CERTIFICATE

Date:

This is to certify that report entitled "MAGNETORHEOLOGICAL CHARACTERIZATION OF MRP FLUID AND MR FINISHING" by Mr. KRISHNA PRATAP SINGH, is the requirement of the partial fulfillment for the award of Degree of Master of Technology (M. Tech.) in Production Engineering at Delhi Technological University, Delhi. This work was completed under our supervision and guidance. He has completed his work with utmost sincerity and diligence. The work embodiedin this project has not been submitted for the award of any other degree to the best of my knowledge.

Mr. M.S. NIRANJAN (ASSISTANT PROFESSOR) Dr. QASIM MURTAZA (ASSOCIATE PROFESSOR)

DEPARTMENT OF MECHANICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

ACKNOWLDGEMENT

To achieve success in any work, guidance plays an important role. It makes us put right amount of energy in the right direction and at right time to obtain the desired result. I express my sincere gratitude to my supervisors, **Mr. M. S. NIRANJAN, Assistant Professor**, and **Dr. QASIM MURTAZA, Associate Professor** Mechanical Engineering Department for giving valuable guidance during the course of this work, for their ever encouraging and timely moral support. Their enormous knowledge always helped me unconditionally to solve various problems.

I am greatly thankful to Dr.R.P. Pant at N.P.L. Delhi and entire faculty and staff Mr.Vinay and Mr.Takechand, Department of Mechanical Engineering, Delhi Technological University, Delhi for their help and also thanks to my parents and my wife Mrs. Shalini Singh for their inspiration and moral support, which went a long way in the successful completion of my report work.

> KRISHNA PRATAP SINGH (Roll No. 2K13/PIE/09)

ABSTRACT

Magnetorheological (MR) fluids are the suspensions of micron-sized dispersed magnetic phase in a non-magnetic carrier continuous phase along with additives. Magnetic abrasive particles (MAPs) based MR polishing (MRP) fluid sample has been synthesized in the present research work. These MAPs are developed at 1000^oC with appropriate sintering cycle using solid phase sintering method. Then MRP fluid sample has been synthesized with 45 volume% magnetic abrasive particles and 55 volume% base fluid. After synthesis of MRP fluid, magnetorheological characterization has been done at different magnetic field on MCR-301 magnetorheometer and steady state rheograms have been drawn. The flow behavior of magnetic abrasive particles (MAPs) based MRP fluid sample has been compared with flow behavior of unbonded magnetic abrasives based MRP fluid. The result shows better yield behavior and viscosity of MAPs based MRP fluid.

After magnetorheological characterization, the experiments have been conducted on mild steel work-piece surface having 70x10x5 mm dimension with MAPs based MRP fluid sample as well as unbonded magnetic abrasives based MRP fluid on ball end magnetorheological finishing (BEMRF) tool. Initial surface roughness before experiment and final surface roughness after the experiments has been measured with Talysurf using 4 mm data length and 0.25 mm cut off length. The percentage reduction in surface roughness ($\%\Delta R_a$) has been calculated and found better for finishing the mild steel surface by MAPs based MRP fluid sample as compared to unbonded magnetic abrasives based MRP fluid.

Key words: MAPs, MR, MRP Fluid, Magnetorheology, Surface roughness

TABLE OF CONTENTS

TOPIC	PAGE NO
Certificate	i
Acknowledgement	ii
Abstract	iii
Contents	iv
List of Figure	V
List of Tables	vi
List of Nomenclature	vii
Chapter 1: Introduction	
1.1. MR Fluid	1
1.2 Rheology of Magnetorheological (MR) Fluids	3
1.3. Magnetorheological Finishing	5
1.4. MRP Fluid behaviour	6
1.5. Common MR fluid surfactants	7
1.6. How it works	8
1.7. Modes of operation and applications	9
1.7.1. Flow mode	
1.7.2. Shear Mode	

iv

1.7.3. Squeeze-Flow Model

1.8. Applications	11
1.9. Limitations	12
Chapter 2: Literature Review	13
2.1. Research Gap	18
2.2. Research objectives	18
Chapter 3: Rheology Characterization	
3.1. Preparation of Sample	19
3.2. Rheological Characterization	20
3.2.1. Rheometry	20
3.2.2. Experimental Setup	22
3.3. Observations	
3.3.1. Shear stress and viscosity at 0Acurrent	24
3.3.2.Shear stress and viscosity at 0.4A current	26
3.3.3.Shear stress and viscosity at 0.7A current	28
3.3.4. Shear stress and viscosity at 1A current	30
3.3.5.Shear stress and viscosity at 2A current	32
Chapter 4: Experiment Work on BEMRF	
4.1. Mechanism of Material Removal	35
4.2. Experiment Conducted on BEMRF	37
Chapter 5: Result and Discussion	40
Conclusion and Future Scope	44
References	

LIST OF FIGURES

S. NO.	TITLE	PAGE NO.
Fig.1.1	Schematic of the formation of chain-like formation of magneticparticles in MR fluids in the direction of anappliedmagnetic field	2
Fig.1.2	Bingham Plastic Models	4
Fig.1.3	Anisotropy of MR fluids: The value of the yield stress depends on the direction of the applied magnetic field and thesheardirection	5
Fig. 1.4	Magneto rheological effects	6
Fig.1.5	Behavior of MR fluid	11
Fig.3.1	Rheometer geometries of parallel plate	20
Fig.3.3	Schematic View of Magnetorheometer	23
Fig.3.4	Shearstress and Viscosity at 0A	25
Fig.3.5	Shear stress and Viscosity at 0.4 A	27
Fig.3.6	Shear stress and Viscosity at 0.7 A	29
Fig.3.7	Shear stress and Viscosity at 1.0A	31
Fig.3.8	Shear stress and viscosity at 2.0A	33
Fig.4.1	Mechanism of material removal in BEMRF process	36
Fig.4.2	Mechanism of material removal in the case of indentation	37
Fig.4.3	Schematic diagram of MR finishing tool	38
Fig.4.4	Set up of Ball End MagnetorheologicalFinishing Tool	38
Fig.5.1	Initial and final surface roughness after finishing with sample S_1	41
Fig.5.2.	Initial and final surface roughness after finishing	

with sample S_2 .

LIST OF TABLES

S. NO.	TITLE	PAGE NO.
Table 3.1	Composition of MRP fluid	19
Table 3.2	Equations of rheological properties for parallel plate geometry	21
Table.3.3	Shear Stress and viscosity at Current 0A	24
Table3.4	Shear Stress and viscosity at Current 0.4 A	26
Table3.5	Shear Stress and viscosity at Current 0.7A	28
Table3.6	Shear Stress and viscosity at Current 1A	30
Table3.7	Shear Stress and viscosity at Current 2A	32
Table 5.1	Initial and final roughness value and ΔR_a	40

NOMENCLATURE

VOL	Volume
CIP	Carbonyl iron powder
°C	Degree Celsius
Mm	Millimeter
MR	Magnetorheological
MAP	Magnetic abrasive particle
MRP	Magnetorheological Polishing
XRD	X-ray diffraction
Ν	Newton
τ	Fluid shear stress (Pa)
$ au_{o}$	Dynamic yield shear stress (Pa)
SEM	Scanning Electron Microscope
η	Plastic viscosity (Pa-s)
γ	Shear rate (s^{-1})
ΔRa	Surface Roughness
Н	Magnetic field intensity
Ω	Angular velocity
θ	Angular displacement