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ABSTRACT 

 

 

With the help of evolutionary concepts and behaviour of biotic components of nature, 

many optimization algorithms were developed. Optimization techniques like Particle 

Swarm Optimization and Firefly Algorithms are among the latest research topics. Several 

advancements have also been made in these algorithms.  

A large amount of research has been done to solve large scale nonlinear 

optimization problems. An effective solution in this regard could be the use of Particle 

Swarm Optimization (PSO) and Firefly Algorithm (FFA). This dissertation presents 

application of PSO and FFA on indirect adaptive control of nonlinear systems for liquid 

level control in surge tank system and inverted pendulum system. The model of the 

systems has been derived and indirect adaptive control technique has also been explained 

in detail with a tilt towards its implementation using PSO and FFA techniques. A 

comparative analysis has been made on both the systems separately using both PSO and 

FFA adaptive control and the simulation results have been discussed extensively. 
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CHAPTER 1

 

INTRODUCTION 

 

Learning from naturally abundant biological systems and structures to design and 

develop a number of different kinds of optimization algorithms have been widely used in 

both theoretical study and practical applications. The evolution is used to tune the 

algorithm parameters [3] while the study of bionics inspires and improves our modern 

technologies with the principles found in nature, biological structures and functions. 

Bionics study inspires us not only with its physical yields, but also with various 

computation methods that can be applied in different areas. In engineering, this 

‘‘bioinspired’’ design approach has been used to exploit the evolved ‘‘tricks’’ of nature 

to design robust high performance technological solutions. Amongst them, one of the 

most popular bioinspired design approaches is what is called ‘‘Swarm Intelligence’’ [4]. 

Biologically inspired optimization algorithms can efficiently deal with non-linear 

optimization problems. 

These techniques which are inspired by the collective behavior of animal societies 

as well as other social insect colonies that are naturally able to solve large-scale 

distributed problems are grouped in the Swarm Intelligence [5]. The swarm intelligence 

is defined as an algorithm or distributed problem-solving devices designed inspired by 

the collective behavior of many animal societies, particularly social insect colonies [6]. In 

current peer-to-peer systems swarm availability is proven to be a serious issue [7]. It has 

become a research interest among scientists of related fields in recent years [8]. 

Particle Swarm Optimization (PSO) technique was developed by Eberhart and 

Kennedy [9] and is an approach that mimics the behavior of social organisms where the 

behavior of different types of social interactions (e.g., flock of birds) is mimicked in 

order to create an optimization method that is able to solve continuous optimization 

problems [4]. PSO is a computational intelligence-based technique that is not largely 

affected by the size and nonlinearity of the problem thus converges to the optimal 
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solution in many problems where most analytical methods fail to converge. Therefore, it 

can be effectively applied to different optimization problems in power systems [10] and 

[11]. Literature tells that it has been successfully applied to various problems viz. 

Economic Dispatch [12], Generation Expansion Problem (GEP), State estimation etc. It 

has been again improved [13] upon to get, Modified PSO [15], Adaptive Particle Swarm 

Optimization (APSO) [16], Multi-dimensional Particle Swarm Optimization for Dynamic 

Environments [17] and [18], Self-Organizing Swarm (SOSwarm) for Financial Credit-

Risk Assessment [19] and has been applied for PID control [20], Neural Network [21] 

and to train the PROAFTN [22], Multi-Criteria Decision Aid (MCDA) method etc. A 

valuable point of comparison can be made which can be used throughout the research 

areas to better test new advances while having a strictly-defined, well-known, standard 

algorithm [23]. 

Mechanisms of firefly communication have been implemented effectively in 

various areas of wireless networks design [24], dynamic market pricing [25] and mobile 

robotics [26] and [27] via luminescent flashes and their synchronization [28]. Many bio-

inspired algorithm exist that use local information and simple rules to create a global 

agreement of a single parameter, such as clock time in the flashing firefly algorithm, or 

location in the slime algorithm. One of the most important techniques for performing 

image segmentation is Thresholding [29]. It is generally simple and computationally 

efficient. The segmentation results of the algorithm are promising which inspires and 

encourages further researches to apply this algorithm to real-time and complex image 

analysis problems [10] such as target recognition, complex document analysis and as 

biomedical image application. Other application includes synchronization of wireless 

network [31]. An application in pulse-coupled oscillator’s model addresses the problem 

of synchronization of the oscillators with different frequencies. Firefly algorithm has 

been applied in real time systems [32]-[33] and heartbeat synchronization techniques 

[34]. 

The research here aims at adaptive control of nonlinear systems using Particle 

Swarm Optimization and Firefly Algorithm. Adaptive Control is used by a controller 

which must adapt to a controlled system with parameters which are initially uncertain or 
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vary. A rocket could be an apt example because when it flies its mass will slowly 

decrease as a result of fuel consumption, thus a control law is required that adapts itself to 

such changing conditions. 

Adaptive control differs from robust control in that it does not need a priori 

information about the bounds on these time-varying or uncertain parameters. While 

adaptive control is concerned with control law changing themselves, robust control 

guarantees that if the changes are within given bounds the control law need not be 

changed. 

The foundation of adaptive control is parameter estimation [1]. Common methods 

of estimation include gradient descent and recursive least squares. Both of these methods 

provide update laws which are used to modify estimates in real time (i.e., as the system 

operates). 

Here, the controller will succeed in controlling the plant if the controller designer 

can specify a controller for each set of plant parameter estimates. In adjusting the 

nonlinear mapping of the controller to match the unknown nonlinear mapping of the plant 

an online function approximation problem is solved.  

For such online model tuning generally gradient methods are used but in this 

analysis use of Particle Swarm Optimization Algorithm and Firefly Algorithm is done 

which is by far much more efficient than the gradient methods in optimization. 

Here implementation of indirect adaptive control using PSO and FFA to control 

two nonlinear systems is carried out: 

 Level Control in a Nonlinear Surge Tank system 

 Nonlinear Inverted Pendulum system 

An introduction to the systems along with the objectives to be controlled is included in 

later chapters.  

This dissertation comprises of six chapters. While the present ongoing introduction and 

literature review is included in chapter 1, a review of both the PSO and FFA algorithm is 
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given in the second chapter which will entail the preliminary basics of each algorithm 

alongwith their working principles.  

Chapter 3 gives a basic insight to the adaptive control techniques. Emphasis on indirect 

adaptive control technique is given in the chapter and a description on its implementation 

with the use of Particle Swarm Optimization and Firefly Algorithm as estimating and 

control algorithms is dealt with. 

Chapter 4 describes the nonlinear systems used to analyze the behavior of indirect 

adaptive control utilizing PSO and FFA techniques. One of the nonlinear system is a 

surge tank where the level of the liquid inside the tank is to be controlled while the other 

one is an inverted pendulum system where the target is to set the pendulum rod to an 

upright position. 

Chapter 5 shows the simulated results and discussions on them pertaining to each 

nonlinear system on implementing indirect adaptive control using PSO and FFA 

separately. Results have been analyzed on a comparative basis for both PSO and FFA 

implemented on each system. 

Chapter 6 concludes the dissertation with discussions on the performance of both the 

algorithms individually and comparatively. 

  



 

 
Sarath S Pillai, Dept. of Electrical Engg.(C&I) 
Delhi Technological University 

Novel Approach on Adaptive Control of Nonlinear Systems using PSO & FFA 5 

CHAPTER 2 

 

REVIEW OF PSO AND FFA ALGORITHMS 

 

2.1 Particle Swarm Optimization (PSO) 

 
 PSO initiates a swarm of particles to move in a search space of possible solutions 

for a problem. Each particle has a position vector representing a candidate solution to the 

problem and a velocity vector and also contains a small memory that stores its own best 

position seen so far and a global best position obtained by communicating with the 

particles at the neighborhood. The advancement towards best location (xi*) and global 

best (g*) by the particle swarm optimizer is ideologically similar to the crossover 

operation utilized by genetic algorithms [2]. Similar to all evolutionary computation 

paradigms, it uses the concept of fitness. The swarm works through the interactions of 

members of the population, even though the exact methods for moving the particles are 

quite flexible [35].  

By assigning shortest path and by studying trajectories of particles [34] the optimization 

behavior of standard PSO can be made invariant to the rotations of the optimization 

function [7]. There are two major components in the movement of a swarming particle: a 

deterministic component and a stochastic component. 

 

2.1.1 PSO Operation 

  
Modification in the initial simulations was done to incorporate acceleration by 

distance and multidimensional search, nearest-neighbor velocity matching and eliminate 

ancillary variables [9]. Through a series of trial and error, a number of parameters 

extrinsic to optimization were eliminated from the algorithm which resulted in the very 

simple original implementation. 

Consider flying through the parameter space swarm of particles searching for optimum. 

Each particle is attributed with position vector xi(t) and velocity vector yi(t). 
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The velocity vector is calculated by the following: 

𝑉𝑖
𝑡+1 = 𝑉𝑖

𝑡 + 𝐶1𝑒1 [𝑔∗ − 𝑥𝑖
𝑡] + 𝐶2𝑒2 [𝑥𝑖

∗ − 𝑥𝑖
𝑡]            (2.1) 

where 𝑒1 and 𝑒2are two random vectors taking the values between 0 and 1. C1 and C2 are 

the learning parameters or acceleration constants reflecting the weighting of stochastic 

acceleration terms, which can typically be taken as C1 ≈ C2 ≈ 2 and g* is the fitness value. 

The initial velocity of a particle can be taken as zero, that is, Vi
t=0 = 0. The new position 

can then be calculated by: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑉𝑖
𝑡+1                                                  (2.2) 

Although Vi could be any value, usually it is bounded in some range [0, Vmax]. 

The Hadamard product of two matrices u  v is defined as the entry wise product, that is 

[u  v]ij = uijvij. Figure 2.1 gives the update of a particle in swarm at the next time instant 

where g(t) is the best value of the particle fitness. 

 

 

    

 

 

 

          

 

 

 

Fig.2.1: Position (x) and Velocity (y) update of ith particle in swarm 
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The velocity update equation in (2.1) has three major components: 

1) The first component is referred to as momentum, inertia or habit. 

2) The second component is a linear attractiveness towards the best position during travel 

ever found by the given particle scaled by a random weight, referred to as self-

knowledge, remembrance, memory or nostalgia. 

3) The third component of the equation is a linear attraction towards the best position 

found by any particle scaled by another random weight, referred to as group knowledge, 

cooperation, shared information, social knowledge. 

2.1.2 Pseudocode for PSO 

For implementation of PSO algorithm, following procedure can be used 

1) Initialize the particles by assigning a random position to each particle in the 

problem hyperspace. 

2) Evaluate the fitness function for every particle. 

3) Compare the particle’s fitness value with its xi* for every particle. If the value at 

present is better than the xi* value, then set this value as the xi* and the current 

particle’s position xi. 

4) The particle that has the best fitness value is identified. The value of its fitness 

function is identified as g* and its position as g. 

5) Calculate the velocities and positions of all the particles using    (1) and (2). 

6) Repeat steps 2–5 till a stopping criterion is reached (e.g. a sufficiently good fitness 

value or maximum number of iterations). 

PSO is attractive for the reason that there are few parameters to adjust to get a proper 

response and thus it can be used for specific applications focused on specific requirement 

or it can also be used for approaches for wide range of applications. 
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Figure 2.2 below describes the flowchart for the PSO algorithm for ease of 

understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Flowchart for Particle Swarm Optimization 
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2.2 Firefly Algorithm (FFA) 

 Fireflies produce luminescent flashes as a signal system to communicate with 

other fireflies, especially to prey attractions. FFA is inspired by the firefly’s biochemical 

and social aspects. The flashing light is produced by a process called bioluminescence. 

2.2.1 FFA Operation 

The rhythmic flash, the rate of flashing and the amount of time constitutes the part of the 

signal system that brings both sexes together. Light intensity obeys inverse square law at 

a particular distance r from the light source.  

I𝑜 ∝ 1
𝑟2⁄                                                                 (2.3) 

Thus, the light intensity Io decreases with the distance r, which makes most fireflies 

visual to a limited distance. 

Following are the assumptions made in the firefly algorithm: 

 All fireflies will be attracted to every other firefly regardless of their sex. 

 The attractiveness and brightness decrease as the distance increase and are also 

proportional to each other. The less bright will be moving towards the brighter 

one. It will move randomly if there is no brighter one. 

 The brightness of a firefly is determined or affected by the shape of the objective 

function.  

 

In the Firefly Algorithm, there are two important issues: formulation of the attractiveness 

and the variation of light intensity. It is assumed that the attractiveness of a firefly is 

determined by its brightness which is associated with the encoded objective function. 

However, the attractiveness β is relative, it should be judged by the other fireflies or seen 

in the eyes of the beholder. Thus, intensity will vary with the distance rij between firefly i 

and firefly j. Adding to that, light intensity decreases with the distance from its source, 

and it is also absorbed in the media, so the attractiveness is allowed to vary with the 

degree of absorption.  
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In the simplest case particular location x can be I(x) ∝ f(x) however attractiveness β is 

relative. The light intensity I varies according to the inverse square law given by 

I ∝
𝐼𝑠

𝑟2                                                                                        

where Is is the intensity at the source. The light intensity I varies with the distance r for a 

given medium with a fixed light absorption coefficient 𝛾 as given by 

𝐼 = 𝐼𝑜𝑒
−𝛾𝑟              

 where Io is the original light intensity. To avoid the singularity at r=0 in the expression, 

combined effect of both the laws can be approximated as: 

 𝐼(𝑟) = I0e
−γr2

                                                         (2.4) 

Attraction between them is proportional to the light intensity seen by the adjacent 

fireflies. The attractiveness β of the firefly can be defined as  

    𝛽 = 𝛽0𝑒
−𝛾𝑟2

                                                            (2.5) 

where 𝛽0 is attractiveness at r=0. And attraction of firefly i to another brighter firefly j is 

given by 

𝑥𝑖 = 𝑥𝑖 + 𝛽𝑜𝑒
−𝛾𝑟𝑖𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖𝑖                          (2.6) 

𝛼 is a randomization parameter and 𝜖𝑖 is a vector of random numbers. 

2.2.2 Pseudocode for FFA 

1) Define objective function. F(x),X = (x1 , … ,xd)
T. 

2) Generate initial population  xi (i = 1, 2, … , n) 

3) Determine light intensity Ii at xi is determined by f(xi). 

4) Define light absorption coefficient γ. 

5)  Compare each firefly with all others and move to the firefly having maximum 

intensity. 

Variation of attraction with distance r via exp(−𝛾𝑟) and evaluate new values and 

update light intensity.Repeat step 5 until maximum generation is reached 
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6) Rank the fireflies, find the current global best g* 

7) Go to step 4 till satisfying condition is reached. 

 

Fig. 2.3 shows flowchart for Firefly Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Flowchart for Firefly Algorithm  
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CHAPTER 3 

 

ADAPTIVE CONTROL IMPLEMENTATION USING PSO AND FFA 

 

Adaptive control has been extensively developed and investigated in both 

application and theory during the past few decades and it still exists as a very active 

research field. In order to achieve or to maintain a desired level of control system 

performance when the parameters of the plant dynamic model are unknown and/or 

change in time, adaptive Control covers a set of techniques which provide a systematic 

approach for automatic adjustment of controllers in real time. If a situation arises where 

the parameters of the dynamic model of the plant to be controlled are constant but are 

unknown in a certain region of operation. Although the model of the control or the 

controller structure will not depend upon the particular values of the parameters of the 

plant model, without knowledge of their values correct tuning of the controller 

parameters cannot be done. 

Here, an automatic tuning procedure in closed loop for the controller parameters 

can be provided by the adaptive control techniques. In these situations, effect of the 

adaptation vanishes as time increases. If there are changes in the operation conditions, a 

restart of the adaptation procedure may be required.  

Now, if we consider a situation when the parameters of the dynamic model of the 

plant change in an unpredictable manner with time. These cases occur either because a 

simplified linear model for nonlinear systems have been considered as a change in 

operation condition will lead to a different linearized model or because the environmental 

conditions change as is the case when the models vary with the load types. 

The various adaptation techniques are characterized by the way in which 

information is processed in real time to tune the controller for achieving the desired 

performances.  
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Since the parameters of the controller will depend upon measurements of system 

variables through the adaptation loop, the adaptive control system behaves nonlinearly. 

The Adaptive Control can be classified broadly as Direct and Indirect adaptive control. 

3.1 Direct Adaptive Control 

 There at least two general approaches adaptive control and in the first approach, 

the adaptation mechanism adapts the parameters of the controller by observing the signal 

from the control system to maintain performance even if there are changes in the plant. In 

either the direct or indirect adaptive controllers, sometimes, the desired performance is 

characterized with a reference model and the controller then seeks to make the closed-

loop system, even if the plant changes, behave as the reference model would. This is 

called “Model Reference Adaptive Control (MRAC)”.Here, in direct adaptive control, 

the controller could be PSO or FFA or any other optimization method based on 

biomimicry of foraging. 

 The block diagram for a direct adaptive control is shown below: 

 

 

 

 

 

 

 

 

Fig. 3.1: Direct Adaptive Control 
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It can be seen from the block diagram that the plant which is to be controlled is analyzed 

by an adaptation mechanism. The adaptation mechanism takes the input and output 

obtained from the plant for a particular instant and generates a signal which controls the 

controller. The controller in accordance with the signal generated by the adaptation 

mechanism gives a control signal to control the plant. This adaptation mechanism is 

where a biologically inspired algorithm is added to coordinate and control overall plant.  

3.2 Indirect Adaptive Control 

Here online identification method is used to estimate the plant input-output 

mapping and a “controller designer” module to subsequently specify the parameters of 

the controller. Generally indirect adaptive controller can be taken as automating the 

mode-building and control design process that is used for fixed controller.  

The identifier will provide estimates of changes that occur during plant input-

output mapping and the controller will be subsequently tuned by the controller designer. 

It is assumed that we are certain that the estimated plant mapping is equivalent to the 

actual one at all instants which is called the Certainty equivalence principle. Since we 

tune the controller indirectly by first estimating the plant parameters, the overall approach 

is called Indirect Adaptive Control. The identifier model we use here is implemented by 

using Particle Swarm Optimization or Firefly Algorithm with tunable parameters that 

enter in a nonlinear fashion.  

As a part of this work Indirect Adaptive Control strategy is used for non-linear 

systems and it can be represented by a block diagram as shown in fig 3.2. It can be seen 

from the block diagram that the plant to be controlled is analyzed by a system 

identification block. This identification block is utilizes plant input and output to generate 

a signal varying with the plant conditions at a particular instant. 
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Fig. 3.2: Indirect Adaptive Control 

The information accessed by the system identification block is then used to generate a 

signal which characterizes the plant parameters. This signal is then given to the controller 

designer block. The controller designer block generates a signal in response to the signal 

received by it pertaining to the plant parameters by the system identification block. 

Controller derives an input which is nothing but the output of the plant to be controlled. 

Apart from that, it also receives the signal from the controller designer block. These 

signals alongwith the reference signal makes the controller to generate a control signal 

efficient enough to control the plant and thus, by each passing instant it moves the output 

of the plant close to the desired reference trajectory. 

The system identification block plays a major role here in controlling the plant as it 

estimates the plant parameters and accordingly adjusts the controller output indirectly 

while the direct adaptive control just gives an adaptation depending on only the input and 

output of the plant. 
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 The model that is being tuned is a nonlinear function. The nonlinear mapping it 

implements is unknown since the plant is assumed to be unknown. In order to adjust the 

nonlinear mapping implemented by the PSO or FFA to match the unknown nonlinear 

mapping of the plant, an online function approximation is carried out. 

3.3 Implementation of PSO and FFA as controllers 

 Consider a system which is represented as 

𝑦(𝑘 + 𝑑) = 𝑓(𝑥(𝑘), 𝑢(𝑘))                                           (3.1) 

where 𝑓(𝑥(𝑘), 𝑢(𝑘)) is a smooth (but unknown) function of its arguments, 𝑢(𝑘) is the 

measurable scalar input,  𝑦(𝑘) is the measurable (scalar) output, d>=1 is the measurable 

delay between the input and output, and 𝑥(𝑘) is the state vector. 

In the indirect adaptive control case, a special subclass of plants is considered 

which can be represented by 

                       𝑦(𝑘 + 𝑑) = 𝛼(𝑥(𝑘)) + 𝛽(𝑥(𝑘))𝑢(𝑘)                                                         (3.2) 

or   𝑦(𝑘 + 𝑑) =  𝛼𝑢(𝑥(𝑘)) + 𝛼𝑘(𝑘) + (𝛽𝑢(𝑥(𝑘)) + 𝛽𝑘(𝑘)) 𝑢(𝑘)                (3.3) 

where 𝛼𝑢(𝑥(𝑘)) and 𝛽𝑢(𝑥(𝑘)) are unknown smooth functions of the state 𝑥(𝑘) and 

represent the unknown nonlinear dynamics of the plant. These functions are to be 

estimated so that we can specify a controller. 𝛼𝑘(𝑘) and 𝛽𝑘(𝑘) are defined to be known 

parts of the plant dynamics where we know portions of the nonlinear dynamics. We 

assume 𝛽(𝑥(𝑘)) to satisfy 

0 < 𝛽𝑜 ≤ 𝛽(𝑥(𝑘)) 

for some known 𝛽𝑜 > 0 for all 𝑥(𝑘). This places a restriction on the class of the plants 

that we can consider. Intuitively, we require that the gain on 𝑢(𝑘) be bounded from 

below due to how an estimate of 𝛽 will be used to specify the control. It is also possible 

to develop a scheme where 𝛽(𝑥(𝑘))is known to be negative and bounded from above by 

a constant that is less than zero. 
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3.3.1 Estimating an Unknown Ideal Controller 

 Let  𝑟(𝑘 + 𝑑) be the reference, which is reasonable for many applications as it is 

specified by the user, we know that there exists an ideal controller 

𝑢∗(𝑘) =
−𝛼(𝑥(𝑘)) + 𝑟(𝑘 + 𝑑)

𝛽(𝑥(𝑘))
                                            (3.4) 

that linearizes the dynamics of equation (3.2) such that 𝑦(𝑘) → 𝑟(𝑘).  

To verify this, substitute 𝑢(𝑘) =  𝑢∗(𝑘) in equation (3.2) we get 

 𝑦(𝑘 + 𝑑) = 𝑟(𝑘 + 𝑑)                                                               (3.5) 

so that tracking of the reference is achieved within d steps. Since we do not know 

𝛼(𝑥(𝑘)) and 𝛽(𝑥(𝑘)). Thus an estimator for these plant nonlinearities is developed and 

is used to form an approximation to 𝑢∗(𝑘). 

3.3.2 Certainty Equivalence Controller 

The certainty equivalence approach entails specifying a control input using an 

estimate of the plant model that would cancel appropriate plant dynamics and achieve 

good tracking if the estimate was accurate. 

The control input using a certainty equivalence approach is defined as 

 𝑢(𝑘) =
−�̂�(𝑥(𝑘)) + 𝑟(𝑘 + 𝑑)

�̂�(𝑥(𝑘))
                                                    (3.6) 

where �̂�(𝑥(𝑘)) and �̂�(𝑥(𝑘)) are estimates of 𝛼(𝑥(𝑘)) and 𝛽(𝑥(𝑘)), respectively. They 

are defined as 

�̂�(𝑥(𝑘)) = 𝜃𝛼
𝑇(𝑘)∅𝛼(𝑥(𝑘)) + 𝛼𝑘(𝑘)                                          (3.7) 

 

�̂�(𝑥(𝑘)) = 𝜃𝛽
𝑇(𝑘)∅𝛽(𝑥(𝑘)) + 𝛽𝑘(𝑘)                                          (3.8) 
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In order to pick 𝜃𝛼(𝑘) and 𝜃𝛽(𝑘) Particle Swarm Optimization or Firefly Algorithm is 

used to try to minimize the approximation error. 

Projection algorithms can be used to ensure that 𝜃𝛼(𝑘) and 𝜃𝛽(𝑘) lie in a valid region for 

all k. They can also be used to ensure that �̂�(𝑥(𝑘)) ≥ βo so that the control signal is well 

defined. If it is known that each element of the ∅𝛽vector is always positive, then to 

ensure that �̂�(𝑥(𝑘)) ≥ βo a projection method could be used to keep each component of 

𝜃𝛽(𝑘) greater than or equal toβo. 

 

3.3.3 Error Equation Representation 

 The tracking error that results from the above definitions is denoted as 

      𝑒(𝑘) = 𝑟(𝑘) − 𝑦(𝑘)                                                              (3.9) 

𝑒(𝑘) = 𝑟(𝑘) − 𝛼(𝑥(𝑘)) − 𝛽(𝑥(𝑘))𝑢(𝑘)                                   

from equation (3.6) we get the value of r(k) (delay step is removed to be specific).Thus, 

equation (3.9) could be rewritten as 

𝑒(𝑘) = (�̂�(𝑥(𝑘)) − 𝛼(𝑥(𝑘))) + (�̂�(𝑥(𝑘)) − 𝛽(𝑥(𝑘))) 𝑢(𝑘)                      (3.10) 

If �̂�(𝑘) = �̂�(𝑥(𝑘)) + �̂�(𝑥(𝑘))𝑢(𝑘) then with certainty equivalence control law, the 

output tracking error could be viewed as the identification error, i.e. a measure of the 

quality of the model that we are tuning to represent the plant, could be represented as 

  𝑒(𝑘) = �̂�(𝑘) − 𝑦(𝑘)                                                           (3.11) 

 

3.3.4 Adaptation Method for Cost Function 

Steepest descent approach is used to define a cost function represented as 

𝐽(𝜃𝑖) = 𝑒𝑖2(𝑘)                                                                     (3.12) 

or   𝐽(𝜃𝑖) = (�̂�𝑖(𝑘) − 𝑦(𝑘))
2
                                                   (3.13) 

where i=1,2,….S and S is the maximum number of Particles or Fireflies as the case may 

be. As a swarm perspective 𝜃𝑖 is viewed as the location of the ith particle or firefly in the 
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search space. A set of approximations for �̂�(𝑥(𝑘)) and �̂�(𝑥(𝑘)) for ith particle or firefly 

are denoted by 𝐹𝛼(𝑥(𝑘), 𝜃𝛼
𝑖 (𝑘)) and 𝐹𝛽(𝑥(𝑘), 𝜃𝛽

𝑖 (𝑘)) . 

Let the ith estimate of the output and identification error be given as 

 �̂�𝑖(𝑘) = 𝐹𝛼(𝑥(𝑘), 𝜃𝛼
𝑖 (𝑘 − 1)) + 𝐹𝛽 (𝑥(𝑘), 𝜃𝛽

𝑖 (𝑘 − 1))𝑢(𝑘 − 1)              (3.14) 

Now, the cost function for ith particle or firefly could be given as 

𝐽(𝜃𝑖(𝑘)) = (𝐹𝛼(𝑥(𝑘), 𝜃𝛼
𝑖 (𝑘 − 1)) + 𝐹𝛽 (𝑥(𝑘), 𝜃𝛽

𝑖 (𝑘 − 1)) 𝑢(𝑘 − 1) − 𝑦(𝑘))
2

    (3.15) 

It is required to minimize this cost function which actually measures the size of the 

estimation error and this is done by using the position of the particle or firefly in the 

search space𝜃𝑖. The particle’s or firefly’s position in one dimension is given by 𝜃𝛼 and in 

the other dimension by 𝜃𝛽 so that the position𝜃𝑖 = [𝜃𝛼
𝑖 , 𝜃𝛽

𝑖 ]
𝑇
, i=1,2,…S. 

A block diagram depicting indirect adaptive control using PSO or FFA is shown in figure 

3.3. Here the system identification part is shown to be containing either the Particle 

Swarm Optimization Algorithm or the Firefly Algorithm which analyzes the plant to be 

controlled and estimates the parameters of the plant. 

The output from the system identification is given to a certainty equivalence control law 

which is governed by the required trajectory response and is also responsible to generate 

signal determining the control parameters which in turn will assist the controller in 

successfully and efficiently control the plant. 
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Figure 3.3: Adaptive Control using PSO or FFA 

Adaptation using PSO 

Each particle has a randomized position 𝜃 = [𝜃𝛼
𝑖 , 𝜃𝛽

𝑖 ]
𝑇
 in the search space. Each particle 

calculates the estimates �̂�(𝑥(𝑘)) and�̂�(𝑥(𝑘)). Using these estimates, the output estimate 

�̂�𝑖(𝑘) is calculated using (3.14) alongwith the tracking error 𝑒𝑖(𝑘) and the cost 

function𝐽(𝜃𝑖(𝑘)). After getting a set of values for𝐽(𝜃(𝑘)) having size of the total 

population of the particles, it is searched for the minimum value amongst the values 

calculated by each particle. The particle which gives the minimum value of cost function 

is selected as the best particle and considered as having the best position 𝜃𝛼
∗  and 𝜃𝛽

∗ . Each 

particle is then moved towards the direction of the best particle using the update laws as 

described in (2.1) & (2.2) earlier. The estimates �̂�(𝑥(𝑘)) and �̂�(𝑥(𝑘)) are then calculated 

using the best position 𝜃𝛼
∗  and 𝜃𝛽

∗ . These estimates are then used to calculate the control 

output 𝑢(𝑘) using certainty equivalence approach as described by (3.6). The system 𝑦(𝑘) 

is updated with this value of controller output using (3.2) which moves it close to the 

Certainty 

Equivalence 

Control Law 

PSO or FFA 

Plant 
Controller 

Control 

Parameters 

Parameters 

u(t) 
y(t) r(t) 

P1 

P2 

Ps 

System Identification 



 

 
Sarath S Pillai, Dept. of Electrical Engg.(C&I) 
Delhi Technological University 

Novel Approach on Adaptive Control of Nonlinear Systems using PSO & FFA 21 

reference trajectory. The process is repeated for a finite number of iterations which 

ensures that the system tracks the reference trajectory with minimum tracking error. 

Adaptation using FFA 

Each firefly has a randomized position 𝜃 = [𝜃𝛼
𝑖 , 𝜃𝛽

𝑖 ]
𝑇
 and intensity of light Ii in the search 

space. Each firefly calculates the estimates �̂�(𝑥(𝑘)) and �̂�(𝑥(𝑘)). Using these estimates, 

the output estimate �̂�𝑖(𝑘) is calculated using (3.14) alongwith the tracking error 𝑒𝑖(𝑘) 

and the cost function 𝐽(𝜃𝑖(𝑘)). After getting a set of values for𝐽(𝜃(𝑘)) having size of the 

total population of the fireflies, it is searched for the minimum value amongst the values 

calculated by each firefly. The firefly which gives the minimum value of cost function is 

selected as the best firefly and considered as having the best position 𝜃𝛼
∗  and 𝜃𝛽

∗  and 

having the maximum intensity of light 𝐼𝑖
∗. Each less bright firefly is then moved towards 

the direction of the brightest firefly using the update laws as described in (2.4) & (2.6) 

earlier. The estimates �̂�(𝑥(𝑘)) and�̂�(𝑥(𝑘)) are then calculated using the best position 𝜃𝛼
∗  

and 𝜃𝛽
∗ . These estimates are then used to calculate the control output 𝑢(𝑘) using certainty 

equivalence approach as described by (3.6). The system 𝑦(𝑘) is updated with this value 

of controller output using (3.2) which moves it close to the reference trajectory. The 

process is repeated for a finite number of iterations which ensures that the system tracks 

the reference trajectory with minimum tracking error. 

 

Adaptive Control and Conventional Feedback Control 

The unmeasurable and unknown variations of the process parameters lead to a degrade in 

the performances of the control systems. In a similar manner to the disturbances acting 

upon the controlled variables, it can be considered that the variations of the process 

parameters are caused by disturbances acting upon the parameters which are called 

parameter disturbances. 
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These parameter disturbances will affect the performance of the control systems. 

Therefore the disturbances acting upon a control system can be classified as follows: 

(a) by the disturbances acting upon the controlled variables 

(b) by the parameter disturbances acting upon the performance of the control system. 

Feedback is basically used in conventional control systems in order to reject the effect of 

disturbances which are incident on the controlled variables. It brings them back to their 

desired values according to a certain performance index. The controlled variables are first 

measured in order to achieve this and then the measurements are compared with the 

desired values and the difference is fed into the controller which will generate the 

appropriate control. 

For the problem of achieving and maintaining the desired performance of a control 

system in the presence of parameter disturbances, a similar conceptual approach can be 

considered . A performance index (IP) is first defined for the control system which is a 

measure of the performance of the system itself. As an example the damping factor for a 

closed-loop system characterized by a second-order transfer function is an IP which 

allows to quantify a desired performance expressed in terms of damping. Then this IP is 

measured. The measured IP will be compared to the desired IP and their difference will 

be fed into an adaptation mechanism. The output of the adaptation mechanism will act 

upon the control signal and/or the parameters of the controller in order to modify the 

system performance accordingly. 

An adaptive control system measures a certain performance index (IP) of the control 

system using the outputs, the inputs and the known disturbances alongwith the states. 

From a set of given performance indices, a comparison of the measured one is carried out 

and the adaptation mechanism modifies the parameters of the adjustable controller and/or 

generates an auxiliary control in order to maintain the performance index of the control 

system close to the set of given ones. A conventional feedback control system will 

monitor the controlled variables under the effect of disturbances acting on them, but its 

performance will vary, and not actually monitor, under the effect of parameter 

disturbances as the design is done assuming constant and known process parameters. 
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An adaptive control system monitors the performance of the system in the presence of 

parameter disturbances since it contains a supplementary loop acting upon the adjustable 

parameters of the controller in addition to a feedback control with adjustable parameters. 

A conventional feedback control system design is oriented toward the elimination of the 

effect of disturbances upon the controlled variables while the design of adaptive control 

systems is oriented toward the elimination of the effect of parameter disturbances upon 

the performance of the control system. When the controlled variable is considered as a 

performance index (PI), an adaptive control system can be interpreted as a feedback 

system. 

  



 

 
Sarath S Pillai, Dept. of Electrical Engg.(C&I) 
Delhi Technological University 

Novel Approach on Adaptive Control of Nonlinear Systems using PSO & FFA 24 

CHAPTER 4 

 

DYNAMICS OF NONLINEAR SYSTEMS 

 The Indirect Adaptive Control utilizing PSO and FFA technique is implemented 

to control two nonlinear systems whose dynamics are described here. 

4.1 Level Control in a Nonlinear Surge Tank system 

Design Problem: In this problem we will study the development of indirect adaptive 

control for the liquid level process control problem. 𝜃𝑖 is viewed as the location of the 

ith particle in the search space. Consider the “surge tank” shown below with input u(t), 

the height of the liquid h(t) and an outlet below the tank characterized by �̃� which is 

related to the outlet pipe diameter. 

 

 

 

 

 

 

Figure 4.1: Surge Tank System 

The input changes dynamically and the objective is to maintain the level of liquid in the 

surge tank at ‘h’ while u(t) is the varying input to the system. The mathematical model of 

the system can be given as 

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝑇 (
−�̃�√19.6ℎ(𝑘)

|�̃�ℎ(𝑘) + �̃�|
+

�̃�

|�̃�ℎ(𝑘) + �̃�|
𝑢(𝑘))                      (4.1) 

u(t) 

h(t) 
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The end-use of the model defines the model requirements. The above model is derived by 

relating the inputs to measured outputs that needs to be regulated. The volume of liquid in 

the vessel varies as a function of the inlet and outlet flow rates. 

The density is assumed to be constant. Balanced equations based on an instantaneous rate 

of change can be given as 

[
Rate of change of
total mass of fluid
inside the vessel

] = [
mass flow rate

of fluid
into the vessel

] − [
mass flow rate

of fluid
out of the vessel

] 

Following notations are used in the modeling equation: 

𝑢 =inlet volumetric flow rate (volume/time); 

𝑜 =outlet volumetric flow rate (volume/time); 

𝑉 =volume of liquid in vessel; 

ℎ =height of liquid in vessel; 

𝜌 =liquid density (mass/volume); 

𝐴 =cross-sectional area of vessel = |�̃�ℎ(𝑘) + �̃�| where �̃� > 0 and �̃� > 0. 

�̃� = clogging factor 𝜖 (0,1). �̃� = 1shows that the filter in the actuator 

d̃ =area of liquid discharge related to the outlet pipe diameter. 

where the total mass of fluid inside the vessel is denoted by𝑉𝜌, the rate of change is
dVρ

dt
, 

and the density of the outlet stream is equal to the density of the vessel contents. 

𝑑𝑉𝜌

𝑑𝑡
= �̃�𝑢𝜌 − 𝑜𝜌                                                             (4.2) 

The volumetric flow rate Q can be written as 𝑄 = 𝐴𝑣 where A= area and 𝑣 = velocity. 

Thus, the outlet volumetric flow rate can be expressed with d̃ and outlet velocity 𝑣 as  

𝑜 = 𝑑 ̃𝑣                                                                            (4.3) 

If we equate kinetic and potential energies of liquid, we get 

𝑚𝑔ℎ =
1

2
𝑚𝑣2           
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𝑔 =acceleration due to gravity and 𝑚 = mass of liquid. ‘m’ gets cancelled on both sides 

of the equation and hence we get, 

 𝑣 = √2𝑔ℎ                                                            (4.4) 

 

using (4.3) & (4.4) a modified (4.2), after cancelling out 𝜌 on both sides of the equation 

𝑑𝑉

𝑑𝑡
=  �̃�𝑢 − 𝑑 ̃√2𝑔ℎ                                            (4.5) 

Volume V of the tank can be expressed as 𝑉 = 𝐴ℎ. Thus, the equation can be modified 

as, 

𝑑ℎ

𝑑𝑡
=  

�̃�𝑢 − 𝑑 ̃√2𝑔ℎ

𝐴
                                                      

this can be modified further as 

𝑑ℎ

𝑑𝑡
=  −

𝑑 ̃√2𝑔ℎ

|�̃�ℎ(𝑘) + �̃�|
+

�̃�

|�̃�ℎ(𝑘) + �̃�|
𝑢                         (4.6) 

Putting the value of g=9.8 and converting into discrete form 

ℎ(𝑘 + 1) = ℎ(𝑘) + 𝑇 (
−�̃�√19.6ℎ(𝑘)

|�̃�ℎ(𝑘) + �̃�|
+

�̃�

|�̃�ℎ(𝑘) + �̃�|
𝑢(𝑘))      (4.7) 

In the simulation model we use �̃� = 0.01, �̃� = 0.2, �̃� = 1, �̃� = 1 𝑎𝑛𝑑 𝑇 = 0.1.We assume 

that the plant input saturates at ±50 so that if the controller generates an input 𝑢(𝑘), then 

𝑢(𝑘) = {

50                    𝑖𝑓 𝑢(𝑘) > 50

𝑢(𝑘)    𝑖𝑓 − 50 < 𝑢(𝑘) < 50

−50                 𝑖𝑓 𝑢(𝑘) < −50

} 

Since the liquid level cannot go negative, the system model is modified as 

ℎ(𝑘 + 1) = 𝑚𝑎𝑥 {0.0001, ℎ(𝑘) + 𝑇 (
−�̃�√19.6ℎ(𝑘)

|�̃�ℎ(𝑘) + �̃�|
+

�̃�

|�̃�ℎ(𝑘) + �̃�|
𝑢(𝑘))}         (4.8) 

The above model described by (4.8) is used for the adaptive control of the liquid level 

using both Particle Swarm Optimization and Firefly Algorithm for a comparative 

analysis. 
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4.2 Pole Angle Control in an Inverted Pendulum System 

In recent Years, projects on the themes of robotics and mechatronics are the most 

attractive. Many interesting robotic benchmark systems exist in the literature in this 

framework. The inverted pendulum system is always considered as the most fundamental 

benchmark among others. This system exists in many different versions offering a variety 

of interesting control challenges. 

Design Problem: In this problem we will see the development of indirect adaptive 

control for the control of angle of pole in an Inverted Pendulum System. Figure 4.2 below 

shows an inverted pendulum on a cart system. 

 

 

 

 

 

 

 

 

Figure 4.2: Inverted Pendulum on Cart 

The system consists of an inverted pole hinged on a cart. When the cart is given a push or 

force in the x axis direction, it moves along the direction of force. This results in a change 

in the angle of the pole with the vertical. If an initial deviation in the angle is considered, 

the objective of the control would be to keep the angle of the pole with respect to the 

vertical axis zero, i.e. in the upright position. Thus, the system could be modeled by 

taking 𝑢 as the control input variable and 𝜃 as the controlled variable. While controlling, 

certain constraints should be taken care of, i.e. the cart should not go beyond a specified 
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finite value, i.e. the cart should be moving through a certain specified range. The angle of 

pole must lie within the range of [–
𝜋

2
,
𝜋

2
]. 

Model of Inverted Pendulum 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Mathematical model of Inverted pendulum on cart 

M (Mass of Cart) = 3Kg 

m (Mass of pendulum) = 0.2Kg 

l (Length to center of mass of pendulum) = 0.31m 

u- Force applied to the cart 

x- Cart position coordinate 

u 
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x 𝜃 

H 

V 

M 

2l 



 

 
Sarath S Pillai, Dept. of Electrical Engg.(C&I) 
Delhi Technological University 

Novel Approach on Adaptive Control of Nonlinear Systems using PSO & FFA 29 

θ-Pendulum angle from vertical 

b (Frictional force of cart) = 0.1 N/ms-1 

The dynamical equation of the system can be derived as follows: 

 

Force analysis and system equation 

The center of gravity of the rod in pendulum with respect to the origin on the Cartesian 

axis of reference can be written in the form of equation as  

𝑋𝐺 = 𝑥 + 𝑙 sin 𝜃 

𝑌𝐺 = 𝑙 cos 𝜃        

The balance of forces for the rod with respect to its center of gravity in the vertical 

direction is given by  

𝑚
𝑑2

𝑑𝑡2
𝑙 cos 𝜃 = 𝑉 − 𝑚𝑔 

      𝑚 [
𝑑

𝑑𝑡
(𝑙 sin 𝜃 �̇�)] = 𝑉 − 𝑚𝑔 

                     𝑚[−𝑙 cos 𝜃�̇�2 − 𝑙 sin 𝜃�̈�] = 𝑉 − 𝑚𝑔 

On completing the differentiation above we get 

𝑚𝑔 − 𝑚𝑙�̈� sin 𝜃 − 𝑚𝑙 cos 𝜃 �̇�2 = 𝑉                          (4.9) 

The balance of forces of the rod with respect to its center of gravity in the horizontal 

direction is given by 

𝑚
𝑑2

𝑑𝑡2
(𝑥 + 𝑙 sin 𝜃) = 𝐻     

𝑚 [�̈� +
𝑑

𝑑𝑡
(𝑙�̇� cos 𝜃)] = 𝐻 

             𝑚[�̈� + 𝑙 cos 𝜃 �̈� − 𝑙 sin 𝜃 �̇�2] = 𝐻 
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𝑚�̈� + 𝑚𝑙 cos 𝜃 �̈� − 𝑚𝑙 sin 𝜃 �̇�2 = 𝐻                             (4.10) 

Balancing the forces of the cart in the x direction is described by 

 𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
= 𝑢 − 𝐻                                                       (4.11) 

Balancing the rotational motion of the pendulum rod around its center of gravity is given 

by 

 

𝐼�̈� = 𝑉𝑙 sin 𝜃 − 𝐻𝑙 cos 𝜃     (4.12) 

Put (4.10) in (4.11) 

                     𝑀�̈� = 𝑢 − 𝑚�̈� − 𝑚𝑙 cos 𝜃 �̈� + 𝑚𝑙 sin 𝜃 �̇�2 

After solving this equation, we get 

(𝑀 + 𝑚)�̈� + 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin 𝜃 = 𝑢           (4.13) 

Put (4.9) & (4.10) in (4.13) 

𝐼�̈� = (𝑚𝑔 − 𝑚𝑙�̈� sin 𝜃 − 𝑚𝑙 cos 𝜃 �̇�2)𝑙 sin 𝜃 − (𝑚�̈� + 𝑚𝑙 cos 𝜃 �̈� − 𝑚𝑙 sin 𝜃 �̇�2)𝑙 cos 𝜃 

After solving it, we get 

(𝑚𝑙2 + 𝐼)�̈� = 𝑚𝑔𝑙 sin 𝜃 − 𝑚�̈�𝑙 cos 𝜃                           (4.14) 

From (4.14) 

�̈� =
𝑚𝑔𝑙 sin 𝜃 − 𝑚�̈�𝑙 cos 𝜃

𝑚𝑙2 + 𝐼
    

Put the above expression in (4.13) 

(𝑀 + 𝑚)�̈� + 𝑚𝑙 (
𝑚𝑔𝑙 sin 𝜃 − 𝑚�̈�𝑙 cos 𝜃

𝑚𝑙2 + 𝐼
) cos 𝜃 + 𝑏�̇� − 𝑚𝑙�̇�2 sin 𝜃 = 𝑢 

(𝑀 + 𝑚)�̈� +
𝑚2𝑙2𝑔 sin 𝜃 cos 𝜃

𝑚𝑙2 + 𝐼
−

𝑚2𝑙2�̈�𝑐𝑜𝑠2𝜃

𝑚𝑙2 + 𝐼
+ 𝑏�̇� + 𝑚𝑙�̇�2 sin 𝜃 = 𝑢 
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To approximate the equation, we use 

sin 𝜃 = 𝜃 

�̇�2 = 0 

cos 𝜃 = 1 

𝑠𝑖𝑛2𝜃 = 0 

𝑐𝑜𝑠2𝜃 = 1 

Then we get, 

 

�̈� = −
𝑚2𝑙2𝑔

(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼
𝜃 −

𝑏(𝑚𝑙2 + 𝐼)

(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼
�̇� +

(𝑚𝑙2 + 𝐼)

(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼
𝑢             (4.15) 

From (4.14) 

�̈� =
𝑚𝑔𝑙 sin 𝜃 − (𝑚𝑙2 + 𝐼)�̈�

𝑚𝑙 cos 𝜃
 

Put the above expression in (4.13) 

(𝑀 + 𝑚) [
𝑚𝑔𝑙 sin 𝜃 − (𝑚𝑙2 + 𝐼)�̈�

𝑚𝑙 cos 𝜃
] + 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin 𝜃 = 𝑢 

(𝑀 + 𝑚)𝑔 sin 𝜃

cos 𝜃
−

(𝑀 + 𝑚)(𝑚𝑙2 + 𝐼)

𝑚𝑙 cos 𝜃
+ 𝑏�̇� + 𝑚𝑙�̈� cos 𝜃 − 𝑚𝑙�̇�2 sin 𝜃 = 𝑢 

By approximating the equation, we get 

(𝑀 + 𝑚)𝑔𝜃 −
(𝑀 + 𝑚)(𝑚𝑙2 + 𝐼)

𝑚𝑙
�̈� + 𝑏�̇� + 𝑚𝑙�̈� = 𝑢 

Solving the above equation, we get 

�̈� =
(𝑀 + 𝑚)𝑚𝑔𝑙

𝑀(𝑚𝑙2 + 𝐼) + 𝑚𝐼
𝜃 +

𝑏𝑚𝑙

𝑀(𝑚𝑙2 + 𝐼) + 𝑚𝐼
�̇� −

𝑚𝑙

𝑀(𝑚𝑙2 + 𝐼) + 𝑚𝐼
𝑢                (4.16) 
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Designing a state space model requires further transformations to be applied to these 

equations. Introducing the substitution variables for (4.15) and (4.16) 

𝐴 =
(𝑀 + 𝑚)𝑚𝑔𝑙

𝑀(𝑚𝑙2 + 𝐼) + 𝑚𝐼
 

𝐵 =
𝑏𝑚𝑙

𝑀(𝑚𝑙2 + 𝐼) + 𝑚𝐼
 

𝐶 = −
𝑚2𝑙2𝑔

(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼
 

𝐷 = −
𝑏(𝑚2𝑙 + 𝐼)

(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼
 

With the data, the actual values of the constants are calculated and given as: 

𝐴 = 33.75 

𝐵 = 0.11 

𝐶 = −0.65 

𝐷 = −0.03 

Therefore, the linear state space model is: 

𝑑

𝑑𝑡
[

𝜃
�̇�
𝑥
�̇�

] = [

0 1 0 0
𝐴 0 0 𝐵
0 0 0 1
𝐶 0 0 𝐷

] [

𝜃
�̇�
𝑥
�̇�

] + [

0
−𝑚𝑙 [(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼]⁄

0
(𝑚2𝑙 + 𝐼) [(𝑚𝑙2 + 𝐼)𝑀 + 𝑚𝐼]⁄

] 𝑢 

After inserting constant data, the state space model is: 

𝑑

𝑑𝑡
[

𝜃
�̇�
𝑥
�̇�

] = [

0 1 0 0
33.75 0 0 0.11

0 0 0 1
−0.65 0 0 −0.03

] [

𝜃
�̇�
𝑥
�̇�

] + [

0
−1.08

0
0.33

] 𝑢                           (4.17) 
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The state space model obtained in (4.17) is converted into discrete form and we get the 

discrete state space representation of the above system as 

[
 
 
 
∆𝜃𝑘+1

∆�̇�𝑘+1

∆𝑥𝑘+1

∆�̇�𝑘+1]
 
 
 
= [

1 0.0013 0 0
0.0430 1 0 0.0001

0 0 1 0.0012
−0.0008 0 0 1

]

[
 
 
 
∆𝜃𝑘

∆�̇�𝑘

∆𝑥𝑘

∆�̇�𝑘]
 
 
 
+ [

0
−1.35 × 10−3

0
0.4125 × 10−3

] ∆𝑢𝑘    (4.18) 

The state space model obtained in (4.18) is used for the adaptive control of pole angle 

using both Particle Swarm Optimization and Firefly Algorithm for a comparative 

analysis. 
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CHAPTER 5 

 

SIMULATION RESULTS AND DISCUSSIONS 

 

 The indirect adaptive control of both the level control in a surge tank and the pole 

angle control in an inverted pendulum system using both PSO and FFA is described in 

the following sections. 

5.1 Indirect Adaptive Control of Liquid Level in a Surge Tank System 

 The model of the system was derived in section 4.2 given by (4.8) which is again 

repeated below for convenience. 

ℎ(𝑘 + 1) = 𝑚𝑎𝑥 {0.0001, ℎ(𝑘) + 𝑇 (
−�̃�√19.6ℎ(𝑘)

|�̃�ℎ(𝑘) + �̃�|
+

�̃�

|�̃�ℎ(𝑘) + �̃�|
𝑢(𝑘))}                   

The indirect adaptive control technique estimates the height of the liquid by representing 

the estimate in the form given by (3.2) as  

ℎ̂(𝑘) = 𝛼 + 𝛽𝑢(𝑘)                                                            (5.1) 

Here, 𝛼 and 𝛽 are calculated by the location of the particles or the fireflies as the case 

may be. The fitness function is described by (3.13) i.e. 

𝐽(𝜃𝑖) = (ℎ̂𝑖(𝑘) − ℎ(𝑘))
2
 

This equation is calculated by using the location of the particles/fireflies and the best 

particle/firefly is calculated such that the value of the fitness function for that 

particle/firefly is the least. Accordingly the estimate is calculated for the next iteration 

and the process is repeated for a certain number of iterations. 

Simulations have been performed in MATLAB 7.7 and scratches have been developed 

using Intel(R) Core(TM) 2 Duo2.80GHz, 4GB of RAM. Both PSO and FFA indirect 
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adaptive control have been conducted for same number of population which is 100 and 

the algorithm performs 1000 iterations with a sampling period of 0.1 secs. 

For the surge tank system, the reference signal given is a square wave shown below in fig 

5.1. The height of the liquid is not allowed to go negative as is evident from the graph. A 

time scale of 100 seconds is used 

 

Figure 5.1: Reference input for the surge tank 

The liquid level output for both PSO and FFA is shown in fig 5.2 below. The first graph 

is plotted for PSO and the second for FFA. 

 

Figure 5.2: Liquid level ‘h’ and the reference input for PSO and FFA. 
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A comparative analysis on both the graphs show that peak overshoot for the first pulse is 

less for PSO when compared to the peak overshoot of FFA. Although the peak for both 

PSO and FFA significantly goes on decreasing after successive iterations, more number 

of oscillations can be observed in the case of fireflies. 

 

 

Figure 5.3: Cost function graph for both PSO and FFA for surge tank 

 

Figure 5.3 shows the cost function for the particles in PSO and the fireflies in FFA. In 

both the cases, the value of the cost function decreases to zero. The cost value trend in 

FFA contains lots of variations while approaching the minimum value while in PSO 

shows a smooth variation. This shows that although the cost value for both the algorithm 

techniques reach a minimum value, the particle in PSO converge more smoothly towards 

the best particle at a particular iteration than the fireflies in the FFA. 
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A comparative analysis of the estimates of the liquid level ‘h’ can be performed with the 

help of the graphs shown in fig 5.4. 

 

 

Figure 5.4: Estimates of the liquid level ‘h’ for both PSO and FFA. 

 

The adaptive control of the tank system generates estimated liquid level in both the cases. 

It is evident from the graph that the estimated level is smooth with respect to the 

reference in the case of PSO when compared with FFA which has a large number of 

oscillations. 

Eventually, both the algorithms reach the reference trajectory with minimum deviation 

from the desired response. In accordance with these estimates, the error between the 

estimated liquid level and the output liquid level ‘h’ but PSO estimate merges with the 

reference much faster than the FFA. 
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The graphs shown in fig. 5.5 depict error between the liquid level ‘h’ and the reference 

trajectory ‘r’ for both PSO and FFA. 

 

Figure 5.5: Error between the liquid level and the reference trajectory for PSO and FFA 

In both the cases, it can be seen that the error reduces to zero after just 15 secs, but it can 

be seen that error trend in FFA has number of oscillations but the trend in PSO has a 

smooth response. The table 5.1 below shows a comparative result on the performance of 

PSO and FFA on the liquid level control in surge tank system. 

Table 5.1: Elapsed time and Minimum Cost for the Surge tank level system 

Algorithm Elapsed Time Minimum Cost 

PSO 3.8429 secs 0.9779 

FFA 93.1496 secs 1.0973 

 

From table 5.1, it can be inferred from the data that elapsed time in PSO is much smaller 

than that in the case of FFA and also the minimum cost for PSO is also smaller than that 

of FFA. 
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5.2 Indirect Adaptive Control of Pole Angle in an Inverted Pendulum System 

 The model of the system was derived in section 4.1 given by (4.18) which is again 

repeated below for convenience. 

[
 
 
 
∆𝜃𝑘+1

∆�̇�𝑘+1

∆𝑥𝑘+1

∆�̇�𝑘+1]
 
 
 
= [

1 0.0013 0 0
0.0430 1 0 0.0001

0 0 1 0.0012
−0.0008 0 0 1

]

[
 
 
 
∆𝜃𝑘

∆�̇�𝑘

∆𝑥𝑘

∆�̇�𝑘]
 
 
 
+ [

0
−1.35 × 10−3

0
0.4125 × 10−3

] ∆𝑢𝑘 

The states can be defined as 

𝑥1 = 𝜃, Pole Angle 

𝑥2 = �̇�, Angular velocity 

𝑥3 = 𝑥, Position of the cart 

𝑥4 = �̇�, Velocity of the cart 

The indirect adaptive control technique estimates the angle of pole by representing the 

estimate in the form given by (3.2) as  

�̂�1(𝑘) = 𝛼 + 𝛽𝑢(𝑘)                                                            (5.2) 

Here, 𝛼 and 𝛽 are calculated by the location of the particles or the fireflies as the case 

may be. The fitness function is described by (3.13) i.e. 

𝐽(𝜃𝑖) = (�̂�1
𝑖(𝑘) − 𝑥1(𝑘))

2
 

This equation is calculated by using the location of the particles/fireflies and the best 

particle/firefly is calculated such that the value of the fitness function for that 

particle/firefly is the least. Accordingly the estimate is calculated for the next iteration 

and the process is repeated for a certain number of iterations and at the same time all the 

interdependent states are updated accordingly. 

Simulations have been performed in MATLAB 7.7 and scratches have been developed 

using Intel(R) Core(TM) 2 Duo2.80GHz, 4GB of RAM. Both PSO and FFA indirect 
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adaptive control have been conducted for same number of population which is 100 and 

the algorithm performs 3000 iterations with a sampling period of 0.1 secs. 

The reference signal given to the system is zero, i.e. each state variable has to reach the 

zero state from their initial disturbance which gets initiated by the initial pole angle 

deviation with respect to the vertical. The initial pole angle deviation given to the system 

was 18o. 

Figure 5.6 shown below describes the result obtained regarding the pole angle deviation 

from the vertical by simulating the system with both PSO and FFA. 

 

 

Figure 5.6: Angle of the pole with respect to vertical axis for both PSO and FFA 

It can be clearly seen that pole angle for PSO has a less peak overshoot near 17o while the 

FFA has a higher overshoot comparatively (20o). Apart from that it can be seen that PSO 

settles faster than FFA as well. Particles are seen to be converging more smoothly than 

the fireflies. Both PSO and FFA converge to the reference trajectory successfully. 
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The variations in the angular velocity of the pole in the inverted pendulum system can be 

seen in figure 5.7 below for both PSO and FFA on a comparative basis. 

 

 

Figure 5.7: Angular velocity of the pole for both PSO and FFA 

 

Since the state variable 𝑥2 i.e. angular velocity is dependent on the pole angle deviation 

also, the variations in angular velocity are updated pertaining to each iteration and 

calculation of the pole angle. Thus, to achieve the goal of pole angle control, one should 

also make the angular velocity variation reach the reference trajectory i.e. the zero line. 

From the above figure, it can be seen that oscillations in FFA are slightly more when 

compared to PSO which are also smoother than the former. Again, the peak overshoot in 

the case of PSO is seen to be less than that of FFA and the particles are seen to be settling 

faster than the fireflies. Subsequently, both PSO and FFA are successfully bringing the 

angular velocity to the desired reference trajectory. 
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The position of the cart for the inverted pendulum system is shown in fig 5.8 below for 

both PSO and FFA on a comparative basis. 

 

Figure 5.8: Position of the cart for both PSO and FFA 

Since the state variable 𝑥3i.e. cart position is dependent on the pole angle deviation also, 

the variations in position of cart are updated pertaining to each iteration and calculation 

of the pole angle. Thus, to achieve the goal of pole angle control, one should also make 

the variation in position of the cart reach the reference trajectory i.e. the zero line. As a 

matter of fact, the variation in the position of the cart has to be finite, therefore, it is 

considered that it moves in a track length of 30 centimeters. The midpoint of the track is 

considered to be the origin and the right hand side from the origin is taken to be positive 

which restricts the movement of cart within [−15, +15]. 

From fig 5.8, it can be seen that again the PSO has a lesser peak overshoot than the FFA. 

Both the methods settle the cart to the desired reference, but particles outperform fireflies 

with a quicker settlement and a smoother response as well. 
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The variation in the velocity of the cart for both PSO and FFA is depicted in the folowing 

graph shown in fig 5.9. 

 

 

Figure 5.9: Velocity of the cart for both PSO and FFA. 

Since the state variable 𝑥4i.e. cart velocity is dependent on the cart position and pole 

angle deviation, the variations in velocity of the cart are updated pertaining to each 

iteration and calculation of the pole angle and cart position. Thus, to achieve the goal of 

pole angle control, one should also make the variation in velocity of the cart reach the 

reference trajectory i.e. the zero line. 

From the above figure, it can be seen that both PSO and FFA successfully achieve the 

desired response, but PSO has a slightly smoother variation than the FFA as is evident 

between the time 50 to 100 secs in the graph. Also, the peak overshoot in case of FFA is 

again seen higher when compared with the case of PSO. 

The error between the obtained response and the desired trajectory can be analysed with 

the help of fig 5.10 shown below. 
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Figure 5.10: Error between the pole angle obtained and the reference for both PSO and FFA. 

 

The figure above shows that the error between the reference and the pole angle deviation 

is approaching zero for both PSO and FFA. But, maximum error for the case of FFA 

(about 20) is seen to be more than the maximum error in case of PSO (about 17). If the 

time interval between 50 to 100 secs is considered, it can be seen that there is an abrupt 

increase and then decrease in the error value for FFA, while the error dynamics in the 

case of PSO is seen to be smooth enough. 

Thus, it can be commented that PSO tracks the desired reference trajectory more closely 

than its counterpart i.e. the FFA. 

Since the stabilization of the position of the cart is also an important factor for the control 

of the system, the error dynamics for the position of the cart with respect to the reference 

trajectory for both PSO and FFA is shown in fig 5.11. 
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Figure 5.11: Error between the cart position obtained and the reference for both PSO and FFA. 

 

It can be seen from the above figure that both PSO and FFA make the error between 

desired response and the obtained response for position of the cart equal to zero.  

Comparatively, the peak overshoot for PSO is seen to be less than that of the FFA which 

means that the error difference is less for PSO when compared with FFA. An abrupt 

variation in the error dynamics is seen between the time period 50 to 100 secs in the case 

of FFA while the dynamics is smooth for PSO. 

Thus, the graph indicates that PSO tracks the desired reference trajectory more closely 

than FFA with minimum error overshoots. 

The estimated value of the pole angle for both PSO and FFA method in order to 

implement indirect adaptive control is shown in fig 5.12 below on a comparative basis. 
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The initial estimates for both PSO and FFA were oscillatory in nature with extreme 

values, but gradually they were in tune with the desired response with smooth dynamics. 

It is to be noticed that the estimate for the pole angle by the particle’s best position in the 

case of PSO reaches the desired response faster than the estimates calculated by the best 

position of the fireflies in the case of FFA. This quick responsiveness in the estimation of 

the pole angle is a decisive factor in effectively controlling the pole angle in the 

pendulum system. It ultimately decides the speed of the controller as well which is also 

an essential factor for a control system. 

For both the methods i.e. PSO and FFA, cost function minimization is the basis for 

selection of the best particles or the best fireflies respectively. The cost function variation 

for both the methods is depicted in fig 5.13. 

 

Figure 5.12: Cost function graph for both PSO and FFA for inverted pendulum 
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Fig 5.12 shows the cost function for the particles in PSO and the fireflies in FFA. In both 

the cases, the value of the cost function decreases to zero. The cost value trend in FFA 

contains lots of variations with large overshoot while approaching the minimum value but 

in PSO, although there are minor variations, the overshoot is much less when compared 

with FFA.  

This shows that although the cost value for both the algorithm techniques reach a 

minimum value, the particle in PSO converge more effectively towards the best particle 

at a particular iteration than the fireflies in the FFA. 

The table 5.2 below shows a comparative result on the performance of PSO and FFA on 

the liquid level control in surge tank system. 

Table 5.2: Elapsed time and Minimum Cost for the inverted pendulum system 

Algorithm Elapsed Time Minimum Cost 

PSO 17.6038secs 0.001 

FFA 105.7061secs 0.002 

 

From table 5.2, it can be inferred from the data that elapsed time in PSO is much smaller 

than that in the case of FFA and also the minimum cost for PSO is also slightly smaller 

than that of FFA. 
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CHAPTER 6 

 

CONCLUSIONS AND FURTHER SCOPE OF WORK 

Indirect adaptive control is implemented on two nonlinear systems using two methods i.e. 

Particle Swarm Optimization (PSO) and Firefly Algorithm (FFA). The two nonlinear 

systems which were used for analysis were liquid level control in a surge tank system and 

pole angle control in an inverted pendulum system.  

 The results obtained with the liquid level control in a surge tank system show that 

both PSO and FFA were successful in controlling the liquid level in accordance with the 

desired trajectory. If analyzed on a comparative basis, it can be seen that in almost all the 

responses PSO gave less peak overshoots and comparatively less oscillations than FFA. 

The settling time for PSO is found to be lesser than the settling time for FFA. If the cost 

function is considered, it is found that particles in PSO gave a more minimum value than 

fireflies in FFA. It is also evident from the graphs that particles in PSO converge more 

smoothly towards their global best than the fireflies in FFA and thus the responses for 

PSO were much smoother than its counterpart. In all cases of iteration for the estimation 

of liquid height in the surge tank, it is found that PSO method for indirect adaptive 

control is much faster with an elapsed time of just 3.8429 secs when compared with FFA 

method for indirect adaptive control which has an elapsed time of 93.1496 secs. These 

observations converge to the fact that PSO method of indirect adaptive control performs 

better than the FFA method in the case of controlling liquid level in a surge tank. 

 The results obtained with the second system i.e. pole angle control in an inverted 

pendulum system show that again both the methods were successful in controlling the 

pole angle between [–
𝜋

2
,
𝜋

2
] and keeping it in upright position.If the analysis is done on a 

comparative basis, it can be seen that in the dynamics of all the four states i.e. pole angle, 

angular velocity, position of the cart and the velocity of the cart, PSO gave less 

overshoots and comparatively less oscillations than FFA. FFA takes more time to settle to 
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the desired response than the PSO method in all the cases. It is also noticed that particles 

in PSO converge more quickly towards their global best when compared with the fireflies 

in FFA and thus the responses for PSO method were much smoother and quicker than its 

counterpart. 

In all cases of iteration for the estimation of pole angle control in the inverted pendulum 

system, it is found that PSO method for indirect adaptive control is much faster with an 

elapsed time of just 17.6038 secs when compared with FFA method for indirect adaptive 

control which has an elapsed time of 105.7061 secs. The cost function value obtained 

with PSO is also slightly less compared with that obtained by using FFA. These 

observations converge to the fact that PSO method of indirect adaptive control performs 

better than the FFA method in the case of controlling pole angle to an upright position in 

an inverted pendulum system. 

 The error response for both the systems are seen to be converging to the zero line 

thereby indicating close tracking with the desired response by either method i.e. PSO or 

FFA. Thus, it can be concluded that PSO performs better than FFA for both the systems 

in terms of elapsed time, maximum peak overshoot and settling time. Although there is a 

very marginal difference in cost function value and smoothness of the response for both 

the methods, it can be clearly seen that both of them are equally successful in 

implementing indirect adaptive control for both the nonlinear systems. 

Further Scope:  

A brief research in the implementation of PSO and FFA in this area of indirect adaptive 

control will pave way for easy and effective control of more complex nonlinear systems 

where estimation of parameters is the most challenging task. This dissertation would 

prove useful for implementation of such indirect adaptive control techniques employing 

more different bioinspired algorithms for an effective and improved control of complex 

MIMO nonlinear systems. 

Although basic firefly algorithm is very efficient but it can be seen that the solutions are 

still changing as the optima are approaching. Solution quality can possibly be improved 

by reducing the randomness. 
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Convergence of the algorithm can further be improved by varying the randomization 

parameter α so that it decreases gradually with the approaching optima. Recent studies 

show that the efficiency may be significantly improved if an extra term 𝜆𝜖𝑖(𝑔
∗ − 𝑥𝑖) is 

added to the position update formula for each firefly i given by the update equation (2.6). 

Here, 𝜆 is a parameter which is similar to α and β while 𝜖𝑖 is a set of random numbers. 

PSO algorithms can outperform various other conventional algorithms for solving many 

optimization problems as can be evidently seen in various studies, which is partially due 

to that fact that the broadcasting ability of the current best estimates gives a quicker and 

better convergence towards the optimality. PSO algorithms are almost memoryless since 

they do not record the movement paths of each particle. Thus, it is expected that it can be 

further improved using short-term memory.  

These variants of FFA and PSO can be tested upon various other nonlinear complex 

control problems which can be further analyzed to develop more new methods for 

efficient control and thus these could form important topics for further research.  
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	2.2.1 FFA Operation
	2.2.2 Pseudocode for FFA
	1) Define objective function. F(x),X = (x1 , … ,xd)T.
	2) Generate initial population  xi (i = 1, 2, … , n)
	3) Determine light intensity Ii at xi is determined by f(xi).
	4) Define light absorption coefficient γ.
	5)  Compare each firefly with all others and move to the firefly having maximum intensity.
	Variation of attraction with distance r via exp(−𝛾𝑟) and evaluate new values and update light intensity.Repeat step 5 until maximum generation is reached
	6) Rank the fireflies, find the current global best g*
	7) Go to step 4 till satisfying condition is reached.


