
i

A project report on

IMPROVED PARALLEL HILL CIPHER ALGORITHM

USING MAPREDUCE

Submitted in partial fulfillment of the requirement for the award of degree of

Masters of Technology

In

Information Systems

Submitted by:

Akshay Mool

(2K15/ISY/01)

Under the guidance of

Mr. Vinod Kumar

(Associate Professor, Department of Computer Science and Engineering, DTU)

2015-2017

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

Bawana Road, Delhi-110042

ii

CERTIFICATE

This is to certify that Akshay Mool (2K15/ISY/01) has carried out the major project entitled

“Improved Parallel Hill cipher algorithm using MapReduce” in partial fulfillment of the

requirements for the award of Masters of Technology Degree in Information Systems during

session 2015-2017 at Delhi Technological University.

The major report is bonafide piece of work carried out and completed under my supervision

and guidance. To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other University/Institute for the award of any degree or diploma.

Mr. Vinod Kumar

Associate Professor

Department of Computer Science and Engineering

Delhi Technological University

Delhi-110042

iii

ACKNOWLEDGEMENT

I express my sincere gratitude to my project mentor Mr. Vinod Kumar, Associate Professor,

Department of Computer Science and Engineering, Delhi Technological University, Delhi,

for providing valuable guidance and constant encouragement throughout the project. It is my

pleasure to record my sincere thanks to him for his constructive criticism and insight without

which the project would not have been shaped as it has.

I extend my gratitude to Dr. Kapil Sharma, Head of Computer Science and Engineering

Department for permitting me access to the department facilities and giving me opportunity

to work on this project.

I thank God for making all of this possible, my parents and friends for their constant support

and encouragement throughout the project work.

Akshay Mool

2K15/ISY/01

M.Tech (Information Systems)

Department of Computer Science and Engineering

Delhi Technological University

iv

ABSTRACT

In this thesis, a hill cipher algorithm using parallel block matrix multiplication on MapReduce

is put forward to reduce the time for encryption process and provide additional security against

internal and external attacks. The data being stored in the cloud is usually very large, the

demand to decrease the time for encryption, as well as to increase the security of the overall

cloud, becomes necessary. To overcome these drawbacks, a parallel algorithm on the modified

hill cipher is implemented on a MapReduce framework, with parallelism implemented for

easier simplification of the crux of hill cipher. The key matrix generated for the algorithm is

intended to be self-invertible, to decrease the decryption time of the encrypted text. The

experimental analysis on the input data demonstrates the effectiveness of the proposed

technique.

v

TABLE OF CONTENTS

Title Page Number

Certificate ii

Acknowledgement iii

Abstract iv

List of figures v

List of tables vi

1. Introduction 1

1.1 Objective

1.2 Motivation

1.3 Goal

1.4 Thesis organization

2

2

4

4

2. Literature survey 6

3. Various approaches for cipher generation and architectural

models of parallel computation

8

3.1 Cryptography

3.1.1 Symmetric-key encipherment

3.1.2 Asymmetric-key encipherment

3.1.3 Hashing

3.2 Traditional ciphers

3.2.1 Substitution ciphers

3.2.1.1 Mono-alphabetic ciphers

3.2.1.2 Poly-alphabetic ciphers

3.2.2 Transposition ciphers

3.3 Parallel computation architectural models

3.3.1 BSP model

3.3.2 PRAM model

3.3.3 MapReduce model

8

9

9

10

10

10

11

11

11

12

12

12

13

vi

4. The Proposed Work

4.1 Overview

4.2 Implemented version of the hill cipher

4.3 MapReduce version of hill cipher

4.4 Parallel block matrix multiplication

4.5 Complexity of the parallel hill cipher algorithm

4.6 Proposed method for increasing security

14

14

14

16

17

19

21

5. Results and evaluations

5.1 Results on different processors

5.2 Reducing time complexity

22

22

31

6. Conclusion and future work 32

References 33

vii

LIST OF FIGURES

Figure 1: Communication channel for a cryptographic system………………………8

Figure 2: Symmetric-key encipherment………………………………………………9

Figure 3: Asymmetric-key encipherment……………………………………………10

Figure 4: Demonstration of the Parallel multiplication of two matrices……………...18

Figure 5: Executing the encryption cycle of Hill Cipher using the Parallel

Multiplication on an i3 processor…………………………………………………….22

Figure 6: Executing the encryption cycle of Hill Cipher without Parallel Multiplication

on an i3 processor…………………………………………………………………….23

Figure 7: Executing the encryption cycle of Hill Cipher using the Parallel matrix

multiplication on an i5 processor……………………………………………………...24

Figure 8: Executing the encryption cycle of Hill Cipher without Parallel Multiplication

on an i5 processor…………………………………………………………………….25

Figure 9: Executing the encryption cycle of Hill Cipher using the Parallel matrix

multiplication on an i5 iMac processor……………………………………………….26

Figure 10: Executing the encryption cycle of Hill Cipher without Parallel

Multiplication on an i5 iMac processor……………………………………………….27

Figure 11: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i3 processor on a bar graph…………………………………………….28

viii

Figure 12: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i3 processor on a line graph…………………………………………….28

Figure 13: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 processor on a bar graph…………………………………………….29

Figure 14: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 processor on a line graph…………………………………………….29

Figure 15: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 iMac processor on a bar graph……………………………………….30

Figure 16: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 iMac processor on a line graph……………………………………….30

ix

LIST OF TABLES

Table 1: Algorithm for generating Self-Invertible Key Matrix …………………….15

Table 2: Algorithm for MapReduce Hill Cipher…………………………………….16

Table 3: Algorithm for Parallel Block Matrix Multiplication……………………….17

Table 4: Time-complexity comparison on different processor………………………31

1

Chapter 1: INTRODUCTION

This thesis focuses on applying the Hill Cipher algorithm in a parallel manner on

MapReduce model. A parallel algorithm for modified Hill Cipher is designed with respect

to the parallelization of the block matrix multiplication. This approach has observed to

improve the performance and speed of encryption cycle Hill Cipher by converting the

plaintext as blocks, and then converting it to matrix, with applying parallel computations on

large scale. This technique takes complete advantage of computational capabilities of high-

performance machines involved in parallel computation, therefore achieving faster Hill

Cipher encryption for large sets of data. [11]

The science of cryptography deals with hiding of messages in such a way that only the

authorized people are allowed to access them. This is a two-process method – encryption

and decryption. Encryption is the process of converting the message from it’s

understandable form to a form such that it’s meaning is hidden and is not very obvious upon

direct investigation. It is usually done using a “key”, which is used to encrypt the message,

and is known only to the sender and the receiver of the message. The process of decryption

is the opposite of that of encryption, i.e. it is the process of converting the encrypted message

back to its original form that is supposed to have a meaning for the concerned recipient. [2]

Cipher is the encoded form of the message that is the result of the encryption process that is

applied on the original message.

There are many types of ciphers, that are the results of different types of encryption

processes being applied to the message. One such type is a Poly-alphabetic cipher. A

Polyalphabetic cipher is a cipher in which separate occurrences of the same letter can have

different substitutions in the corresponding cipher text. One such type of polyalphabetic

block ciphers is Hill Cipher. [4]

In this work, Hill Cipher is being implemented for the security of large databases. For

efficiency and speed of the performance, parallel block matrix multiplication is implemented

in the process for applying Hill Cipher. The parallelism is helpful in utilizing maximum

machine capabilities for computations and generating the overall result. [3]

2

MapReduce is a type of programming framework that is used to process huge data

collections with a distributed and parallel algorithm. It usually breaks down the input data

into separate blocks, each of which is processed by each algorithm involved in the

framework in a parallel way. MapReduce comes into play in such situations where there is

a large amount of data that has to be processed in a speedy and efficient manner, where the

data can be broken down into separate independent parts and each part can be dealt with

individually. [11]

Formal definitions:

The Hill Cipher was proposed by Lester S. Hill in the year of 1929. It acts on a group of

letters instead of acting on individual letters separately. The whole plaintext (message) is

divided into a number of blocks of equal sizes. All the blocks are encrypted one at a time –

and each character in the block contributes to the encryption of other characters present in

the same block. The key is of the size of m x m, where m is the size of each block. Hill Cipher

ensures that repeated occurrences of same letters or group of letters in the message have

different substitutions in the corresponding cipher, so that breaking of the cipher to obtain

the original plaintext is not obvious and easy by any malicious attacker trying to decipher

the message who does not have the proper authority to do so.

MapReduce framework is used for efficient processing of large data sets that generates

intermediary key/value pairs and later combines the results to generate an overall final

outcome. [11]

1.1 OBJECTIVE

To enhance and improve the performance of base hill cipher implementation, using

Parallel Block Matrix Multiplication and MapReduce framework.

1.2 MOTIVATION

The increase in the amount of information every day these days leads to a requirement

of a lot of storage space and the added security that comes with it. The processing and

computations required for such huge amounts of data becomes quite cumbersome. And

these days when tonnes of data is being added every moment, efficient and speedy

3

processing of the same becomes important as well as necessary to cope up with the

incoming amount.

Also, increase in the amount of data leads to an obvious increase in the amount of

sensitive data that needs to be protected from elements with malicious intents, whether it

be from a hacker, cracker or a software. The sensitivity of the data leads to the

requirement of security for preventing such malicious elements from accessing and

interfering with the integrity of such data. Thus, the added requirement of speedy and

efficient processing and security of the large data sets leads to research in the field of

MapReduce framework implementation with respect to a strong cryptography technique.

In this thesis, a Hill Cipher algorithm with parallel computations is suggested to lower

the time taken for the encryption cycle. Because the cloud data is becoming quite large

these days, demands to reduce the time taken for encryption of the data has increased

significantly, with the storage security in the concerned cloud. For catering to this need,

a Modified Hill Cipher using Parallel algorithm is utilized for working on the MapReduce

model. It is a symmetric-transposition encipherment technique, and the parallel block

matrix multiplication purely achieves the parallelism here. The self-invertible key matrix

is generated to reduce the decryption time. Experimental analysis on the input data

demonstrates how effective the proposed technique has proven to be.

Due to the advanced developments in cloud computation in recent years, information

security has become a very essential problem these days. As large volumes of unprotected

data are communicated over shared cloud, the process of encryption for the large data is

recommended to shield the data protection, and reducing the time of encryption

simultaneously.

Parallel computing is a very essential property for cloud computing. It has driven many

architecture models designs of parallel computing, like the MapReduce framework, the

parallel RAM (PRAM) and BSP model. In this thesis, owing to the practical

considerations, the MapReduce framework has been chosen. The MapReduce framework

has the features of being very simple and general. The model that executes the algorithm

of MapReduce manages the distribution of the work between the of number of machines

effectively.

In 1929 Lester Hill published an article in the American Mathematical Monthly called

"Cryptography in an Algebraic Alphabet." In it, he describes the Hill cipher, in which a

plaintext message is encrypted by matrix multiplication. This cipher is especially

noticeable due to the fact that the letters are enciphered in groups because of the way in

4

which matrices are multiplied, which means it bypasses frequency analysis and other of

traditional cryptanalysis techniques. The Hill cipher was also responsible to combine

mathematics and cryptography. Using mathematics to encode messages is noted to be a

very important turning point for development in the cryptographic techniques. Addition

of mathematics to the cryptographic process unlocked various new possibilities. The vast

use of public key cryptography these days is all due to the help of Hill cipher. [3]

There is a very huge demand for large scale data processing these days. Owing to this

increase in the requirement, research work for decreasing processing time and increasing

the speed for large data sets began in various sectors, and is still progressing at a fast rate.

1.3 GOAL

This thesis introduces an improved and secured methodology for parallel implementation

of hill cipher on a MapReduce framework, taking into account the complexity and large

sizes of the input data sets, as well as the probability of malicious attacks on the

concerned data. Hill Cipher is used here because due to the size of the data sets, they are

divided into smaller chunks of data, and the encryption and transmission of these

individual chunks have no effect on other blocks of data. Moreover, it can be easier to

implement than other cryptographic schemes because it avoids time consuming bit

manipulation and they operate on computer sized blocks of data. MapReduce provides

an easy to use, clean abstraction for large scale data processing. It is very robust in fault

tolerance and error handling, and can be used for multiple scenarios for huge

computations. Restricting the programming model to the Map and Reduce paradigms

makes it easy to parallelize computations and make them fault-tolerant.

1.4 THESIS ORGANISATION

Chapter 2 includes literature review for Hill Cipher, matrix multiplication and

MapReduce framework. The formulation of the problem and MapReduce approach

based on data size and speed of processing with the help of parallelism in matrix

multiplication are briefly given in this chapter.

Various approaches to generate a cipher, and architectural models for parallel

computing, are discussed in Chapter 3. This chapter is organized in a step-wise manner.

5

We will start with a simple cryptographic model for cipher generation and approach to

the use of Hill cipher for security in the thesis as we move along. We will cover some

basic features of some of the architectural models that have evolved over time due to

the need of faster processing of large data, and some of the mathematical theory behind

proposed method here.

In Chapter 4, we discuss the results and evaluate them with the implementation. We

elaborate the experimental results we obtained with implementations. Security of the

proposed algorithm is analysed and experimental results are also presented. Discussion

and analysis of the results will be given in this Chapter. Conclusion and future directions

are presented in Chapter 6.

6

Chapter 2: LITERATURE SURVEY

The Hill cipher was introduced by L.S. Hill in 1929. It is a famous polygram and a

symmetric-key cipher which is based on matrix multiplication but it is vulnerable to the

known-plaintext attack. Although its weakness to cryptanalysis makes it barely possible to

use in practice, it still provides a good insight in both cryptology and linear algebra. The Hill

cipher is a polyalphabetic block cipher that has many advantages like concealing letter

frequencies of the plaintext, its simple approach because of matrix multiplication, similarity

of processes of encryption and decryption, and high speed and throughput [2]. In 2009 and

2011, Toorani and Falahati introduced two variations of the classical Hill Cipher, with

guidelines and protocols for the communication of encrypted messages. They claim that the

new variants get rid of the weaknesses of the original Hill Cipher, and do not succumb to

any ciphertext-only, known-plaintext, chosen-plaintext, or chosen-ciphertext attack [3].

Public-key encryption systems like RSA, El Gamal, are more secure cryptosystems than any

other private key encryptions. But due to their relative high computational complexity, and

therefore slow processing, cannot be used for transferring large datasets for practical

purposes. So, they are better suited for authentication purposes and key exchange scenarios

that use private keys for transfer of data. Therefore, necessity of an efficient and highly

secure private key cryptosystems become an important need. One of such methods is a Block

Cipher, called the Hill Cipher [4].

MapReduce is a type of programming framework, with an associated application to process

and generate huge data collections. A map function is specified by the users, that processes

a key/value pair for generating a set of transitional key/value pairs, and a reduce function

that merges all intermediate values associated with the same intermediate key. Many real-

world tasks are expressible in this model [5].

Advanced architecture computers of recent disposition have such hierarchical memories in

which accesses to data in the upper levels of the memory hierarchy (registers, cache, and/or

local memory) are faster than those in lower levels (shared or off-processor memory). One

of the techniques to effectively exploit the power of such machines more is to evolve

algorithms that boost reuse of data held in the higher levels of the hierarchy, thereby

reducing the need for more expensive accesses to lower levels. For dense linear algebra

7

computations, this can be done by using block-partitioned algorithms, that is by recasting

algorithms in forms that involve operations on submatrices, rather than individual matrix

elements. The Level 3 Basic Linear Algebra Subprograms (BLAS) executes various

commonly-used matrix operations, and are accessible in better form on almost every

computing platforms.

Different advancements suggested for matrix multiplication comprises 1D-systolic, 2D-

systolic, broadcast-multiply-roll, the transpose algorithm, and Cannon’s algorithm. Two

latest efforts advance the work by Fox et al. to general meshes of nodes: the paper by Choi

et al.[6] uses a two-dimensional block-wrapped (block-cyclic) data decomposition, while

the papers by Huss-Lederman et al.[7,8] use a ‘virtual’ 2-D torus wrap data layout. Both

these efforts report very good performance attained on the Intel Touchstone Delta, achieving

a sizeable percentage of peak performance.

8

Chapter 3: VARIOUS APPROACHES FOR CIPHER

GENERATION AND ARCHITECTURAL MODELS OF

PARALLEL COMPUTATION

In this chapter, we will discuss about the different types of simple cryptography and

cryptanalysis systems, as well as several architectural models of parallel computations,

because of the parallel computing in cloud computation.

3.1 CRYPTOGRAPHY

The fundamental objective of cryptography is to enable two people, usually referred

to as Alice and Bob, to communicate privately over an insecure channel, in such a

way that an opponent, Oscar, does not understand what is being said. The

information that Alice wants to send to Bob is generally called “plaintext”, and could

be anything, ranging from text in any language to numerical symbols or digital

media. Alice encrypts the plaintext using a predetermined key between Alice and

Bob, and sends the resulting ciphertext over the insecure channel. Oscar, who tries

to eavesdrop on the conversation, sees the ciphertext, but is unable to generate any

meaning out of it; but Bob can, because he has the predetermined key which is used

to decipher the ciphertext back into the plaintext.

Figure 1: Communication channel for a cryptographic system

9

Although in the past, cryptography was concerned with only two processes:

encryption and decryption, of the messages using secret keys, in the present day, is

described using 3 unique techniques: Hashing, Asymmetric-key encryption, and

Symmetric-key encryption.

3.1.1 Symmetric-Key Encipherment

In Symmetric-key encipherment, sender sends a message to receiver over an

insecure channel, assuming that any adversary is not able to understand the

meaning of the information simply by eavesdropping. Symmetric-key encryption

uses a sole secret key for encrypting and decrypting algorithms. Encrypting and

decrypting in this technique can be visualized as locking electronically. Sender

inserts the information in a box, then bolts it with the secret key that is shared

with the receiver, then the receiver unbolts the box using the secret key that is

shared, and gets the information.

Figure 2: Symmetric-key encipherment

3.1.2 Asymmetric-Key Encipherment

In Asymmetric-key encipherment, we have the same situation as the symmetric-

key encipherment, but with a few exceptions. Firstly, there are two keys instead

of just one common key: a public key and a private key. For Alice to send a

secured message to Bob, she encrypts the message using public key of Bob. Bob

then decrypts the message using his own private key.

10

Figure 3: Asymmetric-key encipherment

3.1.3 Hashing

Hashing uses a message-digest of fixed length that is generated out of a

information of variable length. The message-digest is usually very small when

compared to the information itself. For the effective encipherment, the

information and its digest are both sent to receiver. This technique is especially

useful in relation with checkvalues, like checksums, which are used to provide

integrity of the message.

3.2 TRADITIONAL CIPHERS

Traditional ciphers are divided into two types of ciphers: Substitution ciphers and

Transposition ciphers.

3.2.1 Substitution Ciphers

A substitution cipher replaces one symbol in the plaintext with a different symbol

in the ciphertext. If the symbols in the plaintext are alphabets, we simply just

replace one alphabet with another. Substitution ciphers are again divided into two

types: Mono-alphabetic ciphers and Poly-alphabetic ciphers.

11

3.2.1.1 Mono-alphabetic ciphers

In monoalphabetic ciphers, a symbol in the plaintext is always substituted

with the same symbol in the ciphertext, regardless of their position in the

message. This means that the relationship between the symbol and its

substitute in the ciphertext is always one-to-one. Examples of monoalphabetic

ciphers are: Additive cipher, Shift cipher, Caesar cipher.

3.2.1.2 Poly-alphabetic ciphers

In polyalphabetic ciphers, different locations of a same character in the same

plaintext may have different substitutes in the ciphertext. This means that the

relationship between the symbol and its substitute in the ciphertext is many-

to-one. Examples of polyalphabetic ciphers are: Autokey cipher, Playfair

cipher, Vigenere cipher, Hill cipher.

3.2.2 Transposition ciphers

A transposition cipher does not replace the symbols in the plaintext, instead it

changes the location of the symbols in the plaintext to form the ciphertext. In

other words, it reorders (transposes) the position of symbols. Examples of

transposition ciphers are: Keyless Rail-fence cipher, Keyed permutation cipher.

12

3.3 PARALLEL COMPUTATION ARCHITECTURAL MODELS

Due to advances in the sizes of databases and data sets, and increase in the

requirement of fast processing of that large data, various architectural models have

been proposed and developed to aid parallel computations. Some of those models

are as follows:

3.3.1 BSP MODEL

BSP stands for Bulk Synchronous Parallelism. It is a parallel programming

model based on Synchronizer Automata, that is a methodology in Distributed

Algorithms. [5]

The model consists of several memory-processor pairs, a communication

network that delivers messages to the devices in the network in a point-to-point

manner. It also comprises of a mechanism for the efficient barrier

synchronization for all or a subset of processes. The BSP model lacks any

special combining, replicating or broadcasting facilities.

This model considers communication and computation capabilities with respect

to the whole program and the computer that is executing the program, instead of

taking care of individual processes and separate communications.

The main features of BSP model are:

• Ease of writing programs

• Independent of the target architecture

• Model performance is predictable.

3.3.2 PARALLEL RAM (PRAM)

PRAM stands for Parallel Random-Access Machine. It is a parallel computing

model that is just a natural extension of a RAM in the way that each processor

acts as a RAM for the program. [5] It is an abstract machine that is helpful in

designing algorithms suitable for parallel computations. All the processors

operate synchronously, and is one of the earliest and best-known model for

parallel computation. It consists of a global access memory, a set of processors

that run usually the same program, with the help of a private stack. The

13

processors have the freedom of accessing all memory cells in a unit time, and

all communications are carried out using the shared memory.

The main features of PRAM are:

• The number of operations executed in one cycle on p processors does

not exceed p.

• A processor can perform any read/write operation on any shared memory

cell in a unit time.

• It is simple due to the fact that it abstracts from any synchronization

overhead or communication.

• It can be established as a benchmark, as if a problem has no feasible

solution on PRAM, no other parallel machine can produce any feasible

or efficient solution.

3.3.3 MAPREDUCE MODEL

The researchers at Google came up with the common processes that are essential

in processing large scale data inputs, provided the processing could be done at

multiple machines at the same time: Map and Reduce. Utilizing these two

functions, Google came up with a framework called MapReduce. [11] The

problems solved by the MapReduce framework are:

1. Fault-tolerance- handling component failures

2. Distribution- distributing data to the various machines

3. Parallelization- parallelizing the computations required

The main advantage of using MapReduce is the convenience of not being forced

to move the data to different locations, instead a program is sent to the data

centers to process the chunks of data on their places, which is unlike other

traditional data warehouses and relational databases.

The data and computing division distributions among various processors in the

MapReduce scenario gives multiple advantages:

• Using MPI (Message Passing Interface), low effort is required with

respect to the data handling timing.

• MPI gives data exchange flexibility.

14

Chapter 4: THE PROPOSED WORK

4.1 OVERVIEW

The need of security with databases change with different organizations, depending on the

information type and the priority of importance it holds for the organization. The flexible

and unreliable nature of the cloud makes it vulnerable to inside and outside attacks, and the

virtual nature of the model makes security of cloud environments a complex process, as per

the demand.

Parallel computing is one of very important components of cloud computation. One of the

architectural model used for implementation of parallel computing is the MapReduce

Framework. The MapReduce model is chosen for this paper due to practical purposes and

ease of implementation. MapReduce is a type of programming framework and an associated

application to process and generate huge data collections with a distributed, parallel

algorithm on a set of machines. Properties of this model include generality and simplicity.

MapReduce allows the effective parallelization of processing data stored in a file system.

[7]

In this thesis, the application of a Hill cipher algorithm using parallelism on MapReduce

model has been focused. A parallel Hill Cipher algorithm with some modifications in

accordance with the parallelization of the blocks for block matrix multiplication has been

implemented. This approach improves the speed of processing of Hill Cipher by converting

the plaintext into computable blocks and then computing them parallelly. The algorithm tries

to make full use of high performance capability of the machine cluster, and therefore can

encrypt large data files using the Hill cipher. [3]

4.2 IMPLEMENTED VERSION OF HILL CIPHER

The basic hill cipher was introduced by Lester Hill. It is a Polyalphabetic block cipher,

meaning each occurrence of a character may have a different substitute in the encrypted text.

When the plaintext is to be encrypted, it is converted to a corresponding numerical value

15

matrix P, and a private key matrix K is generated for encryption. [1] If C is the cipher matrix

for the plaintext matrix P, then

Encryption_process: C = Encrypt(K,P) = KP mod m

Decryption_process: P = Decrypt(K-1,C) = K-1C mod m

The inverse of the key K, K-1, leads to consumption of memory resources and time, because

it is a very tedious task. Also, in some cases, matrix inverse is non-existent, so it creates

problems in decrypting the cipher text. The modified hill cipher implemented for this thesis

makes use of the invertibility of key matrix for the process of encryption. Let matrix K be a

M X M matrix. [1]

The partition of K is assumed as

K12 is assumed to be one of the factors, therefore K12 = (I-K11) mod m, and K21 = (I+K11)

mod m, and K11+K22 = 0 mod m. [1]

Now, using this, the algorithm for generating Self-invertible matrix is as follows: [1]

16

ALGORITHM FOR GENERATING SELF-INVERTIBLE KEY MATRIX

Input: K22, scalar constant a, modulus m

Begin

1. Obtain an arbitrary M/2 x M/2 Matrix K22

2. K11 = -K22 mod m

3. K12 = (I+K22) * a mod m

4. K21 = (I+K11) * 1/a mod m

5. Therefore, key matrix K is obtained by (K11 K12 K21 K22).

End

Table 1: Algorithm for generating Self-Invertible Key Matrix

17

4.3 MAPREDUCE VERSION OF HILL CIPHER

MapReduce is a type of programming framework and an associated application to process

and generate huge data collections with a distributed, parallel algorithm on a set of

machines. [11]

• "Map" step: Every worker node implements the "map()" method to the local data,

and copies the output on a temporary storage device. A dictating node ensures that

only one copy of redundant input information is managed.

• "Shuffle" step: All the worker nodes redistribute the data depended on the output

keys that were produced by the "map()" function, so that all data belonging to one

key is located on the same worker node.

• "Reduce" step: Worker nodes process each collection of output data according to

each key parallelly.

Now, an algorithm for MR-parallel hill cipher scheme, PHC = (Generate, Split, Map, Part,

Reduce), is as follows: [1]

ALGORITHM FOR HILL CIPHER ON MAPREDUCE

1. Generate (K22, m, a): generate the key matrix using previous algorithm.

 K <- Gen(K22, m, a).

2. Split(Plaintext): with respect to the processor used by the machine, the size of block is

computed, after that the block ID is generated as key for map process. Therefore the

output pair for map process is Output (block ID (i,j,p), plaintext).

3. Map(block ID (i,j,p), plaintext): calculate the allocation of block according to the block

ID. Commence the block matrix multiplication next. Output is partial sum of the cipher

matrix:

psum = psum + K+
i,p(x,y) X P+

p,j(y,z)

Output (block ID (i,j,p), partial sum C+
i,j)

4. Part (block ID(i,j,p), partial sum C+
i,j): divide the block ID parameter (i,j,p), the partial

sum having the same parameters of (i,j) will be assigned to the same reduce.

5. Reduce (block ID(i,j,p), Set(partial sum C+i,j)): atomic add the partial sum to compute

the final cipher matrix.

Table 2: Algorithm for MapReduce Hill Cipher

This algorithm describes the common encryption technique. The process of decryption

follows the same routine as the process of encryption with the identical key matrix.

18

4.4 PARALLEL BLOCK MATRIX MULTIPLICATION

The block matrix multiplication gives rise to the parallelism in the algorithm of hill cipher.

The block matrix multiplication in parallel manner is carried out as follows:

ALGORITHM FOR PARALLEL BLOCK MATRIX MULTIPLICATION

Number of processors in parallel machines are p. Two square matrices A, B of size n have to

be multiplied:

1. Both matrices are divided in p square blocks.

2. A processes matrix of size p1/2 x p1/2 is generated, in order that each process is able to

maintain a block of both input matrices.

3. Each process is given one block, and those sub blocks are multiplied together, and the

results are appended to the partial results of C sub-blocks.

4. The sub-blocks of A are shifted left one step and the sub-blocks of B are shifted up one step.

5. Steps 3 and 4 are repeated sqrt(p) times.

Restrictions:

• The available number of processors must be an exact square root.

• The accurate distribution of the all data to the available processors must be

possible.

Table 3: Algorithm for Parallel Block Matrix Multiplication

19

Figure 4: Demonstration of the Parallel multiplication of two matrices

The number of reduce process would be just one, because merging the result in a single

file ultimately is needed. All the map results are received by a single reducer.

20

4.5 COMPLEXITY OF THE PARALLEL HILL CIPHER ALGORITHM

To calculate the complexity of the method, we take into consideration each major step in

the whole process. The complexity of the matrix multiplication is found out to be O(n3).

Let the dimension of plaintext matrix be P, key matrix be K, cipher matrix be C. [1]

Furthermore, to carry out the parallel block matrix multiplication, we have

P=K=C=N

Let the mapper count be M. Therefore,

M=p x k x c

Sequential time, Tseq, can be represented as time for key matrix generation with the

sequential matrix multiplication. So,

Tseq = Tkey + O(n3)

Parallel time, Tpar, can be written as the time for generating key matrix with the

parallelizing of the matrix multiplication. So,

Tpar = Tkey + Tm_par

The speed boost for the parallel matrix multiplication can be found out by dividing the

time into two parts: the time for computing the matrix multiplications, and the time that the

reducer has to wait to read all the mapper results. Therefore,

Tm_par = Tcomp + Twait

And Tcomp can be found by

Tcomp = N3/M

The number of output key and value pairs for the mapper are

K x (p x C + c x P)

And the total results from the Result process are PxC.

Because we assumed P=K=C=N, therefore,

21

p=k=c=√𝑀
3

Let tw denote one pair of records written by mapper. Therefore,

Twait = K x (p x C + c x P)tw

= (cN2+pN2)tw

= 2√𝑀
3

N2tw

Tpar = (N3/M + 2√𝑀
3

N2tw)

Therefore, the increase in the performance is

When N->∞, Tseq≈MTpar

22

4.5 PROPOSED METHOD FOR INCREASING SECURITY

The major drawback of this parallel hill cipher implementation is the security of key and

consequently, its generation by the attacker.

The plain text for the Hill cipher is converted to several 4X4 matrices and those are

encrypted individually. It would be too irrelevant to have a separate key for every 4X4

portion of the plaintext; therefore, we take a common key for all the matrices. The key,

which is the self-invertible matrix, is generated by using 4 elements. These elements are user

(client) dependent, and hence these elements are asked to enter by the user at the encryption

phase. The security of these elements is the issue of concern in this method, because if the

attacker can figure out these elements, the whole key can be generated using these 4

elements. These elements can be made secure using several standard or user-defined

methods. The method implemented in this report is a simple one. Each element is generated

using 4 different integer inputs by simple mathematical operations performed on all of them

for each of the 4 elements of the self-invertible matrix. We can secure of these 4 elements

of using random number generator:

a1 = ((x1 * p1) + q1) mod m1

a2 = ((x2 * p2) + q2) mod m2

a3 = ((x3 * p3) + q3) mod m3

a4 = ((x4 * p4) + q4) mod m4

where,

 x1, x2, x3 & x4 are user entered prime number integer

 p1, p2, p3, p4, q1, q2, q3, q4, m1, m2, m3 & m4 are prime number.

23

Chapter 5: RESULTS AND EVALUATIONS

The performance of the proposed system is calculated on the basis of milliseconds, as the

machine cannot generate the results in such small units as nanoseconds.

5.1 RESULTS ON SEPARATE PROCESSORS

Firstly, the performance is measured on an i3 processor computer:

Figure 5: Executing the encryption cycle of Hill Cipher using the Parallel

Multiplication on i3 processor

24

Figure 6: Executing the encryption cycle of Hill Cipher without Parallel

Multiplication on an i3 processor

As we can see from the execution time of the Parallel Multiplicative version of Hill cipher

versus the normal Hill cipher, it is observed that the performance of the parallel version is

better than the performance of Hill cipher without applying the matrix multiplication.

Performance is also compared on other processors to check the accuracy and validity of

the system.

25

Now, comparing the performances of the classical Hill Cipher vs the Parallel Hill Cipher

on an i5 processor:

Figure 7: Executing the encryption cycle of Hill Cipher using the Parallel matrix

multiplication on an i5 processor

26

Figure 8: Executing the encryption cycle of Hill Cipher without Parallel

Multiplication on an i5 processor

As we can see, the performance of the Parallel version of the Hill Cipher is still better than

the classical version, even after executing it on a different processor.

27

Now, comparing the performances of the classical Hill Cipher vs the Parallel Hill Cipher

on an i5 iMac processor:

Figure 9: Executing the encryption cycle of Hill Cipher using the Parallel matrix

multiplication on an i5 iMac processor

28

Figure 10: Executing the encryption cycle of Hill Cipher without Parallel

Multiplication on an i5 iMac processor

As we can observe here too, the performance of the Parallel version of the Hill Cipher is

still better than the classical version, even after executing it on a different processor.

29

Figure 11: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i3 processor on a bar graph

Figure 12: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i3 processor on a line graph

-100

100

300

500

700

900

1100

1300

Classic Hill Cipher Paralleled Hill Cipher

Ti
m

e
(m

ill
is

ec
o

n
d

)

Classic vs Parallel Hill Cipher on i3 processor

0

200

400

600

800

1000

1200

1400

Classic Hill Cipher Parallel Hill Cipher

Ti
m

e
(M

ill
is

ec
o

n
d

s)

Classic vs Parallel Hill Cipher on i3 processor

Pass 1 Pass 2 Pass 3

30

Figure 13: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 processor on a bar graph

Figure 14: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 processor on a line graph

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

Classic Hill Cipher Paralleled Hill Cipher

Ti
m

e
(m

ill
is

ec
o

n
d

)

Classic vs Parallel Hill Cipher on i5 processor

0

200

400

600

800

1000

1200

1400

Classic Hill Cipher Parallel Hill Cipher

Ti
m

e
(M

ill
is

ec
o

n
d

s)

Classic vs Parallel Hill Cipher on i5 processor

Pass 1 Pass 2 Pass 3

31

Figure 15: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i5 iMac processor on a bar graph

Figure 16: Comparing the performances of the Classic Hill Cipher vs its Parallel

version on an i3 iMac processor on a line graph

0

1000

2000

3000

4000

5000

6000

Classic Hill Cipher Paralleled Hill Cipher

Ti
m

e
(m

ill
is

ec
o

n
d

)

Classic vs Parallel Hill Cipher on Mac i5 processor

0

1000

2000

3000

4000

5000

6000

7000

Classic Hill Cipher Parallel Hill Cipher

Ti
m

e
(M

ill
is

ec
o

n
d

s)

Classic vs Parallel Hill Cipher on Mac i5 processor

Pass 1 Pass 2 Pass 3

32

5.2 REDUCING TIME COMPLEXITY

Processor Time

(milliseconds)

for Normal

Hill Cipher

Time

(milliseconds) for

Modified Hill

Cipher

i3 963 282

i5 1128 148

iMac i5 5954 159

Table 4: Time-complexity comparison on different processors

As we can see from this table, the Modified Hill Cipher algorithm reduces the computational

time quite significantly, when compared to the Normal Hill Cipher algorithm

implementation. Therefore, it is proved that our implemented method for modification of

the Hill Cipher algorithm is effective than the Normal Hill Cipher algorithm. Here, the clock

ticks are used as a method of comparison of time in these methods because the time taken

for computing the 4X4 matrix doesn’t take any appreciable amount of time (not even in

milliseconds, which is the shortest element of time that can be measured by the machine).

33

Chapter 6: CONCLUSION AND FUTURE WORK

This thesis shows the implementation of an improved version of the hill cipher using the

MapReduce framework. The security of the implementation is further increased by using

prime numbers to determine the key matrix using its four elements. This added security

prevents any malicious characters and softwares to get hold of the key matrix, which is the

crux of the whole cipher. The increased performance of the process depends upon the block

matrix multiplication taking place in parallel, where each block is processed with a key

matrix to generate a partial sum. The results from all the mappers is combined by a single

reducer to generate the final cipher matrix. This process is effective in encrypting large

databases.

An abundant amount of future work is expected for this technique. The current process of

encryption is classic Hill Cipher scheme. The big security drawback of Hill Cipher

cryptosystem is considered to be its endangerment to the attack of known-plaintext type,

conditional to linear algebra. Exploring an advancement to remedy its security faults using

parallel approach is essential stride for the future work. [1]

34

REFERENCES

[1] Wang, Xinyu, and Min, Zhaoe. “Parallel Algorithm for Hill cipher on MapReduce”:

IEEE International Conference on Progress in Informatics and Computing (2014), pp. 493-

497

[2] Toorani M, Falahati A. “A secure variant of the Hill cipher.” Computers and

Communications, 2009. ISCC 2009. IEEE Symposium on. IEEE, 2009: pp.313-316.

[3] Keliher L, Delaney A Z. “Cryptanalysis of the Toorani-Falahati Hill Ciphers”22nd IEEE

Symposium on Computers and Communications. IEEE Press, New York.

[4] Obimbo, Charlie, and Behzad Salami. “A Parallel Algorithm for determining the inverse

of a matrix for use in block cipher encryption/decryption.” The Journal of Supercomputing

39.2 (2007): pp.113-130.

[5] Valiant, Leslie G. “A bridging model for parallel computation.” Communications of the

ACM 33.8 (1990): pp.103-111.

[6] J. Choi, J. J. Dongarra and D. W. Walker, ‘PUMMA: Parallel universal matrix

multiplication algorithms on distributed memory concurrent computers’, Concurrency,

Pract. Exp., 6, (7),543–570 (1994).

[7] Jaeyoung Choi and Soongsil University, “A New Parallel Matrix Multiplication

Algorithm on Distributed-Memory Concurrent Computers”, High Performance Computing

on the Information Superhighway, 1997. HPC Asia '97, 224-229 (1997)

[8] R. C. Agarwal, F.G. Gustavson, and M. Zubair. “A High-Performance Matrix-

Multiplication Algorithm on a Distributed-memory Parallel Computer Using Overlapped

Communication.” IBM Journal of Research and Development, 38(6):673-68 1,1994.

[9] R. van de Geijn and J. Watts. “SUMMA Scalable Universal Matrix Multiplication

Algorithm.” LAPACK Working Note 99, technical report, University of Tennessee, 1995.

[10] Anshul Gupta and Vipin Kumar, “Scalability of Parallel Algorithms for Matrix

Multiplication”, 1993 International Conference on Parallel Processing - ICPP'93, 115-123

35

[11] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce: simplified data processing on large

clusters.” Communications of the ACM 51.1 (2008): 107-113. J.Clerk Maxwell, A Treatise

on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

[12] Van De Geijn, Robert A., and Jerrell Watts. “SUMMA: Scalable universal matrix

multiplication algorithm.”Concurrency-Practice and Experience 9.4 (1997): pp.255-274.

[13] Krishnan, Manojkumar, and Jarek Nieplocha. “SRUMMA: a matrix multiplication

algorithm suitable for clusters and scalable shared memory systems.”Parallel and

Distributed Processing Symposium, 2004. Proceedings. 18th International. IEEE, 2004

