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CHAPTER 1 

 

INTRODUCTION 

 

Artificial neural networks (ANN) play a major role in applications involving DSP.  A few 

to mention include image processing, pattern recognition, GPS systems, speech, vision, 

and control systems [1-4]. ANN is similar to the human brain and can solve problems 

which are difficult for the conventional computers, as they can be trained just like the 

human brain which is not possible for the conventional computers. Additionally, they 

have attractive properties like adaptiveness, self-organization, nonlinear network 

processing and parallel processing. This has lead to the use of neural network in 

applications involving classification, association, decision-making and reasoning [5].  

Artificial neural networks consist of massively parallel network and require parallel 

architecture for high speed operations in real time applications [6]. Also, Neurocomputers 

and neuro-computing has always been a fascinated topic of research from early 80s and 

90s. A lot of research has been done on design and implementation of neural networks 

and hardware neuro computers [7, 8, 9, 10]. But that time almost all the researches 

proved unsuccessful in proving the wide use of neural network. But after a long period, 

literature shows that the concept of neural network and various applications associated 

with it made a sort of comeback [11, 12, 13]. The main hurdle that was found was ASIC 

implementation and hence in the last few years, a great revolution has been witnessed in 

this field due to the use of FPGA which are considered as the best choice for modern 

digital system designing. Hence, while considering these features neural networks are 

considered to be best suited for the VLSI technology. The possibility of hardware 

realization of neural network mainly depends on how efficiently single neuron can be 

implemented. 

ANN technology has emerged as an effective computational modeling tool and has 

founded extensive acceptance in modeling various complex real word problems. 

Although ANNs are considered as the abstractions of biological counterparts, but the 

basic idea behind ANNs is not the replication of the operation of biological systems, 

rather, the main idea was to exploit the functionality of biological neural network which 
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can solve a large number and variety of complex problems. The main advantage or 

reason why ANN was an attractive topic for researchers was its non linearity along with 

failure and fault tolerance capability which involves high parallelism and can also handle 

fuzzy information. ANN finds a large range of areas in which it has been applied. Few 

amongst them are:  

• Pattern recognition of protein structure, RNA, microscopic images and DNA. 

•  Biomass and growth prediction.  

• Handwriting recognition. 

• Number plate identification. 

• Traffic control applications etc. 

Since ANN covers wide range of applications, hence the speed of neural network has 

always been a main parameter of concern. Various efforts have been done and research is 

going on to improve the speed of the artificial neural network. As described before that 

the possibility of hardware realization of neural network mainly depends on how 

efficiently single neuron can be implemented. Hence, in this work, by enhancing the 

speed of the multiplier which is involved in almost each and every step of ANN, the 

overall speed of a single neuron or ‘Perceptron’ has been improved. This in turn will 

enhance the processing speed of the various applications which are based on artificial 

neural network.  

1.1 Motivation 

Multiplier is a crucial building block of several signal processing applications, as they 

play an important role in designing an efficient architecture [14, 15]. Recently, several 

high speed multipliers designed using Vedic mathematics have been reported [16, 17].  

Vedic mathematics reduces the computation time in calculations and thereby making it 

very simple and easier one compared to the conventional mathematics. The reason behind 

the simplicity of Vedic formulae is that they follow the natural principles on which the 

human mind works. Vedic mathematics is a collection of arithmetic rules that allow more 

efficient speed implementation. Recently Vedic mathematics based ALU and modulators 

have been reported [18].Hence, the efficiency of Vedic mathematics can be utilized to 
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design very efficient and high speed neural network too, which can be utilized for various 

applications.  

Above all this, the speed has been a critical issue in functioning of any network. Hence in 

the present work the advantage of Vedic mathematics was the motivation behind the 

designing of high speed network. 

1.2 Related Work 

ANNs are nothing but structures comprising of densely connected nodes or neurons 

which are highly capable of performing parallel computations. In the last few years it has 

emerged as a revolutionary technique. It has the capability to build intelligent systems 

with cost effective and high speed solutions.  There are various kinds of ways in which an 

ANN can be implemented i.e. digital, analog or hybrid and each one of it has its own 

advantages and disadvantages which depends on the type of network and the training 

algorithm applied. Literature shows that a lot of work has been done on designing of 

neural network and its various applications in image processing, electromagnetic 

simulation [19], and prediction of traffic speed [20] etc using different algorithms and 

techniques with a main focus on high speed networking. Today, ANN has been used in 

almost many applications of day to day life. Hence, speed of neural network has been an 

area of concern from past [21] and a lot of work has been done in this area. 

Multiplier plays a key role in designing any high speed logic unit. Various multipliers 

based on booth algorithm and Wallace algorithms have been reported. Literature shows 

that a wide range of research has been done from past till present in designing of  area 

efficient and high speed multipliers and recently various multipliers based on vedic 

mathematics have been reported [22].Vedic mathematics seems to be a promising 

technique in design of high speed multipliers. A lot of multipliers have been designed 

using Vedic mathematics which has different advantages over standard multipliers. Out 

of the 16 sutras of Vedic mathematics, ‘Urdhva Tiryagbhyam’ sutra is generally used for 

efficient designing of Vedic multiplier. The multipliers based on Vedic mathematics took 

over all other multipliers due to their high speed and low power capabilities. Recently 

Vedic multipliers designed using compressors with Urdhva Tiryagbhyam sutra have 

proved to be the most promising one in terms of power, area and delay. Hence, Vedic 

mathematics has been proved as one of the robust technique in designing various 
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applications involving arithmetic operations. Vedic mathematics based efficient MAC 

unit has also been reported [23].  

Logic gates and logic circuits play a major role in the theory of computation. 

Computation carried out by man or by machine is a physical activity, and is ultimately 

governed by physical principles. An important role for mathematical theories of 

computation is to reduce in their axioms, in a different way. With this support, the focus 

can be on the abstract modeling of complex computing processes without having any 

need to verify at every step the physical realizability of the mode [24]. Thus, a Boolean 

logic (using, say, the AND, NOT, and OR primitives) can be chosen with the confidence 

that any network designs in this way is immediately translatable into a working circuit 

requiring only well-understood, readily available components (the “gates”, "inverters”, 

and “buffers” of any suitable digital-logic family). 

And since multiplication is a crucial application in designing of any neural network, so it 

can be used in designing high speed neural network. Until now no work has been 

proposed which can combine the advantages of both the techniques to design a neural 

network based on Vedic mathematics. 

1.3 Objective and Scope of the Project 

The objective of this thesis is to estimate the performance of a neuron model designed 

with Vedic multiplier against normal multiplier using the features of ANN & Vedic 

multiplier using VHDL and to verify the results using Modelsim. Also, a brief 

introduction to neuronal gates has been done and the hardware implications of both the 

schemes have been shown. 

1.4 Organization of Thesis  

The thesis outline is as follows: 

Chapter 2: This chapter provides the literature review of the two most promising 

technologies i.e. Artificial Neural Network and Vedic mathematics with a detailed 

description of both the technologies where the objectives and the features of ANN are 

illustrated. Also it provides an insight to the multipliers where the introduction to 

multipliers and Vedic mathematics with Urdhva Tiryagbhyam sutra, along with its 

algorithm is presented. 
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Chapter 3:  This chapter gives an approach to design and analysis of Neuronal logic 

which explains briefly about various neuronal Logic gates. Also the various implications 

in designing of few neuronal logic gates have been explored. 

Chapter 4:  This chapter deals with the proposed work i.e. the digital design of the 

neural network based on Vedic mathematics has been presented along with the need and 

advantages of the proposed work. 

Chapter 5: In this chapter all the simulation results obtained from the proposed structure 

has been shown. 

Chapter 6: This chapter deals with the conclusion from the interpreted results and 

explores the future work for this technology.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

The human brain comprises of numerous small cells known neurons which form a 

network to perform the brain activities.  As the neural network is highly nonlinear and 

has a parallel architecture it performs tasks in a fraction of second. Because of this 

parallel architecture, the computation speed of a human brain is much faster than a 

conventional machine. [4].The computation can be viewed as a system in which the 

inputs are received from an external stimulus. The receptors convert the external stimulus 

into electrical impulses that convey the information to the neural net and depending on 

the electrical impulses the neural net conveys or transmits the information to effectors to 

provide an optimal response to stimulus as shown in Fig.1. The brain is considered to be 

composed of an integral constituent known as neuron. The brain learns to distinguish 

different patterns by training these neurons which give the appropriate output [25]. 

In order to emulate the brain, the concept of artificial neural network has been designed 

to model the way in which the brain performs a particular task or function of interest. 

 

 

 

 

 

 

 

 

Fig.1 Block diagram representation of nervous system. 

A neural network is a massively parallel distributed network made up of simple 

processing units. These processing units have a natural tendency of storing experiential 

knowledge and making it available for use [26]. It is analogous to the brain in two 

aspects: 
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• The network obtains knowledge from its environment through a learning process. 

• The knowledge that has been acquired is stored in interneuron connection 

strengths known as synaptic weights. 

Multiplication is an essential and basic function in arithmetic procedures and Vedic 

mathematics is an ancient methodology developed by Indians, which is capable of faster 

intellectual computation.  Multiplication is one of the most important operations in digital 

neural network based systems. There are several Multiplication-based operations.  

Frequently used such Computation- Intensive Arithmetic Functions are multiply and 

Accumulate (MAC) and inner product [27]. Further, multipliers play a major role in the 

overall power consumption of any system. Therefore, reducing their power dissipation 

satisfies the overall power budget of ANN system.  

Real-time applications involving lots of arithmetic operations require a high throughput 

for a desired performance [28]. Multiplication is one of the major and key arithmetic 

operations which contribute a major part in the speed of any computation.  The essential 

requirements for many applications developed using neural network are reduction of the 

time delay and power consumption. 

 Out of the four known renowned Vedas, Sthapatya Veda which is part of Atharva Veda 

describes about Vedic mathematics in detail. All the modern mathematical terms such as 

trigonometry, arithmetic, factorization, geometry, quadratic equation and calculus has 

been covered in it. Shri Shankaracharya Teerathji compiled his work and gave 16 sutras 

after doing an exhaustive research in Atharva Veda. It has been accepted from ages and 

cannot be disregarded because it is not only mathematics but it is also a logical wonder 

too. It contains such powerful tools, that it has emerged as a fantasy topic for research 

which has crossed the boundaries of India. All the different branches of Vedic 

mathematics are based on 16 different sutras as shown below: 

 

•  Urdhva-Tiryagbhyam – Vertically and crosswise 

• Chalana  Kalanabyham – Differences and Similarities. 

• Vyashtisamanstih – Part and Whole. 

•  Shunyamanyat – If one is in ratio, the other is zero. 
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•  Yaavadunam – Whatever the extent of its deficiency 

•  Ekadhikina Purvena – By one more than the previous One. 

•  Sopaantyadvayamantyam – The ultimate and twice the penultimate. 

•  Ekanyunena Purvena – By one less than the previous one. 

•  Shunyam Saamyasamuccaye – When the sum is the same that sum is zero. 

•  Gunakasamuchyah – The factors of the sum is equal to the sum of the factors. 

•  Shesanyankena Charamena – The remainders by the last digit. 

•  Nikhilam Navatashcaramam Dashatah – All from 9 and last from 10. 

•  Sankalana- vyavakalanabhyam – By addition and by subtraction. 

•  Paraavartya Yojayet – Transpose and adjust. 

• Gunitasamuchyah – The product of the sum is equal to the sum of the product. 

•  Puranapuranabyham – By the completion or non completion. 

Hence both the technologies i.e. ANN and Vedic mathematics have the potential to 

develop efficient digital systems. Therefore, the current work explores the possibility of 

combining these two technologies and hence it will enhance the applications associated 

with ANNs. Before going further, in the next sections, a detailed introduction to Artificial 

Neural Networks and Vedic multipliers have been provided. 

2.1 Introduction to Neural Networks 

 The extremely high capability of neural networks which can solve those problems which 

cannot be modeled mathematically makes them highly efficient. They are nothing but a 

model which can mimic the biological neuron structures.   

2.1.1 Biological Neuron 

The human nervous system consists of trillions of neurons which have different types and 

lengths according to their body locations. Fig.2 shows the biological neuron which 

consists of three major functional units called axon, dendrites and cell body. The cell 
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body consists of nucleus which has information about heredity traits. It also consists of 

plasma which does the work of holding the molecular equipment used for producing the 

material which is needed by the neuron. The signals from the other neurons are being 

received by dendrites and it passes them over to the cell body. 0.25mm2 is the 

approximate total area of the dendrites of a typical neuron. Synapse is the point where 

two neurons meet. And, the signal received from the axon by the cell body is carried 

through the synapse to the dendrites of the neighboring neurons. Fig.3 shows the 

schematic of signal transfer between two neurons through synapse.  

 

 

 

 

 

 

 

 

 

Fig.2 Schematic of biological neuron. 

An impulse travels within the dendrites and through the cell body towards the pre-

synaptic membrane of the synapse. A chemical generally referred as neurotransmitter is 

released from the vesicles as soon as it arrives at the membrane. Its quantity is 

proportional to the strength of the incoming signal. The neurotransmitter diffuses within 

the synaptic gap towards the post synaptic membrane and eventually in dendrites of 

neighboring neurons. And hence, according to the threshold level, it forces them to 

generate a new electrical signal. In the same manner the generated signal passes through 

other neurons. The intensity of each signal coming from each feeding neurons, their 

strength, and the receiving neuron’s threshold decides the amount of signal that passes 

through a receiving neuron. Because of the large number of dendrites/synapses in a 

neuron, many signals can be transferred and received simultaneously which in turn can 

either excite or inhibit the firing of the neuron. This mechanism was the fundamental step 

in the operation of building unit of ANN and other neuro computing development. 
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Fig.3 Mechanism of signal transfer between two biological neurons. 

2.1.2  Model of Neuron 

 In the year 1943, researchers McCulloch and Pitts introduced the artificial neuron model 

after many findings with the human biological system. There are several models of 

neuron proposed by various scientists after this finding. One such model is known as the 

‘Perceptron’ model, which was introduced by Rosenblatt in 1958 and is a single artificial 

neuron.  Perceptron was named since the human eye perceives what it sees. As the 

biological neuron receives input from one of its dendrites, the artificial neuron receives 

its input stimuli from the surrounding environment.  This input stimulus is combined with 

other inputs to form a net input which is then sent to an activation function which can be 

a linear threshold function. If the weighted sum of all the inputs is above the threshold 

then the output is high, which is termed as “fired”. The output of the activation function 

is transmitted to other adjacent neuron for firing. 

The nonlinear (McCulloch) model of neuron is as shown in Fig. 4.  

 

 

 

 

 

 

 

Fig.4  Nonlinear model of neuron [4]. 
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The neuron may be described in the following way 

𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑛
𝑗=1                                        (1) 

𝑦𝑘 = ∅(𝑢𝑘 + 𝑏𝑘)                                       (2) 

where x1,x2,..xm are the input signals. 

wkj refers to synaptic weight of neuron k. 

yk is the output of neuron k. 

The relationship between induced local fields or the activation potential vk of the neuron 

depends on whether bias bk is positive or negative and is given as follows: 

𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘                                              (3) 

𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=0                                          (4) 

𝑦𝑘 = ∅(𝑣𝑘)                                                 (5) 

Depending on the application requirement, various activation functions could be used. 

Usually, three basic type of activation function i.e. threshold function, piecewise linear 

function and sigmoid function are used as shown in Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Activation Functions a. Threshold Function b. Piecewise linear function c. Sigmoid 

Function 
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The threshold function is given as  

∅(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 < 0

            (6) 

The piecewise linear function is given as  

∅(𝑣) = {

1 𝑖𝑓 𝑣 ≥ +1/2

𝑣 𝑖𝑓 +
1

2
> 𝑣 >

0 𝑖𝑓 𝑣 ≤ −
1

2

−
1

2
        (7) 

The sigmoid function is given as 

∅(𝑣) =
1

1+exp (−𝑎𝑣)
          (8) 

where ‘a’ is the slope parameter of the sigmoid function. 

In the present work, while designing neural network based on Vedic multiplier we have 

used the basic threshold function as the activation function. 

2.2 Analogy between biological and artificial neural network 

The table below shows the analogy of the components of artificial neural network with 

that of the biological neuron. Hence, it can be clearly seen that a human neuron can be 

mapped into a digital network which can work in the same way as the human brain works 

so as to achieve higher speed and accuracy. 

TABLE I.  ANALOGY BETWEEN BIOLOGICAL AND ARTIFICIAL NEURAL NETWORK. 

Biological Neural Network Artificial neural network 

Soma Neuron 

Dendrite Input 

Axon Output 

Synapse Weight 

 

2.3 Topologies used in Neural Network 

A major role has been played by Artificial Neural Networks (ANN) in the development 

of intelligent control schemes [29]. Their extensive usage is for system identification as 

well as controller parametrizitation. Here various types of neural networks will be 

discussed.  
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2.3.1 Feed Forward Network 

The simplest form of ANN is called a Perceptron. As discussed before, it consists of a 

single neuron with adjustable weights and bias. In 1988 Broomhead and Lowe [30] 

described the design of a layered feed forward networks using radial basis function which 

came as an alternative to multi-layer Perceptron. A FFN is the one in which neurons of 

one layer are forward connected to the neurons of the other layer as shown in Fig.6. 

Inspite of the various variants of FFN, radial basis function networks and multi-layered 

networks have been used in various applications. It is because these two are considered as 

universal approximators. Approximators are the one using which any non linear function 

can be approximated with an arbitrary accuracy using a properly tuned multilayered 

network or a radial basis function network.  

 

 

 

 

 

 

 

 

 

 

Fig.6  Architecture of feed forward network. 

2.3.2 Feedback Network 

The versatility of a neural network is considerably increased by the addition of feedback. 

As discussed before FFN gets mapped from the input space to the output. As soon as the 

weights get fixed the neuron is independent of the initial and past state of this neuron. 

Hence a feedback network is a static network. In contrast, feedback network allows 

feedback connection and also called as recurrent network as shown in Fig.7 .It becomes a 

non linear dynamic system which exhibits highly non linear dynamic behavior and thence 

it makes it highly interesting. Such a system has very rich temporal and spatial behaviors. 

These behaviors could be stable and unstable fixed points and limit cycles, and chaotic 
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behaviors. These behaviors can be utilized to model certain cognitive functions such as 

unsupervised learning, associative memory, self organizing maps and temporal reasoning. 

 

 

 

 

 

 

 

 

 

 

Fig.7 Architecture of feedback network. 

2.3.3 Single-layer Neural Network 

A single layer neural network (SNN) consists of input neurons and output neurons and is 

called as a single layer network because instead of considering input neurons as a layer, 

they are considered as a source of getting data into the network. Fig.8 clearly shows the 

architecture of single layer neural network. 

 

 

 

 

 

 

 

 

Fig.8 Architecture of single layer neural network. 

2.3.4 Multi-layered Neural Network 

As shown in Fig.9, a multilayer neural network (MNN) consists of an input layer of 

source nodes, hidden layers of neurons and an output layer of neurons. The propagation 

of input signal takes place on a layer to layer basis through the network in the forward 
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direction. The response by every neuron is actuated using an activation function. They 

have been proved successful in solving difficult problems by training them in a 

supervised manner with the error back propagation algorithm. 

 

 

 

 

 

 

 

 

 

 

Fig.9 Architecture of a 3 layer MLP network. 

2.4 Parallelism in Neural Network 

To determine the best mappings and most suitable hardware structures, a careful 

examination of the various parallelism offered by neural networks is required. It can be of 

various types, for example, MIMD type or SIMD type, bit parallel or word parallel [31]. 

Few are explained as follows: 

• Training parallelism: Here medium level (usually hundreds) of training sessions 

run in parallel on SIMD and MIMD processor and hence it makes them easier to 

fully map onto large FPGA’s. 

• Layer parallelism: It corresponds to multilayer networks. In such networks 

different layers can be processed in parallel. The level of parallelism is quiet low 

here. Because of this it is of limited value but can be exploited through pipelining. 

• Node parallelism: This is the most important level of parallelism which 

corresponds to individual neurons. 
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• Weight parallelism: In a neural network, the inputs, weights and the products can 

be calculated in parallel during the computation of an output. Also, the sum of all 

products can be calculated with high parallelism. 

• Bit level parallelism: A large variety of parallelism is available while considering 

the implementation level, which depends on design of individual functional unit. 

e.g. word parallel, bit serial, serial parallel. 

The above discussion summarizes the various aspects of parallelism in context of 

implementation. The points are as shown below 

• Depending on cost and performance rate, a tradeoff between different types of 

parallelism can be made. 

• There is an enormous variation of parallelism available at different levels. 

• Not all types of parallelism support FPGA implementation. 

2.5 Overview of Back Propagation Algorithm 

Fig.10 shows the generalized structure of multilayer Perceptron neural network (MLP). 

In the figure the neurons have been marked from 1 to N and the layers have been 

numbered 0 to M. The five steps which MLP uses to execute back propagation are as 

follows: 

a) Initialization: Before training the neural network a few parameters have to be 

initialized and they are:  

• Synaptic weight 

• Learning rate 

• Bias of neuron 

Statistically, bias increases the chances of convergence and can be thought of 

as a noise which randomizes initial conditions in a better way. 
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Fig.10 Generic structure of a feed forward ANN. 

b) Presentation of training example: Whatever data is available, that data is 

presented to the network. This can be presented either individually or as a group. 

c) Forward computation: As soon as forward computation starts, the available data 

from neuron at that time is made to propagate forward from lower layers to the 

higher layer via a feed forward network and hence the output is calculated. 

d) Backward computation: The main aim of learning algorithm is to minimize errors. 

Hence in this process the updation of weights and bias takes place. The error is 

calculated by comparing the expected value and the actual value hat has been 

obtained during forward computation. 

e) Iteration: In this step, iterations are reiterated for each training example in epoch 

until some criteria for stopping has been achieved. While running applications, 

MLP will compute forward computation once training gets completed. 

2.6 ANN project development  

The various phases of ANN project development are shown in Fig.11. The development 

of any ANN project requires six phases as described below: 

a) Phase I: It concerns with the formation and definition of problem which is totally 

dependent on clear understanding of the problem which mainly includes the 

‘cause-effect’ relationships. 
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b) Phase II: It is mainly considered as the first step in designing of actual ANN. In 

this, the type of ANN and a learning algorithm which fits the concerned problem 

is determined by the modeler. All the work related to data collection, data pre-

processing, positioning of data, statistical analysis of data is also done. 

c) Phase III: This phase deals with the training of data and error prediction to assess 

the network performance. 

d) Phase IV: In this, examination for best network is done by ANN, testing against 

the data when training is in process, and also the comparison with other 

approaches is done. 

e) Phase V: The hardware implementation of the network and finally the testing of 

embedded system are done before handling it to the user. 

f) Phase VI: Updation of the developed system according to the new system 

variables is done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.11 Various phases in an ANN development project. 
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2.7 Hardware Implementation of a Neuron 

Since last 25 years, hardware implementations of artificial neural network have been of 

interest for many scientists [32]. Various hardware implementations are proposed [33].  

The analog implementation uses CMOS transistors which have its own merits and 

demerits. The digital implementation has been proposed using FPGA by various 

researchers, as FPGA is the state of art technology in VLSI. [34,35,36]. The 

reconfigurable feature of FPGA has been a key point due to which it is preferable for 

ANN hardware implementation. Also FPGA is more advantageous than ASIC, as FPGAs 

are fully reconfigurable and cost wise is lesser than ASIC.  FPGAs are more flexible with 

respect to hardware as well as software [37].  

The implemented non-linear model of a single neuron is shown in Fig. 12. 

 

 

 

 

 

 

 

 

 

 

 

Fig.12 Block diagram of a single neuron. 

It works in the same way as the biological neuron works. The input signal along with the 

desired weight is multiplied in a multiplier. The output of multiplier is fed to the 

accumulator which adds that value with that of the previous one or the other values 

obtained from different inputs and weights. The output of the accumulator is directed to 

the activation function which can be chosen as per the desired need. If the value of the 

accumulators output is greater than the threshold value, than the neuron is said to be fired 

otherwise not. 
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2.8 Introduction to Multiplier 

The need of high speed multiplier has always been in demand because it is utilized in 

almost each and every application. History suggests that earlier the multiplication 

operation involved addition, subtraction and shifting operations. The multiplier is a large 

block in any computation system and hence it becomes a source of large delay and high 

power dissipation system. in any digital hardware, the widely followed algorithms are 

array multiplication and booth algorithm but a large propagation delay is occurred in 

these cases and hence various algorithms have been designed to obtain high speed and 

low power efficient multipliers and hence came the concept of vedic multiplication. The 

detailed information about the Vedic multiplier and its rule has been explained in the 

further sub sections. 

2.8.1 Vedic Multiplier 

The word “Vedic” is a Sanskrit word. In Sanskrit the word, ‘Veda’ means store house of 

all knowledge. Vedic mathematics is based on 16 Sutras (or aphorisms).These sutras deal 

with various branches of mathematics. In Vedic mathematics, methods adapted for basic 

arithmetic are simple and powerful [38, 39]. In Vedic mathematics, Urdhva Tiryagbhyam 

sutra is used generally for high speed multiplication. Vedic multiplier is very much 

advantageous in case of bigger multiplication which would consume more time in a 

conventional multiplier. 

2.8.2 Details of Urdhva-Tiryagbhyam Method of Multiplication 

Urdhva Tiryagbhyam sutra is a sutra for multiplication in the ancient Indian Vedic 

mathematics. This is based on the generation of all partial products by means of 

concurrent addition of the partial product. Urdhva Tiryagbhyam generates partial 

products and their summation in parallel and not sequential with more number of steps as 

done in conventional multiplication. 

Vedic mathematics reduces the typical calculations in conventional mathematics into 

very simple one. This sutra works on the principle on which a human brain works, and 

thus follows the natural principles to generate Vedic formulae.  

Due to the implementation of natural principle, the Vedic formulae are more efficient 

with respect to speed than their counterpart. The multiplication sutra namely the Urdhva 
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Tiryagbhyam is used for all high speed multiplication.  The word “Urdhva” means 

“Vertically” and “Tiryagbhyam” means “Crosswise” in Sanskrit. 

Therefore, this algorithm uses the concept of vertical and crosswise multiplication and 

addition to get the partial products. To illustrate this multiplication scheme, the 

multiplication of two decimal numbers is chosen as shown in Fig.13. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13 Multiplication of two decimal numbers using Vedic mathematics. 

2.8.3  Algorithm 

Fig. 14 shows the line diagram for the multiplication. The line diagram demonstrates the 

procedure for multiplication of 2, 3 and 4 bits.  In the line diagram, the dots represent bit 

“0” or “1”. From the line diagram of 2 bit multiplication, it is seen that the digits on both 

sides of the line are multiplied and added with the carry from the previous step [40]. The 

result generates one of the bits of the result and a carry. In the next step, this carry is 

added and hence the process goes on. The same procedure is followed for more number 

of bits. The line diagram shows the methodology adapted for 3 and 4 bits [41]. 
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Fig.14 Line Diagram for Vedic Multiplication of 2, 3 and 4 digits. 

2.9 Urdhva Multiplier Hardware Architecture 

 The 'Urdhva Tiryagbhyam' algorithm can be implemented in the same way for binary 

number system as decimal number system. As an example, a 4x4 Vedic multiplier 

hardware implementation is explained. 

 The 4x4 bit Vedic multiplier module is implemented using four 2x2 bit Vedic multiplier 

modules. Let’s examine 4x4 multiplication say a=a3a2a1a0 and b=b3b2b1b0. The output 

for the multiplication result is s7s6s5s4 s3s2s1s0. Divide a and b into two parts say a3a2 

& a1a0 for a and b3b2 & b1b0 for b. Then two bits are taken as inputs to the 2bit 

multiplier block which uses the Vedic mathematic fundamentals. 

 The structure for multiplication will be as shown in Fig. 15. Each block, as shown is a 

2x2 bit Vedic multiplier. The inputs to the first multiplier are a1a0 and b1b0. The last 

block is a 2x2 bit multiplier with inputs a3a2 and b3b2.  

The middle one shows two 2x2 bit multipliers with inputs a3a2 & b1b0 and a1a0 & b3b2. 

The final result of multiplication is of 8 bits, s7s6s5s4 s3s2s1s0. To get final product 
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(s7s6s5s4 s3s2s1s0) four 2x2 bit Vedic multiplier and three 4-bit Ripple-Carry (RC) 

adders are required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.15  Block Diagram of 4x4 bit Vedic Multiplier. 

The figure above describes the block diagram of 4 bit Vedic multiplier and it is clearly 

shown that the 4 bit multiplier is implemented by using four 2 bit Vedic multipliers. 

Hence, the Fig.16 below shows the RTL schematic of 2 bit multiplier used in designing 

of 4 bit multiplier. 
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Fig.16  

Fig.17  

Fig.18  

Fig.19 RTL schematic of 2 bit multiplier. 
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CHAPTER 3 

 

NEURONAL LOGIC 

 

The brain is composed of Boolean entities functioning as threshold units. These 

simplified units constitute pure and reliable logic-gates (e.g., AND, XOR), similar to the 

logic at the core of computers. Generalization of this simplified Boolean framework to 

include unreliable elements has emerged in 1956 by the innovative work of John von 

Neumann. The Von Neumann concepts as well as the earlier pioneering work of Claude 

Shannon to simplify Boolean circuits are at the cornerstone of the present day's 

computational paradigm [42]. 

Using the McCulloch-Pitts model we can model logic functions. As shown below, Fig.17 

shows and describes the architecture for three logic functions – AND, OR & AND-NOT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.20 Neuronal logic gates. 
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3.1 Neuronal Logic Gates 

The truth tables for each function are also shown in Table II.  

TABLE II.  TRUTH TABLE FOR AND, OR , AND-NOT GATE. 

INPUTS OUTPUTS 

X1 X2 AND OR AND-NOT 

0 

0 

1 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

1 

1 

1 

0 

1 

0 

0 

 

3.1.1 AND gate 

X1 and X2 are the inputs connected to the same neuron. For modeling the AND function 

the threshold on Y and the weights can be set according to the following conditions. 

For case 1(when𝑥1 = 𝑥2 = 0) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜃 > 0        (9) 

Similarly for other cases 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔2 < 𝜃        (10) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔1 < 𝜃        (11) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔1+𝜔2 ≥  𝜃       (12) 

where 𝜔, x and 𝜃 are the weight, input and threshold respectively. 

3.1.2 OR gate 

OR function is similar to the AND function except the equations will be slightly modified 

according to the truth table and hence the threshold and weights can be correctly chosen 

as per equations 

For case 1(when𝑥1 = 𝑥2 = 0) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜃 > 0        (13) 

Similarly for other cases 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔2 > 𝜃        (14) 
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𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔1 > 𝜃        (15) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔1+𝜔2 ≥  𝜃       (16) 

where 𝜔, x and 𝜃 are the weight, input and threshold respectively 

3.1.3 AND-NOT gate 

The AND-NOT function is not symmetric, in that an input of 1, 0 will be treated in a 

different way to an input of 0, 1. It is clear from the truth table that ‘true’ (value of one) is 

returned when the first input is true and the second input is false.  Again, the threshold 

and weights can be chosen according to the desired equations obtained from truth table. 

For case 1(when𝑥1 = 𝑥2 = 0) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜃 > 0        (17) 

Similarly for other cases 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔2 < 𝜃        (18) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔1 ≥ 𝜃        (19) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔1+𝜔2 <  𝜃       (20) 

where 𝜔, x and 𝜃 are the weight, input and threshold respectively. 

3.2 Limitation of simple Perceptron 

As we have seen before that AND, OR, and NOT gate can ne easily implemnted using a 

simple perceptron model. But what if we want to design a XOR gate using the same 

principle. 

TABLE III.  TRUTH TABLE FOR XOR GATE. 

INPUTS 
OUTPUT 

X1 X2 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Table III shows the truth table of XOR gate. For all the four cased of inputs different 

equations can be derived which will decide the threshold value and the different values of 
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weights that will satisfy the logical XOR function. Hence, from the truth table of XOR 

gate  the equations obtained will be: 

For case 1(when𝑥1 = 𝑥2 = 0) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜃 > 0        (21) 

Similarly for other cases 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔2 < 𝜃        (22) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 ≥ 0 i.e 𝜔1 ≥ 𝜃        (23) 

𝜔1 𝑥1 + 𝜔2𝑥2 − 𝜃 < 0 i.e 𝜔1+𝜔2 <  𝜃       (24) 

where 𝜔, x and 𝜃 are the weight, input and threshold respectively. 

 From the last three equations we can see that the equation (22) and (23) are not 

compatible with the equation (24). No value of threshold and weights will satisfy the all 

the above equations. Hence, no solution exists in this case and XOR gate cannot be 

realized using simple Perceptron. Hence to realize such gates more complex networks are 

needed in which it would not be possible to calculate the weights and threshold by hand 

as in the case of AND, OR and NOT gate. Hence a multilayer network will be used to 

realize such problems. As explained in previous chapters that such networks consists of 

an input layer, hidden layer and an output layer and it involves some learning mechanism 

to calculate the required parameters. 
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CHAPTER 4 

 

 PROPOSED HARDWARE ARCHITECTURE OF NEURAL 

NETWORK IMPLEMENTED USING VEDIC MULTIPLIER 

 

The proposed design consists of a neural network design consisting of input layer and 

output layer, activation function design and high speed multiplier design which is the 

main component of the proposed design. To get a high performance neural network the 

proposed design utilizes vedic multiplier due to its obvious advantages explained in 

previous chapters. 

4.1 Proposed hardware architecture of Vedic neuron. 

The main element of any neural network starts with the designing of a neuron. It 

processes data in three steps: 

•  The inputs are multiplied with the weights i.e. weighing of input values. 

• All the multiplied values are summed by a serial accumulation/adder. 

• Filtering by the activation function 

In the proposed design the standard multiplier has been replaced with the Vedic 

multiplier to enhance the speed, area and power of any neural network architecture. It is 

done because processing in neural network involves a lot of multiplication at each step as 

soon as input is applied. Hence, to avoid the delays incurred due to the standard 

multipliers, Vedic multiplier has been used. A four bit Vedic multiplier has been 

designed and is made using four 2 bit Vedic multipliers and three ripple carry adders. It is 

based on Urdhva Tiryagbhyam sutra which is based on vertical and crosswise algorithm. 

All the multiplier blocks are designed in VHDL and results are verified through 

modelsim. Analysis shows that it is more efficient than the standard one.  

Also, activation function forms an important part of neuron. Based on the choice of 

activation function, various applications can be designed. In the proposed work we have 

utilized the most common and simplest activation function, i.e. threshold function. The 

threshold value can be set as per the desired application. 

The threshold function is given as  
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∅(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 < 0

            (25) 

where v is the threshold value. 

The neuron will only be fired when the when the summation of the weighted inputs will 

be greater than the specified value. If it is less than the set value than the output remains 

zero or we say that neuron is not fired. 

The proposed hardware is almost similar to a standard non-linear neuron (McCulloch 

Pitts model) except for the multiplier. Here the standard multiplier is replaced with a 

Vedic multiplier which multiplies the inputs with weights. For evaluation purpose the 

weights were randomly fixed. Fig. 18 shows the proposed architecture of a single neuron 

which has been designed using Vedic multiplier instead of standard multiplier, to achieve 

higher speed in designing neural nets. 

 

 

 

 

 

 

 

 

 

 

 

Fig.21 Proposed Architecture. 

The proposed architecture has the advantages of high speed, which can be of use in 

various applications the involves neural network computing. 

The functioning of the proposed architecture as the three basic neuronal logic gates i.e. 

AND, OR and NOT has also been shown and the results show a drastic improvement in 

the efficiency of neuronal logic gates. 
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4.2 Flow chart  

The flow chart shown below explains the stepwise working of the proposed design and 

hence the possibility when a neuron is fired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.22 Flow chart representing the steps followed in the proposed design. 

The process starts with when the clock and power on reset are applied. As soon as the 

inputs are available, they are being multiplied with the desired weights. The result from 

the multplier is added with the other results and the output of the adder/accumualtor is 

provided to the activation function (here threshold logic). Now, if the output of the 

adder/accumulator is greater than the threshold value than the neuron will be fired else it 

is not and the process will repeat. 
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Similarly for the verification of neuronal gates appropriate value of threshold will be 

decided and hence the desired inputs will be applied at the input of multiplier and hence 

the required results will be obtained. 
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CHAPTER 5 

 

SIMULATION RESULTS 

 

 For the purpose of evaluation, performance of a single neuron (with fixed weights) with 

standard multiplier and Vedic multiplier were compared. The hardware implementation 

was carried out using VHDL. For implementation, testing and simulation purpose, Xilinx 

ISE 6.1 with ModelSim simulation tools were used. Spartan II family was been chosen as 

target device. The simulation and synthesis results are as shown: 

 

 

 

 

 

 

 

 

 

 

Fig.23  Simulation results of a neuron using standard multiplier. 

 

 

 

 

 

 

 

 

 

Fig.24  Simulation results of a neuron using Vedic multiplier. 
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When any input is applied, it is multiplied with the desired weight (here chosen 

randomly) and sent to the adder which also contains the output of multiplier with 

different inputs. The adder adds the outputs and the result is send to the activation 

function which is threshold function here. A threshold of 15 is selected here and hence it 

can be clearly seen from Fig.20 and 21 that when the adder output is 14 the neuron is not 

fired and when the output is 16 the comparator output goes high and hence the neuron is 

said to be fired. 

5.1 Simulation Results of Neuronal gates 

The simulation results of all the four cases of neuronal AND gate and OR gate using 

conventional and Vedic multiplier are shown in Fig.22-25. 

 

 

 

 

 

 

 

 

 

Fig.25  Conventional Neuronal AND gate. 

 

 

 

 

 

 

 

 

 

Fig.26 Vedic neuronal AND gate. 
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Fig.27  Conventional OR gate. 

 

 

 

 

 

 

 

 

 

Fig.28  Vedic neuronal OR gate. 

The AND and OR gate are verified considering all the four cases and deciding the 

threshold value according to the equations described in chapter 4. In AND gate, for 

simplicity logical 0 is taken as 1V and logical 1 is taken as 5V. And the threshold value is 

taken as 12V as per the desired equations. Similarly the truth table for OR gate is verified 

and the results shows that the gates designed using neuronal logic are much faster as 

compared to the standard one.  
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TABLE IV.  SYNTHESIS RESULT OF NEURON WITH STANDARD MULTIPLIER 

Logic Utilization Used Available Utilization 

Number of Slices 72 192 37% 

Number of 4 input 

LUTs 

125 384 32% 

Number of bonded 

IOBs 

25 90 27% 

 

TABLE V.  SYNTHESIS RESULT OF NEURON WITH VEDIC MULTIPLIER 

Logic Utilization Used Available Utilization 

Number of Slices 40 192 20% 

Number of 4 input 

LUTs 

70 384 18% 

Number of bonded 

IOBs 

25 90 27% 

 

TABLE VI.   DELAY COMPARISON OF NEURON  

FPGA device package:  xc2s15-6-
cs144 

 

Delay 

(ns) 

Memory(Kb) 

Using standard multiplier 32.969 72772 

Using Vedic multiplier 25.675 73668 

 

 

 

 

 

 

 

 

 

 

Fig.29 Top level design of Vedic neuron. 
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Fig.30 RTL schematic of Vedic neuron. 

5.2 Comparison of standard neural network with Vedic neural network. 

Table IV & V shows the logic utilization of a neuronal gate with conventional and Vedic 

multiplier. Table VI compares the result with respect to speed of neuronal gates realized 

using conventional and Vedic multiplier. Fig.26 and 27 shows the black box view and 

RTL schematic of the neural network designed using Vedic mathematics.  

The simulation results indicate that the delay of logic gate using conventional multiplier 

is 33ns while this delay reduces to 25ns with the use of Vedic multiplier. As compared to 

a standard multiplier, the use of Vedic multiplier reduces the logic gate realization time 

by approximately 25%. This decrease in the neuronal gate’s latency can be of great use in 

applications where speed is very critical.  
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusion 

The technologies like ANN & Vedic mathematics (multiplier) are the two important and 

promising technologies which can increase the processing speed. In this work, a novel 

scheme to combine these two technologies to achieve a high performance neuron or ANN 

has been proposed.  A single neuron is implemented using Vedic mathematics (Vedic 

neuron) in VHDL. The results of standard neuron and Vedic neuron are compared.  

Hence, the comparison result indicates that the speed of Vedic neuron is better than 

standard neuron.  

The high speed of neural network is well proven. This has led to its applications in 

numerous fields like image compression, security, and medical applications. The speed of 

a neuron can further be increased by the use of Vedic multiplier. In the presented work, a 

novel approach has been proposed to achieve a high performance neuronal logic gates. 

The proposed approach combines these two technologies. Thorough result and speed 

analysis has been performed, that indicates approximately 25% reduction in the 

processing time of a single gate. Use of Vedic multiplier for the realization of gates and 

complete neural network will reduce the processing time multifold. Neuronal logic gates 

implemented using Vedic neuron will find its applications in various fields where 

computational speed is the main concern. 

6.2  Future Work 

This research can be extended by replacing Vedic adders in place of standard adders in 

neurons, which would in all means increase the computation speed. Since, neurons are 

the basic building blocks of Neurocomputers, the speed of Neurocomputers developed 

using Vedic neurons would be better than the standard Neurocomputers. Also, the 

concept of neural networks and fuzzy logic is being used in many applications today. 

Hence, the combination of these two technologies i.e. ANN and Vedic mathematics in 

turn will enhance all the applications that utilize the concept of ANN. 
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APPENDIX  

 

Publication from the current work   

• High speed neuron implementation using Vedic mathematics. 

(Accepted and presented at IEEE supported CCEEDS international conference.) 

 


