E-Waste Management

(Design and Modeling of Plasma Pyrolysis Reactor)

DISSERTATION

(Submitted in the partial fulfillment of the requirement of the degree)

Of

MASTER OF TECHNOLOGY

In

PRODUCTION ENGINEERING

By

PRAVESH KUMAR

Under the guidance of

Dr. Qasim Murtaza

Associate Professor

Mr. Saurabh Agrawal

Assistant Professor

Mechanical, Production & Industrial and Automobile Engineering

Department Delhi Technological University Delhi- 110042 Session 2013-2014

CANDIDATE'S DECLEARATAION

I, **Pravesh Kumar**, hereby declare that the work carried out in this project report entitled, "**E-Waste Management (Design and Modeling of Plasma Pyrolysis Reactor**)" is present on behalf of partial fulfillment of the requirement for the award of degree of "MASTER OF TECHNOLOGY" in Production Engineering submitted to Delhi Technological University, under the supervision of **Dr. Qasim Murtaza**, Associate Professor and **Mr. Saurabh Agarwal**, Assistant Professor in Mechanical Production & Automobile Engineering Department.

I have not submitted the record embodies in this report for the award of any other degree or diploma.

Date:

Place: Delhi

PRAVESH KUMAR

CERTIFICATE

This is to certify that the report entitled "E-Waste Management (Design and Modeling of Plasma Pyrolysis Reactor)" submitted by Pravesh Kumar (Roll No. - 2K11/PIE/22) in partial fulfillment for the award of Masters of Technology in Production Engineering from Delhi Technological University, is a record of bonafide project work carried out by him under our supervision and guidance.

To the best of our knowledge the result contained in this thesis have not been submitted in part or full to any other university for the award of any other degree or diploma.

Dr. Qasim Murtaza
Associate Professor
M, P&I AND AE DEPTT.
DTU, Delhi

Mr. Saurabh Agarwal

Assistant Professor M, P&I AND AE DEPTT. DTU, Delhi

ACKNOWLDGEMENT

I am here with expressing my deep sense of gratitude and thanks to **Dr. Qasim** Murtaza (Associate Professor) and Mr. Saurabh Agarwal (Assistant Professor) in the Mechanical, Production & Industrial and Automobile Engineering Department, DTU, for their valuable guidance and support. His consistent discussion and valuable suggestions helped me to overcome my doubts and overcome the problem areas. Working under his professorship was a privilege an excellent learning experience that I cherish for a long time.

The pragmatic and invaluable advice of my guide kept me going through the critical phases of the project. I indebted to him for the insightful and encouraging words that have been the driving force of my project. They provided me with a lot of information and ideas about the project. There sincere guidance and industrious attitude seeped in for inspiring me to reach beyond the limits.

I am grateful to Prof. Naveen Kumar, Head, Mechanical, Production & Industrial and Automobile Engineering Department, for providing facilities to carry out the investigations.

I am very much thankful to my well-wishers, friends, colleagues and parents for their ever ending encouraging support to me at each and every step of life.

Date:

Pravesh Kumar Place: New Delhi Enroll No: 2K11/PIE/22 M, P&I AND AE DEPTT. DTU, Delhi

ABSTRACT

E-waste is the fastest growing part of the solid waste stream. As the world population becomes greater consumer of electronic gadgets, they left a lot of discarded electronic waste after their useful life. The E-waste has valuable as well as toxic materials like Arsenic, Cadmium, Copper, Mercury, Cobalt and Lead. These toxic materials are responsible for various serious diseases, like lung cancer, itai-itai, genetic disorder, kidney failure, headache and so on. Nervous system and reproduction system of human being affected badly by contamination of heavy metals. To secure human health and environment E-waste needs proper disposal and can recycle for the reuse of valuable metals. But a lot of informal recycling units running in the country in which people work without any safety. The informal recycling leads to serious human health and environmental hazards. To reduce these hazards (water, soil and air pollution) generated by contamination of heavy metals, formal recycling is the solution. The goal of the present research work is to enhance efficiency of metal recovery from waste of electrical & electronic equipment (WEEE). The project presents the construction aspects of plasma technology for recycling of waste printed circuit boards of metal recovery, with design data for plasma reactor. In the report, a thorough study of present development in the field of E-Waste management has carried out. The plasma pyrolysis reactor leads formal recycling process and enhances the metal recovery efficiency up to 14%. The indigenous new plasma pyrolysis reactor designed and developed especially for small-scale industries.

TABLE OF CONTENT

TITLE	PAC	E NO.
Declaration		i
Certificate		ii
Acknowledgement		iii
Abstract		iv
Table of contents		v
List of figures		viii
List of tables		ix
List of symbols		х
List of flow diagram		xi
Chapter 1		
Introduction		[1-21]
1.1 E-waste: An Introduction		1
1.1.1 Why E-waste recycling is important?		3
1.1.2 What is being done to do manage E-waste?		5
1.1.3 Scope of E-waste		6
1.2 International scenario of E-waste		7
1.3 Indian scenario of E-waste		11
1.4 Pollutants in E-waste	17	
1.5 Problem associated with E-waste		18
Chapter 2		
Literature review		[22-32]
Literature review		22
2.1 Research gap	31	
2.2 Motivation and objective		31
2.3 Statement of the problem		32
2.4 Plan of the investigation		32

Chapter 3

Research and methodology		[33-42]
3.1 Chemical process		33
3.2 Mechanical process		35
3.3 Bio leaching process	37	
3.4 Pyrolysis process		42
Chapter 4		
Design and modeling of the reactor		[44-52]
4.1 Introduction		44
4.2 Modeling of the plasma arc reactor	46	
4.3 Design of the plasmatron pipe		48
4.4 Minimum velocity of air for better heat transfer		49
4.5 Mass flow rate of air	50	
4.6 Volume of the reactor		50
4.7 Materials required for making plasma arc reactor for a flow rate of 5 kg/hr with their		
price list		50
4.8 Procedure for making plasma reactor		52
Chapter 5		
Result and discussion		[58-64]
5.1 Objective of study		58
5.2 Energy balance		58
5.3 Mass balance table		59
5.4 Effect of temperature on heat transfer coefficient		60
5.5 Effect of velocity on heat transfer coefficient		60
5.6 Effect of temperature on efficiency	61	
5.7 Comparison of manual, pyrolysis and latest technique		62
5.8 Flow rate of metal recovery in different processes		63
5.9 Metal recovery efficiency of different processes		64

Chapter 6	
Conclusions and future scope	[65-76]
6.1 Conclusions	65
6.2 Future scope	66
References	[67-73]

S. NO. Figure Title	Page No.
Figure 1: Types of E-waste	2
Figure 2: E-Waste incineration in open environment	5
Figure 3: Printed circuit boards waste	10
Figure 4: Year wise distribution of mobile subscribers in India	12
Figure 5: Year wise distribution of personal computers in India	12
Figure 6: Year wise distribution of televisions in India	13
Figure 7: Zone wise distribution of E-waste	16
Figure 8: Microbe-metal interaction mechanism	37
Figure 9: Block diagram of pyrolysis process	42
Figure 10: Laboratory setup of plasma pyrolysis reactor	44
Figure 11: Block diagram of reactor reactions	45
Figure 12: Internal construction of plasmatron reactor	47
Figure 13: 2-D diagram of base component of reactor	53
Figure 14: 3-D diagram of base component of reactor	53
Figure 15: Concrete construction of plasmatron reactor	55
Figure 16: Plasmatron heating pipe	55
Figure 17: Segregated printed circuit board	57
Figure 18: Effect of temperature on heat transfer coefficient	60
Figure 19: Effect of velocity on heat transfer coefficient	61
Figure 20: Effect of temperature on metal recovery efficiency	61
Figure 21: Flow rate of different processes of metal recovery	63
Figure 22: Efficiency of different processes of metal recovery	64
Figure 23: Plasma pyrolysis reactor	74
Figure 24: Metal & slag recover after pyrolysis	74

LIST OF FIGURES

Table No.	Page No.
Table 1: Composition of printed circuit board	3
Table 2: Year wise distribution of personal computers and mobiles in Iran	8
Table 3: Quantity of WEEE in Indian State	14
Table 4: Pollutants and their occurrence in E-waste	17
Table 5: Impact of hazardous substances on health and environment	19
Types 6: Types of industrial waste and used microbes	38
Table 7: Materials with weight and their price	50
Table 8: Metal percentage in 304 grade steel	56
Table 9: Energy balance table	59
Table 10: Mass balance table	59
Table 11: Comparison of manual, pyrolysis and latest technique	62

LIST OF TABLE

S. No.	Symbol	Unit
1	Thermal conductivity (k)	W/mK
2	Length (l)	m
3	Temperature (t)	°c
4	Radius (r)	m
5	Mass (m)	kg
6	Specific heat (Cp)	KJ/kg k
7	Mole (M)	m/Mo.Wt.
8	Efficiency (η)	%
9	Velocity (v)	m/s
10	Heat transfer (h)	w/m² k
11	Heat transfer (Q)	KW
12	Density of air (ρ)	kg/m³
13	Dynamic viscosity (μ)	N-s/m²
14	Kinematic viscosity (u)	m²/s
15	Diameter of pipe (d)	m

LIST OF SYMBOLS

• Metals have their usual symbols.

LIST OF FLOW DIADRAMS

S. No. Name	Page No.
Flow diagram 1: Chemical process of metal recovery from E-waste	34
Flow diagram 2: Process flow chart for recovery of valuable material from E-wash	e 36