
DISSERTATION

on

FREQUENCY BASED AUTHOR-TOPIC MODEL FOR INFORMATION DISCOVERY
SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE
of

MASTER OF ENGINEERING

(Computer Technology and Application)

Delhi University, Delhi

Submitted By:

Deepak Gupta
University Roll No 8831
Under the Guidance of:

Mrs. Akshi Kumar
Lecturer
Department Of Computer Science and Engineering

Delhi College of Engineering, Delhi

[image: image14.png]

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY
2010

CERTIFICATE

I here by certify that the work is being presented in the thesis report entitled, “Frequency based Author-Topic Model for Information Discovery”, submitted by me in partial fulfilment of the requirements for the award of degree of Master of Engineering in Computer Technology & Application at Delhi College of Engineering, Delhi, is a authentic record of my own work carried out under the supervision of Mrs. Akshi Kumar and refers other researcher’s works which are duly listed in the reference section.

The matter presented in this thesis has not been submitted for the award of any other degree of any university.

(Deepak Gupta)

This is to certify that the above statement made by the candidate is correct and true to the best of my knowledge.

Mrs. Akshi Kumar
Lecturer
Department of Computer Science and Engineering

Delhi College of Engineering, Delhi - 110042

ACKNOWLEDGEMENT

No volume of words is enough to express my gratitude towards my guide Mrs. Akshi Kumar, Assistant Professor, Computer Science and Engineering, Delhi College of Engineering, Delhi, who has been very concerned and has aided for all the materials essential for the preparation of this thesis report. She has helped me to explore this vast topic in an organized manner and provided me with all the ideas on how to work towards a research-oriented venture.

I am also thankful to Dr. (Mrs) Daya Gupta, Head of the Department, Computer Science and Engineering, Delhi College of Engineering, Delhi for the motivation and inspiration that triggered me for the thesis work.

I would also like to thank the staff members and my colleagues who were always there at the need of the hour and provided with all the help and facilities, which I required for the completion of my thesis work.

I am very much grateful to Prof. A K Tandon, Director BPIT for his valuable support at the Institution Level for giving me the opportunity for pursuing this ME course and help in conceptualising the thesis and to all those outstanding individuals with whom I have worked in this Institution, who helped me understanding the concept.

Most importantly, I would like to thank my parents and the almighty for showing me the right direction out of the blue, to help me stay calm in the oddest of the times and keep moving even at times when there was no hope

Deepak Gupta

M.E. (Computer Technology and Application)

Department of Computer Science and Engineering

Delhi College of Engineering, Delhi-42

Abstract

For any work of literature, a fundamental issue is to identify the individual(s) who wrote it, and conversely, to identify all of the works that belong to a given individual or to identify the individual who writes many papers on same topic or to identify the topics name that an author works on.
Information extraction techniques (such as Author Name and Topic Recognition) have long been used to extract useful pieces of information from text. The types of information to be extracted are generally fixed and well defined. However in some cases, the user goal is more abstract and information types cannot be narrowly defined. For example, a reader of online user reviews typically has the goal of making a good choice and is interested to learn about the different aspects of a topic and author relation (e.g., famous author of a topic, author’s papers with his research field). Some of these aspects may be known by the reader and some others may need to be discovered from the inherent text structure in a large collection. Even for the known aspects (such as “author name” and “topic”), the challenge is to recognize various hidden aspects like number of papers written by an author, his research field, popularity of an author.
In this thesis, we model the author-topic information discovery system as topics with identifiable word distributions across documents. We review several probabilistic graphical models (such as Latent Dirichlet Allocation) and propose a new model which is based on frequency of the words within the document. We also provide a case study of a probability based author-topic model developed for information discovery.
TABLE OF ABBREVIATION

	ATP
	Author-Topic Paradigm

	TAP
	Topic-Author Paradigm

	LDA
	Latent Dirichlet Allocation

	SS
	Semi-Supervised

	ATA
	Author-Topic Ambiguity

LIST OF FIGURES

Figure 1-1: Author-Topic Relationship………………………...…………………..…..…2

Figure 1-2: Topic-Author Relationship…………………….…………………….…….…2

Figure 1-3: Format of Research Paper…………………….…………..……….…….……5

Figure 2-1: Document Models……………………….…………..…….…………...……13

Figure 2-2: Latent Dirichlet Allocation (LDA)…………………………..……….……...14

Figure 2-3: Semi-Supervised LDA (SS-LDA)…………………….…….……….……...17

Figure 2-4: Dataset ...……………………..……………………………………………...18

Figure 2-5: The graphical Model for Author-Topic Model ……………………..…..…..20

Figure 2-6: Eight example topics extracted from the CiteSeer database ……………..…21

Figure 2-7: : The four most similar topics to the topics …………..……….…………….22

Figure 2-8: Automated Label Pseudo-abstract from two authors by the model………....23

Figure 3-1: Author-Topic Relation…………………………..…………………………..28

Figure 3-2: Topic-Author relation…………………….…….…………………….……..29

Figure 4-1: Front Interface……..………………………………………………...............47

Figure 4-2: Interface for ATP Model …………………..………………………………..48

Figure 4-3: Interface for TAP Model…………….…….…………………….……………..49

TABLE OF TABLES

Table 2-1: Variational Method vs. Gibbs Sampling ………………………………….16

Table 4-1: Stop Words ………………………………………………………………………40

Table 4-2: Punctuation Marks……………………………………………………………..44
Table 4-3: Paper Used ………....…………………………………………………………..46

Contents
Certificate 2

Acknowledgement 3
Abstract 4
Contents 8
1
Introduction 11
1.1 Motivation...11

1.2
Problem Statement ..12

1.3
Contributions...14

1.4
Organization of thesis..16
1.5
Chapter Summary..17
2
Literature Review 19
2.1
Summarizing Product Reviews...19
2.2
Hierarchical Bayesian Graphical Models..21
2.2.1
Notation.. 22
2.2.2
Latent Dirichlet Allocation (LDA) ...23
 2.2.3
 Semi-Supervised LDA ……………...26
 2.2.4
 Probability Based Author-Topic Model..30
2.3
Chapter Summary..33
3
Design and Architecture 35
3.1
Author-Topic Model…... 35
3.1.1
Types of Machine Paradigms... 35
3.1.2
Flow Charts... 37
3.2
Basic Algorithms.. 40
3.2.1
ATP Algorithm………………... 41

3.2.1.1
TAP Mapping.. 42

3.2.1.2
ATP Mapping.. 44

3.2.1.3
An Example ………………….. 45
3.3
Chapter Summary..46
4
Implementation 48
4.1
Technology Used... 49
4.2
Datasets……….. 50
4.2.1
Dataset for Stop Words ... 50
4.2.2
Dataset for Punctuation Marks... 54
4.2.3
Dataset for Papers ……………………….. 56
4.3
Analysis and Results.. 57
4.4
Chapter Summary...59
5
Conclusion and Future Works 61
5.1
Conclusion ………... 61
5.2
Future Works…... 63
Bibliography 66
Appendixes 68
A.1 Code of the System...68
List of Publications 80

Table of Abbreviations 5
Table of Figures 6
Table of Tables 7
CHAPTER 1

INTRODUCTION
Chapter 1
Introduction
In this chapter I will expand why I had chosen this work as my major thesis, how I motivated to do this work along with some issues regarding the work done earlier on the same and how I rectify these issues in my thesis with some assumptions given in the problem statement along with some objectives of the thesis and finally I will discuss how I accomplished the objectives in the contribution.

1.1
Motivation
Information extraction is typically performed in the following setting: given an information type in a type system, specify all segments of text which are instances of this type. A type system is analogous to a database schema where we define the semantics for each field. The types of desired information are fixed and while the expression of this information can vary substantially in text, it is often the case that many contextual clues and patterns that can be learned for these extractions remain the same. In some cases (e.g., web pages), it is even possible to take advantage of clues other than textual contents for the extraction (e.g., formatting differences for the names of the person on their personal web page vs. other contents).
For some applications however, we need a more flexible approach to extract information we are looking for because the definition of the types is more abstract and driven by inherent structure in the document collection and specific user goal. The information extraction model we are interested should discover the types and the instances simultaneously.

Figure 1-1: Terminology of author-topic relationship

Figure 1-2: Terminology of topic-author relationship

1.2
Problem Statement

We focus on the special case of the problem described above where we are interested to extract the various relations between topic and author-name. We are looking for a concise answer to the questions of “what do I need to know about topic and author”. Our terminology is summarized in Figure 1-1 and Figure 1-2. In the above Figures Author-Name is the name of the author who wrote the papers on various topics of his field either individually or with some co-authors on his own research field or not. The papers are the author’s papers which are written of its own or with collaboration with another author called co-author. Research field indicates the core topic of research of an author and we have assumed that an author always repeats his researcher topic related words in his papers. The line between author-name, papers, research field in the Figure 1-1 refers to the fact that we have to search author’s papers as well as his research field with some priori knowledge i.e. author-name. The task is to recognize the mentions of each paper and research field using author-name while papers of various authors using topic-name. For example, consider the following review:

If we want to search the research field of an author named Deepak.

The review is about an author Deepak and refers to the following information: “papers by author only”, “papers along with co-authors”, and “author’s research field”.
Thus the above problem is further partitioned into the following objectives:

1. Can we prepare a system for extracting author-topic relation?

2. Can we develop a system for the above based on frequency?

3. Can this system assist the new researchers?

On the surface, this seems like a typical text classification task but some characteristics of the task make it hard for the conventional classification method:
1. The list of information is open-ended and needs to be discovered from the corpus. As was the case, in the example above, the aspect labels often are not explicitly mentioned in the text. This is similar to problem of finding cluster labeling in unsupervised learning.

2. There is considerable variability in the contexts of the author-name we would like to extract. For example, an author named “Deepak” can be so many, so there will be much ambiguity in the author-name relation.

3. There is an issue with the name of the topic, i.e. one topic can have multiple related words for example algorithm have its related words: program, analysis, design, pseudo code, techniques etc.

The good news is that there is often certain level of flexibility on the part of the user as to what these aspects “can” be. Therefore, we may be able to take advantage of the inherent structure of corpus to suggest the aspects. Also, often an initial set of the aspects may be known and the goal is to discover more. We can also obtain the user’s goal by requesting a few instances to be labeled.
There is more discussion in literature about the differences between this task and the traditional classification approaches. In this thesis, we review several existing solutions and then present ours which addresses this task directly. Our model takes advantage of minimal supervision and then generalizes to discover the topics (i.e., distributions of words) such that each topic closely corresponds to an author-topic model.
1.3
Contributions

In this thesis, we provide a review of existing approaches to problems similar to what we outlined in the previous section. We will use this knowledge to design our approach based on frequency of words within the document called frequency based author-topic model for information discovery. There are many probability based author-topic model are available which searches the papers on the basis of the probability of words present in the author’s document, but here we have introduce another technique based on frequency through which we can search the papers according to the frequency of repeated words within the document.

Probability based author-topic model have better performance compared to our frequency based model in discovering the required information and specifying the corresponding span of text in terms of accuracy and time. We have designed the system which is less complicated and it reduces the vast calculations just by increasing the total number of searches or comparisons.

To accomplish the above objectives, we proposed the following system which constitutes the contribution made:

1. To accomplish the first objective, we had developed two algorithms for extracting topic-author relationship.

2. The system proposed above is based on the concept that a research paper consists of the words maximum number of times which are related to the research field of the paper and we will use bag-of-words to extract topic-author relation.

3. The proposed system is very useful to the new researchers as initially they don’t aware of the research areas where they can work on, and they also don’t know the sequencing of the papers of an author on the same field, this system assist the researcher in searching the papers they are interested to search.

We make the following assumptions about the input data:
1. Our project is doing best work when it is being installed for a web search engine, where there is a fixed document format of a research paper as shown below:

[image: image1.png]icrosoft Word =18l x|

inal showing Markup

41 NoSpacng + cabr

COBEHSEGRY | BABS < o |eBOE

G Bl Edt Vew Iwet Fomat ook Table Window Help Type a question or help 3] X.

@ o |

L] ERRE o rroosos s Semeees 5

ALL PAIRS SHORTEST PATHS ALGORITHMS
Deepak GuptaRitesh Kapaor, Rihabh Chavdhary

ABSTRACT

Given a communication network or a road network one of the most natural agorithrmic question
is how fo determine the shortest path from one point to another. In this paper we deal with one
of the most fundarnental problerns of Graph Theory, the All Bairs shortest Fath [APSF] problern.
We study three algorithrms narmely - The Floyd- Warshall algorithrn, APSP via Matrix Mulfiplication
and the Johnson’s algorithm for this problern. We also give asight modification fo the Floyd-
Warshall Algorithm which decreases the number of computations but the asymptotic order
remcins the sarme.

INTRODUCTION

Shortest paths computation s one of the most fundamental problems in graph theory.
The huge inferest in the problem is mainly due o the wide spectrum of its applicatiors,
ranging from routing in communication networks fo robot motion planning, scheduling,
sequence dlignment in molecular biology and lengthvlimited Huffman coding, fo name
only avery few. The problem divides info two related categories: single-source shortest-
paths problems and all-pairs shortestpaths problems(APSP]. The single-source shorfest-
path problem in a directed graph consists of determining the shortest path from a fixed
source verlex fo all ofher vertices. The alkpairs shortest-distance problem is that of
finding the shortest patts between all pais of vertices of a graph.

“ond

Dran = [y | auoshapes~ N %\ 1O & 4 |2-L-A-===2md.
Page 1 Sec 1 41 A4S n2s Coll REC TRK EXT OWR Engish(us OX

Wistart| | @ D 4 > | @4 Frefox +| & cipocuments .. | (3 Efipemainipo. . |[f8 Microsoft .. - T author_topics_. wthor Name D... | [22 %@) a27em

Figure 1-3: Format of research paper

a. The Paper should strictly follow the above mentioned format.

b. The names of all the author and co-authors (if any) is in the second line

 separated by a comma (,).
2. The algorithm does not take sentence structure into account.
3. The algorithm uses simplistic statistical methods which work well with a large amount of data, but return inaccurate results when applied to small data sets.
4. Ambiguity of Author(s) is not removed.
5. Ambiguity of Topic(s) is not removed.
6.
Author will use his research field word more number of times compared to

 the words which is not related to his research field.

1.4
Organization of thesis
In the above chapter, we had discussed the motivation, problem statement, objective of the thesis and finally the contribution. Chapter 2 provides the literature review of related works. Chapter 3 has the complete details design of the new approach, their algorithms, and limitations. Chapter 4 shows the experimental setup and results of the proposed system and finally chapter 5 consists of the conclusion and possible future work or directions in this area and it finally ends with the links and references (bibliography) and appendices.

1.5
Chapter Summary
In this chapter we had discussed the motivation of the author to do this work and it also includes some issues regarding the previous work done on the same. Finally author had described the objectives of the thesis and how he accomplishes these objectives in his research using some assumptions and frequency based algorithms.
CHAPTER 2

RELATED WORK
Chapter 2
Literature Review
In this chapter, we will provide a literature review for related work in this area. For two reasons, the list of related works is long: one reason is that this task is at the intersection of several important and active machine learning and NLP research areas therefore many different approaches can be adapted to become relevant. The other important reason is that our main approach of using graphical models has gained tremendous interest in recent years due to successful application of these methods. We have made an attempt to organize some of related literature with respect to their relevance to this task. We hope the result of this literature review to help anyone who would like to design a new method for a different task based on what is known about previous methods.

2.1
Summarizing Product Reviews

The task of extracting entity aspects was discussed in some of the previous literatures as summarization of product reviews. The methods are typically large systems in which various steps are performed in a “pipeline” setting to extract the mentions of the attributes. We will only describe two of such systems and provide sufficient details for their approaches which used to be popular in this area but are fundamentally different than our approach. Hu and Liu (2004) introduced the frequently used (and the only) dataset for this summarization task which is composed of a set of consumer electronic user reviews. We will describe the dataset in 3.2.1 and explain why we could not use it for our task. Their system, called FBS (Feature-based summarization), performs both the extraction of the product attributes (which we call entity aspects) and also the sentiment analysis for these attributes (i.e., whether the user liked them or not). For the extraction part, they use association mining on noun phrases (hence POS tagged and chunk parsed) followed by several heuristic pruning steps (compactness pruning to remove meaningless phrases and redundancy pruning to remove the subset features). Further in the process, after finding the opinion phrases, they extract more features which are infrequent by looking at the sentences that have opinion phrases but no features from the first step. Extraction performance is evaluated against the manual annotation in the dataset and is reported for each step and each product group. The overall precision is 72% and recall 80% which outperforms their baseline, FASTR term extraction system: precision 3% and recall 16% Popescu and Etzioni (2005) perform experiments on the same dataset using their OPINE system and improve the result from Hu and Liu (2004). Their system first performs a parse of the input, resolves pronouns and takes all the noun phrases (frequency above a tuned threshold). They use extraction patterns based on dependency parse to generate a set of discriminator phrases (e.g., “scanner has a”). Then they compute the point-wise mutual information (PMI) between the phrases in these sets and consider a subset of noun phrases with PMI above the threshold as product features. Their system improves the previous extraction precision by 22% with loss of 3% in recall.
While these systems could be tuned to perform relatively well for a specific domain, a lot of engineering is needed for various pre- and post-processing steps. As a result, they are hard to be reproduced and their performance cannot be easily understood. In recent year, methods similar to ours gained more popularity because they are simpler to design and understand. We model the entire problem and then use standard statistical techniques to train and apply the model. Furthermore, the performance of these newer methods is often comparable in various domains or even across different languages with small modifications.
2.2
Hierarchical Bayesian Graphical Models
Probabilistic graphical models have gained tremendous attention in machine learning and NLP research area in recent years. These models provide a concise and intuitive representation of part of the world in terms of random variables (i.e., concepts in real world such as reading from a temperature sensor). They express the relations between the variables and allow inference in presence any amount of observed information for those variables. Graphical models have been studied in machine learning and statistics for many years and there are well established methods for learning their structures and parameters.

In this section, we provide a comprehensive literature review of the work in this area which is related to our task and will help us design our new approach.

2.2.1
Notation
We will briefly explain the graphical model notation. A graphical model is a graphical representation of how a joint probability distribution over certain number of variables factorizes by encoding independence assumptions between variables. Circles are used for random variables whose probability distribution parameters (typically represented with Greek alphabet). The “hierarchical” aspect of some graphical models is when the variables are stacked in sequence and their relation is in a hierarchical form. Plate notation (squares around a subset of circles) is used represent replication of the parameters to the number that is in the lower right corner of the square. Arrows represent possible dependency between variables. Shaded circles are the variables that are observed in the data. Figure 2-1 shows a few simple examples of graphical models.
[image: image2.emf]
Figure 2-1 Document Models (Blei et al, 2003)
2.2.2
Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation or LDA (Blei et al, 2003) is a hierarchical Bayesian model that capture the thematic information in a document collection as topics and addresses the problem in pLSI by using a Dirichlet prior on topic mixture. Topics are distributions over words and the model learns them by taking into account both document level and corpus level term frequency information.

Figure 2-2 shows the graphical model for LDA and its generative process this describes how the model assumes the documents are generated. On the right side of the graphical model, LDA learns the topic distribution based on the information in the entire corpus (across document or global). On the left side, the parameters for topic mixture is consider the information from within the document by assigning the topics to each word (through).

[image: image3.emf]
Figure 2-2: Latent Dirichlet Allocation (LDA)
Learning parameters in some graphical models require inference and exact inference is intractable in LDA due to the coupling between the topics and
(Blei et al, 2003). Therefore approximate techniques need be used (which are NP-complete). The most common approaches that are used for approximate inference are the following:

1. Gibbs Sampling: It is a special case of Metropolis-Hasting algorithm and therefore a Markov Chain Monte Carlo (MCMC) method. Since the conditional between variables are known, we can sample each variable separately given all other variables. These samples form a Markov Chain and it is shown that the stationary distribution of the chain converges to the true posterior distribution.

2. Variational Method: Using Jensen’s inequality, we can create a series of model where the coupling between variables is removed. The models are specified by the variational parameters and every model provides a lower bound on the log-likelihood of the original model. Variational EM is then used to learn those parameters from the data: in the E step, variation parameters are optimized by inference in variational model (which is tractable) and then in M step, the model parameters are optimized to maximize the lower bound on the log-likelihood (typically using a gradient-based approach).

3. Expectation Propagation: A form of message-passing algorithm, which is used less frequently for LDA that the other two approaches (Minka & Lafferty, 2002).

Finding posterior distribution for of all models discussed here is a non-convex problem and has many local optima. Many experimental tricks (such as special initialization, multiple restarts, etc.) are needed to avoid bad local optima.
Table 2-1 summarizes some practical differences between the two most popular methods. We have implemented both variational method and Gibbs sampling in this thesis, however we chose the Gibbs sampling to report the results.

[image: image4.emf]
Table 2-1: Variational Method vs. Gibbs Sampling

In recent years, LDA has become the basis of many other more complicated generative models and we review some of the ones more relevant to our work in the next sections.

We group the previous models by how they extend the basic LDA. The first group of models is linking the topics so they represent a more realistic assumption about the topics exchangeability than LDA. This is often through introducing different independence assumptions (adding/removing arrows) and/or changing priors on topic mixture () or topic assignments (). The second group of models is adding more variables to incorporate more information in the model (e.g., labels, authors).
2.2.3
Semi-Supervised LDA

We follow the notation in Blei et al (2003). We have a collection of documents:
D = {w1, w2, ….., wm} and each document contains
Nd words: wd= (wd,1, wd,2, ….., wd,Nd) where wd,n is the word in n-th position of d-th document wd. Topics are indexed with k
= {1, 2, …,
k}. We would like the class labels to be inferred at the word topic assignment to avoid separation of unsupervised and supervised topic distributions. Figure 2-3 shows the graphical model in plate notation and the generative process. We have used the hashed fill pattern as “half-shaded” to denote that random variable
has missing values (i.e., some instances have labels) and hence we are in a semi- supervised setting.
[image: image5.emf]
Figure 2-3 Semi-Supervised LDA (SS-LDA)
 Evaluation is always a difficult task in topic models. Here define the typical evaluation metric (perplexity) as well as other heuristics we use to provide prediction and ensure the model is performing as is expected.

We considered using the dataset from Hu & Liu (2004) which consists of 307 product reviews (1711 sentences) from Amazon.com for 2 digital cameras, a cell phone, an MP3 player and a DVD player. They are manually annotated by the product attributes (called features in their paper) and the polarity of the opinion toward them. Below is an example:

speakerphone[+3],radio[+3]##the speakerphone , the radio , all features work perfectly .

[image: image6.emf]

Figure 2-4 Dataset
We learned that we cannot use this dataset for several reasons:

1. We are interested to extract parts of documents that refer to the aspects. While this dataset had the aspect assignments, the span for each aspect was not marked. In the domain of product reviews, the aspect is often explicitly mentioned (as in the example above) this may not be the case in other domains. This data can be used when our model is used at the document level (such as in Blei & McAuliffe (2007)).

2. Labels are redundant (e.g., “picture” and “picture quality”) and therefore the assignments are seriously sparse: there are a total of almost 458 labels are assigned in the whole dataset, 277 only to one sentence and 391 to 5 sentences or less.

We decided to start annotating a set of online reviews. The original data was collected from CitySearch.com with 50,000 users review for New York City restaurants. Reviews accompanied have pros and cons phrases and overall rating.

Below is an example:

<Body>… Dessert was great, but the rude staff ruined my whole experience … They yelled at me for not being there when my name was called. And told me to get out of their way.</Body>

<Rating>1</Rating>

<Pros>Great dessert, Cute place</Pros>

<Cons>Long wait, Attitude, Rude</Cons>

To make the dataset size manageable for the computationally intensive algorithms of our model, we picked 1392 reviews from a random set of restaurants. The dataset is not balanced for the ratings because we do not use them in our experiments. Furthermore, the pros and cons can be helpful in this task as shown in Branavan et al (2008) but we do not use them here.

We needed small amount of manual annotations for our method and also evaluation. 50 of the reviews were manually annotated, 20 of them with two annotators and Kappa (Cohen, 1960) was 0.707 (See Appendix A for more details).

To build our vocabulary, we have used space tokenization and eliminated all punctuations, stop words or words occurring in less than 5 documents. This will leave us with 1520 words in our vocabulary.

Figure 2-4 shows how the dataset was used. We always use the same 20 instances for learning (in the training of the model and also for labeling the topics) and the same 30 instances for testing. Unfortunately, cross validation is not possible for our case as the number of labeled instances is always small.
2.2.4
Probability Based Author-Topic Model

The methodology is illustrated using a sample of 160,000 abstracts and 80,000 authors from the well-known CiteSeer digital library of computer science research papers (Lawrence, Giles, and Bollacker, 1999). The algorithm uses a probabilistic model that represents topics as probability distributions over words and documents as being composed of multiple topics. A novel feature of our model is the inclusion of author models, in which authors are modeled as probability distributions over topics. The author-topic models can be used to support a variety of interactive and exploratory queries on the set of documents and authors, including analysis of topic trends over time, finding the authors who are most likely to write on a given topic, and finding the most unusual paper written by a given author. Bayesian unsupervised learning is used to fit the model to a document collection.
[image: image7.emf]
Figure 2-5: The graphical Model for Author-Topic Model

[image: image8.emf]
Figure 2-6: Eight example topics extracted from the CiteSeer database.

Each is illustrated with 10 most likely words and author with corresponding probabilities.

Our collection of CiteSeer abstracts contains D = 162; 489 abstracts with K = 85; 465 authors. We preprocessed the text by removing all punctuation and common stop words. This led to a vocabulary size of V = 30; 799, and a total of 11; 685; 514 word tokens. There is inevitably some noise in data of this form given that many of the fields (paper title, author names, year, abstract) were extracted automatically by CiteSeer from PDF or postscript or other document formats. We chose the simple convention of identifying authors by their first initial and second name, e.g., A Einstein, given that multiple first initials or fully spelled first names were only available for a relatively small fraction of papers. This means of course that for some very common names (e.g., J Wang or J Smith) there will be multiple actual individuals represented by a single name in the model. This is a known limitation of working with this type of data (e.g., see Newman (2001) for further discussion). There are algorithmic techniques that could be used to automatically resolve these identity problems Each table in Figure 2 shows the 10 words that are most likely to be produced if that topic is activated, and the 10 authors who are most likely to have produced a word if it is known to have come from that topic. The words associated with each topic are quite intuitive and, indeed, quite precise in the sense of conveying a semantic summary of a particular field of research. The authors associated with each topic are also quite representative note that the top 10 authors associated with a topic by the model are not necessarily the most well-known authors in that area, but rather are the

Authors who tend to produce the most words for that topic (in the CiteSeer abstracts).
[image: image9.emf]

Figure 2-7: The four most similar topics to the topics in the bottom row of Figure 2-6, obtained from the different Markov Chain Run.

[image: image10.emf]
Figure 2-8: Automated Labelling Pseudo-abstract from two authors by the model.

2.3
Chapter Summary

In this chapter we had elaborated the literature review or the research work done on the extraction of the author-topic relationship and all the research done on this model are based on Hierarchical Bayesian Graphical Models which includes Latent Dirichlet Allocation (LDA), Semi-Supervised LDA, and Probability Based Author-Topic Model.
CHAPTER 3
DESIGN AND ARCHITECTURE
Chapter 3
Design and Architecture
In this chapter we will elaborate the two paradigm approaches used to design such systems and discusses that which approach we had used in our system designing. This chapter also involves the discussion of the two models author-topic and topic-author model mapping along with their detailed design, working, and algorithm. Chapter finally ends with an example.

3.1 Author-topic Model

With the advent of the Web and various specialized digital libraries, the automatic extraction of useful information from text has become an increasingly important research area in data mining. In this paper we discuss a new algorithm that extracts both the topics expressed in large text document collections and models how the authors of documents use those topics.

3.1.1 Types of machine Paradigms

Most disambiguation approaches fall into one of the two machine learning paradigms:

1. supervised or

2. Unsupervised.

Supervised approaches take as input a set of training examples consisting of pairs of articles that are labelled as either positive (author match) or negative (not author match), while unsupervised approaches do not use labelled training examples.

In general, supervised approaches perform better because they are tuned specifically to the data (e.g., to determine the relative importance and interactive effects of different features such as a co-author vs. journal name vs. title word vs. affiliation).
Having a sufficient amount of training data is critical to the performance of any predictive model that will be extrapolated to new heretofore-unseen examples. The amount of data sufficient for training depends on the complexity of the model.
The author-topic models can be used to support a variety of interactive and exploratory queries on the set of documents and authors, including analysis of topic trends over time, finding the authors who are most likely to write on a given topic, and finding the most unusual paper written by a given author. Bayesian unsupervised learning is used to fit the model to a document collection.

A supervised learning technique for automated categorization of documents into known classes or topics has received considerable attention in recent years (e.g., Yang, 1998). For many document collections, however, neither predefined topics nor labelled documents may be available. Furthermore, there is considerable motivation to uncover hidden topic structure in large corpora, particularly in rapidly changing fields such as computer science and biology, where predefined topic categories may not accurately react rapidly evolving content.

Automatic extraction of topics from text, via unsupervised learning, has been addressed in prior work using a number of different approaches. One general approach is to represent the high-dimensional term vectors in a lower-dimensional space. Local regions in the lower-dimensional space can then be associated with specific topics. For example, the WEBSOM system (Lagus et al. 1999) uses non-linear dimensionality reduction via self-organizing maps to represent term vectors in a two-dimensional layout. Linear projection techniques, such as latent semantic indexing (LSI), are also widely used (Berry, Dumais, and O' Brien, 1995).
The novelty of the work described in this thesis lies in the proposal of a frequency statistic model that represents both authors and topics, and the application of this model to a large well-known document corpus in computer science. As we will show later in the thesis, the model provides a general framework for exploration, discovery, and query-answering in the context of the relationships of author and topics for large document collections.
3.1.2 Flow Charts
Figure 3-1 and 3-2 shows the basic flow of information discovery system and it just includes the inputs and outputs of the model.

Figure 3-1 author-topic relation

Figure 3-1 Author-Topic Relation

In the above flow chart 3-1 the Author-name is the input of the interface, datasets includes:

Dataset – I : List of STOP WORDS

Dataset – II: List of PUNCTUATION MARKS

Dataset – III: Collection of PAPERS

Figure 3-2 topic-author relation
In the above flow chart 3-2 the Topic-name is the input of the interface, datasets includes:

Dataset – I : List of STOP WORDS

Dataset – II: List of PUNCTUATION MARKS

Dataset–III:Collection of PAPERS
Dataset – IV: List of RELATED WORDS OF EACH TOPIC.

3.2 Basic Algorithm

Text clustering is a technique for unsupervised document organization. Clustering methods are used to group documents into meaningful categories. This project attempts to build a simple text clustering tool using the frequent term-based clustering algorithm.

Text clustering is a useful method for navigating large sets of documents. For example, a search engine might return thousands of results for the query "python". Some of these queries might be related to python the snake and others might be related to Python the programming language. In such a situation, a clustering algorithm can scan the result set and sort it into different categories. This process is known as "clustering".

The basic algorithm used for the purpose of searching the author-topic relation there is the following basic algorithm for finding the frequency of repeated related works within the paper as shown below:

Zeroth Pass

Convert all input documents to UTF-8. This prevents encoding errors from creeping into the system during later stages.

First Pass

Lowercase all words and remove all punctuation. This gives us a simple stream of words which can be easily processed in the later stages. This stage does not impact the efficiency of the algorithms because we're using purely statistical methods for clustering. Sentence structure does not affect our algorithm.

Second Pass

Scan the input documents and remove all stop words. Stop words include common words in the English language. For example, words like "the", "a", "an" etc. appear in all documents. Including stop words in the clustering process impacts the accuracy of the clustering algorithm. A stop word list may be generated by taking the top n% words from the input data, or by downloading pre-generated stop word lists from the web.

Also, remove all non-dictionary words from the input data. This prevents misspellings/slang from appearing in cluster names. Domain-specific dictionaries may be used for clustering domain-specific documents.

Third Pass

Create a mapping from the list of all words appearing in the document to a list of all documents that contain the words. For example:

{ 'python': ['doc1', 'doc2', doc3'], 'perl': ['doc3', 'doc7'] … }

Fourth Pass

Here, the words appearing in top N% of the documents are taken as categories, and the rest of the words are discarded. Documents that do not contain any of the top N% of the words are filed under 'Uncategorized'.

Fifth Pass

This is the final pass. Here, sort all the documents categorized from the above pass, and arrange all the documents in the decreasing order according to the frequency of the given word within the document.

3.2.1 Author-Topic Model Algorithm

The author-topic model described in this thesis includes two types of searching methodology i.e. either mapping author-name to find their papers either individually or with co-authors and to find his research field or mapping topic-name to find all the papers related to that topic of all the authors starting from most famous author to least famous author.

3.2.1.1 Author-Topic Model Mapping

Here we are given the name of an author, and we are interested in finding his research papers either individually or with any co-author and all interested in finding his research field as shown below in the flow chart.

3.2.1.2 Topic-Author Model Mapping

Here we are given the topic name, and we are interested in finding all the papers on this topic of all the authors of this field in an order i.e. most popular author comes first while least popular author comes at last as shown below in the flow chart.

3.2.1.3 An Example

Consider the following abstract:
Given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another. In this paper we deal with one of the most fundamental problems of Graph Theory, the All Pairs Shortest Path (APSP) problem. We study three algorithms namely - The Floyd- Warshall algorithm, APSP via Matrix Multiplication and the Johnson’s algorithm for this problem. We also give a slight modification to the Floyd- Warshall Algorithm which decreases the number of computations but the asymptotic order remains the same.
After pass 0:

Given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another. In this paper we deal with one of the most fundamental problems of Graph Theory, the All Pairs Shortest Path (APSP) problem. We study three algorithms namely - The Floyd- Warshall algorithm, APSP via Matrix Multiplication and the Johnson’s algorithm for this problem. We also give a slight modification to the Floyd- Warshall Algorithm which decreases the number of computations but the asymptotic order remains the same.
After pass 1:

given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another in this paper we deal with one of the most fundamental problems of graph theory the all pairs shortest path apsp problem we study three algorithms namely the floyd warshall algorithm apsp via matrix multiplication and the johnsons algorithm for this problem we also give a slight modification to the floyd warshall algorithm which decreases the number of computations but the asymptotic order remains the same
After pass 2:

given communication network road network one most natural algorithmic question determine shortest path one point another paper deal one most fundamental problems graph theory all pairs shortest path apsp problem study three algorithms namely floyd warshall algorithm apsp via matrix multiplication johnsons algorithm problem give slight modification floyd warshall algorithm which decreases number computations but asymptotic order remains same
Now we have a stream of English words. We can easily apply statistical methods to create our clusters (as detailed in steps 3 and 4 above).
3.3 Chapter Summary

In this chapter we had elaborated the two machine learning paradigm approaches used to design the systems and discusses the learning paradigm used in our model. We had also discussed the working of the models in the form of the flow charts. This chapter also expands the algorithms for ATP mapping and TAP mapping and finally it ends with an example containing the abstract of a paper.

CHAPTER 4
IMPLEMENTATION

Chapter 4
Implementation
In this chapter we will implement the design proposed in the previous chapter using various datasets like dataset for stop words, datasets for punctuation marks, datasets for papers and datasets for the related terms to the word or topic entered for topic-author mapping.

While doing implementation we get to know the ultimate requirement of the new researchers who is directly related to the system. The way on which we are working now is quite tough and require a heavy type of requirement to satisfy the need of the researchers. Today is the world of challenge and at every moment of time we face a new kind of situation. To be at the top the system designed should be a best system and also the cost is one of the major factor. Today we have seen that people can switch over from one system to another system design and that is not because of bad performance but due to some other factors also. Some of the factors are fast response, accuracy etc. All these things are possible but to maintain now a days the cost is become a very crucial factor. Up to a certain level cost is immaterial but beyond that one cost matters.
To overcome the above problems and to provide a new intelligent system one has to move from the current environment to another one or modify the existing environment. The system that we have proposed is having all the facilities along with a new look so that the user can get a new feel also.

Now before going to implement the system we can recollect the main things that are the part of the thesis.

We are going to implement a frequency based ATP system for information discovery. The implementation of the proposed frequency based system has two major components. The first of these relates to the creation of some datasets for stop words, punctuation markers, topic related words and list of papers to be analysed. This is necessary to include additional features to support the above system. These above mentioned four datasets are described in the section 4.2.

The second major component of implementation is designing of the system processesing which is described previously. The section 4.3 addresses the analysis and results of the system.

4.1 Technology Used

The system which is proposed in chapter 3 is based on unsupervised machine learning paradigm and we had also learnt two mapping models viz TAP and ATP. To implement these two mapping models we had used the following tools:

FRONT END

Language Used for Interface:

Visual Studio 2005 with C#

BACK END

Here I had assumed some predefined datasets of my own but the system can be extended and uses the dataset of any digital library like CiteSeer.
4.2 Datasets

In our proposed system, we had assumed four datasets which are used in the proposed two mapping model discussed in chapter 3. The four datasets proposed are dataset for stop words, dataet for punctuation marks, dataset of collection of papers, and dataset of related words.

These four datasets are further elaborated as given below in the next section.

4.2.1 Dataset for Stop Words

For the ATP and TAP mapping models, we have to scan the abstract, keywords, and conclusion of each and every paper within the dataset of various papers selected and in pass second of the algorithm we will remove all the stop words from every paper’s abstract, keywords, and conclusion.

The dataset of stop words which are used in pass second and applied on all the paper’s abstract, keywords, and conclusion for elimination is given below:

	S.No
	Stop Words

	1
	a

	2
	able

	3
	about

	4
	across

	5
	after

	6
	all

	7
	almost

	8
	also

	9
	am

	10
	among

	11
	an

	12
	and

	13
	any

	14
	are

	15
	as

	16
	at

	17
	be

	18
	because

	19
	been

	20
	but

	21
	by

	22
	can

	23
	cannot

	24
	could

	25
	dear

	26
	did

	27
	do

	28
	does

	29
	either

	30
	else

	31
	ever

	32
	every

	33
	for

	34
	from

	35
	get

	36
	got

	37
	had

	38
	has

	39
	have

	40
	he

	41
	her

	42
	hers

	43
	him

	44
	his

	45
	how

	46
	however

	47
	i

	48
	if

	49
	in

	50
	into

	51
	is

	52
	it

	53
	its

	54
	just

	55
	least

	56
	let

	57
	like

	58
	likely

	59
	may

	60
	me

	61
	might

	62
	most

	63
	must

	64
	my

	65
	neither

	66
	no

	67
	nor

	68
	not

	69
	of

	70
	off

	71
	often

	72
	on

	73
	only

	74
	or

	75
	other

	76
	our

	77
	own

	78
	rather

	79
	said

	80
	say

	81
	says

	82
	she

	83
	should

	84
	since

	85
	so

	86
	some

	87
	than

	88
	that

	89
	the

	90
	their

	91
	them

	92
	then

	93
	there

	94
	these

	95
	they

	96
	this

	97
	tis

	98
	to

	99
	too

	100
	twas

	101
	us

	102
	wants

	103
	was

	104
	we

	105
	were

	106
	what

	107
	when

	108
	where

	109
	which

	110
	while

	111
	who

	112
	whom

	113
	why

	114
	will

	115
	with

	116
	would

	117
	yet

	118
	you

	119
	your

Table 4-1 Stop Words
Let us take an example of an abstract of a selected research paper and after pass second all the stop words are removed from abstract:

Before second pass

given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another in this paper we deal with one of the most fundamental problems of graph theory the all pairs shortest path apsp problem we study three algorithms namely the floyd warshall algorithm apsp via matrix multiplication and the johnsons algorithm for this problem we also give a slight modification to the floyd warshall algorithm which decreases the number of computations but the asymptotic order remains the same
After second pass
given communication network road network one most natural algorithmic question determine shortest path one point another paper deal one most fundamental problems graph theory all pairs shortest path apsp problem study three algorithms namely floyd warshall algorithm apsp via matrix multiplication johnsons algorithm problem give slight modification floyd warshall algorithm which decreases number computations but asymptotic order remains same
4.2.2 Dataset for Punctuation Marks
For the ATP and TAP mapping models, we have to scan the abstract, keywords, and conclusion of each and every paper within the dataset of various papers selected and in pass first of the algorithm we will remove all the punctuation marks and convert all the words in lowercase form in every paper’s abstract, keywords, and conclusion.

The dataset of punctuation marks which are used in pass first and applied on all the paper’s abstract, keywords, and conclusion for elimination is given below:

	S.No.
	Punctuation Marks

	1
	','

	2
	'.'

	3
	':'

	4
	' '

	5
	'\n'

	6
	'\0'

	7
	'\r'

	8
	'-’

	9
	','

	10
	‘+'

	11
	'='

	12
	'*'

	13
	'&'

	14
	'^'

	15
	'%'

	16
	'$'

	17
	'#'

	18
	'@'

	19
	'!'

	20
	'~'

	21
	'\"'

	22
	'\''

	23
	'\\'

	24
	'1'

	25
	'2'

	26
	'3'

	27
	'4'

	28
	'5'

	29
	'6'

	30
	'7'

	31
	'8'

	32
	'9'

	33
	'0'

Table 4-2 Punctuation Marks
Let us take an example of an abstract of a selected research paper and after pass first all the punctuation marks are removed from abstract and convert all the words in to lowercase form:

Before first pass

 Given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another. In this paper we deal with one of the most fundamental problems of Graph Theory, the All Pairs Shortest Path (APSP) problem. We study three algorithms namely - The Floyd- Warshall algorithm, APSP via Matrix Multiplication and the Johnson’s algorithm for this problem. We also give a slight modification to the Floyd- Warshall Algorithm which decreases the number of computations but the asymptotic order remains the same.
After first pass
given a communication network or a road network one of the most natural algorithmic question is how to determine the shortest path from one point to another in this paper we deal with one of the most fundamental problems of graph theory the all pairs shortest path apsp problem we study three algorithms namely the floyd warshall algorithm apsp via matrix multiplication and the johnsons algorithm for this problem we also give a slight modification to the floyd warshall algorithm which decreases the number of computations but the asymptotic order remains the same
4.2.3 Dataset for Papers
For the ATP and TAP mapping models, we have required some papers on the basis of which we can map topic with author and vice versa. The dataset required in the mapping model is the set of papers in the predefined format.

The format of each paper from the dataset of research papers used in the model is discussed in chapter 1. The collection of paper I had used in this system is given below:

	S.No.
	Paper Title
	Research Area of the paper

	1
	All Pairs Shortest Paths Algorithms
	Algorithms, shortest Path

	2
	A Case Study on Teradata Database System
	Data Mining

	3
	Media Access Control (MAC) MAC SPOOFING AND ITS COUNTERMEASURES
	Networking

	4
	DOMAIN NAME DETECTION USING EXPERT SYSTEM
	Data Mining, Expert System

	5
	Matrix Decomposition Algorithms
	Algorithms

	6
	Media Access Control (MAC) Research on MAC spoofing
	Networking

	7
	Mobile Communication Technology and Telecom Service Providers
	Telecommunication and Networks

	8
	Face Recognition System
	Biometrics

	9
	Remote File Synchronization Single-Round Algorithms
	Networking

	10
	Frequency Based Author-Topic Model
	Data Mining

Table 4-3 Papers used
4.3 Analysis and Results
We had implemented the above mentioned two mapping models on the datasets discussed in section 4.2 and the interface used to extract the information to assist the new researchers is shown below

[image: image11.png]EB Domain

Figure 4-1 Front Interface
In the above interface there are two textboxes, one drop down box, and a submit button. The first textbox labelled Data Set is used to insert the complete path of the folder where the collection of papers of various research areas are stored, a drop down box labelled Selection is used to choose one of the following mapping model out of ATP and TAP and whatever model is selected the input is according entered in the third textbox labelled either Author Name or Topic and submit button is used to execute the query.

The interface for ATP mapping model in which we have to extract information on the basis of author-name as shown below:

[image: image12.png]EB Domain

Author Name | Deepak Guptd

Deepak Gupta Deepsk Gupta with Couthor Deepak Gupta Reseaich Field
Research Field

S Paper 5r0 Paper Couthor
1 ldos |RiteshKepoor Fi. || >

agoiithm probler,

Figure 4-2 Interface for ATP Model
As shown in chapter 3 the output of ATP mapping model is in the form of three tables as shown above in the screen shot, the three tables are used to give:

A. Generates all the papers of the author (either individual or with co-author(s)) with the paper’s title.

B. Generates all the papers of the author only with the co-author(s) with the paper’s title.

C. Generates the research field of the author and displays five most frequent words.

The interface for TAP mapping model in which we have to extract information on the basis of topic-name as shown below:

[image: image13.png]Topic

Dataet |D:\My work\Data MirighDomain'a1

Selecton |Topic

I

mad

Sno.

Author

Foper

Media Access Control (MACY... | B. Gauray Tiwar

Figure 4-3 Interface for TAP Model
As shown in chapter 3 the output of ATP mapping model is in the form of a table as shown above in the screen shot, the table is used to give:

A. Generates all the papers of all author according to the topic-name along with paper’s title and author-name’s (either individual or with co-author(s)).

4.4 Chapter Summary

In this chapter we had elaborated the implementation of the system’s both mapping models discussed in the previous chapter. We had also discussed all the datasets used in the system and how these datasets are used in the system at different steps. We had also discussed the analysis and result of the system and shows screenshots of every operation performed by the system to assist the new researchers.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

Chapter 5
Conclusion and Future Works
5.1 Conclusion:

The term data-mining is based on a metaphor in which nuggets of knowledge are sought within a large stack of irrelevant facts – the idea being that data-mining identifies and refines something that is already present from the outset. It is true that information cannot be created out of nothing, and that once lost, it cannot be recovered. Yet it is also true that systems can evolve radically (e.g. from primordial soup to man) without contradicting the laws of physics. Small re-arrangements of existing elements can create a new entity that, in turn, can have a major innovative impact in some new arena. Another way to create innovation is to assemble large sets made of noisy, imperfect, unreliable elements, which achieve a certain level of usefulness through redundancy and validation: In the scientific arena, an example of this is the formation of expressed sequence tag (EST) databases, whereas in the textual arena, Wikipedia comes to mind.

We have introduced a frequency based algorithm that can that can automatically extract information about authors, topics from large text corpora. The method uses a generative frequency model that links authors to observed words in documents. We demonstrated software which can be used to learn such author-topic models from very large text corpora (including Abstract, Keywords & Conclusion) as a working example. We had also shown a case study of the probability based author-topic model which is applied successfully on the large text corpora. ATP model was shown to extract substantial novel “hidden" information from the set of abstracts including topic time-trends, author-topic relations, and unusual papers for specific authors and so forth. Other potential applications not discussed here include recommending potential reviewers for a paper based on both the words in the paper and the names of the authors. Even though the underlying frequency based model is quite simple, and ignores several aspects of real-world document generation (such as topic correlation, author interaction, and so forth), it nonetheless provides a useful first step in understanding author-topic structure in large text corpora.
The main Problem with the proposed system:

First, a single individual may publish under multiple names— this includes a) orthographic and spelling variants, b) spelling errors, c) name changes over time as may occur with marriage, religious conversion or gender re-assignment, and d) the use of pen names.

Second, many different individuals have the same name – in fact, common names may comprise several thousand individuals.

Third, the necessary metadata are often incomplete or lacking entirely – for example, some publishers and bibliographic databases did not record authors’ first names, their geographical locations, or identifying information such as their degrees or their positions.
Fourth, an increasing percentage of scholarly articles are not only multi-authored, but represent multi-disciplinary and multi-institutional efforts. In such cases, disambiguating some of the authors does not necessarily help assign the remaining authors.
5.2 Future Work:

The model proposed and designed in this thesis is only be executed on the predefined and assumed datasets as the datasets are not available to the author. This proposed model is easily pluggable and extended in real-time datasets like CiteSeer digital library etc.

Our model is ignoring a lot of useful information that can potentially be beneficial toward this task. Polarity and sentiment of the reviews can provide some good clues for discovering the aspects. There may also be some advantage to use some better initial sets of aspect by other types of clustering such as K-Means or Spectral clustering both independently or jointly with SS-LDA.
Whereas literature-cantered networks are created to ask questions about publication behaviour, a different (and simpler) type of network is more suited for asking questions about collaboration behaviour: Each investigator I is a node; if Ii and Ij have jointly co- authored one article, they are joined by a non-directed link of strength 1. If they have co- authored two articles, the link has strength 2, and so on. Again, a very large number of features can be associated with each node/investigator: internal features, inherent network features, and external information. One can even utilize information that is obtained from the investigator-literature networks, e.g., if investigator Ii stands in n-th degree relation to another investigator Ij in an investigator-literature network, then this fact can be used as one of the features in the collaboration network.
The study of scientific collaboration is an entire field in itself (Sonnenwald, 2007), and there are many different ways in which collaboration networks can be analyzed. One can try to understand which factors determine whether two persons will collaborate together (resulting in a joint publication). One can also examine networks as they evolve over time. These basic modelling studies set the stage for creating user-friendly tools that will allow a person to find potentially good collaborators for a given problem. Because one person might be an excellent potential collaborator for a large number of people, far too many to work with all at once, it is necessary to consider constraints and limiting factors as well.

Author name disambiguation has strategic importance that goes far beyond knowing who-wrote-what. The case of collaboration networks is merely the simplest example of how disambiguation data can underlie the creation of new resources and tools that open up entirely different types of investigation. As
library and information science becomes progressively more person-centered, and not just document-cantered, we expect to see ripples that will affect the world of publishing, the semantic web, the design of search engines, and the indexing of data collections.
BIBLIOGRAPHY
Bibliography
Blei, D.M. & Jordan, M.I., 2003. Modeling annotated data. In SIGIR '03: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval.

Blei, D. & Lafferty, J., 2006. Dynamic topic models. In Proceedings of the 23rdInternational Conference on Machine Learning.

Blei, D. & Lafferty, J., 2007. A correlated topic model of Science. In Annals of AppliedStatistics.

Blei, D.M. & McAuliffe, J., 2007. Supervised topic models. In Advanced In NIPS.

Blei, D.M., Ng, A.Y. & Jordan, M.I., 2003. Latent Dirichlet Allocation. In Journal of Machine Learning Research.

Boyd-Graber, J. & Blei, D., 2009. Syntactic Topic Models. In Neural Information ProcessingSystems.

Branavan, S., Chen, H., Eisenstein, J. & Barzilay, R., 2008. Learning Document-Level Semantic Properties from Free-text Annotations. In Proceedings of ACL.

Chang, J. & Blei, D., 2009. Relational Topic Models for Document Networks. In Artificial Intelligence and Statistics.

Cohen, J., 1960. A coefficient of agreement for nominal scales. In Education andPsychological Measuremen.

Deerwester, S. et al., 1990. Indexing by latent semantic analysis. In Journal of the AmericanSociety for Information Science.

Goldwater, S., Griffiths, T.L. & Johnson, M., 2006. Contextual Dependencies in Unsupervised Word Segmentation. In Proceedings of Coling/ACL.

Griffiths, T.L. & Steyvers, M., 2004. Finding scientific topics. In Proc Natl Acad Sci U S A. Griffiths, T.L., Steyvers, M., Blei, D.M. & Tenenbaum, J.B., 2005. Integrating topics and Syntax. In Advances in NIPS 17.

Gruber, A., Rosen-Zvi, M. & Weiss, Y., 2007. Hidden Topic Markov Models. In ArtificialIntelligence and Statistics.

Haghighi, A. & Klein, D., 2007. Unsupervised Coreference Resolution in a Nonparametric Bayesian Model. In Association for Computational Linguistics.

Hofmann, T., 1999. Probabilistic latent semantic analysis. In Proc. of Uncertainty in Artificial Intelligence, UAI’99.

Hu, M. & Liu., B., 2004. Mining and summarizing customer reviews. In Proceedings of SIGKDD.

Levin, E. & Sharifi, M., 2006. Evaluation of Utility of LSA for Word Sense Discrimination. In Proceedings of HLT/NAACL.

Lin, J., 1991. Divergence measures based on the Shannon entropy. In IEEE Transactions onInformation Theory.

Mann, G. & McCallum, A., 2008. Generalized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields. In ACL.

Mccallum, A., Corrada-Emmanuel, Andres & Wang, X., 2005. Topic and Role Discovery in Social Networks. In Proceeding of IJCAI.

Minka, T. & Lafferty, J., 2002. Expectation-propagation for the generative aspect model. In Proceedings of UAI.

Newman, D., Chemudugunta, C. & Smyth, P., 2006. Statistical entity-topic models. In: 10th ACM SigKDD conference knowledge discovery and data mining (Seattle, 2004)

Mark Steyvers, Padhrai Smyth, Thomas Grihffiths, Probabilistic Author­Topic Models for Information Discovery.
APPENDIX A

Appendix A
A.1 Code of the System

Program.cs

//

using System;

using System.Collections.Generic;

using System.Windows.Forms;

namespace Domain

{

 static class Program

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 }

 }

}

Form1.cs

//

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using Word = Microsoft.Office.Interop.Word;

using System.Reflection;

using System.Runtime.InteropServices.ComTypes;

using System.Collections;

namespace Domain

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 Parser.InitStopWords();

 }

 private void label1_Click(object sender, EventArgs e)

 {

 }

 private void textBox1_TextChanged(object sender, EventArgs e)

 {

 }

 private void cmbAuthorTopic_SelectedIndexChanged(object sender, EventArgs e)

 {

 panTopic.Visible = false;

 panAuthor.Visible = false;

 if (cmbAuthorTopic.SelectedIndex == 1)

 {

 lblSelected.Text = "Topic";

 }

 else

 {

 lblSelected.Text = "Author Name";

 }

 }

 private void dataGridView1_CellContentClick(object sender, DataGridViewCellEventArgs e)

 {

 }

 void AuthorTable(String AuthorName)

 {

 //<Author>

 //"C:\\Windows\\";

 String FileContent=null;

 DataTable mdat = new DataTable();

 DataTable mdatCoAuthor = new DataTable();

 DataTable mdatResearchField = new DataTable();

 mdat.Columns.Add("S.no.");

 mdat.Columns.Add("Paper");

 mdatCoAuthor.Columns.Add("S.no.");

 mdatCoAuthor.Columns.Add("Paper");

 mdatCoAuthor.Columns.Add("Co Author");

 mdatResearchField.Columns.Add("Research Field");

 {

 DirectoryInfo f = new DirectoryInfo(txtFolderName.Text);

 FileInfo[] r = f.GetFiles("*.doc");

 Word.Application wordApp = new Word.Application();

 int z=0;

 for (int m = 0; m < r.Length; m++)

 {

 object file = r[m].FullName;

 object nullobj = System.Reflection.Missing.Value;

 Word.Document doc = wordApp.Documents.Open(ref file,

 ref nullobj, ref nullobj,ref nullobj, ref nullobj, ref nullobj,

 ref nullobj, ref nullobj, ref nullobj,ref nullobj, ref nullobj,

 ref nullobj);

 FileContent = doc.Content.Text;

 // doc.Close(ref nullobj, ref nullobj, ref nullobj);

 wordApp.Documents.Close();

 AuthorName auth = Parser.SearchAuthor(FileContent);

 if (auth.Authors[0].Equals(AuthorName,StringComparison.CurrentCultureIgnoreCase))

 {

 DataRow row = mdat.NewRow();

 row["S.no."] = ++z;

 row["Paper"] = file;

 mdat.Rows.Add(row);

 String a = "";

 for (int j = 0; j < auth.Authors.Length; j++) a += auth.Authors[j] + ", ";

 DataRow rowCoAuthor = mdatCoAuthor.NewRow();

 rowCoAuthor["S.no."]=z;

 rowCoAuthor["Paper"]=file;

 rowCoAuthor["Co Author"] = a;

 mdatCoAuthor.Rows.Add(rowCoAuthor);

 String research = auth.ResearchField[0] + "," + auth.ResearchField[1] + "," + auth.ResearchField[2] + "," + auth.ResearchField[3] + "," + auth.ResearchField[4];

 DataRow rowResearchField = mdatResearchField.NewRow();

 rowResearchField[0] = research;//"Research Field"

 mdatResearchField.Rows.Add(rowResearchField);

 }

 }

 wordApp.Quit();

 }

 datAuthor.DataSource = mdat;

 datCoAuthor.DataSource = mdatCoAuthor;

 datResearch.DataSource = mdatResearchField;

 }

 void Topic(String []TopicName)

 {

 //<Topic>

 DataTable mdat = new DataTable();

 mdat.Columns.Add("S.no.");

 mdat.Columns.Add("Paper");

 mdat.Columns.Add("Author");

 String FileContent = null;

 {

 DirectoryInfo f = new DirectoryInfo(txtFolderName.Text);

 FileInfo[] r = f.GetFiles("*.doc");

 Word.Application wordApp = new Word.Application();

 int z = 0;

 int [] freq=new int[r.Length];

 AuthorName[] authlist=new AuthorName[r.Length];

 String [] filenames=new String[r.Length];

 for (int m = 0; m < r.Length; m++)

 {

 object file = r[m].FullName;

 object nullobj = System.Reflection.Missing.Value;

 Word.Document doc = wordApp.Documents.Open(ref file,

 ref nullobj, ref nullobj, ref nullobj, ref nullobj, ref nullobj,

 ref nullobj, ref nullobj, ref nullobj, ref nullobj, ref nullobj,

 ref nullobj);

 FileContent = doc.Content.Text;

 // doc.Close(ref nullobj, ref nullobj, ref nullobj);

 wordApp.Documents.Close();

 int p=0;

 AuthorName auth = Parser.SearchTopic(FileContent, TopicName, ref p);

 freq[m]=p;

 authlist[m]=auth;

 filenames[m]=r[m].FullName;

 }

 for (int m = 0; m < authlist.Length; m++)

 {

 for (int n = m + 1; n < authlist.Length; n++)

 {

 if (freq[m] < freq[n])

 {

 int tmp = freq[m];

 freq[m] = freq[n];

 freq[n] = tmp;

 AuthorName stmp = authlist[m];

 authlist[m] = authlist[n];

 authlist[n] = stmp;

 String sstmp = filenames[m];

 filenames[m] = filenames[n];

 filenames[n] = sstmp;

 }

 }

 }

 for(int m=0;m<authlist.Length;m++){

 if(freq[m]==0)break;

 else{

 DataRow row = mdat.NewRow();

 row["S.no."] = m + 1;

 row["Paper"] = filenames[m];

 row["Author"] = authlist[m].Authors[0];

 mdat.Rows.Add(row);

 }

 }

 wordApp.Quit();

 }

 datTopic.DataSource = mdat;

 }

 private void butSubmitQuery_Click(object sender, EventArgs e)

 {

 // panTopic.Visible = true;

 // panAuthor.Visible = true;

 // return;

 //

 // txtFolderName.Text = "C:\\Documents and Settings\\Ritesh\\Desktop\\attachments_2010_05_28\\A1\\A1";

 try

 {

 if (txtSearch.Text == "")

 {

 panTopic.Visible = false;

 panAuthor.Visible = false;

 return;

 }

 if (cmbAuthorTopic.SelectedIndex == 1)

 {

 panTopic.Visible = true;

 panAuthor.Visible = false;

 lblTopicname.Text = txtSearch.Text;

 String[] Topicname = new String[1];

 Topicname[0] = txtSearch.Text.ToLower();

 Topic(Topicname);

 }

 else

 {

 panTopic.Visible = false;

 panAuthor.Visible = true;

 lblAuthorName.Text = txtSearch.Text;

 lblAuthorCoAuthor.Text = txtSearch.Text + " with Co-Author";

 lblResearch.Text = txtSearch.Text + " Research Field";

 AuthorTable(txtSearch.Text);

 }

 }

 catch (Exception po)

 {

 }

 }

 private void panel1_Paint(object sender, PaintEventArgs e)

 {

 }

 }

}

Parser.cs

//

using System;

using System.Collections.Generic;

using System.Text;

using System.Collections;

namespace Domain

{

 class AuthorName

 {

 public String[] Authors;

 public String[] ResearchField = new String[5];

 }

 class Parser

 {

 public static ArrayList StopWords;

 public static void InitStopWords()

 {

 StopWords = new ArrayList();

 String s = "a,able,about,across,after,all,almost,also,am,among,an,and,any,are,as,at,be,because,been,but,by,can,cannot,could,dear,did,do,does,either,else,ever,every,for,from,get,got,had,has,have,he,her,hers,him,his,how,however,i,if,in,into,is,it,its,just,least,let,like,likely,may,me,might,most,must,my,neither,no,nor,not,of,off,often,on,only,or,other,our,own,rather,said,say,says,she,should,since,so,some,than,that,the,their,them,then,there,these,they,this,tis,to,too,twas,us,wants,was,we,were,what,when,where,which,while,who,whom,why,will,with,would,yet,you,your";

 StopWords.AddRange(s.Split(','));

 }

 public static AuthorName SearchAuthor(String FileContent)

 {

 int s = FileContent.IndexOf('\r');

 int e = FileContent.IndexOf('\r', s + 1);

 String AuthorList = FileContent.Substring(s+1, e - s-1);

 AuthorName auth = new AuthorName();

 auth.Authors = AuthorList.Split(',');

 int a = FileContent.IndexOf("ABSTRACT", 0);

 int k = FileContent.IndexOf("KEYWORDS", 0);

 int i = FileContent.IndexOf("INTRODUCTION", 0);

 int z = 0;

 if (k != -1) z = k;

 else z = i;

 String Abstract = FileContent.Substring(a + 9, z - (a + 9));

 Abstract=Abstract.ToLower();

 String[] tmpAbstractWords = Abstract.Split(new char[] { ',', '.', ':', ' ', '\n', '\0', '\r' ,'-','+','=','*','&','^','%','$','#','@','!','~','\"','\'','\\','1','2','3','4','5','6','7','8','9','0'});

 String[] AbstractWords = null;

 ArrayList arr = new ArrayList();

 for (int m = 0; m < tmpAbstractWords.Length; m++)

 {

 for (int h = 0; h < tmpAbstractWords.Length; h++)

 {

 if (arr.Contains(tmpAbstractWords[m]) == false && tmpAbstractWords[m] != "" && StopWords.Contains(tmpAbstractWords[m]) == false)

 {

 arr.Add(tmpAbstractWords[m]);

 }

 }

 }

 AbstractWords = new String[arr.Count];

 int[] freq = new int[arr.Count];

 for (int m = 0; m < arr.Count; m++)

 AbstractWords[m] = arr[m].ToString();

 for (int m = 0; m < AbstractWords.Length; m++)

 {

 int c = 0, p = 0;

 while (p != -1)

 {

 p = Abstract.IndexOf(AbstractWords[m], p) + 1;

 if (p == 0 || p >= Abstract.Length) break;

 c++;

 }

 freq[m] = c;

 }

 for (int m = 0; m < AbstractWords.Length; m++)

 {

 for (int n = m + 1; n < AbstractWords.Length; n++)

 {

 if (freq[m] < freq[n])

 {

 int tmp = freq[m];

 freq[m] = freq[n];

 freq[n] = tmp;

 String stmp = AbstractWords[m];

 AbstractWords[m] = AbstractWords[n];

 AbstractWords[n] = stmp;

 }

 }

 }

 /*for (int m = 0; m < AbstractWords.Length; m++)

 Console.WriteLine(AbstractWords[m]);*/

 int l = 5;

 if (AbstractWords.Length < 5) l = AbstractWords.Length;

 for (int m = 0; m < l; m++)

 auth.ResearchField[m] = AbstractWords[m];

 return auth;

 }

 public static AuthorName SearchTopic(String FileContent, String[] Topic, ref int f)

 {

 int s = FileContent.IndexOf('\r');

 int e = FileContent.IndexOf('\r', s + 1);

 String AuthorList = FileContent.Substring(s+1, e - s-1);

 AuthorName auth = new AuthorName();

 auth.Authors = AuthorList.Split(',');

 int a = FileContent.IndexOf("ABSTRACT", 0);

 int k = FileContent.IndexOf("KEYWORDS", 0);

 int i = FileContent.IndexOf("INTRODUCTION", 0);

 int z = 0;

 if (k != -1) z = k;

 else z = i;

 String Abstract = FileContent.Substring(a + 9, z - (a + 9));

 String Heading = FileContent.Substring(0, s);

 Abstract=Abstract.ToLower();

 Heading=Heading.ToLower();

 int c = 0;

 for (int m = 0; m < Topic.Length; m++)

 {

 int p = 0;

 while (p != -1)

 {

 p = Abstract.IndexOf(Topic[m], p) + 1;

 if (p == 0 || p >= Abstract.Length) break;

 c++;

 }

 p = 0;

 while (p != -1)

 {

 p = Heading.IndexOf(Topic[m], p) + 1;

 if (p == 0 || p >= Abstract.Length) break;

 c++;

 }

 }

 f = c;

 return auth;

 }

 }

}
List of Publications
[1] Deepak Gupta;. Content Modelling Paradigm: an interplay between author document topic and words in International Journal of Computer Application - Special Issue - Computer Aided Soft Computing Techniques for Imaging and Biomedical Applications 2010
AUTHOR - NAME

PAPERS

RESEARCH FIELD

TOPIC - NAME

PAPERS

AUTHOR - NAME

DATASET - I

DATASET - II

DATASET - III

PROCESS

DISPLAY PAPERS OF AUTHOR (INDIVIDUAL)

DISPLAY PAPERS OF AUTHOR (CO-AUTHOR)

DISPLAY RESEARH FIELD OF AUTHOR (INDIVIDUAL)

FLOW CHART SHOWING THE INTERFACE OF SEARCHING USING AUTHOR-NAME

TOPIC - NAME

DATASET - II

DATASET - III

DATASET - IV

PROCESS

DISPLAY PAPERS OF AUTHOR(S) WITH CO-AUTHOR(S) (IF ANY) IN DECENDING ORDER ACCORDING TO THE FREQUENCY OF TOPIC USED WITHIN THE PAPER.

FLOW CHART SHOWING THE INTERFACE OF SEARCHING USING TOPIC-NAME

DATASET - I

AUTHOR - NAME

DATASETS

SUBMIT

SCAN PAPERS IN DATASET

PAPER LEFT IN DATASET

MOVE TO 2ND LINE USING LINE FEED

DISPLAY IN TABLE - I

IF AUTHOR-NAME > 1

DISPLAY IN TABLE - II

GET PAPERS IN TABLE - I

PAPER LEFT IN TABLE-I

SCAN ABSTRACT, KEYWORDS, & CONLUSION

CONVERT TO UNICODE

REMOVE STOP WORDS

REMOVE PUNCTUATION MARKS

FREQUENCY COUNT

DISPLAY RESEARCH FIELD

STOP

TOPIC - NAME

DATASETS

SUBMIT

SCAN PAPERS IN DATASET

PAPER LEFT IN DATASET

SCAN ABSTRACT, KEYWORDS, & CONLUSION

DISPLAY ALL PAPERS WITH THEIR AUTHOR AND CO-AUTHORS(S) NAME

STOP

CONVERT TO UNICODE

REMOVE STOP WORDS

REMOVE PUNCTUATION MARKS

FREQUENCY COUNT

ARRANGE ALL PAPERS IN DECENDING ORDER ACCORDING TO THE FREQUENCY OF TOPIC

- 1 -
PAGE
- 10 -

_1336940435.bin

_1336940453.bin

_1336940401.bin

