 
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Fig. 2.4 Architecture II 

2.2.2.2. Circuit Description 

The second CMOS realization of the OFCC based on the block diagram shown in Fig. 2.4 is 

given in Fig. 2.5. The group of transistors (M1 and M2), (M3 and M4), (M10 and M15) as 

well as (M11, M12 and M14) are matched. Assuming that all the transistors operate in 

saturation region, the operation of the circuit can be explained as follows. The first CCII+ 

(M1-M7) perform the voltage following action at the input port between terminals Y and X. 

The positive current follower (M10, M12, M14 and M15) performs the current following 

action at the output port between terminals W and Z. The transimpedance amplifier (M8-

M13) multiply the input current at terminal X by large transimpedance gain Zt to produce the 

output voltage at terminal W. The transimpedance amplifier operation can be explained as 

follows. The input current at terminal X is mirrored by transistors M3,M4,M6 and M7, and 

the mirrored current will flow in the equivalent parasitic impedance of the gate terminal of 

M8, producing a voltage on it. The voltage is then amplified to produce the output voltage at 

terminal W. 

The implementation of OFCC in this thesis uses this architecture and its CMOS realization 

with additional Z copy terminals. 
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Fig. 2.5 CMOS realization of Architecture II. 

 

 

2.2.3. THIRD REALIZATION 

2.2.3.1. Architecture III 

The third realization of OFCC with block diagram is shown in Fig. 2.6 [18]. In this 

realization the first CCII+ of the second realization is replaced by a CCII- and hence an 

inverting transimpedance amplifier is needed for proper operation. 
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Fig. 2.6 Architecture III 

2.2.3.2. Circuit Description 

The third CMOS realization of the OFCC based on the block diagram shown in Fig. 2.6 is 

given in Fig. 2.7.The group of transistors (M1- M8), (M10 and M11), as well as (M12 and 

M13) are matched. Assuming that all the transistors operate in saturation region, the 

operation of the circuit can be explained as follows. The first CCII- (M1-M8) performs the 

voltage following action at the input port between terminals Y and X. It consists of two 

floating current source (FCS) blocks. The first FCS (M1-M4) produces two output-balanced 

currents Io1 and Io2 which are given by eqn. (2.1) where Vd =Vx-Vy. These two currents are 

forced to be zero by applying them to the input stage of the second FCS block and 

correspondingly from eqn. (2.1), the differential voltage Vd = 0. Hence, the voltage at 

terminal X will follow the voltage at terminal Y. The second FCS is responsible for 

conveying the X terminal current to the Z terminal. The positive current follower (M10-M13) 

performs the current following action at the output port between terminals W and Z. The 

transimpedance amplifier (M9 and M14) multiply the input current at terminal X with a large 

inverting transimpedance gain Zt to produce the output voltage at terminal W. The use of an 

inverting transimpedance amplifier is essential since the conveyed current at the gate terminal 

of  M14 will be an inverted form of input current at terminal X. Hence, the inverting 

transimpedance amplifier is essential to provide an output voltage at terminal W directly 

proportional to the input current at terminal X. The transimpedance amplifier operation can 

be explained as follows. The input current at terminal X is conveyed by the CCII- to the gate 

terminal of M14. This current will flow in the equivalent parasitic impedance of this gate 
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terminal producing a voltage on it. The voltage is then amplified to produce the output 

voltage at terminal W. 

𝐼𝑜1 = −𝐼𝑜2 = −
1

2
𝑣𝑑(√𝐾𝑛 √2𝐼𝐵 −

𝐾𝑛𝑣𝑑
2

4
+  √𝐾𝑃 √2𝐼𝐵 −

𝐾𝑃𝑣𝑑
2

4
)                                           (2.1) 

Where, 

𝐾𝑛 =  𝜇𝑛𝐶𝑜𝑥
𝑊1

𝐿1
        and       𝐾𝑝 =  𝜇𝑝𝐶𝑜𝑥

𝑊3

𝐿3
                (2.2) 

 

 

 

 

Fig. 2.7 CMOS realization of Architecture III   
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2.3. APPLICATIONS OF OFCC 

In this work the OFCC with additional Z terminals is used. The block diagram is shown in 

Fig. 2.8.  

 

 

Fig. 2.8 OFCC block with additional Z terminals. 

The port relations of the above mentioned block is explained by the following matrix. 

 

                        IY  0     0     0     0     0     0     0           VY 

            VX  1     0     0     0     0     0     0            IX 

            VW  0     Zt    0     0     0     0     0            IW 

IZ1  = 0     0     1     0     0     0     0           VZ1             (2.4) 

IZ2  0     0     1     0     0     0     0           VZ2 

IZ3  0     0    -1     0     0     0     0           VZ3 

IZ4  0     0    -1     0     0     0     0           VZ4 

 

The current in terminal Iz1 and Iz2 is in phase with that of Iw whereas Iz3 and Iz4 are out of 

phase with Iw. 

 

The CMOS implementation of OFCC is shown in Fig. 2.9 which is extension of Fig.2.5. The 

transistors M16-M17 are used to provide additional Z terminal whereas the cross coupled 

current mirror (M18 – M25) give negative current transfer. The aspect ratio of  transistors are 

mentioned in Table 2.1. The OFCC applications given in the next section are simulated using 

this structure. 
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Fig 2.9 CMOS Schematic of OFCC 

 

Table 2.1: Transistors aspect ratios of the circuit shown in Fig. 2.9[18] 

    Transistor   W (µm)/L (µm) 

 M1, M2         50/1 

 

 M3, M4, M11, M12, M14  50/2.5 

                                          M16, M18, M20, M22, M24   

 

 M5, M7, M10, M15, M17, M19 20/2.5 

  M21, M23, M25     

 

 M6, M8    40/2.5 

 

                                          M9, M13        100/2.5 
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2.3.1. TRANS-RESISTANCE AMPLIFIER 

The trans- resistance amplifier configuration is shown in Fig. 2.10[18]. The trans- resistance  

gain can be obtained as follows: 

𝑇𝑟𝑎𝑛𝑠 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛 =  
𝑉𝑜𝑢𝑡

𝐼𝑖𝑛
=  −𝑅1 

 

 

                       Fig. 2.10 Trans-resistance amplifier configuration using OFCC 

Ideally the transimpedance gain Zt is assumed to approach infinity. However, in practice, Zt is 

a frequency dependent finite value. Using single pole model for transimpedance gain, Zt (s) is 

expressed as [18]. 

tc

to
t

s

Z
sZ

/1
)(




 

The parameter Zto is the dc open loop transimpedance gain and ωtc is the transimpedance cut 

off frequency. For high frequency applications, the transimpedance gain, Zt (s) is 

approximated as 

p

t
sC

sZ
1

)( 

 

Where 

tcto

p
Z

C


1


 

Taking the effect of the finite transimpedance gain, Zt, and using the finite transimpedance 

single pole model, the transresistance gain can be expressed as: 

(2.5) 

 

 

(2.6) 

 

 

 

 

(2.7) 

 

 

(2.8) 
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𝑇𝑟𝑎𝑛𝑠 − 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛 =  
𝑉𝑜𝑢𝑡

𝐼𝑖𝑛
=  −𝑅1𝜀(𝑠) 

Where,  Ɛ(s) is the error function and it is given as 

11

1
)(

RsC
s

p


 

Hence, for high frequency applications, compensation methods is needed for taking the error 

function into account  A  capacitor C =0.5pF (connected between the output terminal W and 

the input terminal Y) is used for compensating the error function 

 

The trans-resistance amplifier is simulated for R1=1kΩ , 2kΩ , 5kΩ , 10kΩ and an input 

current of 1µA giving an output voltage of  1mV , 2mV, 5mV , 10mV respectively. The 

output frequency response of trans-resistance amplifier is shown in Fig. 2.11 

 

Fig. 2.11 Output frequency response of trans-resistance amplifier 

 

 

 

(2.9) 

 

(2.10) 
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2.3.2. TRANS-CONDUCTANCE AMPLIFIER 

The trans- conductance amplifier configuration is shown in Fig. 2.12 [18]. The trans-

conductance gain can be obtained as follows: 

𝑇𝑟𝑎𝑛𝑠 − 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝑉𝑖𝑛
=  1/𝑅1 

 

Fig. 2.12 Trans-conductance amplifier configuration using OFCC 

Taking the effect of the finite transimpedance gain, Zt, and using the finite transimpedance 

single pole model, the transconductance gain can be expressed as: 

𝑇𝑟𝑎𝑛𝑠 − 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝑉𝑖𝑛
=  

1

𝑅1
𝜀(𝑠) 

Where, Ɛ(s) is the error function and it is given as 

11

1
)(

RsC
s

p
  

Hence, for high frequency applications, compensation methods is needed for taking the error 

function into account  A  capacitor C =0.5pF (connected between the output terminal W and 

the input terminal Y) is used for compensating the error function 

 

 

 

(2.11) 

(2.12) 

 

(2.13) 
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The trans- conductance amplifier is simulated for R1=1kΩ , 2kΩ , 5kΩ , 10kΩ and an input 

voltage of 1mV giving an output current of  1µA , 0.5µA, 0.2µA , 0.1µA respectively. The 

output frequency response of trans- conductance amplifier is shown in Fig. 2.13 

 

Fig. 2.13 Output frequency response of trans-conductance amplifier 

 

 

2.3.3 CURRENT AMPLIFIER 

The Current amplifier configuration is shown in Fig. 2.14. The gain of the amplifier can be 

obtained as follows: 

 

 𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=  

𝑅1

𝑅2
 

 

 

 

(2.14) 
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Fig. 2.14 Current amplifier configuration using OFCC 

Taking the effect of the finite transimpedance gain, Zt, and using the finite transimpedance 

single pole model, the transconductance gain can be expressed as: 

𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=  

𝑅1

𝑅2
𝜀(𝑠) 

Where,  Ɛ(s) is the error function and it is given as 

21

1
)(

RsC
s

p
  

Hence, for high frequency applications, compensation methods is needed for taking the error 

function into account  A  capacitor C =0.5pF (connected between the output terminal W and 

the input terminal Y) is used for compensating the error function 

The Current amplifier is simulated for R2=1kΩ and R1=1kΩ , 2kΩ , 5kΩ , 10kΩ and an input 

current of 1µA giving a gain of  1 , 2, 5 ,10 respectively. The output frequency response of  

current amplifier is shown in Fig. 2.15. Generally we find two configurations of an amplifier 

namely inverting and non-inverting and both having different architectures according to their 

configuration. Here the discussed OFCC structure has both the configurations in single 

architecture. As discussed above we have obtained the gain of amplifier for non-inverting 

configuration while taking output with Z1 terminal. The inverting configuration can be 

achieved by taking output from Z3 or Z4 terminal. Thus the above OFCC architecture proves 

its usefulness by allowing us to have two configurations in single structure.  

 

 

(2.15) 

 

 

 

(2.16) 
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Fig. 2.15 Output frequency response of current amplifier 

 

2.3.4. VOLTAGE AMPLIFIER 

The voltage amplifier configuration is shown in Fig. 2.16. The gain of the amplifier can be 

obtained as follows: 

 𝑔𝑎𝑖𝑛 =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= 1 +  

𝑅2

𝑅1
 

 

Fig. 2.16 Voltage amplifier configuration using OFCC 

 

(2.17) 
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Taking the effect of the finite transimpedance gain, Zt, and using the finite transimpedance 

single pole model, the transconductance gain can be expressed as: 

𝑔𝑎𝑖𝑛 =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
= (1 +  

𝑅2

𝑅1
) 𝜀(𝑠) 

Where,  Ɛ(s) is the error function and it is given as 

21

1
)(

RsC
s

p
  

Hence, for high frequency applications, compensation methods is needed for taking the error 

function into account  A  capacitor C =0.5pF (connected between the output terminal W and 

the input terminal Y) is used for compensating the error function 

The voltage amplifier is simulated for R1=1kΩ and R2=1kΩ , 2kΩ , 5kΩ , 10kΩ and an input 

voltage of 1mV giving a gain of  2 , 3, 6 and 11 respectively. The output frequency response 

of voltage amplifier is shown in Fig. 2.17 

 

Fig. 2.17 Output frequency response of voltage amplifier. 

 

 

(2.18) 

 

 

 

(2.19) 
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2.3.5 INTEGRATOR 

The integrator configuration is shown in Fig.2.18. The gain of integrator can be obtained as 

follows: 

𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=  

𝑅1
𝑅2⁄

𝑠𝐶1𝑅1 + 1
 

 

 

Fig. 2.18 Integrator configuration using OFCC 

Taking the effect of the finite transimpedance gain, Zt, and using the finite transimpedance 

single pole model, the transconductance gain can be expressed as: 

𝑔𝑎𝑖𝑛 =  
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
=  

𝑅1
𝑅2⁄

𝑠𝐶1𝑅1 + 1
𝜀(𝑠) 

Where,  Ɛ(s) is the error function and it is given as 

21

1
)(

RsC
s

p
  

Hence, for high frequency applications, compensation methods is needed for taking the error 

function into account  A  capacitor C =0.5pF (connected between the output terminal W and 

the input terminal Y) is used for compensating the error function 

 

 

(2.20) 

 

(2.21) 

 

 

(2.22) 
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The integrator configuration is simulated for  an input current of  10µA , R1=10kΩ, R2=1kΩ 

and C1=1nF. The frequency response of integrator is shown in Fig. 2.19. From the frequency 

response we can observe that the output decreases as frequency increases which validates the 

expression obtained for gain and also the phase response shows that phase is approaching      

-90 degrees as expected. 

 

 

Fig. 2.19 Frequency response of integrator configuration 
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CHAPTER 3: OFCC BASED CURRENT MODE & 

 TRANS-IMPEDANCE MODE FILTER 

This chapter aims at presenting operational floating current conveyor (OFCC) based current 

mode universal filter and trans-impedance mode LP & BP filter. It employs only three 

OFCCs and two grounded capacitors and resistors each. The MOS based grounded resistors 

implementation is used, which adds feature of electronic tunability to the filter parameters.  

The chapter proceeds first with review of different current mode filters available and then the 

proposed filter architecture is given with transfer function of the various filter responses. 

Further, implementation of trans-impedance filter is shown and its responses are verified. The 

results are verified through PSPICE simulation. 

3.1. INTRODUCTION 

The development of current mode continuous time filters has received growing interest due to 

its applications in sampled data systems, communications, and control systems [22, 23]. This 

interest is also gaining strength with the requirement of circuits to operate at lower supply 

voltages and hence uses the current mode concept. Owing to the advantages of current mode 

filters, considerable research has directed towards the realization of single-input multiple 

output filters. A variety of current mode building blocks [25–31], namely, current follower 

trans-conductance amplifier [25], current conveyor [26–28], operational transconductance 

amplifier [29], 𝑍 copy current follower transconductance amplifier [30], and 𝑍-Copy Current 

Inverter Transconductance amplifier [26], have been used to implement these filters [22, 25–

43]. The structures—use excessive number of elements [27, 28, 34, 36] some of the 

references cited in [38], do not present low input impedance [22, 29, 34–37, 39]which is 

necessary for a current mode filter, employ multiple inputs to provide output responses [36, 

37], put matching constraint [28, 31,36, 37] to obtain all five responses of universal filter, has 

less than three simultaneous output responses [25, 29, 36, 37,42], employ different type of 

active blocks [33, 40, 41]. Literature survey on OFCC based circuits [15–21] shows that 

voltage mode filter [15–17], variable gain amplifier [18], Wheatstone bridge [19], and 

instrumentation amplifier [20] and read out circuit [21] are available. The study of current 

mode filters [22, 25–43] shows that no OFCC based current mode filter is available in the 

literature. Therefore, this paper aims at presenting a single input four-output OFCC based 

current mode filter. The proposed filter uses three OFCCs, two grounded capacitors and two 
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grounded resistors. The resistors are implemented using MOSFETs so as to achieve 

electronic tunability of filter parameters. The filter enjoys low component spread and low 

sensitivity performance. 

The proposed current mode filter can be used as trans-impedance mode filter which can 

provide low pass and band pass responses. The filter has electronic control of filter 

parameters and enjoys low sensitivity performance 

3.2. CURRENT MODE FILTER 

3.2.1. CIRCUIT DESCRIPTION 

In this section the implementation of OFCC based current mode universal filter, as shown in 

Fig. 3.1 is proposed. It employs three OFCCs, two grounded capacitors and resistors each. 

The analysis of the circuit gives the following transfer functions 
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Where,  

1)( 222121

2  RsCRRCCssD                  (3.5) 

Thus the proposed circuit provides low pass, high pass, band pass and notch (band stop) 

response simultaneously without any modification in the circuit or connection of output 

currents. There is no matching constraint for realization of filter responses. It may be noted 

that the current IHPF is not explicitly available at high impedance and therefore cannot be 

directly used. However, by connecting INOTCH and ILPF the high pass response can be made 

available at high output impedance. Similarly, the all pass function can easily be obtained by 
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connecting band pass and notch output currents, i.e. IAP = IBP+INOTCH and the corresponding 

transfer function is obtained as 

)(

1s 222121

2

sD

RsCRRCC

I

I
T

in

AP
AP




                (3.6) 

 

                     Fig. 3.1 Proposed OFCC based single input four output current mode filter. 

All the responses are characterized by pole frequency (𝜔0), bandwidth (𝜔0/Q0) and quality 

factor (𝑄0) given as: 

2121
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CCRR
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

                   (3.8) 
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                   (3.9) 

  

Equations (3.7)-(3.9) reveals that the pole frequency (𝜔0) and quality factor (𝑄0) can be 

adjusted by R2, without disturbing (𝜔0/𝑄0). The orthogonal adjustability of (𝜔0) and (𝑄0) 

can be achieved by simultaneous adjustment of R1 and R2  such that the product R1R2 remains 

constant and the quotient R1/R2 varies and vice versa.  With moderate values of ratios of 

component values ((R1/R2) = (C1/C2) = 𝑄0) i.e. from low component spread [45], high values 

of Q-factor can be obtained. Hence the component spread is of the order of√𝑄0.  
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The proposed filter uses grounded resistors which can easily be implemented using the MOS 

based structure given in Fig.3.2 [44]. It uses two diode connected matched transistors, 

operating in saturation region. Assuming V1 = - V2, the value of resistor is given by: 

)(2

L

1 Tox VVWC
R





                (3.10) 

Where, µ is carrier mobility, Cox is gate capacitance per unit area, VT is threshold voltage and 

W, L are the channel length and width respectively.  

 

 

 

    

 

 

                                      Fig. 3.2 MOS realization of a resistor 

3.2.2. SIMULATION RESULTS 

3.2.2.1. Frequency Domain 

To verify the functionality of the proposed OFCC based current mode filter, SPICE 

simulations have been carried out using 0.5 µm CMOS process model provided by MOSIS 

(AGILENT) and CMOS schematic of Fig. 2.9 with power supply voltage of VDD = -VSS = 1.5 

V and VB1 = -VB2 = 0.8 V. The aspect ratios of the transistor are reported in Table 2.1[18]. 

The simulations have been performed for a pole frequency of 1.59 MHz with component 

values as C1 = C2 = 100 pF and MOS based resistors of value 1 kΩ by selecting bias voltages 

as ± 1.310V. Figure 3.3 shows the simulation results for low pass, band pass and high pass 

responses.  The phase and magnitude plots for notch and all pass responses are depicted in 

Fig. 3.4 and 3.5 respectively.  The responses confirm the theoretical predictions.  
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                                 Fig. 3.3 Simulated low pass, band pass and high pass responses 

 

 

                                            Fig. 3.4 Magnitude and phase plot for notch response 
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                                     Fig. 3.5 Magnitude and phase plots for allpass response 

 

 

The orthogonal adjustment of f0 with Q0 is depicted in Fig. 3.6 where the value of Q0 = 1 is 

considered. The capacitors C1 and C2 are taken as 100 pF and the bias voltages along with the 

resistor values for different values of f0 as given in Table 3.1. Figure 3.7 shows orthogonal 

adjustment of Q0 with f0 = 800 kHz. The values of Q0 for constant value of f0 as obtained 

with C1 = C2 = 100 pF and bias voltages and resulting resistor values are listed in Table 3.2. 
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Fig. 3.6 Tuning of f0  

Table 3.1: Bias voltages/ Resistor values for orthogonal adjustment of f0 with Q0 

 

𝑉11
*(V)     𝑉21

*(V)    R1(KΩ)               𝑉12
*(V)      𝑉22

*(V)       R2(KΩ)                  Q               F(KHz) 

 1.310     -1.310           1                      1.310      -1.310             1                          1               1590 

 0.869      -0.869          2                      0.869      -0.869             2                          1                 800 

 0.726      -0.726          5                      0.726      -0.726             5                          1                  320 

 0.711      -0.711         10                     0.711      -0.711            10                         1                 160 

 

* V1i  and V2i refer to bias voltages corresponding to resistance Ri 
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Fig. 3.7 Tuning of Q0 

 

Table 3.2: Bias voltages/ Resistor values for orthogonal adjustment of Q0 with f0 

 

𝑉11
*(V)    𝑉21

*(V)    R1(KΩ)       𝑉12
*(V)    𝑉22

*(V)    R2(KΩ)           C1(nF)        C2(nF)         Q             F(KHz) 

1.310    -1.310          1              0.869      -0.869         2                     0.1              0.2             0.5           800 

0.869    -0.869          2              0.869      -0.869         2                     0.1              0.1               1             800 

0.869    -0.869          2              1.310      -1.310         1                     0.2              0.1               2             800 

 

* V1i  and V2i refer to bias voltages corresponding to resistance Ri 
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3.2.2.2. Time Domain 

To study the time domain behaviour of the proposed filter, an input sinusoidal signal of 159 

KHz frequency and amplitude 2 µA is applied to the low pass filter with pole frequency 

1.59MHz. The transient response for low pass output is shown in Fig. 3.8. To show the 

effectiveness of proposed filter a mixed sinusoidal signals of frequencies of 30 KHz, 300 

KHz and 3 MHz having amplitude of 2 µA each is applied at the input of the filter. The 

transient response with its spectrum for input and output signals is shown in Fig. 3.9 (a) and 

(b). It is clear that the 300 KHz signal is significantly attenuated and 3 MHz signal is 

completely filtered. 

 

Fig. 3.8 Transient response for low pass output 
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(a) 

 

(b) 

 

Fig. 3.9 (a) Transient response of input and output signals 

(b) Spectrum of input and output signals 
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3.2. 3.SENSITIVITY ANALYSIS 

The sensitivity analysis of the proposed circuit is as follows: 
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Thus the all passive sensitivities are not more than unity in magnitude. So the proposed filter 

circuit can be classified as insensitive. 

3.3 TRANS-IMPEDANCE MODE FILTER 

3.3.1. CIRCUIT DESCRIPTION 

In this section the implementation of OFCC based trans-impedance mode filter, as shown in 

Fig. 3.10 is proposed. It employs three OFCCs, two grounded capacitors and resistors each. 

The analysis of the circuit gives the following transfer functions 

𝑇𝐿𝑃𝐹 =
𝑉𝐿𝑃𝐹

𝐼𝑖𝑛
=

−𝑅2

𝐷(𝑠)
             (3.11)

  

𝑇𝐵𝑃𝐹 =
𝑉𝐵𝑃𝐹

𝐼𝑖𝑛
=

−𝑆𝐶2𝑅2𝑅1`

𝐷(𝑠)
             (3.12) 

Where,  

1)( 222121

2  RsCRRCCssD   

Both the responses are characterized by same pole frequency (𝜔0 ), bandwidth (𝜔0/Q0 ) 

quality factor (𝑄0) obtained for current mode filter and given in eqn. (3.7), (3.8) and (3.9) 

respectively. 
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Fig. 3.10 Proposed OFCC based single input two output trans-impedance filter 

The above proposed filter also has grounded resistors which can be implemented using MOS 

based structure as discussed in 3.2. 

The filter also enjoys the same performance characteristics of current mode filter proposed in 

section 3.2 regarding orthogonal adjustment of  𝜔0 and 𝑄0 and low component spread giving 

high Q factor. 

3.3.2. SIMULATION RESULTS 

The simulations have been performed for a pole frequency of 1.59 MHz with component 

values as C1 = C2 = 100 pF and MOS based resistors of value 1 kΩ by selecting bias voltages 

as ± 1.310V. Figure 3.11 shows the simulation results for low pass response, and the band 

pass response is shown in Fig. 3.12. The responses confirm the theoretical predictions. 

3.3. 3.SENSITIVITY ANALYSIS 

The sensitivity analysis of the proposed circuit is as follows: 
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Thus the all passive sensitivities are not more than unity in magnitude. So the proposed filter 

circuit can be classified as insensitive. 

 

𝑉𝐿𝑃𝐹 𝑉𝐵𝑃𝐹 
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               Fig. 3.11 Simulated low pass response of trans-impedance filter 

  

 

                Fig. 3.12 Simulated band pass response of trans-impedance filter 
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CHAPTER 4: OFCC BASED TRANS-ADMITTANCE MODE & 

VOLTAGE MODE FILTER 

This chapter aims at presenting operational floating current conveyor (OFCC) based trans-

admittance mode universal filter and voltage  mode LP & BP filter. It employs only three 

OFCCs, two grounded capacitors and three resistors. The MOS based grounded resistors 

implementation is used, which adds feature of electronic tunability to the filter parameters.  

The chapter proceeds first with review of different trans-admittance mode filters available 

and then the proposed filter architecture is given with transfer function of the various filter 

responses. Further, implementation of voltage mode filter is shown and its responses are 

verified. The results are verified through PSPICE simulation. 

 

4.1. INTRODUCTION 

The trans-admittance mode filter , where input is voltage and the output is taken in current 

form , is an important filter configuration. Its useful aspect is that, when we have a voltage 

mode filter and its output is to be fed to a current input device then we need extra circuitry to 

perform this operation. But the availability of trans-admittance mode filter obviates this need 

of extra circuitry and can be directly connected to such device [46]. A variety of current 

mode building blocks[46-54], namely current conveyors[46, 49, 50, 51, 52], positive four 

terminals floating  nullors (PFTFN) [47], op-amp[48], current differencing transconductance 

amplifier[50] and modified current backward transconductance amplifier (MCBTA) [54] 

have been used to implement the trans-admittance mode filter. 

In this chapter we present an OFCC based trans-admittance mode filter. The filter 

architecture comprises of three OFCC blocks, three resistors and two capacitors each being 

grounded. The resistors can be implemented with mos structure as they are grounded which 

adds electronic tunability to the circuit[44]. 

The proposed trans-admittance mode filter can be used as voltage mode filter which can 

provide low pass and band pass responses. The filter has electronic control of filter 

parameters and enjoys low sensitivity performance 
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4.2. TRANS-ADMITTANCE MODE FILTER 

4.2.1. CIRCUIT DESCRIPTION 

In this section OFCC based trans-admittance mode (voltage input and current output) 

universal filter is proposed. The architecture of the proposed filter is as shown in Fig. 4.1.  It 

employs three OFCCs, two capacitors and three resistors while each capacitor and resistor is 

grounded. The analysis of the circuit gives the following transfer functions: 

𝑇𝐿𝑃𝐹 =
𝐼𝐿𝑃𝐹

𝑉𝑖𝑛
=

1/𝑅𝑥𝐶1𝐶2𝑅1`𝑅2

𝐷(𝑠)
 

𝑇𝐵𝑃𝐹 =  
𝐼𝐵𝑃𝐹

𝑉𝑖𝑛
=  

𝑠/𝑅𝑥𝐶1𝑅1

𝐷(𝑠)
 

   

𝑇𝐻𝑃𝐹 =  
𝐼𝐻𝑃𝐹

𝑉𝑖𝑛
=  

(𝑠2)/𝑅𝑥

𝐷(𝑠)
 

𝑇𝑁𝑂𝑇𝐶𝐻 =  
𝐼𝑁𝑂𝑇𝐶𝐻

𝑉𝑖𝑛
= − 

(𝑠2 +  1/𝐶1𝐶2𝑅1`𝑅2)/𝑅𝑥

𝐷(𝑠)
 

Where, 

𝐷(𝑠) =  𝑠2 + 𝑠/𝐶1𝑅1 +  1/𝐶1𝐶2𝑅1`𝑅2 

 

Thus the proposed circuit provides low pass, high pass, band pass and notch (band stop) 

response simultaneously. It may be noted that the current  𝐼𝐻𝑃𝐹  is  available  through  the  

capacitor  and  therefore  cannot  be  directly  used. However, by connecting 𝐼𝑁𝑂𝑇𝐶𝐻 and 

 𝐼𝐿𝑃𝐹the high pass response can be made available at high output impedance. Similarly, the all 

pass function can easily be obtained by connecting band pass and notch output currents, i.e. 

𝐼𝐴𝑃 =  𝐼𝐵𝑃 +  𝐼𝑁𝑂𝑇𝐶𝐻  and the corresponding transfer function is obtained as 

𝑇𝐴𝑃 =  
𝐼𝐴𝑃

𝑉𝑖𝑛
=  −

(𝑠2 −
𝑠

𝐶1𝑅1
+

1
𝐶1𝐶2𝑅1`𝑅2

)

𝑅𝑥

𝐷(𝑠)
 

 

 

(4.1) 

 

(4.2) 

 

(4.3) 

 

(4.4) 

 

 

(4.5) 

 

(4.6) 
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                              Fig. 4.1 Proposed OFCC based Trans-admittance mode filter 

All the responses have characteristic pole frequency (𝜔0), bandwidth (𝜔0/𝑄0) and quality 

factor (𝑄0) given as: 

𝜔0 =  √
1

𝐶1𝐶2𝑅1`𝑅2
 

𝐵𝑊 =  
𝜔0

𝑄0
=

1

𝐶1𝑅1
 

𝑄0 = √
𝐶1𝑅1

𝐶2𝑅2
 

 

The above proposed filter also has grounded resistors which can be implemented using MOS 

based structure as discussed in 3.2.1. 

The filter also enjoys the same performance characteristics of current mode filter proposed in 

chapter 3 regarding orthogonal adjustment of  𝜔0 and 𝑄0 and low component spread giving 

high Q factor. 

 

 

 

  

(4.7) 

 

(4.8) 

 

(4.9) 
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4.2.2. SIMULATION RESULTS 

4.2.2.1. Frequency Domain 

To verify the functionality of the proposed OFCC based trans-admittance mode mode filter, 

SPICE simulations have been carried out using 0.5 µm CMOS process model provided by 

MOSIS (AGILENT) and CMOS schematic of Fig. 2.9 with power supply voltage of VDD = -

VSS = 1.5 V and VB1 = -VB2 = 0.8 V. The aspect ratios of the transistor are reported in 

Table2.1[18]. 

The simulations have been performed for a pole frequency of 1.59 MHz with component 

values as C1 = C2 = 100 pF and MOS based resistors of value 1 kΩ by selecting bias voltages 

as ± 1.310V. Figure 4.2 shows the simulation results for low pass and high pass responses.  

The response of notch and band pass filter is depicted in Fig. 4.3. The magnitude and phase 

plots of all pass filter is shown in Fig. 4.4.   The responses confirm the theoretical predictions. 

 

 

                                       Fig. 4.2 Simulated low pass and high pass responses 
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          Fig. 4.3 Simulated band pass and notch responses 

 

Fig. 4.4 Magnitude and phase plots for all pass response 

 

 

The orthogonal adjustment of f0 with Q0 is depicted in Fig. 4.5 where the value of Q0 = 1 is 

considered. The capacitors C1 and C2 are taken as 100 pF and the bias voltages along with the 

resistor values for different values of f0 as given in Table 3.1. Figure 4.6 shows orthogonal 

adjustment of Q0 with f0 = 800 kHz. The values of Q0 for constant value of f0 as obtained 

with C1 = C2 = 100 pF and bias voltages and resulting resistor values are listed in Table 3.2. 
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Fig. 4.5 Tuning of f0 

 

Fig. 4.6 Tuning of Q0 

4.2.2.2. Time Domain 

To study the time domain behaviour of the proposed filter, an input sinusoidal signal of 159 

KHz frequency and amplitude 2 µA is applied to the low pass filter with pole frequency 

1.59MHz. The transient response for low pass output is shown in Fig. 4.7. To show the 

effectiveness of proposed filter a mixed sinusoidal signals of frequencies of 30 KHz, 300 

KHz and 3 MHz having amplitude of 2 µA each is applied at the input of the filter. The 

transient response with its spectrum for input and output signals is shown in Fig. 4.8  (a) and 
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(b). It is clear that the 300 KHz signal is significantly attenuated and 3 MHz signal is 

completely filtered. 

 

          Fig. 4.7 Transient response for low pass output 

 

 

(a) 
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(b) 

 

                               Fig. 4.8 (a) Transient response of input and output signals 

                                          (b) Spectrum of input and output signals 

 

4.2.3. SENSITIVITY ANALYSIS 

The sensitivity analysis of the proposed circuit is as follows: 
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Thus the all passive sensitivities are not more than unity in magnitude. So the proposed filter 

circuit can be classified as insensitive. 
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4.3 VOLTAGE MODE FILTER 

4.3.1. CIRCUIT DESCRIPTION 

In this section the implementation of OFCC based voltage mode filter, as shown in Fig. 4.9 is 

proposed. It employs three OFCCs, two grounded capacitors and three grounded resistors. 

The analysis of the circuit gives the following transfer functions 

𝑇𝐿𝑃𝐹 =
𝑉𝐿𝑃𝐹

𝑉𝑖𝑛
=

1/𝑅𝑥𝐶1𝐶2𝑅1`

𝐷(𝑠)
 

𝑇𝐵𝑃𝐹 =
𝑉𝐵𝑃𝐹

𝐼𝑖𝑛
=

𝑠/𝑅𝑥𝐶1

𝐷(𝑠)
 

Where,  

1)( 222121

2  RsCRRCCssD   

Both the responses are characterized by same pole frequency (𝜔0 ), bandwidth (𝜔0/Q0 ) 

quality factor (𝑄0) obtained for current mode filter and given in eqn. (4.7), (4.8) and (4.9) 

respectively. 

 

 

 

                    Fig. 4.9 Proposed OFCC based single input two output voltage mode filter 

 

 

𝑉𝐿𝑃𝐹  𝑉𝐵𝑃𝐹 

 

(4.10) 

 

(4.11) 

 

 

(4.12) 
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The above proposed filter also has grounded resistors which can be implemented using MOS 

based structure as discussed in 3.2. 

The filter also enjoys the same performance characteristics of current mode filter proposed in 

section 3.2 regarding orthogonal adjustment of  𝜔0 and 𝑄0 and low component spread giving 

high Q factor. 

4.3.2. SIMULATION RESULTS 

The simulations have been performed for a pole frequency of 1.59 MHz with component 

values as C1 = C2 = 100 pF and MOS based resistors of value 1 kΩ by selecting bias voltages 

as ± 1.310V. Fig. 4.10 shows the simulation results for low pass response, and the band pass 

response is shown in Fig. 4.11. The responses confirm the theoretical predictions. 

4.3. 3.SENSITIVITY ANALYSIS 

The sensitivity analysis of the proposed circuit is as follows: 
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                  Fig. 4.10 Simulated low pass response of voltage mode filter 
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                 Fig. 4.11 Simulated band pass response of voltage mode filter 
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CHAPTER 5: LP & BP FILTER USING SINGLE OFCC 

 

This chapter presents the realization of low pass and band pass filter using single OFCC in 

multiple loop feedback topology. The multiple loop feedback topology is widely used 

because of its low sensitivity in the domain of single active element networks [55]. In the 

proposed topology only one type of response is available. However, the topology can provide 

other responses by taking suitable selection of component values. 

5.1. CIRCUIT DESCRIPTION 

The general architecture for realizing continuous time filter using single OFCC in multiple 

loop feedback topology is shown in Fig. 5.1[56]. It is a general architecture and can realize 

low pass and band pass responses depending upon proper selection of components Y1, Y2, 

Y3, Y4 and Y5 which is given in table 5.1. 

 

Fig. 5.1 General structure for filter using OFCC in multiple feedback topology. 

 

The transfer function for above structure is obtained as follows:  

 

𝑇. 𝐹. =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=  

𝑌1𝑌4

𝑌5( 𝑌1 +  𝑌2 +  𝑌3 +  𝑌4 ) +  𝑌2𝑌4
 

 

 

 

 

(5.1) 
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Table 5.1 Component values for realization of LP/BP filter 

              Type of                                  Component values 

               Filter            Y1            Y2              Y3                Y4                Y5   

                LP               G1             G2            sC3                G4               sC5 

                BP               G1            sC2            G3                 sC4               G5 

 

5.2. LOW PASS FILTER 

Using table 5.1, the transfer function for low pass filter is obtained as 

 

𝑇𝐿𝑃 =  
𝐺1𝐺4/𝐶3𝐶5

𝑠2 +
𝐺1 +  𝐺2 + 𝐺4

𝐶3
𝑠 +  

𝐺2𝐺4

𝐶3𝐶5

 

The response is characterized by pole frequency (𝜔0) and quality factor (𝑄0) given as: 

 

𝜔0 =  √
𝐺2𝐺4

𝐶3𝐶5
 

 

𝑄 =  
1

𝐺1 +  𝐺2 + 𝐺4

√
𝐺2𝐺4𝐶3

𝐶5
 

 

To verify the functionality of the proposed single OFCC based filter, SPICE simulations have 

been carried out using 0.5 µm CMOS process model provided by MOSIS (AGILENT) and 

CMOS schematic of Fig. 2.2 with power supply voltage of VDD = -VSS = 1.5V and VB1 = -VB2 

= 0.8 V. The aspect ratios of the transistor are reported in Table 2.1[18]. 

The simulations have been performed for a pole frequency of 15.9 KHz with component 

values as C3 = C5 = 1nF and 𝐺2 =  𝐺4 = 0.1 𝑚℧. Figure 5.2 shows the simulation results for 

low pass response. The responses confirm the theoretical predictions.  

 

 

(5.2) 

 

 

 

 

(5.3) 

 

 

(5.4) 
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Fig. 5.2 Low pass response using single OFCC 

 

5.3. BAND PASS FILTER 

The transfer function for band pass filter using table 5.1 can be written as 

 

𝑇𝐵𝑃 =  
𝑠𝐺1/𝐶2

𝑠2 +
𝐶1 +  𝐶3

𝐶2𝐶4
𝐺5𝑠 +  

𝐺1 +  𝐺3

𝐶2𝐶4
𝐺4

 

 

The response is characterized by pole frequency (𝜔0) and quality factor (𝑄0) given as: 

 

 

𝜔0 =  √
(𝐺1+ 𝐺3)𝐺5

𝐶2𝐶4
 

 

 

(5.5) 

 

 

 

 

 

 

 

(5.6) 
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𝑄 =  
1

𝐶2 +  𝐶4

√
(𝐺1 +  𝐺3)𝐶2𝐶4

𝐺5
 

 

 

The simulation has been performed for a pole frequency of 22.5 KHz with component values 

as C2 = C4 = 1nF and 𝐺1 =  𝐺3 = 𝐺5 = 0.1 𝑚℧. Fig. 5.3 shows the simulation results for 

band pass response. The response confirms the theoretical predictions. 

 

       Fig. 5.3 Band pass response using single OFCC 

 

 

 

 

 

 

(5.7) 
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CHAPTER 6 

CONCLUSION 

In this thesis , operational floating current conveyor (OFCC), a current mode building block 

is studied with its architectures, CMOS realizations and some existing applications. 

 A current mode filter and a trans-admittance mode filter is presented. The above filter 

responses are available at high impedance nodes with three responses at a time. Moreover, 

trans-impedance mode and voltage mode filters are also presented and they use  similar 

topology of current mode and trans-admittance mode filter respectively.  The filter 

parameters of above mentioned filters are tuned electronically via MOS based grounded 

resistors. These filters are also found to have low component spread and a sensitivity of less 

than unity.   

Further low pass and band pass filters are also implemented using single OFCC block in 

multiple loop feedback topology. 
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A research article titled “ Single-input Four-output Current Mode filter 
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APPENDIX (I) 

0.5μm Mosis Agilent Technology Parameter 

NMOS 

LEVEL=3 UO=460.5 TOX=1E-8 TPG=1  VTO=.62  JS=1.8E-6 XJ=.15E-6 RS=417 

RSH=2.73 LD=4E-8 ETA=0  VMAX=130E3 NSUB=1.71E17 PB=.761  PHI=.905 

THETA=.129 GAMMA=.69  KAPPA=0.1 AF=1 WD=1.1E-7 CJ=76.4E-5 MJ=.357 

CJSW=5.68E-10  MJSW=.302 CGSO=1.38E-10  CGDO=1.38E-10 CGBO=3.45E-10 

KF=3.07E-28  DELTA=0.42  NFS=1.2E11 

 

PMOS 

LEVEL=3 UO=100 TOX=1E-8 TPG=1  VTO=-.58  JS=.38E-6 XJ=.1E-6 RS=886 RSH=1.81 

LD=3E-8 ETA=0 VMAX=113E3 NSUB=2.08E17 PB=.911 PHI=.905 THETA=.12 

GAMMA=.76 KAPPA=2 AF=1 WD=1.4E-7CJ=85E-5  MJ=.429  CJSW=4.67E-10  

MJSW=.631 CGSO=1.38E-10 CGDO=1.38E-10 CGBO=3.45E-10 KF=1.08E-29 

DELTA=0.81 NFS=.52E11 
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