Department of Electrical Engineering Delhi Technological University (Formerly Delhi College of Engineering)

This is to certify that the project entitled, "<u>CSTR Control Using Model reference</u> <u>adaptive control and Bio-Inspired Optimization technique</u>", submitted by **Ms. Neha Khanduja**, University Roll No.14/C&I/2010, student of Master of Technology (Control and Instrumentation) in Electrical Engineering department from Delhi Technological University (Formerly Delhi college of Engineering), is a dissertation work carried out by her under my guidance during session 2012-13 towards the partial fulfillment of the requirements for the award of the degree of Master of Technology in Control & Instrumentation.

I wish her all the best in her endeavors.

Date: July 2013

Dr. NARENDRA KUMAR ASSOCIATE PROFESSOR, Electrical Engineering Department Delhi Technological University Delhi- 110042.

ACKNOWLEDGEMENT

This report in the present profile is a result of continuous enthusiasm and eternal effort putted, to make it of scholarly level. I would like to take this opportunity to show my gratitude towards various people from the university who had helped in the cause.

First of all I would like to thank my honorable guide Dr. NARENDRA KUMAR, Associate Professor, Department of Electrical Engineering, Delhi Technological University (formerly Delhi College of Engineering) for his constant guidance and persistent encouragement throughout the development of this project. It is a matter of immense pride for me to have worked under him, who has such a great zeal toward research and teaching. It in itself was a source of inspiration for me to complete the project with great enthusiasm, energy and determination. I would like to extent my special thanks to him for dedicating his valuable time whenever I needed to discuss the project work.

I would also like to thank Prof. MADHUSUDAN SINGH, Head of the Department, Electrical Engineering Department, Delhi Technological University (formerly Delhi College of Engineering) for being a visionary and supporting the concept of the project.

I am also very thankful to all the faculty members of the department for sharing their knowledge, to aid in the concern.

I would also thank to all of them who have been helpful and were associated with me directly and indirectly throughout the work. I would like to thank my friend Simmi Sharma for her support throughout the project work.

Finally, no words to thanks my husband, mother-in-law and father-in-law for their support and take care me during this workout.

Date: July 2013 Neha Khanduja Roll No.-14/C&I/2010 M.Tech (Control & Instrumentation)

ii

ABSTRACT

Now a day the control of chemical process is important craft in the industry. Mostly all the chemical process are highly nonlinear in nature this cause instability of the process The aim of this thesis is to design a concentration and temperature controller for a CSTR by adaptive control, selection of PID parameters using particle swarm optimization(PSO).

In the design of adaptive control, Model reference adaptive control (MRAC) scheme is used, in which the adaptation law have been developed both by MIT & Lyapunov's rule. Numerical calculation is used for steady-state analysis and dynamic analysis which is usually represented by a set of differential equations. A Simulation is carried out using Matlab.

PSO Algorithms come under the category of bio-inspired optimization techniques. The mathematical model of a CSTR motor is considered as a second order system for concentration and temperature control. Here, is a comparison between model reference adaptive control methods and optimization techniques of tuning of PID controller parameters. In some cases, it was found that the proposed PID parameters adjusted by optimization technique is better than the conventional techniques like a Ziegler-Nichols' method. These proposed optimization methods could be applied for higher order system also to provide better system performance with minimum errors. It is decided to create an objective function which will evaluate the optimum PID gains based on the controlled systems and overall error. This tries to explore the potential of using optimization techniques in controllers and their advantages over conventional methods. PID controller is the most widely used controller in the industry applications, need efficient methods to control the concentration and temperature of CSTR.

The conventional approach is not very efficient due to the presence of non-linearity in the system. The output of the conventional PID system has a quite high overshoot and settling time. In order to overcome the limitations of conventional PID controller PSO technique is used for tuning of PID controller to get an output with better dynamic and static performance. The application of PSO to the PID controller imparts it the ability of tuning itself automatically in an on-line process while the application of optimization algorithm to the PID controller makes it to give an optimum output by searching for the best set of solutions for the PID parameters.

TABLE OF CONTENTS

Certificatei
Acknowledgementii
Abstractiii
Table of Contentsiv
List of Figuresix
List of Tablesxi
Chapter 1: Introduction
1.1General1
1.2Continuously Stirred Tank Reactor (CSTR)1
1.3Paradigm and theory of controllers1
1.3.1 The 'P' controller
1.3.2 The 'PI' controller
1.3.3 The 'PD' controller2
1.3.4 The 'PID' controller
1.4 Adaptive Control
1.4.1 Adaptive Schemes5
1.4.1.1 Gain Scheduling:
1.4.1.2 Model Reference Adaptive System (MRAS)
1.4.1.3 Self Tuning Regulator
1.4.1.4 Dual Control
1.4.2 The Adaptive Control Problem9
1.5 Bio inspire Optimization:

1.5.1 Particle Swarm Optimization10

Chapter 2: Literature Review

2.1General	
2.2Literature review	13
2.3Conclusion.	17

Chapter 3: Development of Mathematical Modeling of CSTR

3.1Genera	1	
3.2Mather	natical modeling	19
3.2.1	Overall Material Balance	19
3.2.2	Balance on Component A	19
3.2.3	Energy Balance	19
3.3State V	ariable Form of Dynamic Equations	20
3.4Lineari	zation of Dynamic Equations	20
3.5Steady-	-State Solution	21
3.6Stabilit	y Analysis	22
3.7Transfe	er Function Analysis	24
3.8Conclu	sion	25

Chapter 4: Model Reference Adaptive Control

4.1General	26
4.2MIT Rule	27
4.3 Lyapunov Stability Theory	29
4.3.1 Lyapunov design of MRAC	31
4.4 Development of Simulink Model of Model Reference Adaptive control	31

4.4.1 MIT Rule	
4.4.2 Lyapunov Rule	
4.5 Conclusion	
Chapter 5: MODEL REFERENCE ADAPTIVE CONTROL	
5.1 Introduction	
5.2PID Control	
5.3 Tuning of PID Controller	35
5.3.1Open Loop Tuning	35
5.3.1.1 Ziegler-Nichols open loop Tuning Method	
5.3.2 Closed Loop Tuning Methods	37
5.3.2.1 Ziegler-Nichols Tuning Method	
5.4 Performance Analysis	
5.4.1Time Domain Specification	
5.4.2Performance Indices	40
5.5Conclusion	41

Chapter 6: Particle Swarm Optimization

6.1 General	42
6.2 Implementation of PSO Controller	42
6.2.1 Initialization	44
6.2.2 Velocity Update	44
6.2.3 Position Update	44
6.2.4 Update of Pbest and gbest	45
6.2.5 Stopping Criteria	45

6.2.6 PSO Controller Flow Chart	45
6.3 PSO-PID Controller	47
6.3.1 PSO –PID Controller Flowchart	49
6.4 Implementation of PSO-PID Controller	50
6.4.1 PSO Parameters	50
6.4.2 Calculation of Fitness Function	50
6.5 Conclusion	51
Chapter 7: Results from Simulation and Comparison	
7.1 General	
7.2 Open Loop Response of CSTR	52
7.3 Response of CSTR with Model Reference Adaptive Control	53
7.3.1 MIT Rules	53
7.3.2 Lyapunov Rule	56
7.4 Response of CSTR with PID Controller (Ziegler-Nicholas Method)	58
7.5 Response of CSTR with PSO-PID Controller	59
7.6 Comparative Results of ZNT, MRAC and PSO-PID Controller	60
7.7 Conclusion	61
Chapter 8: Main Conclusion and Suggestion For Further Work	
8.1 General	62
8.2 Main Conclusion	62
8.3 Suggestion for Further Work	63

References	64
Appendix A	69
Appendix B	71
Appendix C	72

LIST OF FIGURES

Fig. No.	Name of Figure	Page No.
1.1	Block diagram of an Adaptive Controller	4
1.2	Block diagram of a system with Gain Scheduling	6
1.3	Block diagram of a Model Reference Adaptive System	7
1.4	Block diagram of Self Tuning Regulator	8
1.5	Block diagram of Dual Control	8
1.6	Types of Bio Inspired Optimization Techniques	10
3.1	Continuous Stirred Tank Reactor with Cooling Jacket	18
4.1	Block Diagram of a Model Reference Adaptive System	27
4.2	Block diagram of MRAS Based on MIT Rule	28
4.3	Block diagram of MRAS based on Lyapunov Theory	31
4.4	Matlab Simulink diagram of MIT Rule	32
4.5	Matlab Simulink diagram of Lyapunov Rule	32
5.1	Block diagram of PID Controller	33
5.2	Block diagram of plant with variable output	36
5.3	System response for first order time delay transfer function	n 36
5.4	Step response of a second order system	39
6.1	Flowchart of PSO	46
6.2	Flowchart of PSO-PID control system	49
7.1	Open-loop response of concentration in CSTR	52

7.2	Open-loop response of temperature in CSTR	53
7.3	Output of CSTR with MIT Rule when gamma=1	53
7.4	Output of CSTR with MIT Rule when gamma=10	54
7.5	Output of CSTR with MIT Rule when gamma=50	54
7.6	Output of CSTR with MIT Rule when gamma=100	55
7.7	CSTR output with MIT rule for different values	
	of adaption gain	55
7.8	Output of CSTR with Lyapunov Rule when gamma=1	56
7.9	Output of CSTR with Lyapunov Rule when gamma=10	56
7.10	Output of CSTR with Lyapunov Rule when gamma=50	57
7.11	Output of CSTR with Lyapunov Rule when gamma=100	57
7.12	CSTR output with Lyapunov Rule for different values of	
	adaption gain	58
7.13	CSTR output with PID controller using	
	Ziegler-Nicholas method	58
7.14	Step response of CSTR with PSO-PID Controller	59
7.15	Plot of PSO parameters for different iterations	60

LIST OF TABLES

Table No.	Title of Table	Page No.
3.1	Reactor Parameter	22
5.1	Ziegler-Nichols open loop method	37
5.2	Ziegler-Nichols closed loop method	38
5.3	Modified Ziegler-Nichols closed loop method	38
7.1	PID tuning parameters using Ziegler-Nichols method	58
7.2	Optimized PID tuning parameters of PSO for	
	Different iterations	59
7.3	Comparison results	61