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CHAPTER 1 

INTRODUCTION 

1.1 General 

This chapter includes a brief introduction about the CSTR (continuously 

stirred tank reactor) model, basic theory, adaptive control, parameters for PID 

controller and finally biological inspired optimization technique i.e. Particle Swarm 

Optimization. The basic idea behind Adaptive control is that it  can adjust its 

parameter automatically in such a way as to compensate for variations in the  

characteristics of the process it control and The basic ideas for optimization 

techniques depend upon their respective foraging behavior and the solution can be 

made as per the CSTR model. 

1.2 Continuously Stirred Tank Reactor (CSTR) 

In industries now a day the control of chemical process is important craft. 

Mostly all the chemical process are highly nonlinear in nature this cause instability of 

the process. Chemical reactors are ones of the most important plants in chemical 

industry. Their operation, however, is corrupted with various uncertainties. Some of 

them arise from varying or not exactly known parameters, as e.g. reaction rate 

constants, heat transfer coefficients. In other cases, operating points of reactors vary 

or reactor dynamics is affected by various changes of parameters or even instability of 

closed loop control systems. The main difficulty in tuning of control is due to the 

disturbances and parameter uncertainties. Application of robust control approach can 

be one of way to overcome all these problems.  

The design of a nonlinear feedback controller is analyzed for temperature and 

concentration control of Continuous Stirred Tank Reactors (CSTRs) which have 

strong nonlinearities. Consequently, we need to introduce a control mechanism that 

will make the proper changes on the process to cancel the negative impact that such 

nonlinearities may have on the desired operation of chemical plant [2, 4].  

1.3Paradigm and theory of controllers 
In control engineering a controlled system is primarily characterized by 

itsdynamic behavior which also determines the scope and quality required to solve a 

controltask. The dynamic behavior of the system depends on the system parameters, 

inputvariables, output variables and operating conditions. The controller maintains the 
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output at desired value by means of a control action. Any deviation of output from the 

reference input is detected by an error detector. The error thus detected is used as 

actuating signal for control action through a controller. The various control methods 

differ from each other depending on the factors based on which action is taken. 

Various kind of control methods that are availed and employed are discussed at length 

in this section. 

1.3.1 The ‘P’ controller 

Proportional or „P‟ controller is one of the basic controllers in control 

engineering. In „P‟ control the actuating signal for the control action is proportional to 

the error signal. The proportional control is probably the easiest feedback control for 

implementation, where the error signal being the difference between the reference 

input signal and theactual signal (feedback) obtained. A constant denoted as „Kp‟ 

called as proportional gain is multiplied with error signal, thus the controller actuating 

signal is obtained, which inturn is fed to the drive. Due to presence of fixed 

disturbance, a DC offset is observed in„P‟ control. A tradeoff is to be made between 

the maximum overshoot and steady stateerror. As increase in gain value is desirable to 

reduce steady state error, the increasedgain also increase the maximum overshoot 

value. So, there is need for further improvement in terms of eliminating steady state 

error. 

1.3.2 The ‘PI’ controller 

The limitation of a DC offset in „P‟ control can be overcome by adding 

anintegral term of error signal that provides desired DC stiffness to the system. 

Theintegral gain represented as „Ki‟, increased value gives more stiffness at the cost 

of large overshoot. A sufficient value of „Ki‟ gain in the controller will eliminate the 

DC offset, as the presence of even a small value of DC offset will make the integral 

term large. Although integral gain adds precision to the close loop control but it lacks 

in the wind up function that is needed to control the gain value during saturation. An 

improvement in the steady state error is introduced by „PI‟ controller in the system 

dynamics. 

1.3.3 The ‘PD’ controller 

For a derivative control action the actuating signal consist of proportional 

error signal added with derivative of error signal. The gain of derivative term is 

represented as„Kd‟ called as derivative gain, which induces a phase lead of 90 degrees 

in the loop. The derivative term can be represented as a difference term divided by 
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sample time. The difference term is the last value of the position minus the current 

position value. The difference term divided by time gives a rough estimate of 

velocity, which helps the future position prediction. The derivative terms allow 

system‟s responsiveness to increase but make it more susceptible to noise. A noise is 

introduced in the system, if the change in position is constant and the sample time 

varies from sample to sample. The derivative action give high gain at high frequency 

this improves gain margin but affect the system adversely by adding gain margin at 

phase crossover frequency, which is typically at high frequency. Hence, the system 

suffers from noise that is spread evenly across the frequency spectrum and eventually 

worse in high frequency range. A low pass filter following the controller would 

eliminate the sample induced irregularities and oscillation in the system especially at 

high frequency. The control commands and plants outputs are usually of low 

frequency, so the presence of high pass filter does not affect their functioning. 

1.3.4 The ‘PID’ controller 

Conventional proportional integral derivative or „PID‟ controllers are most 

commonly used controller. It can be obtained by combination of „PI‟ with „D‟, or 

„PD‟with „I‟ control action. The three terms „P‟, „I‟ and „D‟ work on the error value 

interpreted in terms of time, as „P‟ depends on present value of error, „I‟ depends on 

the summation of past values and „D‟ depends on the rate of change of error 

predicting the future error. Each of the control action has different effect on the 

system and weighted sum of all the three actions is used by the PID controller. The 

PID control action can be divided in two zone based on the frequency, at lower 

frequency the „Kp‟ gain dominated and at high frequency there is contribution from 

two gains „Kp‟ and „Ki‟. The derivative action helps in setting „Kp‟ at higher side then 

that can be set generally. All this actions work in tandem with in the close loop, 

depending on the command and the feedback signal of the system. Although the PID 

is superior to the P, PI, PD controller in term of system dynamics response but it come 

with an expense of increased sensitivity towards the changes in plant model. The 

rigorous task of tuning a PID controller is also a matter of great concern [5]. 

1.4 Adaptive Control 

                An adaptive controller is a controller that can modify its behavior in 

response to changes in the dynamics of the process and the disturbances. Adaptive 

control can be considered as a special type of nonlinear feedback control in which the 
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stages of the process can be separated in two categories, which can be change at 

different rates. The slowly changing states are viewed as parameters with a fast time 

scales for the ordinary feedback and a slower one for updating regulator parameters. 

One of the goal of adaptive control is to compensate for parameter variations, which 

may occur due to nonlinear actuators, changes in the operating conditions of the 

process and non-stationary disturbances acting on the process. 

          In common sense, „to adapt‟ means to change a behavior to conform to new 

circumstances .Intuitively,an adaptive controller is thus  a controller that can 

modify its behavior in response to the changing dynamics  of the process  and the 

character of  the disturbances. The core element  of all the approaches is that they 

have the ability to adapt the controller to accommodate changes in the process. 

This permits the controller to maintain a required level of performance in spite 

of any noise or fluctuation in the process .An adaptive system has maximum 

application when the plant undergoes transitions or exhibits non-linear behavior 

and   when the structure of the plant is not known. Adaptive is called a control 

system, which can adjust its parameter automatically in such a way as to 

compensate for variations in the characteristics of the process it control. 

An adaptive control system can be thought of as having two loops.one loops 

is normal feedback loop with the process and controller. The other loop is a 

parameter adjustment loop. The parameter adjustment loop is slower than the 

normal feedback loop [33]. 

 

Fig. 1.1 Block diagram of an Adaptive Controller 
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As compared to fixed gain PID controllers adaptive controllers are very effective to 

handle the situation where the parameter variations and environmental changes are 

frequent. The controller parameters are adjusted to give desired closed loop 

performance. 

   The adaptive controller maintains constant dynamic performance in the 

presence of unpredictable and immeasurable variations. Adaptive control changes 

the control algorithm coefficients in real time to compensate for variations in the 

environment or in the system itself. It also varies the system transfer function 

according to situation. 

Intuitively an adaptive system has maximum application when the plant 

undergoes transitions or exhibits non-linear behavior and when the structure of the 

plant is not known. This permits the Controller to maintain a required level of 

performance in spite of any noise or fluctuation in the process. The basic PID 

controllers have difficulty in dealing with problems that appear in complex non-

linear processes. This work presents a practical non-linear adaptive and PID 

controller that deals with these non-linear difficulties 

   Now-a-days the adaptive control schemes are making their place where the 

conventional control system is not able to cope-up with the situation, like 

1) Loads, inertias and other forces acting on system change drastically. 

2) Possibility of unpredictable and sudden faults. 

3) Possibility of frequent or unanticipated disturbances. 

1.4.1 Adaptive Schemes 

 In the adaptive control there are 4 types of schemes:  

1) Gain scheduling  

2) Model reference adaptive control  

3) Self tuning regulator 

4) Dual control  

1.4.1.1 Gain Scheduling: 

In many cases it is possible to find measurable variables that correlate well 

with changes inprocess dynamics. These variables can then be used to change the 
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controller parameters. This approach is called gain scheduling because the scheme 

was originally used to measure the gain and then change, thatis, schedule, 

thecontroller to compensate for changes in the process gain. A block diagram of 

system with gain scheduling is shown in fig 1.2.the system can be viewed as having 

two loops. There is an inner loop composed of the process and the controller and an 

outer loop that adjusts the controller parameters on the basis of the operating 

conditions. 

Gain scheduling can be regarded as a mapping from process parameters to 

controller parameters. It can be implemented as a function or table lookup [9]. 

Fig. 1.2 Block diagram of a system with Gain Scheduling 

1.4.1.2 Model Reference Adaptive System (MRAS) 

 The model reference adaptive system was originally proposed to solve a 

problem in which the performance specifications are given in terms of a reference 

model. This model tells how the process output ideally should respond to the 

command signal. A block diagram of the system is shown in fig.1.3.the controller can 

be thought of as consisting of two loops. The inner loop is an ordinary feedback loop 

composed of the process and the controller. The outer loop adjusts the controller 

parameters in such a way that the error, which is the difference between process 

output y and model output ym is small 

The key problem with MRAS is to determine the adjustment mechanism so that a 

stable system, which brings the error to zero, is obtained [9]. 
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Fig.1.3 Block diagram of a Model Reference Adaptive System 

1.4.1.3 Self Tuning Regulator 

In this method the estimates of the process parameters are updated and the controller 

parameters are obtained from the solution of a design problem using the estimated 

parameters. Block diagram of self tuning regulator is shown in fig.1.4 the adaptive 

controller can be thought of as being two loops. The inner loop consists of the process 

and an ordinary feedback controller. The parameters of the controller are adjusted by 

the outer loop, which is composed of a recursive parameter estimator and a design 

calculation. It is sometimes not possible to estimate the process parameters without 

probing control signals or perturbations. The system may be viewed as an automation 

of process modeling and design, in which the process model and the control design 

are updated at each sampling period. A controller of this construction is called a self 

tuning regulator (STR) to emphasize that the controller automatically tunes its 

parameters to obtain the desired performance of closed loop system [9].
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Fig.1.4 Block diagram of Self Tuning Regulator 

1.4.1.4 Dual Control 

 Dual control theory uses the concept of abstract problem formulation and 

optimization theory. A major consequence of dual control is that uncertainties in the 

estimated parameters will be taken into account in the controller. The controller will 

also take special action when it has poor knowledge about the process. It attempts to 

drive the output to its desired value, but it will also introduce perturbations when the 

parameters are uncertain. This improves the quality of estimates and the future 

performance of closed loop system. It gives the correct balance between maintaining 

good control and small estimation errors [9]. 

 

Fig.1.5 Block diagram of Dual Control 
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1.4.2 The Adaptive Control Problem  

An adaptive controller has been defining as a controller with adjustable parameter 

and a mechanism for adjusting the parameters. The construction of an adaptive 

controller thus contains the following steps [10,13,15]. 

1) Characterize the desired behavior of closer loop system. 

2) Determine a suitable control law with adjustable parameters. 

3) Find a mechanism for adjusting the parameter.  

4) Implement the control law. 

In this thesis Model Reference Adaptive Control method has been studied. 

 

1.5 Bio inspired Optimization: 

An optimization algorithm is a numerical method or algorithm for finding the 

maxima or the minima of a function operating with certain constraints. Bio inspired 

optimization is a successor of artificial intelligence relying on Evolutionary 

computation, which is a famous optimization technique. Bio inspired intelligence 

combines elements of learning; adaptation and evolution to create programs that are, 

in some sense, intelligent. Bio inspired optimization research does not reject statistical 

methods, but often gives a complementary view. Bioinspired optimization finds its 

fundamental application in the area of fitness function design, methods for parameter 

control, and techniques for multimodal optimization. The importance of Bio inspired 

optimization lies in the fact that these techniques often find optima in complicated 

optimization problems more quickly than the traditional optimization methods. 

 The real beauty of bio inspired algorithms lies in the fact that it receives its sole 

inspiration from nature. They have the ability to describe and resolve complex 

relationships from intrinsically very simple initial conditions and rules with little or no 

knowledge of the search space Nature is the perfect example for optimization, 

because if we closely examine each and every features or phenomenon in nature it 

always find the optimal strategy, still addressing complex interaction among 

organisms ranging from microorganism to fully fledged human beings, balancing the 

ecosystem, maintaining diversity, adaptation, physical phenomenon like river 

formation, forest fire ,cloud, rain .etc..Even though the strategy behind the solution is 

simple the results are amazing. Nature is the best teacher and its designs and 
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capabilities are extremely enormous and mysterious that researchers are trying to 

mimic nature in technology. Also the two fields have a much stronger connection 

since, it seems entirely reasonable that new or persistent problems in computer 

science could have a lot in common with problems nature has encountered and 

resolved long ago. Thus an easy mapping is possible between nature and technology. 

Bio inspired computing has come up as a new era in computing encompassing a wide 

range of applications, covering all most all areas including computer networks, 

security, robotics, bio medical engineering, control systems ,parallel processing ,data 

mining, power systems, production engineering and many more. 

 

 Formulating a design for bio inspired algorithms involves choosing a proper 

representation of problem, evaluating the quality of solution using a fitness function 

and defining operators so as to produce a new set of solutions [21,22]. 

 

Fig.1.6 Types of Bio Inspired Optimization Techniques 

 

In this thesis Particle Swarm Optimization has been studied. 

1.5.1 Particle Swarm Optimization 

Particle swarm optimization, first developed by Kennedy and Eberhart, is one 

of the modern heuristic algorithms. It was inspired by the social behavior of bird and 

fish schooling, and has been found to be robust in solving continuous nonlinear 

optimization problems. PSO is a robust stochastic evolutionary computation method based 

on the movement of swarms looking for the most fertile feeding location [33]. Particle 

swarm optimization is an extremely simple algorithm that seems to be effective for 

optimizing a wide range of functions. It is viewed as a mid-level form of A-life or 

biologically derived algorithm, occupying the space in nature between evolutionary 

search, which requires eons, and neural processing, which occurs on the order of 
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milliseconds. Social optimization occurs in the time frame of ordinary experience - in 

fact, it is ordinary experience. In addition to its ties with A-life, particle swarm 

optimization has obvious ties with evolutionary computation. Conceptually, it seems 

to lie somewhere between genetic algorithms and evolutionary programming. It is 

highly dependent on stochastic processes, like evolutionary programming [28,40]. 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA).In general. PSO implementation is easier than GA. Indeed, 

PSO only has one operator; velocity calculation, so the computation time is decreased 

significantly. The reason is PSO does not perform the selection and crossover 

operations in evolutionary process. Another difference between GA and PSO is the 

ability to control convergence. Crossover and mutation rates can affect the 

convergence of GA, but nothing can compare to the level of control achieved through 

manipulating of the inertial weight. The more decrease of inertial weight the more 

increase the swarm's convergence. This type of control allows determining the rate of 

convergence, and the level of 'stagnation' eventually achieved. Stagnation occurs in 

GA when all of the individuals have the same genetic code. In that case the gene pool 

is uniform, crossover has little or no effect on population and each successive 

generation is essentially same as the first. However, in the PSO, this effect can be 

controlled or prevented .Compared to GA, the advantages of PSO are that PSO is easy 

to implement and there are few parameters to adjust. PSO has been successfully 

applied in many areas: function optimization, artificial neural network training, fuzzy 

system control, and other areas where GA can be applied [24, 25, 33, 37] 

 This algorithm is based on the following scenario: a group of birds are 

randomly searching food in an area and there is only one piece of food. All birds are 

unaware where the food is, but they do know how far the food is at each time instant. 

The best and most effective strategy to find the food would be to follow the bird 

which is nearest to the food. Based on such scenario, the PSO algorithm is used to 

solve the optimization problem. In PSO, each single solution is a “bird” in the search 

space; this is referred to as a “particle”. The swarm is modeled as particles in a multi 

dimensional space, which have positions and velocities. These particles have two 

essential capabilities: their memory of their own best position and knowledge of the 

global best. Members of a swarm communicate good positions to each other and 

adjust their own position and velocity based on good positions. 

 The features of the particle swarm optimization method are as follows: 
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• The method is developed from research on swarm such as fish schooling and bird 

flocking. It can be easily implemented, and has stable convergence characteristic with 

good computational efficiency [31]. 

In a PSO system, particles fly around in a multi-dimensional search space 

adjusting its position according to its own experience and the experience of its 

neighboring particle. The goal is to efficiently search the solution space by swarming 

the particles towards the best fitting solution encountered in previous iterations with 

the intention of encountering better solutions through the course of the process and 

eventually converging on a single minimum or maximum solution. The performance 

of each particle is measured according to a pre-defined fitness function, which is 

related to the problem being solved. PSO has been regarded as a promising 

optimization algorithm due to its simplicity, low computational cost and good 

performance [34, 35]. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

 

The reported literature reveals a rising interest toward optimized controller as 

well as adaptive controllers in process industry. Chemical reactors are ones of the 

most important plants in process industry. Their operation, however, is corrupted with 

various uncertainties. . The main difficulty in tuning of control is due to the 

disturbances and parameter uncertainties. Application of adaptive and optimized PID 

control approach can be some ways of overcoming all these problems.  

The basic PID controllers have difficulty in dealing with problems that appear 

in complex non-linear processes. An adaptive system has maximum application when 

the plant undergoes transitions or exhibits non-linear behavior and when the structure 

of the plant is not known. This permits the controller to maintain a required level of 

performance in spite of any noise or fluctuation in the process. 

With the advance of computational methods in the recent times tuning a PID 

controller is rather difficult and can be a time consuming process so, optimization 

algorithms are proposed to tune the PID controller parameters in order to find an 

optimal performance. There are several optimization algorithms which can be used for 

searching the optimal gain parameters. 

This literature overview gives an impression of a number of the available 

methods for controlling like adaptive and optimized PID control design and discusses 

the advantages, disadvantages and their applicability. 

2.2 Literature Review 

Chemical reactors are the most influential and therefore important units that a 

chemical engineer will encounter. To ensure the successful operation of a continuous 

stirred tank reactor (CSTR) it is necessary to understand their dynamic characteristics. 

A good understanding will ultimately enable effective control systems design [1, 3]. 

 The mathematical model of CSTR is constructed by two ordinary differential 

equations. The simple iteration method and Runge-Kutta‟s method were used for 

numerical solving of steady-state and dynamic analyses. These analyses show mainly 

nonlinearity of the system and results in the choice of the second order transfer 

function with relative order one as ELM [2, 3, 4]. 
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A comparative study of tuning of PID controller using different conventional 

methods like ZieglarNicholas,Cohen-Coon, etc. is described and concluded that  the 

traditional Ziegler-Nichols method can be used confidently for majority of systems 

[5,6,7]. 

PID controller is most popular control scheme that has been widely used 

throughout the chemical process industry but it doesn‟t give satisfactory performance 

for nonlinear system so it is necessary to develop a new controller which 

accommodate the advantages of conventional PID controller and eliminate their 

drawbacks [8]. 

The disadvantage of PID Controller is that it cannot maintain the stability and 

it has higher response time i.e. the effluent temperature and concentration is not keep 

as a desired value. The PID controller does not ensure the stability of the process, and 

it is not suppressing the influence of external disturbances [8]. 

As compared to conventional controllers (PID Controllers), Adaptive Controllers are 

very effective to handle the situations where the parameter variations and 

environmental changes occur, therefore, the controller parameters are adjusted 

automatically to give a desired closed loop performance. The adaptive controller 

maintains constant performance in the presence of disturbances [9,10, 11]. 

The behavior of a system controlled by model reference adaptive control 

scheme using MIT rule and conclude that by increasing the adaptation gain till some 

extent, the settlingtime, peak time and rise time was decreased. Hence for suitable 

value of adaptation gain in MIT rule, the plant output follows the reference model 

[12]. 

By  using adaptive control the entire dynamic characteristic of the system is 

improved also controller maintains constant dynamic performance in the presence of 

unpredictable and immeasurable variations [13]. 

The adaptive controller exhibits superior performance in the presence of noise the 

convergence time is typically large and there is a large overshoot. To resolve these 

problems of adaptive controller, the proposed controller is redesigned by modifying 

the adaptation law. And a significant improvement is observed in the performance of 

the adaptive controller without excessive increase in the adaptation rate [14]. 

The MIT rule by itself does not guaranteeconvergence or stability. An MRAC 

designed usingthe MIT rule is very sensitive to the amplitudes of thesignals. The 
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parameter adaption gain has to havesmall values. For greater values in absolute value 

of the offset leads also to instability [16]. 

An alternative approach to the MIT rule is to use Lyapunov based method, 

which avoids the stabilityproblems present in the gradient approaches [17, 20]. 

In case of MIT rule, if adaptation gain increases, the time response of the 

system is also improved for the chosen range of adaption gain and further system is 

unstable in the upper range. In Lyapunov rule, system is stable beyond the chosen 

range of adaptation gain. So with suitable value of adaptation gain in MIT rule and 

Lyapunov rule plant output can be made close to reference model. It can be concluded 

that performance using Lyapunov rule is better than the MIT rule [18]. 

Although by using adaptive controller settling time and overshoot is reduced 

as compared to conventional controller but by using optimized controller  very good 

conversion can be achieved and at the same time the temperatures inside the reactor 

do not violate the safety constraints, even when there are large disturbances in the 

feed concentrations [13]. 

To enhance the capabilities of traditional PID parameter tuning techniques, 

several intelligent approaches have been suggested to improve the PID tuning, there 

are several optimization algorithms which can be used for searching the optimal gain 

parameters a very basic one is the random search. Randomly points are selected from 

the feasible set and these are evaluated the best one is selected as the optimum. A 

more sophisticate algorithm is, for example, Simulated Annealing (SA) [23], SA is an 

algorithm that inspired by annealing in metallurgy. Main idea of this method is to 

replace the current solution by a random “nearby” that is better than the current 

solution such as those using genetic algorithms (GA) [24,25] and the particle swarm 

optimization (PSO) [26,27]. With the advance of computational methods in the recent 

times, optimization algorithms are often proposed to tune the control parameters in 

order to find an optimal performance. 

PSO method does not perform the selection and crossover operations in 

evolutionary processes, it can save some computation time compared with the GA 

method, thus proving that the PSO-PID controller is more efficient than the GA-PID 

controller [38]. 

Particle swarm optimization is an extremely simple algorithm that seems to be 

effective for optimizing a wide range of functions. We view it as a mid-level form of 

A-life or biologically derived algorithm, occupying the space in nature between 



16 
 

evolutionary search, which requires eons, and neural processing, which occurs on the 

order of milliseconds [28].The PSO technique can generate a high-quality solution 

within shorter calculation time and stable convergence characteristic than other 

stochastic methods. PSO method is an excellent optimization methodology and a 

promising approach for solving the optimal PID controller parameters [29,30,31,32]. 

PSO presents multiple advantages to a designer by operating witha reduced 

number of design methods to establish the type of the controller, giving a possibility 

of configuring the dynamic behavior of the control system with ease, starting the 

design with a reduced amount of information about the controller (type and allowable 

range of the parameters), but keeping sight of the behavior of the control system. The 

performance of the above said method of tuning a PID controller can even be proved 

to be better than the method of tuning the controller after approximating the system to 

a FOPTD model, and using the traditional techniques, regarding which a rich 

literature is available. So this method of tuning can be applied to any system 

irrespective of its order and can be proved to be better than the existing traditional 

techniques of tuning the controller [33,34,35].. 

The variables which characterize the quality of the final product in CSTR are 

often difficult to measure in real-time and cannot be directly measured using the 

feedback configuration. So, a virtual feedback control isimplemented to control the 

state variables using Extended Kalman Filter (EKF) in the feedback path. Since it is 

hard to determine the optimal or near optimal PID parameters using classical tuning 

techniques like Ziegler Nicholasmethod, so it is implemented with highly skilled 

optimization algorithm like ParticleSwarm Optimization (PSO) is used [33]. 

PSO method has more robust stability and efficiency and can solve the 

searching and tuning problems of PIDcontroller parameters more easily and quickly 

than the Ziegler-Nichols method [37]. 

Soft computing techniques are often criticized for two reasons: algorithms are 

computationally heavy and convergence to the optimal Solution cannot be guaranteed. 

PID controller tuning is a small-scale problem and thus computational complexity is 

not really an issue here. It took only a couple of seconds to solve the problem. 

Compared to conventionally tuned system, GA,EP, PSO an ACO tuned system has 

good steady state response and performance indices [36, 39]. 
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2.3 Conclusion 

 
The exhaustive literature review has been carried out. The detailed analysis of 

literature review has revealed that extensive work is being carried out in the field of 

CSTR. The advancement in evolutionary algorithms has facilitated the development 

of various control strategies for its implementation. Performance enhancement and 

increase in robustness encourages the use of evolutionary algorithms as it improves 

the both, in the presence of nonlinearities and varying operation conditions. Different 

controller configurations for concentration and temperature control of CSTR tried for 

better response. Reduction in computational effort and memory requirement can be 

achieved with optimization techniques.  
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CHAPTER 3 

DEVELOPMENT OF MATHEMATICAL MODELING OF 

CSTR 

3.1 General 

The most important unit in a chemical process is generally a chemical 

reactor. A chemical reactor is a vessel where reactions are carried out purposefully to 

produce products from reactants by means of one or more chemical 

reactions.  Chemical reactions are either exothermic (release energy) or endothermic 

(require energy input) and therefore require that energy either be removed or added to 

the reactor for a constant temperature to be maintained. Here, we consider a perfectly 

mixed, continuously stirred tank reactor (CSTR) as shown in Figure 3.1 Single, first-

order exothermic irreversible reaction; A      B is taking place in CSTR [2]. 

 

Fig.3.1 Continuous Stirred Tank Reactor with Cooling Jacket 

In fig.3.1 a fluid stream is continuously fed to the reactor and another fluid 

stream is continuously removed from the reactor. Sincethe reactor is perfectly mixed, 

the exit stream has the same concentration and temperature as the reactor fluid. A 

jacket surrounding the reactor also has feed and exit streams. The jacket is assumed to 

be perfectly mixed and at lower temperature than the reactor. Energy then passes 
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through the reactor walls into the jacket, remove the heat generated by reaction [1, 3, 

4]. 

3.2 Mathematical Modeling 

For simplicity it is assumed that the cooling jacket temperature can be directly 

manipulated, so that an energy balance around the jacket is not required. Following 

assumptions are also made [2,3]: 

1) Perfect mixing  

2) Constant volume  

3) Constant parameter values 

3.2.1 Overall Material Balance 

 The rate of accumulation of material in the reactor is equal to the rate of 

material in by flow minus the material out by flow.     

     
dVρ

dt
= Finρin  - Fout ρ              (3.1) 

Assuming a constant amount of material in the reactor(
dVρ

dt
= 0), we find that 

    Finρin  =  Fout ρ 

If we also assume that the density remains constant, then    

    Fin = Fout = F 

And 
dV

dt
 = 0 

3.2.2 Balance on Component A 

The balance on component A is      

    
dV CA

dt
= FCAf  – FCA  – rV             (3.2) 

Where‟ r‟ is the rate of reaction per unit volume [2, 3]. 
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3.2.3 Energy Balance 

  The energy balance equation is given by     

 
d(Vρcp  T−Tref  

dt
= Fρcp Tf −  Tref  − Fρcp T −  Tref  +  −∆H Vr − UA T −  Tj    (3.3)                                                        

whereTref  represents an arbitrary reference temperature for enthalpy [3,4].  

3.3 State Variable Form of Dynamic Equations 

Equation (3.1) and (3.2) can be written in the following state variable form  

(since
dV

dt
 = 0)     

                                  f1 CA , T =  
dCA

dt
=  

F

V
(CAf − CA ) − r                                         (3.4)

  f2(CA , T) =  
dT

dt
=  

F

V
 Tf − T +  

−∆H

ρcp
 r −

UA

Vρcp
(T − Tj)           (3.5) 

Here it is assumed that the volume is constant. The reaction rate per unit volume 

(Arrhenius expression) is 

r=𝑘𝑜e−∆E RT  

Where it is assumed that the reaction is first-order [2]. 

Guess 1 - High concentration (low conversion), Low temperature. Here we consider 

an initial guess of CA =8 and T = 300 K. 

So the steady-state solution for guess 1 is 
𝐶𝐴𝑆

𝑇𝑆
 = 

8.56
311.2

  that is, high concentration 

(low conversion) and low temperature [15]. 

3.4 Linearization of Dynamic Equations  

The stability of the nonlinear equations can be determined by finding the 

following state-space form        

                         X = AX + BU      (3.6) 
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And determining the Eigenvalues of the A (state-space) matrix. 

The nonlinear dynamic state equations are [13] 

𝑓1 𝐶𝐴 ,𝑇 =  
𝑑𝐶𝐴

𝑑𝑡
=  −

𝐹

𝑉
𝐶𝐴−𝑘𝐶𝐴 +

𝐹

𝑉
𝐶𝐴𝑓  

𝑓2(𝐶𝐴 ,𝑇) =  
𝑑𝑇

𝑑𝑡
=  

−∆𝐻

𝜌𝑐𝑝
 𝑘𝐶𝐴 −

𝐹

𝑉
𝑇 −

𝑈𝐴

𝑉𝜌𝑐𝑝
𝑇 +

𝑈𝐴

𝑉𝜌𝑐𝑝
𝑇𝑗 +

𝐹

𝑉
𝑇𝑓  

Let the state, and input variables be defined in deviation variable form 

x =  
𝐶𝐴 −  𝐶𝐴𝑠

𝑇 − 𝑇𝑠
 u =  Tj  

3.5 Steady-State Solution 

The steady-state solution is obtained when 
𝑑𝐶𝐴

𝑑𝑡
= 0 and

𝑑𝑇

𝑑𝑡
= 0, that is 

         𝑓1 𝐶𝐴 , 𝑇 =  0 =  
𝐹

𝑉
(𝐶𝐴𝑓 − 𝐶𝐴) − 𝑘𝑜e−∆𝐸 RT 𝐶𝐴   (3.7) 

  𝑓2(𝐶𝐴, 𝑇) =  0 =  
𝐹

𝑉
 𝑇𝑓 − 𝑇 +  

−∆𝐻

𝜌𝑐𝑝
 𝑘𝑜e−∆E RT 𝐶𝐴 −

𝑈𝐴

𝑉𝜌𝑐𝑝
(𝑇 − 𝑇𝑗 )                                

(3.8) 

To solve these two equations, all parameters and variables except for two (CA 

and T) must be specified. Numerical values given in table1 can be use to solve for the 

steady-state values of CA and T [2,3,5].   
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Table 3.1 Reactor Parameters[11] 

Reactor Parameter Description Values 

𝐹

𝑉
 (hr-1) 

Flow rate*reactor 

volume of tank 
1 

𝑘𝑜  ( hr-1) Exponential factor 10𝑒15  

-∆H (BTU/lbmol) Heat of reaction 6000 

E(BTU/lbmol) Activation energy 12189 

𝜌𝑐𝑝  ( BTU/𝑓𝑡3) Density*heat capacity 500 

𝑇𝑓  (K) Feed temperature 312 

(𝐶𝐴𝑓  ( lbmol/𝑓𝑡3) 
Concentration of feed 

stream 
10 

𝑈𝐴

𝑉
 

Overall heat transfer 

coefficient/reactor 

volume 

145 

𝑇𝑗  (K) Jacket temperature 300 

3.6 Stability Analysis  

Performing the linearization, following elements forA are obtained: 

𝐴11 =  
𝜕𝑓1

𝜕𝑥1
=  

𝜕𝑓1

𝜕𝐶𝐴
=  −

𝐹

𝑉
− 𝑘𝑠  

𝐴12 =  
𝜕𝑓1

𝜕𝑥2
=  

𝜕𝑓1

𝜕𝑇
=  −𝐶𝐴𝑠𝑘𝑠

′  
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𝐴21 =  
𝜕𝑓2

𝜕𝑥1
=  

𝜕𝑓2

𝜕𝐶𝐴
=   

−∆𝐻

𝜌𝑐𝑝
 𝑘s  

𝐴22 =  
𝜕𝑓2

𝜕𝑥2
=  

𝜕𝑓2

𝜕𝑡
= −

𝐹

𝑉
𝑇 −

𝑈𝐴

𝑉𝜌𝑐𝑝
+  

−∆𝐻

𝜌𝑐𝑝
 𝐶𝐴𝑠𝑘𝑠

′  

Where we define the following parameters for more compact representation  

    𝑘𝑠 = 𝑘𝑜exp 
−∆𝐸

𝑅𝑇𝑠
  

   𝑘𝑠
′

    = 
𝜕𝑘𝑠

𝜕𝑇
= 𝑘𝑜exp 

−∆𝐸

𝑅𝑇𝑠
  

−∆𝐸

𝑅𝑇𝑠
2  

Or 

𝑘𝑠
′ =   𝑘𝑠  

∆𝐸

𝑅𝑇𝑠2
  

From the analysis presented above, the state-space A matrix is  

A =  
−

F

V
− ks −CAs ks

′

−∆H

ρcp
ks                     −

F

V
−

UA

Vρcp
 +  

−∆H

ρcp
 CAs ks

′
                  (3.9) 

A=  
−1.175 −.08045
−2.1 −2.255

  

Where the elements of the B matrix are 

B11=
∂f1

∂U1
=

  ∂f1

∂Tj
=0 

B21=
∂f2

∂U1
=

  ∂f2

∂Tj
=

UA

VρCp
 

The input matrix B is 

                                                           B= 
0

UA

VρCp

                                                       (3.10) 

B= 0; .29  
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C= [0 1] 

D=0 

The stability characteristics are determined by the Eigenvalues of A, which are 

obtained by solving det (λI - A) = 0. 

In Mat lab command we can write 

≫ A = [ −1.175  − 0.08045; −2.1 − 2.255]; 

>>  𝑙𝑎𝑚𝑏𝑑𝑎 = 𝑒𝑖𝑔(A) 

 

lambda = 

   -1.0364 

   -2.3936 

Both of the Eigen values are negative, indicating that operating point is stable [2, 3]. 

3.7 Transfer Function Analysis 

By evaluating the A and B, the transfer function that relate the input to output  can be 

calculate by using Mat lab command. 

    G S = C(SI − A)−1 B+D   (3.11) 

>> [num, den] =ss2tf (A, B, C, D) 

num =   0   .29  .3407 

den =    1.0000   3.43  2.48 

So the transfer function of the process is 
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Gp S =
. 29S + .3407

S2 + 3.43S + 2.48
 

3.8 Conclusion 

In this chapter state space model of CSTR has been obtained by calculating mass 

balance and energy balance equation. After obtaining state space model of CSTR, its 

transfer function is obtained by using Matlab. 
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CHAPTER4 

MODEL REFERENCE ADAPTIVE CONTROL 

 

4.1 General 

Model reference adaptive system is an important adaptive controller .It may be 

regarded as an adaptive servo system in which the desired performance is expressed 

in terms of a reference model, which gives the desired response to a command 

signalas shown in figure 2.1 the system has an ordinary feedback loop composed of 

the process and the controller and another feedback loop that changes the controller 

parameters. The parameters are changed on the basis of feedback from error, which is 

the difference between the output of system and the output of reference model. The 

ordinary feedback loop is called the inner loop and the parameter adjustment loop is 

called the outer loop. The mechanism for adjusting the parameters in a model 

reference adaptive system can be obtained in two ways by using a gradient method or 

by applying Lyapunov‟s stability theory. 

MRAC is composed of four parts: a plant containing unknown parameters, a reference 

model for compactly specifying the desired output of control system, a feedback 

control law containing adjustable parameters 

Plant: The plant is assumed to have a known structure, although the parameters are 

unknown. 

Reference model: A reference model is used to specify the ideal response of adaptive 

control system to the external command. The choice of reference model has to satisfy 

two requirements. 

1) It should reflect the performance specification in the control task, such as rise 

time, settling time, overshoot or equivalent frequency domain characteristics. 

2) The ideal behavior specified by the reference model should be achievable for 

the adaptive control system. 

Controller: The controller is usually parameterized by a number of numbers of 

adjustable parameters. This implies that there exists different set of controller 

parameters value for which the desired control task is achievable usually the control 
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law is liner in terms of adjustable parameters. Existing adaptive control designs 

normally require liner parameterization the controller in order to obtain mechanism 

with guarantee stability and tracking convergence. 

Adaption mechanism: it is used to adjust the parameter in the control law. In MRAC 

system the adaption law searches for the parameter such that the response of plant 

under adaptive control becomes the same as that of the reference model. The adaption 

mechanism drives the tracking error to zero. This adaption mechanism is design to 

guarantee the stability of control system as well as convergence of the tracking error 

to zero.  

 

  Figure 4.1 Block Diagram of a Model Reference Adaptive System 

In the MRAS the desired behavior of the system is specified by a model, and the 

parameters of the controller are adjusted on the error, which is the difference between 

the output of closed loop system and the model [9,10,18,19]. 

4.2 MIT Rule 

 The MIT rule is the original approach to MRAC.The name is derived 

from the fact that it was developed at the instrumentation laboratory at MIT. 
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Figure 4.2 Block diagram of MRAS Based on MIT Rule 

Here, we have considered a closed loop control system in which the controller has one 

adjustable parameter θ the desired closed loop response is specified by a model whose 

output is ym.Let e be the error between the output y of closed loop system and the 

output ym of the model. The convergence of the modeling error to zero for any given 

uc is assured when y exactly follows the output of the model (ym), 

The modeling error e is given by equation (4.1)     

   𝑒 = 𝑦 − 𝑦𝑚                           (4.1) 

One possibility is to adjust the parameter in such a way that the loss function is 

   𝐽(𝜃) =
1

2
𝑒²(𝜃)               (4.2) 

To find out how to update the parameter theta, an equation needs to be formed for the 

change in theta. If the goal is to minimize this cost related to the error, it is sensible to 

move in the direction of the negative gradient of J. This change in J is assumed to be 

proportional to the change in theta. Thus, the derivative of theta is equal to the 

negative change in J. The result for the cost function chosen above is:  

                                                
𝑑𝜃

𝑑𝑡
= −𝛾

𝜕𝐽

𝜕𝜃
                                                                   (4.3) 

                                                      = -𝛾 e 
𝜕𝑒

𝜕𝜃
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This relationship between the change in theta and the cost function is known as the 

MIT rule. The MIT rule is central to adaptive nature of the controller. The partial 

derivative term
𝜕𝑒

𝜕𝜃
is called the sensitivity derivative of the system. This shows how 

the error is dependent on the adjustable parameter,θ.There are many alternatives to 

choose the loss function F,like it can be taken as mod of error also. Similarly 
𝑑𝜃

𝑑𝑡
 can 

also have different relations for different applications. 

𝐹 𝜃 =  𝑒  

Sign-sign 

algorithm: 

                                                
𝑑𝜃

𝑑𝑡
 = -𝛾sign (

𝜕𝑒

𝜕𝜃
)sign(e)                                               (4.4) 

Or it may be chosen as 

𝑑𝜃

𝑑𝑡
=-𝛾(

𝜕𝑒

𝜕𝜃
)signe 

Where signe= 1 for e› 0                    

            = 0 𝑓𝑜𝑟𝑒 =  0 

         = −1𝑓𝑜𝑟𝑒‹ 0 

The sign-sign algorithm used in telecommunications where simple implementation 

and fast computations are required [10,12,13,14,16]. 

4.3 Lyapunov StabilityTheory 

The Lyapunov stability theory can be used to describe the algorithms for 

adjusting parameters in Model Reference Adaptive control system. 

Let the first order system is described by 

    
  𝑑𝑦

𝑑𝑡
= −𝑎𝑦 +  𝑏 𝑢                                                (4.5) 

Where u is the controller output or manipulated variable. 

   Similarly the reference model is described by 

                          
𝑑𝑦𝑚

𝑑𝑡
=  −𝑎𝑚𝑦𝑚 +  𝑏𝑚𝑟                                            (4.6) 
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Where r is the reference input. 

For the above mentioned system the error is givenby 

𝑒(𝑡) = 𝑦 − 𝑦𝑚 

Nowthechangeinerrorwithrespecttotimecanbewrittenas 

                           
de

dt
= −ame–  bθ2 +  a– am y +   bθ1 − bm uc                   (4.7) 

The Lyapunov function is described 𝑉(𝑒, 𝜃1, 𝜃2). 

This function should be positive semi definite and is zero when error is zero. 

For stability according to Lyapunov theorem the derivative
𝑑𝑉

𝑑𝑡
must be negative. The 

derivative 
𝑑𝑉

𝑑𝑡
 requires the values of  𝑑𝜃1/𝑑𝑡  and  𝑑𝜃2/𝑑𝑡 .If the parameters are 

updated then  

                                       
 𝑑𝜃1

𝑑𝑡
= −𝛾𝑢𝑐                                                                     (4.8) 

                             
𝑑𝜃2

𝑑𝑡
= 𝛾𝑦𝑒                                                               (4.9) 

                                                   
dV

dt
= −𝑎𝑚𝑒2                          (4.10) 

𝑆𝑜 𝑑𝑉/𝑑𝑡is negative semidefinite. This shows that𝑉(𝑡) ≤ 𝑉(0) and 𝑒, 𝜃1, 𝜃2 must 

be bounded. 

The main advantage of Lyapunov design is that it guarantees a closed-loop system. For 

a linear, asymptotically stable governed by a matrix A ,a positive symmetric matrix Q 

yields a positive symmetric matrix P by the equation 

                                                            ATP+PA=−Q                                            (4.11)                                 (4.11) 

This equation is known as Lyapunov equation. 

The main drawback of Lyapunov design is that there is no systematic way of finding a 

suitable Lyapunov function V leading to a specific adaptive law. 
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Fig. 4.3 Block diagram of MRAS based on LyapunovTheory 

4.3.1Lyapunov design of MRAC: 

 Determine the controller structure. 

 Derive the error equation. 

 Find a lyapunov equation. 

 Determine adaption law that satisfies the lyapunov theorem [10,11,15,17,20]. 

4.4 Development of Simulink Model of Model Reference Adaptive  

Control 

4.4.1 MIT Rule: 

 Simulink model of Model Reference Adaptive Control by using MIT rule is 

shown in fig.no 4.4 
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Fig.4.4 Matlab Simulink diagram of MIT Rule 

4.4.2 Lyapunov Rule 

  Simulink model of Model Reference Adaptive Control by 

usingLyapunovrule is shown in fig.no 4.5 

 

Fig.4.5 Matlab Simulink diagram of Lyapunov Rule 

4.5 Conclusion 

 The purpose of this chapter is to describe the mechanism of adjusting the 

parameters in model reference adaptive control. Two techniques of adjusting the 

parameters i.e. MIT rule and Lyapunov rule have been described. Also 

Matlab/Simulink model of MRAC has been developed to indicate why adaption is 

useful. 
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CHAPTER 5 

PID CONTROLLER 

5.1 General 

The PID controller is also called as three mode controller. In industrial 

practice, it is commonly known as proportional-plus-reset-plus-rate controller. The 

combination of proportional, integral and derivative mode is one of the most powerful 

but complex controller operations.The PID controller is the most common general 

purpose controller in the today‟s industries. It can be used as a single unit or it can be 

a part of a distributed computer control system. Over 30 years ago, PID controllers 

were pneumatic-mechanical devices, whereas now a day they are implemented in 

software based techniques like ANN, Fuzzy Logic, Genetic Algorithm and most 

popular Optimization techniques. 

After implementing the PID controller, we have to tune the controller; and 

there are different approaches to tune the PID parameters like P, I and D. The 

Proportional (P) part is responsible for following the desired set-point while the 

Integral (I) and Derivative (D) part account for the accumulation of past errors and the 

rate of change of error in the process or plant, respectively [5,6]. 

 

5.2 PID Control 
PID controller consists of three types of control i.e. Proportional, Integral and 

Derivative control. 
 

 

Fig.5.1 Block diagram of PID Controller 
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Proportional Control (P) 

The proportional controller output uses a „proportion‟ of the system error to 

control the system. However, this introduces an offset error into the system or plant. 

                                                       P =  Kp ∗ Error                           (5.1) 

Integral Control (I) 

The integral controller output is proportional to the amount of time; there is an 

error present in the system. The integral action removes the offset introduced by the 

proportional control but introduces a phase lag into the system. 

                  I =  Ki ∗   error dt                                                  (5.2) 

Derivative Control (D) 

The derivative controller output is proportional to the rate of change of the 

error. Derivative control is used to reduce or eliminate overshoot and introduces a 

phase lead action that removes the phase lag introduced by the integral action. 

        D = Kd ∗
d(error )

dt
                                                      (5.3) 

The PID controller is simple and easy to implement. It iswidely applied in 

industry to solve various controlproblems. PID controllers have been used for 

decades. The transfer function of PID controller is describedby the following equation 

in the continuous s-domain(Laplace operator) [5,6,8]. 

The system transfer functions in continuous s-domain are given as 

 

 

𝑃 = 𝐾𝑝  , 𝐼 =
𝐾𝑖

𝑆 
 𝑎𝑛𝑑 𝐷 = 𝐾𝑑  𝑆 

𝐺𝐶  𝑆 = 𝑃 + 𝐼 + 𝐷 = 𝐾𝑝 +  
𝐾𝑖

𝑆
+ 𝐾𝑑  𝑆  

                                                               𝐺𝐶 𝑆 = 𝐾𝑝  1 +
1

𝑇𝑖 𝑆
+ 𝑇𝑑𝑆                                (5.4) 

Where Kp is the proportional gain, Ki is the integration coefficient and Kd is the 

derivative coefficient Ti is known as the integral action time or reset time and Td is the 

derivative action time or rate time [36]. 

Output of the PID controller in timedomain is given by 

 

 

                             𝑢 𝑡 = 𝐾𝑝  𝑒 𝑡 + 𝐾𝑖  𝑒 Ʈ 𝑑
𝑡

0
Ʈ + 𝐾𝑑  

𝑑𝑒 (𝑡)

𝑑𝑡    
                                (5.5) 

Where u(t) and e(t) are the control and tracking errorsignals in time domain, 

respectively. 
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The proportional part of the PID controller reduces error responses to disturbances. 

The integral term of the error eliminates steady state error and the derivative term of 

error dampens the dynamic response and there by improves stability of the system. 

The parameter settings of a PID controller for optimalcontrol of a plant depend 

on the plant‟s behavior. To design the PID controller the engineer can appropriately 

choose the combination of and to simultaneously takecare of the transient response as 

well as the steady-state error. In the design of a PID controller, the three gains of PID 

must be selected in such a way that the closed loop system has to give the desired 

response. The desiredresponse should have minimal settling time with a smallor no 

overshoot in the step response of the closed loop system [5,6,7,8]. 

5.3 Tuning of PID Controller 

5.3.1 Open Loop Tuning 

Open loop tuning methods are where the feedback controller is disconnected 

and the experimenter excites the plant and measures the response. The key point here 

is that since the controller is now disconnected the plant is clearly now no longer 

strictly under control. If the loop is critical, then this test could be hazardous. Indeed if 

the process is open-loop unstable, then we will be in trouble before we begin.For 

many process control applications, open loop type experiments are usually quick to 

perform, and deliver informative results. If the system is steady at set point, and 

remains so, then we have no information about how the process behaves. 

Naturally if the response is not sigmoidal or „S‟ shaped and exhibits overshoot, or an 

integrator, then this tuning method is not applicable. This method implicitly assumes 

the plant can be adequately approximated by a first order transfer function with time 

delay, 

                                                                 Gp=
Ke−θS

TS +1
                    (5.6) 

 

where K is gain, 𝜃 is the dead time or time delay, and T is the open loop process time 

constant. Once we have recorded the open loop input/output data, and subsequently 

measured the times T and 𝜃, the PID tuning parameters can be obtained directly from 

the given tables for different classical methods. 
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Figure 5.2 Block diagram of plant with variable output 

 

The method is based on computing the times t1 and t2 at which the 35.3% and 85.3% 

of the system response is obtained as shown in the figure: 

 

Figure 5.3 System response for first order time delay transfer function 

After computing the t1 and t2 times, the time delay (𝜃) and process time constant (T) 

can be obtained from the following equations [5,6,7] : 

       𝜃 = 1.3𝑡1 − 0.29𝑡2                                 (5.7) 

                                                                      𝑇 = .67(𝑡2 − 𝑡1)                                       (5.8) 

 

5.3.1.1 Ziegler-Nichols open loop Tuning Method 

The PID tuning parameters as a function of the open loop model parameters K, T and 

𝜃from equation (5.6) as derived by Ziegler-Nichols. They often form the basis for 

tuning procedures used by controller manufacturers and process industry. The 

methods are based on determination of some features of process dynamics. The 

controller parameters are then expressed in terms of the features by simple formulas. 

The method presented by Ziegler-Nichols is based on a registration of the open-loop 

step response of the system, which is characterized by two parameters. first 

determined, and the tangent at this point is drawn. The intersections between the 

tangent and the coordinate axes give the parameters T andθ. A model of the process to 

be controlled was derived from these parameters. This corresponds to modeling a 

process by an integrator and a time delay. Ziegler and Nichols have given PID 
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parameters directly as functions of T and 𝜃.the behaviour of the controller is as can be 

expected. The decay ratio for the step response is close to one quarter. It is smaller for 

the load disturbance. The overshoot in the set point response is too large. 

 

Table 5.1 Ziegler-Nichols open loop method 

Controller Kp Ti Td 

 

 

Ziegler-

Nicholas  

Tuning 

Method (Open 

Loop) 

P 𝑇

𝐾𝜃
 

 

- - 

PI . 9 𝑇

𝐾𝜃
 

 

𝜃

0.3
 

- 

PID 1.2 𝑇

𝐾𝜃
 

 

2 𝜃 0.5 𝜃 

 

 

5.3.2  Closed Loop Tuning Methods 

5.3.2.1  Ziegler-Nichols Tuning Method 

The control system performs poor in characteristics and even it becomes 

unstable, if impropervalues of the controller tuning constants are used. So it becomes 

necessary to tune the controllerparameters to achieve good control performance with 

the proper choice of tuning constants.Controller tuning involves the selection of the 

best values of kp Ti and Td (if a PID algorithm is being used). This is often a 

subjective procedure and is certainly process dependent. It is widely accepted method 

for tuning the PID controller. The method is straightforward. First, set thecontroller to 

P mode only. Next, set the gain of the controller (kp) to a small value. Make a small 

set point (or load) change and observe the response of the controlled variable. If kp is 

low the response should be sluggish. Increase kp by a factor of two and make another 

small change in the setpoint or the load. Keep increasing kp (by a factor of two) until 

the response becomes oscillatory. Finally, adjust kp until a response is obtained that 

produces continuous oscillations. This is known asthe ultimate gain (Ku). Note the 

period of the oscillations (Pu). The steps required for the method aregiven below. We 

have to set the integral and derivative coefficients are zero. Gradually increase the 

proportional coefficient from 0 to until the system just begins to oscillate 
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continuously. The proportional coefficient at this point is called the ultimate gain Ku  

and the period of oscillation at this point is called ultimate period Pu.The Ku is the gain 

margin of the system and; 

     𝑃𝑢=
2𝜋

𝜔𝑐𝑔
               (5.9) 

where, the 𝜔 cg is the gain crossover frequency. Gain margin is the reverse of 

amplitude ratio. 

 The Ziegler-Nichols continuous cycling method is one of the best known 

closed loop tuning strategies. The controller gain is gradually increased (or decreased) 

until the process outputcontinuously cycles after a small step change or disturbance. 

At this point, the controller gain is selected as the ultimate gain, Ku, and the observed 

period of oscillation is the ultimate period, Pu.Ziegler and Nichols originally 

suggested PID tuning constants as a function of the ultimate gain and ultimate period 

[5,7,8]. 

Table 5.2 Ziegler-Nichols closed loop method 

Controller Kp Ti Td 

 

 

Zieglar-Nicholas  

TuningMethod(closed 

Loop) 

P .5Ku 

 

- - 

PI .45Ku 

 

𝑃𝑢
1.2

 
- 

PID .6Ku 

 

𝑃𝑢
2

 
𝑃𝑢
8

 

 

Table 5.3 Modified Ziegler-Nichols closed loop method 

Controller Kp Ti Td 

Modified Zieglar-

Nicholas  

TuningMethod(closed 

Loop)PID control 

No overshoot .2Ku 

 

𝑃𝑢
2

 
𝑃𝑢
2

 

Some 

overshoot 

.33Ku 

 

𝑃𝑢
2

 
𝑃𝑢
3

 

 

 

5.4 Performance Analysis 

To analyze and design a control system, we must define and measure its 

performance. Based on the desired performance of control system, the system 
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parameter may be adjusted to provide the desired response. Because control systems 

are inherently dynamic, their performance is usually specified in terms of both the 

transient response and steady state response. 

The transient response is the response that disappears with time. The steady state 

response is the responses that exist for a long time following an input signal initiation. 

The design specification for control system normally includes time domain 

specification and performance indices [5]. 

5.4.1Time Domain Specification 

Specifications for a control system design often involve certain requirements 

associated with the time response of the closed-loop system. The requirements are 

specified by the behavior of the controlled variable or by the control error on well 

defined test signals. 

 

Fig.5.4 Step response of a second order system 

Time response indices includes: 

1. Delay time (Td)  

2. Rise time (Tr) 

3. Peak time (Tp)  

4. Maximum overshoot (Mp) 

5. Settling time (Ts) 

1.Delay Time (Td): The delay time is the time needed for the response to reach half 

of its final   
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value very first time. 

2. Rise Time (Tr): The rise time is the time required for the response to rise from 

10% to 90%, 5% to 95% or 0% to100% of its final value. For underdamped second 

order systems, the 0% to 100% rise time is normally used. For overdamped systems  

the 10% to 90% rise time is common.   

3. Peak Time (Tp): The peak time is the time required for the response to reach the 

first peak of the overshoot. 

 4. Maximum Overshoot) (Mp): The maximum percent overshoot is the normalized 

difference between the maximum peak value and final steady state output and is 

expressed in per cent value. It is defined as   

 

                                               𝑀𝑝 =
𝑐 𝑡𝑝  −𝑐(∞)

𝑐(∞)
 *100%                                           (5.10) 

 

5. Settling Time (Ts): The settling time is the time required for the response curve to 

reach and stay within 2% of the final value. In some cases, 5%instead of 2% is used 

as the percentageof the final value. The settling time is the largest time constant of the 

system. 

 

5.4.2 Performance Indices 

Modern control theory assumes that the systems engineer can specify 

quantitatively the required system performance. Then a performance index can be 

calculated or measured and used to evaluate the system‟s performance. A quantitative 

measure of the performance of a system is also necessary for the operation of modern 

control systems, for automatic parameter optimization of a control system, and for the 

design of optimum systems. A system is considered an optimum control system when 

the system parameters are adjusted so that the index reaches an extremum value, 

commonly a minimum value [5,33].  

To optimize the performance of a closed-loop control system, it can be try to adjust 

the control system parameters to maximize or minimize some performance index. 

Some common performance indices are: 

1. Integral Square Error: It is defined as 

𝐼𝑆𝐸 =  𝑒2  𝑡 𝑑𝑡
𝑇

0
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The upper limit T is a finite time chosen arbitrarily so that the integral approaches a 

steady state value. 

ISE is more suitable to minimize large amount oferrors. The squared error is 

mathematically more convenient for analytical and computational purposes. 

2. Integral Absolute Error: It is defined as 

𝐼𝐴𝐸 =   𝑒 𝑡  𝑑𝑡
𝑇

0

 

It is useful for computer simulation studies. 

3. Integral  Time Square Error: It is defined as 

𝐼𝑇𝑆𝐸 =  𝑡𝑒2  𝑡 𝑑𝑡
𝑇

0

 

 

4. Integral  Time Absolute Error: It is defined as 

𝐼𝑇𝐴𝐸 =  𝑡 𝑒(𝑡) 𝑑𝑡
𝑇

0

 

It provides the best selectivity of the performance indices. 

 

The performance criterion which are examined in this thesis are rise time, peak time, 

settling time, integral square error (ISE) and maximum overshoot. 

5.5 Conclusion 

 In this chapter tuning procedure of PID controller by the Zeigler-Nicholas 

method, together with its analytical approach has been discussed. Also various types 

of performance indices which are necessary to describe a closed loop system like, rise 

time, settling time, peak time, maximum overshoot along with different types of error 

indices has been studied. 
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CHAPTER 6 

PARTICLE SWARM OPTIMIZATION 

6.1 General 

Particle swarm optimization (PSO) is a population based stochastic 

optimization technique developed by Dr.Eberhart and Dr. Kennedy in 1995, inspired 

by social behavior of bird flocking or fish schooling. It is an approach for solving 

continuous and discreteoptimization problems [28,29]. 

It is inspired by social behaviors in flocks of birds and schools of fish. In particle 

swarm optimization (PSO), a set of software agents called particles search for good 

solutions to a given continuous optimization problem. Each particle is a solution of 

the considered problem and uses its own experience and the experience of neighbor 

particles to choose how to move in the search space. In practice, in the initialization 

phase each particle is given a random initial position and an initial velocity. The 

position of the particle represents a solution of the problem and has therefore a value, 

given by the objective function. While moving in the search space, particles memorize 

the position of the best solution they found. At each iteration of the algorithm, each 

particle moves with a velocity that is a weighted sum of three components: the old 

velocity, a velocity component that drives the particle towards the location in the 

search space where it previously found the best solution so far, and a velocity 

component that drives the particle towards the location in the search space where the 

neighbor particles found the best solution so far. PSO has been applied to many 

different problems and is another example of successful artificial/engineering swarm 

intelligence system [37]. 

6.2 Implementation of PSO Controller 

PSO isderived from the social-psychological theory, and has been found to be 

robust in complex systems. Each particleis treated as a valueless particle in g-

dimensional searchspace, and keeps track of its coordinates in the problem space 

associated with the best solution (evaluating value)and this value is called Pbest. The 

overall best value and its location obtained so far by any particle in the groupthat was 

tracked by the global version of the particleswarm optimizer gbest. The PSO concept 

consists of changing the velocity of each particle toward its Pbest and gbest locations 
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at each time step. As example, the jth particle is represented as xj= (x j.1, x j.2 , . . . ,xj.g) 

in the g-dimensional space. The best previous position of the jth particle is recorded 

and represented as Pbestj= (Pbestj.1, Pbestj.2, . . . ,Pbestj.g). The index of best particle 

among all particles in the group is represented by the gbestg. The rate of the position 

change (velocity) for particle j is represented as vj= (v j.1, v j.2 . . . v j.g). The modified 

velocity and position of each particle can be calculated using the current velocity and 

distance from Pbestj.gto gbest gas shown in the following formulas: 

     𝑣𝑗 .𝑔
(𝑡+1)

 =w.𝑣𝑗 .𝑔
(𝑡)

 +c1*rand ( )*(Pbestj.g- 𝑥𝑗 .𝑔
(𝑡)

 ) +c2 *rand ( )*(gbestg-𝑥𝑗 .𝑔
(𝑡)

)           (6.1) 

 

                                             𝑥𝑗 .𝑔
(𝑡+1)

=  𝑥𝑗 .𝑔
(𝑡)

 + 𝑣𝑗 .𝑔
(𝑡+1)

                                      (6.2) 

j=1, 2…... n 

g=1, 2... m 

where 

n- number of particles in a group; 

m- number of members in a particle; 

t- pointer of iterations(generations); 

vj.g
(t)

−velocity of particle j at iteration t, 

vg
min ≤ vj.g

(t)
≤ vg

max  

w- inertia weight factor; 

c1, c2-acceleration constant; 

rand( ) - random number between 0 and 1; 

xj.g
(t)

-current position of particle j at iteration t; 

Pbestj - Pbestof particle j; 

gbest -gbestof the group; 

The parameter  𝑣𝑔
𝑚𝑎𝑥 determined the resolution, or fitness, with which regions 

were searched between thepresent position and the target position. If  𝑣𝑔
𝑚𝑎𝑥 is too high, 

particles might fly past good solutions but if 𝑣𝑔
𝑚𝑎𝑥 is too low, particles may not 

explore sufficiently beyond local solutions. 

The constant c1and c2represent the weighting of the stochastic acceleration terms that 

pull each particle toward pbest and gbest. 

The process of the PSO algorithm can be summarized as follows:  

Step (1): Initialization of a group at random while satisfying constraints.  
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Step (2): Velocity and Position updates while satisfying constraints.  

Step (3): Update of Pbest and gbest. 

Step 4) Go to Step 2 until stopping criteria is satisfied.  

In the subsequent sections, the detailed implementation strategies of the PSO are 

described: 

6.2.1 Initialization 

In the initialization process, a set of individuals is created at random. 

Therefore, individual j‟s position at iteration 0 can be represented as the vector (𝑥𝑗
0 = 

( 𝑃𝑗1 
0 … . 𝑃𝑗 .𝑔

0 ))  where g is the number of generators. The velocity of individual 

j( 𝑣𝑗
0 = (𝑣𝑗

1 … . 𝑣𝑗 .𝑔
0 ))  corresponds to the generation update quantity covering all 

generators. The elements of position and velocity have the same dimension. The 

following strategy is used in creating the initial velocity:  

(𝑃𝑖𝑚𝑖𝑛  – Σ) – 𝑃𝑗𝑖
0  ≤ (𝑃𝑖𝑚𝑎𝑥  + Σ) –𝑃𝑗𝑖

0         (6.3) 

Where Σ is a small positive real number. The velocity of element i of individual j is 

generated at random within the boundary. The developed initialization scheme always 

guarantees to produce individuals satisfying the constraints while maintaining the 

concept of PSO algorithm. The initial 𝑃𝑏𝑒𝑠𝑡𝑗 of individual j is set as the initial 

position of individual j and the initial gbest is determined as the position of an 

individual with minimum payoff. 

6.2.2 Velocity Update 

To modify the position of each individual, it is necessary to calculate the 

velocity of each individual in the next stage, which is obtained from (5.1). In this 

velocity updating process eq.6.4 is: 

      w=
𝑤max −𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 * 𝑖𝑡𝑒𝑟                 (6.4)                                                            

Where: 

𝑤𝑚𝑖𝑛  = initial weight 

𝑤𝑚𝑎𝑥 = final weight 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = maximum iteration number 

𝑖𝑡𝑒𝑟 = current number of iterations 

6.2.3 Position Update:  

The position of each individual is modified by (5.1). The resulting position of 

an individual is not always guaranteed to satisfy the inequality constraints due to 
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over/under velocity. If any element of an individual violates its inequality constraint 

due to over/under speed then the position of the individual is fixed to its 

maximum/minimum operating point. Therefore, this can be formulated as follows: 

𝑃𝑗𝑖
𝑡+1= 

𝑃𝑗𝑖
𝑡 + 𝑣𝑗𝑖

𝑡+1  𝑖𝑓 𝑃𝑗𝑖 .𝑚𝑖𝑛 ≤  𝑃𝑗𝑖
𝑡 + 𝑣𝑗𝑖

𝑡+1 ≤  𝑃𝑗𝑖 .𝑚𝑎𝑥

𝑃𝑗𝑖 .𝑚𝑖𝑛  𝑖𝑓 𝑃𝑗𝑖
𝑡 + 𝑣𝑗𝑖

𝑡+1 ≤ 𝑃𝑗𝑖 .𝑚𝑎𝑥

𝑃𝑗𝑖 .𝑚𝑎𝑥  𝑖𝑓 𝑃𝑗𝑖
𝑡 + 𝑣𝑗𝑖

𝑡+1 ≥  𝑃𝑗𝑖 .𝑚𝑎𝑥

                                             (6.5) 

6.2.4 Update of Pbest and gbest 

The Pbestof each individual at iteration is updated as follows:  

                                      Pbestj
t+1 = xj

t+1 if TCj
t+1 < TCj

t                     (6.6) 

                                      Pbestj
t+1 = Pbestj

t  if TCj
t+1 < TCj

t                         (6.7) 

Where 𝑇𝐶𝐽  isthe objective function evaluated at the position of individual j. 

additionally, gbestat iteration 𝑡 + 1  is set as the best evaluated position 

among 𝑃𝑏𝑒𝑠𝑡𝑗
𝑡+1.  

6.2.5 Stopping Criteria 

The PSO is terminated if the iteration approaches to the predefined maximum 

iteration [29, 32, 34, 37]. 

It is a very simple concept, and paradigms can be implemented in a few lines 

of computer code. It requires only primitive mathematical operators, and is 

computationally inexpensive in terms of both memory requirements and speed. Early 

testing has found the implementation to be effective with several kinds of problems. 

In the past several years, PSO has beensuccessfully applied in many research and 

applicationareas. It is demonstrated that PSO gets better results in afaster, cheaper 

way compared with other methods. Another reason that PSO is attractive is that there 

are fewparameters to adjust. Particleswarm optimization has been used for approaches 

thatcan be used across a wide range of applications, as well as for specific 

applications focused on a specificrequirement [31, 33, 34]. 

6.2.6 PSO Controller Flow Chart 

The flowchart of the Particle Swarm Optimization  system is shown in figure 6.1 [34]. 
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Fig. 6.1 flowchart of PSO 
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6.3 PSO-PID Controller  

PSO method is an excellent optimization methodology and a promising 

approach for solving the optimal PID controller parameters. The PID controller is 

simple and easy to implement. It is widely applied in industry to solve various control 

problems. Therefore, The PID controller using the PSO algorithm is developed to 

improve response of system. It is also called the PSO-PID controller. The PSO 

algorithm was mainly utilized to determine three optimal controller parameters 

kp,ki,kd, such that the controlled system could obtain a good step response output.  

To apply the PSO method for searching the controller parameter, “individual” is used 

to replace the “particle” and the “population”is used to define the “group”. The three 

controller parameters kp,ki and kdcomposed  an individual K by K ≡ [kp,ki,kd] ;hence 

there are three members in an individual. These members are assigned as real values. 

If there are n individuals in a population, then the dimension of a population is n x 3. 

A set of good control parameters kp,ki and kdcan achieve a good step response and 

result in minimization of performance criteria in the time domain including the 

settling time (ts), rise time (tr),maximum overshoot (Mp) , and integral square error 

(ISE). In the same time, the evaluation value, F which is reciprocal of the 

performance criterion W (K). 

                                                          F=
1

𝑊(𝐾)
                                     (6.7)                                                           

It employs the smaller W (K) the value of individual K, thehigher its evaluation 

function. In order to limit the evaluation value of each individual of the population 

within a reasonable range, the Routh-Hurwitz criterion must be utilized to test 

theclosed-loop system stability before evaluating theevaluation value of an individual. 

The feasible individualand small value of W (K) if the individual satisfied the Routh-

Hurwitz criterion stability test applied to thecharacteristic equation of the system. 

The searching procedure of the proposed PSO-PID controller is shown as 

follows: 

Step 1: Specify the lower and upper bounds of the three controller parameters and 

initialize randomly the individuals of the population including searching 

points, velocities, pbest sand gbest. 

Step 2: For each initial individual K of the population, employ the Routh-Hurwitz 

criterion to test the closed-loop system stability and calculate the values of 

the four performance criteria in the time domain, namely Mp, Ess, tr and ts. 
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Step 3: Calculate the evaluation value of each individual in the population using the 

evaluation value, f given by (6.7). 

             Step 4:Compare evaluation value of each individual with its Pbest. The best 

evaluation value among the Pbest is denoted as gbest. 

Step 5:Modify the member velocity v of each individualK according to (6.8) 

      𝑣𝑗 .𝑔
(𝑡+1)

 =w.𝑣𝑗 .𝑔
(𝑡)

 +c1*rand ( )*(pbestj.g- 𝑘𝑗 .𝑔
(𝑡)

 ) +c2 *rand ( )*(gbestg-𝑘𝑗 .𝑔
(𝑡)

)             (6.8) 

              j=1, 2…... n 

              g=1, 2...... m 

Step 6:if vj,g
(t+1)

> vg
max  then vj,g

(t+1)
= vg

max  

ifvj,g
(t+1)

< vg
max  then vj,g

(t+1)
= vg

max  

Step 7:Modify the member position of eachindividual K according to (6.9) 

                                         𝑘𝑗 ,𝑔
(𝑡+1)

=  𝑘𝑗 .𝑔
(𝑡)

 + 𝑣𝑗 .𝑔
(𝑡+1)

                                                            (6.9)                

             Such that  𝑘𝑔
𝑚𝑖𝑛  =𝑘𝑗 ,𝑔

(𝑡+1)
 = kg

max  

Where𝑘𝑔
𝑚𝑖𝑛  and kg

max the lower and upperbounds, respectively, of member g of the 

Individual K.For example, when g is 1, the lower and upper bounds ofthe controller  

parameter kg
min  and kg

max  respectively. 

Step 8:If the number of iterations reaches the maximum then, go to Step 9. 

Otherwise, go to    Step 2. 

Step 9:The individual that generates the latest gbest is an optimal parameter.    

          [30,32,33,34]. 
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6.3.1 PSO–PID Controller Flowchart 

The flowchart of the Particle Swarm Optimization based PID control system is 

shown in figure 6.2 [32]. 
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Fig.6.2 Flowchart of PSO-PID control system 
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6.4 Implementation of PSO-PID Controller 

The optimized PID tuning parameters of the CSTRsystem is obtained using 

Particle Swarm Optimization.PSO algorithm is implemented on Matlab environment. 

6.4.1 PSO Parameters 

To start up with PSO, certain parameters need to be defined. Selection of these 

parameters decides to a great extent the abilityof global minimization. The maximum 

velocity affects the abilityof escaping from local optimization and refining 

globaloptimization. The size of swarm balances the requirement ofglobal optimization 

and computational cost.Initializing the valuesof the parameters is given below: 

Weight / Inertia of the system w= 0.5. 

Acceleration constants c1 and c2= l.5. 

Swarm population = 100. 

Dimension of the search-space = 3 (kp, ki, kd) 

6.4.2 Calculation of Fitness Function 

A particular point in the search-space is the best point for which the fitness 

function attains an optimum value. In this case, four components are taken to define 

the fitness function. The fitness function is a function of steady-state error, peak 

overshoot, rise time and settling time. However, the contribution of these component 

functions towards the original fitness function is determined by a scaling factor. 

Scaling factor (𝛽) is chosen as 1 in this application. 

The chosen fitness function is expressed as 

                          𝐹 =  1 − 𝑒𝛽 (𝑀𝑝+𝐸𝑠𝑠) + 𝑒−𝛽(𝑇𝑠 − 𝑇𝑟)                                     (6.10) 

Where 

F=fitness function 

𝑀𝑝 =Peak overshoot 

𝐸𝑠𝑠= Steady State Error 

𝑇𝑠=Settling Time 

𝑇𝑟= Rise Time 

𝛽 =Scaling factor 

The best fitness function value obtained after all iterations is -0.0445. 

Matlab code for fitness calculation is shown in Appendix B. 

Matlab code for PSO-PID controller is shown in Appendix C 
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6.5 Conclusion 

In this chapter, particle swarm optimization technique of swarm intelligence 

along with tuning of PID controller with PSO has been developed. It is clear from 

above discussion that PSO technique can generate a high-quality solution within 

shorter calculation time and stable convergence characteristic than other stochastic 

methods. The main advantages of the PSO algorithm are summarized as: simple 

concept, easy implementation, robustness to control parameters, and computational 

efficiency when compared with mathematical algorithm and other heuristic 

optimization techniques. 
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CHAPTER 7 

SIMULATION RESULTS AND THEIR COMPARATIVE 

ANALYSIS 

7.1 General 

In the following section, the simulation models developed in the previous 

chaptersare simulated .concentration and temperature control of CSTR is obtained by 

using different controlling mechanism. The results obtained are plotted to depict their 

effectiveness. Finally the results obtained from the different controllers are compared 

in terms of performance – overshoot, rise time, settling time, peak time, integral 

square error (ISE). 

7.2 Open Loop Responseof CSTR 

 

Fig.7.1 Open-loop response of concentration in CSTR 
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Fig.7.2 Open-loop response of temperature in CSTR 

 

7.3 Response of CSTR with Model Reference Adaptive Control 

The simulation model of the CSTR is simulated using the model reference 

adaptive control. For this purpose two methods of MRAC i.e. MIT rule and Lyapunov 

rule are used. 

7.3.1.MIT rule 

 

Fig.7.3 Output of CSTR with MIT Rule when gamma=1 
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Fig.7.4 Output of CSTR with MIT Rule when gamma=10 

 

 

 

Fig.7.5 Output of CSTR with MIT Rule when gamma=50 
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Fig.7.6 Output of CSTR with MIT Rule when gamma=100 

 

 

Fig.7.7 CSTR output with MIT rule for different values of adaption gain 
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7.3.2 Lyapunov Rule 

 

Fig.7.8 Output of CSTR with Lyapunov Rule when gamma=1 

 

Fig.7.9 Output of CSTR with Lyapunov Rule when gamma=10 
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Fig.7.10 Output of CSTR with Lyapunov Rule when gamma=50 

 

 

Fig.7.11 Ooutput of CSTR with Lyapunov Rule when gamma=100 
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Fig.7.12  CSTR output with Lyapunov Rule for different values of adaption gain 

 

7.4 Response of CSTR with PID Controller (Ziegler-Nicholas 

Method) 

The simulation model of the CSTR is simulated using the PID controller. For 

tuning of PID controller Ziegler- Nicholas method is used. 

Table 7.1  PID tuning parameters using Zeigler-Nicholas method 

Tuning Method Kp Ki kd 

ZNT 9.2675 37.911 -.678 

 

Fig.7.13 CSTR output with PID controller using Ziegler-Nicholas method 
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7.5 Response of CSTR with PSO-PID Controller 

 The simulation model of the CSTR is simulated using the particle 

swarm optimization method. Using PSO, parameters of PID controller are tuned. 

Table 7.2 Optimized PID tuning parameters of PSO for different iterations 

No. of iterations Kp Ki kd 

1 0.051459 0.49844 0.17948 

2 0.055658 0.5149 0.10265 

3 0.057726 0.63898 0.062685 

4 0.05612 0.76378 0.081139 

5 0.053816 0.85906 0.063554 

 

 

Fig.7.14 Step response of CSTR with PSO-PID Controller 
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Fig.7.15 Plot of PSO parameters for different iterations 

7.6 Comparative Analysis of Results of ZNT, MRAC and PSO-PID    

Controller 

A comparative analysis has been made by using different types of controlling 

mechanism. Firstly controlling of CSTR is done by MRAC, then controlling is done 

be tuning of PID controller. For tuning of PID controller two methods are used one is 

conventional method of tuning i.e. Zeigler-Nicholas and other is evolutionary method 

of tuning i.e. Particle Swarm Optimization is used. 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

Table7.3 Comparison results 

Performance 

specification 

MIT Rule Lyapunov Rule ZN

T 

PSO 

 γ

= 1 

γ

= 10 

γ

= 50 

γ

= 100 

γ

= 1 

γ

= 10 

γ

= 50 

γ

= 100 

  

Rise time 

(sec.) 

- 3.275 2.658 2.785 - 3.15 2.3 2.6 .36 4.47 

Peak time 

(sec.) 

- 3.83 3.0 3.017 - 3.8 2.4 3 1.0 17.0 

Maximum  

Overshoot 

(%) 

- 17.83 26.74 7.5 - 20.34 9.65 7.3 7.1 0 

Settling time 

(sec.) 

- 7.0 6.25 4.5 - 6.4 4 3.9 1.4 8.65 

ISE 5.02

3 

.4052 .2147 .0204  .3799 .0464 .01412 .16 .003 

 

7.7 Conclusion 
The modeling, analysis, design and the simulation of the CSTR with different 

types of controllers has been done in the MATLAB/Simulink environment. A 

thorough comparative analysis has been carried out on CSTR performance with 

different controllers. It has been shown that the individual controllers have their own 

merits and demerits. The choice of selection of controller for a particular application 

should be based on typical requirement. When the requirement is of simplicity and 

ease of application, a Z-N tuned PID controller is of a good choice. When the need is 

of less integral square error and fast dynamic response, then, the model reference 

adaptive control can be selected. When the requirement is of both intelligent response 

and good steady state performance with minimum overshoot and least error, 

optimization based PSO-PID controller is a better choice. 
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CHAPTER 8 

MAIN CONCLUSION AND SUGGESTION FOR 

FURTHER WORK 

8.1 General 
The modeling of Continuously Stirred Tank Reactor with different typeof 

controller has been successfully carried out using MATLAB/Simulink environment. 

Different types of controller i.e Ziegler Nicholas, Model Reference Adaptive Control, 

Particle Swarm Optimization are used for simulation study for assessment of the 

performance of CSTR.The present chapter summaries all the investigations carried 

out right and accordingly main conclusion are derived and suggestions for further 

work are also presented. 

8.2 Main Conclusion 

The MATLAB/Simulink environment has been extensively used for 

simulation of model of CSTR using various controllers. The mathematical model of 

CSTR is obtained by solving the differential equations. The response of 

thetemperature and concentration of the reactant for the step change in coolant flow 

rate is obtained. 

The proposed adaptive controller is tested by using Matlab Simulink program 

and its performance is compared to both conventional controller and PSO based PID 

controller, Adaptive controllers are very effective where parameters are varying. The 

controller parameters are adjusted to give desired result.  

Time response is studied for CSTR system using MIT rule and Lyapunov rule 

with varying the adaptation gain. It is observed that in case of MIT rule, if adaptation 

gain increases the time response of the system also is improved for the chosen range 

of adaption gain and further system is unstable in the upper range. In Lyapnove rule, 

system is stable beyond thechosen range of adaptation gain. So with suitable value of 

adaptation gain in MIT rule and Lyapunov rule plant output can be made close to 

reference model. It can be concluded that performance using Lyapunov rule is better 

than the MIT rule. The simulation shows that very good conversion can be achieved 

and at the same time the temperature inside the reactor do not violate the safety 

concentrations, even when there are large disturbances in the feed concentrations. The 

proposed process control system increases the safety of operations by reducing the 

impact from external disturbances. This will decrease the risk of unnecessary 
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shutdowns of the process operation and also reduce the power consumption in 

industrial interactive thermal process by effective recycling of heat. 

PID controller tuning is done using a standard tuning algorithm (Ziegler-

Nichols Tuning),and a more advanced swarm intelligence approach(Particle Swarm 

Optimization). By comparing these two methods, it is found that PSO algorithm is the 

best implemented. Also, the PID controller parameters obtained from PSO algorithm 

gives better tuning resultthan the Z-N tuning methods. This is also validated by 

checking for the robustness of PSO algorithm and it is concluded that the system 

exhibited best performance with PSO. 

Though PSO algorithm is much advanced and simpler than other artificial 

intelligence based approach, it has its own short-comings. In this application, PSO 

algorithm is taken and applied for single set of data. Generally this can be seen as 

alimitation in terms of not being able to analyse multiple sets of data.  

8.3 Suggestion for Further Work 

 The proposed PSO based PID controller and adaptive controller shows better 

results for controlling of CSTR.In future both adaptive control and PSO based control 

can be implemented with other artificial intelligence techniques,i.e adaptive control 

can be applied with neural network ,fuzzy control etc.Similarly PSO can be applied 

with these artificial intelligence techniques. Apart from this other swarm intelligence 

based algorithms like Artificial Bee Colony Algorithm, Ant Colony Algorithm can be 

applied for controlling of CSTR. 

An effort to further reduce the complexity may be investigated. 
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APPENDIX A 

STATE SPACE MODEL OF CSTR: cstr_ss_model.m 

function smdl=cstr_ss_model 

% Measured Product 

 Ca=7.59; % mol/lit 

% Concentration (Cd 

% Reactor Temperature (T) 

 T=313.17; 

% Volumetric Flow rate (q) 

 q=100;% Llmin 

% Reactor Volume (V) 

 V=100;  

% Feed Concentration (CAf) 

 Caf=1; % mol/lit 

% Feed Temperature (Tf) 

 Tf=312; % K 

 TJ=300; 

% Coolant Temperature (T'f) 350 K 

% Coolant Flow rate( qc) 100 Llmin 

 delH=6000; 

% Heat of Reaction (6.H) 2e5 cal/mol 

% Reaction rate constant(ko) 7.2elO min" 

 k0=10e15; 

% Activation energy 

 ER=5963.6;  

% term(E/R) 

% Heat transfer term (hA) 7e5 cal/(min.K) 

 rowcp=500; 

 UAV=145; 

% Liquid Density(p, Pc) 

% Specific Heat capacity (Cp) 

 ks=.175; 
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 kg=.0106; 

 A11=(-q/V)-ks; 

 A12=-kg*Ca; 

 A21=(-delH*ks/(rowcp)); 

 f1=-q/V; 

 f2=((-delH/(rowcp))*Ca*kg); 

 f3=(-UAV/rowcp); 

 A22=(f1+f2+f3); 

 B11=0; 

 B12=(UAV/rowcp); 

C11=0; 

 C12=1; 

 

 AMAT=[A11 A12;A21 A22]; 

 BMAT=[B11 ;B12]; 

 CMAT=[C11 C12]; 

 DMAT=0; 

 smdl=ss(AMAT,BMAT,CMAT,DMAT); 
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APPENDIX B 

CALCULATION OF FITNESS FUNCTION: fitness_ process.m 

function final_fit=fitness_ process(papra,err) 

 

 rs_tm=papra.RiseTime; 

 st_tm=papra.SettlingTime; 

 stmin_tm=papra.SettlingMin; 

 stmax_tm=papra.SettlingMax; 

 over_tm=papra.Overshoot; 

 under_tm=papra.Undershoot; 

 peak_val=papra.Peak; 

 peak_tm=papra.PeakTime; 

 f1=1-exp(1); 

 f2=peak_val+err; 

 f3=exp(-1); 

 f4=st_tm-rs_tm; 

 final_fit=(f1*f2)+(f3*f4); 
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APPENDIX C 

FINAL RUN DESIGN:final_run_design.m 

 clear all 

 close all 

 clc 

 warning off; 

 design_name='final_cstr1'; 

 sim(design_name,10); 

 amp_cnt=cont.signals.values; 

 t_cnt=cont.time; 

 figure,plot(t_cnt,amp_cnt,'r-s','linewidth',2); 

 xlabel('time'); 

 ylabel('concentration'); 

 grid on; 

  

  amp_temp=temp.signals.values; 

 t_temp=temp.time; 

 figure,plot(t_temp,amp_temp,'r-s','linewidth',2); 

 xlabel('time'); 

 ylabel('temperature'); 

 grid on; 

  

 No_of_iter= 5; 

 intr_value = 0.5; 

 cf_value = 1.5; 

 int_pop= 100; 

 

index = 1; 

intial_ctrl_value1=[]; 

for k2=1:int_pop 

        intial_ctrl_value1(index, 1, 1) = rand/2; 

        intial_ctrl_value1(index, 1, 2) = rand/2; 

        intial_ctrl_value1(index, 1, 3) = rand/2; 
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        index = index + 1; 

     

end 

intial_ctrl_value1(:, 4, 1) = 1000;           

intial_ctrl_value1(:, 2, :) = 0;              

  

intial_ctrl_value=intial_ctrl_value1; 

  

for iter=1 : no_of_iter 

       

    for i= 1 : int_pop 

        intial_ctrl_value(i, 1, 1) = intial_ctrl_value(i, 1, 1) + intial_ctrl_value(i, 2, 1)/1.3;      

        intial_ctrl_value(i, 1, 2) = intial_ctrl_value(i, 1, 2) + intial_ctrl_value(i, 2, 2)/1.3;      

        intial_ctrl_value(i, 1, 3) = intial_ctrl_value(i, 1, 3) + intial_ctrl_value(i, 2, 3)/1.3;      

         

        kp=intial_ctrl_value(i, 1, 1); 

        ki=intial_ctrl_value(i, 1, 2); 

        kd=intial_ctrl_value(i, 1, 3); 

         

             

        mdl=cstr_ss_model; 

        [papra err final_mdl]=pid_process(mdl,kp,ki,kd); 

        final_fit=fitness_process(papra,err); 

        fit_val(i)=final_fit; 

         

    

        if (final_fit < intial_ctrl_value(i, 4, 1) & ~isnan(final_fit))                

            intial_ctrl_value(i, 3, 1) = intial_ctrl_value(i, 1, 1);     

            intial_ctrl_value(i, 3, 2) = intial_ctrl_value(i, 1, 2);     

            intial_ctrl_value(i, 3, 3) = intial_ctrl_value(i, 1, 3);     

            intial_ctrl_value(i, 4, 1) =final_fit;                

        end 

    end 
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    [temp, gbest] = min(intial_ctrl_value(:, 4, 1));         

     

    for i = 1 : int_pop 

  intial_ctrl_value(i, 2, 1) = (rand*intr_value*intial_ctrl_value(i, 2, 1) + 

cf_value*rand*(intial_ctrl_value(i, 3, 1) - intial_ctrl_value(i, 1, 1)) + 

cf_value*rand*(intial_ctrl_value(gbest, 3, 1) - intial_ctrl_value(i, 1, 1)));  

  %x velocity component 

  intial_ctrl_value(i, 2, 2) = (rand*intr_value*intial_ctrl_value(i, 2, 2) + 

cf_value*rand*(intial_ctrl_value(i, 3, 2) - intial_ctrl_value(i, 1, 2)) + 

cf_value*rand*(intial_ctrl_value(gbest, 3, 2) - intial_ctrl_value(i, 1, 2)));  

  %y velocity component 

  intial_ctrl_value(i, 2, 3) = (rand*intr_value*intial_ctrl_value(i, 2, 3) + 

cf_value*rand*(intial_ctrl_value(i, 3, 3) - intial_ctrl_value(i, 1, 3)) + 

cf_value*rand*(intial_ctrl_value(gbest, 3, 3) - intial_ctrl_value(i, 1, 3)));   

 %y velocity component 

            end 

     [temp, gbest] = min(intial_ctrl_value(:, 4, 1)); 

    kp=intial_ctrl_value(gbest, 1, 1); 

     ki=intial_ctrl_value(gbest, 1, 2); 

     kd=intial_ctrl_value(gbest, 1, 3); 

     [papra err final_mdl]=pid_process(mdl,kp,ki,kd); 

             

     final_pid_val(iter,1:4)=[iter kp ki kd]; 

     

    design_out{iter}=final_mdl; 

     

    end 

  

fprintf('%15.13s %15.13s %15.13s %15.13s','iteration','kp','ki','kd'); 

fprintf('\n'); 

  

for k3=1:no_of_iter 

     

fprintf('%15.13s %15.13s %15.13s %15.13s',num2str(final_pid_val(k3,1)),... 
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                                                num2str(final_pid_val(k3,2)),... 

                                            num2str(final_pid_val(k3,3)),... 

                                            num2str(final_pid_val(k3,4))); 

                                         

                       

                                         

fprintf('\n'); 

end 

%% 

figure, 

for k3=1:no_of_iter 

    step(design_out{k3}); 

  hold on; 

end 

  

  figure,step(design_out{end}); 

   

  %% pid parameter based PSO 

   

  FINAL_KP=final_pid_val(end,2) 

  FINAL_KI=final_pid_val(end,3) 

  FINAL_KD=final_pid_val(end,4) 

     

   


