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ABSTRACT 

Machining is one of the most common and important manufacturing process in the 

industry. The investigation of the machining process and development of models in order 

to optimize cutting force, feed force, thrust force and surface roughness is important 

when it comes to the cost of manufacturing and the quality of finished products. Effect of 

input parameters: Spindle Speed, Feed and Depth of Cut is determined by correlating 

these parameters with cutting force, feed force, thrust force and surface roughness. 

 

The main objective of this research was to study the effect of spindle speed, feed and 

depth of cut on cutting force, feed force, thrust force, surface roughness and tool wear 

during turning of EN 31 Steel using uncoated and coated titanium based cemented 

carbide insert. EN-31 Steel is high carbon low alloy steel giving good ductility & shock 

resisting properties combined with wear resistance. It is also known as bearing steel as it 

is used for production of bearings. The design matrix was prepared on the basis of 3 

factors, 3 level Box-Behnken Design. Response Surface Methodology was used for the 

development of mathematical models correlating spindle speed, feed and depth of cut 

with cutting force, feed force, thrust force and surface roughness. Modelling of tool wear 

could not be done because of the limited readings as no tool wear was observed while 

machining with coated insert whereas a maximum tool wear of 0.05 mm was observed 

while machining with uncoated insert. The developed models were checked for adequacy 

using ANOVA. All the calculations were carried out using Minitab 17. Main and 

interaction effects were plotted and results were interpreted. The developed models can 

be suitably used for predicting the response parameters by selecting appropriate input 

parameters. 

 

Optimization was carried out using Response Optimizer Technique which performs joint 

optimization as well as using Genetic Algorithm Multi Objective Optimization. For the 

latter, the models developed using RSM were utilized as the fitness function and 

optimization was performed yielding a Pareto front.  

 

When the regression models are not fitting the data well, then only modelling using 

Artificial Neural Network is attempted [20]. Therefore ANN models for cutting force, 

feed force, thrust force and surface roughness were also developed. The results indicate 

that the ANN model results are satisfactory.  

iii 



A comparative study of Experimental results, RSM model results and ANN model results 

was done and it was concluded that ANN model has an edge over RSM model values in 

case of cutting force, feed force and thrust force. But in case of surface roughness, RSM 

has less absolute mean percentage error in comparison to ANN model values. 

 

Keywords: Box-Behnken design, Response Surface Methodology, ANOVA, Response 

Optimizer technique, Genetic Algorithm, Artificial Neural Network 
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Chapter 1 

INTRODUCTION 

 

1.1 Manufacturing 

Production or manufacturing can be simply defined as a value addition process through 

which raw materials having low utility and value due to their inadequate material 

properties and poor or irregular size, shape and finish are converted into high utility and 

valued products with definite dimensions, forms and finish imparting some functional 

ability. A typical example of manufacturing is schematically shown in Fig. 1.1[1]. 

 

In Fig. 1.1, it can be seen that a lump of mild steel having irregular shape, dimensions and 

surface, which had almost no use and value, was converted into a useful and valuable 

product like bolt by a manufacturing process which imparted suitable features, 

dimensional accuracy and surface finish, required for fulfilling some functional 

requirements. 

 

 

 
 

 

Fig. 1.1 Value addition by manufacturing [1] 
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1.1.1 Broad classification of Engineering Manufacturing Processes 

 

Because of the development of large number of processes till now and the number is still 

increasing exponentially with the growing demands and rapid progress in science and 

technology, it is extremely difficult to tell the exact number of various manufacturing 

processes existing and are being practiced presently . However, all such manufacturing 

processes can be broadly classified in four major groups as follows [1]: 

 

(a) Shaping or forming 

Manufacturing a solid product of definite size and shape from a given material taken in 

three possible states: 

• In solid state – e.g., forging rolling, extrusion, drawing etc. 

• In liquid or semi-liquid state – e.g., casting, injection moulding etc. 

• In powder form – e.g., powder metallurgical process. 

 

(b) Joining process 

     Welding, brazing, soldering etc. 

 

(c) Removal process 

Machining (Traditional or Non-traditional), Grinding etc. 

 

(d) Regenerative manufacturing 

     Production of solid products in layer by layer from raw materials in different form: 

    • liquid – e.g., stereo lithography 

    • powder – e.g., selective sintering 

    • sheet – e.g., LOM (laminated object manufacturing) 

    • wire – e.g., FDM. (Fused Deposition Modelling) 

 

Out of the aforesaid groups, Regenerative Manufacturing is the latest one which is 

generally accomplished very rapidly and quite accurately using CAD and CAM for Rapid 

Prototyping and Tooling. 
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1.2 Machining  

 

Most of the engineering components such as gears, bearings, clutches, tools, screws and 

nuts etc. require dimensional and form accuracy and good surface finish for serving their 

purposes. Preforming like casting, forging etc. generally cannot provide the desired 

accuracy and finish. These preformed parts, called blanks, require semi-finishing and 

finishing which is done by machining and grinding.  

Machining is an essential process of finishing by which jobs are produced to the desired 

dimensions and surface finish by gradually removing the excess material from the 

preformed blank in the form of chips with the help of cutting tool moved past the work 

surface. 

Machining to high accuracy and finish essentially enables a product to 

• fulfil its functional requirements 

• improve its performance 

• prolong its service 

1.2.1 Orthogonal Cutting and Oblique Cutting 

In orthogonal cutting, the cutting edge of the tool is perpendicular to the direction of 

cutting velocity. This is necessary condition but not sufficient. The cutting edge is wider 

than the width of the workpiece and extends beyond the workpiece on either side. Also 

the width of the wokpiece is much greater than the depth of cut. The chip generated flows 

on the rake face of the tool with chip velocity perpendicular to the cutting edge. The 

cutting forces act along two directions only. 

On the other hand, when the relative velocity of the work and the tool is not 

perpendicular to the cutting edge, all the work and chip material particles do not move in 

parallel planes, and thus a two dimensional representation of the operation is not possible. 

Such a machining is termed as oblique machining. 

1.2.2 Turning 

This is a very basic operation and produces a cylindrical surface. The machine tool used 

for this type of operation is lathe. The workpiece is in the form of a cylindrical bar rotated 

about the axis of symmetry. The tool is provided with a feed motion parallel to the work 

axis. Here the machining operation is continuos. This operation results in a reduced work 

diameter and a new cylindrical surface. When the tool is fed in a radial direction along 

the face, a flat surface is produced and the length of workpiece gets reduced [2]. 
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The basic principle of turning is typically illustrated in Fig. 1.2. 

  

 

Fig. 1.2 Principle of Turning 
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Chapter 2 

LITERATURE REVIEW AND PROBLEM FORMULATION 

 

2.1 Review of Literature  

Turning is one of the most basic machining operations applied to every other material for 

obtaining the desired shape, size and surface characteristics. The following literature 

reveals that modelling and optimization have always been an area of interest for the 

researchers. It is because of the fact that resources are limited and therefore to obtain a 

balance between cost and surface quality, it is imperative to perform optimization so that 

the machining can result in economy as well as to provide a good candidate in terms of 

surface quality for the successive operations. 

B C Routara et al [3] presented a second order model for Centre Line Average 

Roughness (Ra), Root Mean Square Surface Roughness (Rq) and Mean Line Peak 

Spacing (Rsm) during CNC turning of EN-8 steel using coated carbide tool. The 

methodology adopted was RSM. They used five level rotatable CCD for designing their 

experiment. They also attempted to optimize the response parameters using the GA 

technique and found that the technique gave satisfactory results. They concluded that for 

good surface quality, the feed rate should be kept low and the spindle speed should be 

kept high.  

J. Gerald Anto Arulraj et al [4] proposed that in addition to cutting speed, feed and 

depth of cut there are some performance parameters such as cutting forces, cutting 

temperature etc. which also affects surface roughness. Therefore they attempted to model 

the relationship using the ANN technique. Firstly they developed an ANN model with the 

consideration of cutting parameters only and secondly they incorporated cutting 

temperature along with the cutting parameters for modelling surface roughness during 

hard turning of H-13 Tool Steel. They concluded that fusion model of cutting temperature 

along with the cutting parameters for predicting surface roughness was superior. 
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Sajeev A et al [5] attempted to develop ANN model as well as multiple linear and non 

linear regression models for predicting surface roughness during turning of AISI 4140 

steel. The tool chosen was CVD coated carbide tool. The input parameters chosen by 

them were cutting speed, feed rate and depth of cut. They carried out the experimentation 

while varying one of the parameters and keeping the other two as constant. For the 

development of ANN model, they worked with different number of hidden layers with 

different number of neurons in each one of them before arriving at the optimal model. 

RMSE was chosen as the criterion for selection of the optimal model. They concluded 

their study with the founding of close agreement between the experimental and modelled 

values. 

S. Hari Krishna et al [6] proposed the development of modelling of surface roughness 

using ANN and ANFIS during turning of aluminium alloy, AA 6351 on CNC lathe. The 

input parameters chosen by them were cutting speed, feed rate and depth of cut. They 

chose MSE (training error) for arriving at the optimal network performance. They found 

ANN model suitable for predicting surface roughness as the experimental and modelled 

values were in close agreement. They also attempted to model surface roughness using 

ANFIS tool and found that ANFIS had better prediction results when compared with 

ANN.   

Prakash Rao C.R. et al [7] developed a metal matrix composite in which Al6061 was 

the matrix material and the reinforcement was flyash which was varied between 0% and 

15% in step of 5%. They performed Brinell Hardness test on the test specimens and 

found that hardness increases with increase in the flyash content and density test revealed 

that it decreases with increase in flyash content. They performed machining of the test 

pieces using K10 grade carbide and Poly Crystalline Diamond (PCD) inserts and 

recorded the surface roughness values. The cutting parameters chosen were cutting speed 

and feed with constant depth of cut. The percentage of filler material was also one of the 

input parameters. The variation in surface roughness for both the inserts showed that it 

decreases with increase in cutting speed and increases with increase in feed. The results 

revealed that surface roughness values were low while machining composites having 

10% flyash and measured high when same was performed with 15% flyash. A 

comparison between the two inserts showed that PCD inserts were better as surface 

roughness values were lower while machining with them for all combinations.  
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D. Sai Chaitanya Kishore et al [8] worked upon to identify the effects of cutting 

parameters and percentage reinforcement on cutting force, surface roughness and flank 

wear during turning of In-situ Al6061-TiC metal matrix composite. After the preparation 

of the composite, they performed SEM and EDX tests to identify the presence of TiC. 

Then Vickers micro hardness test was done and the results revealed that hardness was 

increased as the percentage of TiC increased. The second part of their experiment dealt 

with turning which was done on 0, 2 wt % and 4 wt% of TiC reinforcement. L25 Taguchi 

design was selected for designing the experiments. The recorded values of cutting force, 

surface roughness and tool wear were analyzed using the means which showed that 

increase in TiC increases flank wear and surface roughness and decreases cutting force. 

The results showed that cutting speed had inverse effect on cutting force and surface 

roughness and proportionate effect on flank wear. Whereas both feed rate and depth of 

cut had proportionate effect on all the three response parameters. 

Uday A. Dabade et al [9] performed experimentation for identifying the optimum 

process parameters in order to improve the surface integrity on metal matrix composites 

in which Al was the matrix material and varying percentage of SiC taken as 

reinforcement. They identified that it is difficult to machine the composites not only 

because of excessive tool wear but also fracturing of reinforcement. Therefore they 

attempted to analyze surface integrity and to identify the optimum process parameters. 

The input parameters taken were cutting speed, feed rate, depth of cut and cutting tool 

geometry. They identified that in order to study surface integrity they had to consider 

cutting force, feed force, radial force, surface roughness, micro-hardness and residual 

stresses as response variables. Therefore they used multi objective optimization using 

grey relational analysis. Taguchi method was adopted for designing the experiments. The 

results indicated that the variation in size of reinforcement had a more pronounced effect 

on surface roughness as compared to variation in volume fraction. The variation in 

reinforcement size also had a proportionate effect on the depth of altered material zone 

(AMZ) as revealed by the micro-hardness variation.  

A Mahamani [10] performed two phase experimentation. Firstly they prepared in-situ 

metal composites in which AA2219 was selected as the matrix material and TiB2 and 

ZrB2 were taken as the reinforcement. Then they performed Energy Dispersive X ray 

spectroscopy (EDAX) spectra of AA2219- 6 % TiB2/ZrB2 to identify the presence of 

various elements. Microstructure study was also taken into consideration.  
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Secondly machining analysis was done to study the effect of cutting speed, feed rate and 

depth of cut on cutting force and surface roughness and to identify the optimized 

parameters. Taguchi based L27 orthogonal layout was used for designing and conducting 

the experiments. The response graphs revealed that feed rate was the most influential 

factor for both cutting force and surface roughness. Cutting speed had an inverse effect 

on cutting force. Depth of cut had direct effect on cutting force but the percentage 

contribution of depth of cut was the least. 

M. Subramanian et al [11] attempted to optimize the machining parameters for 

minimizing cutting force using the RSM and genetic algorithm technique. A five level 

CCD was used for designing and conducting the experiments. The input parameters were 

cutting speed, cutting feed rate and axial depth of cut. The work piece material chosen 

was Aluminium (Al 7075-T6) and the tool was a shoulder mill with two carbide insert. 

Second order mathematical model was developed to relate the cutting force with input 

parameters. ANOVA was done for model adequacy checking. The developed model 

along with the GA was utilized to obtain the optimized settings. Their results revealed 

that cutting speed was the most influential factor followed by cutting feed rate and the 

axial depth of cut. The results also showed that cutting speed had an inverse effect on 

cutting force whereas the other two had a direct effect. 

I. G. Euan et al [12] attempted to develop a model for static and dynamic cutting force 

and vibrations. The worpiece material chosen was Inconel718 and the tool chosen was 

indexable milling tool with round ceramic inserts. To identify the effects of parameters 

on cutting force an analytical model was developed. Then they performed experiments in 

order to compute cutting force coefficients, which were required for calculating cutting 

force. Then, they validated the cutting force model with experiments. Then they 

performed the implementation of the models in a Matlab GUI. The results from the 

developed models were combined with GUI and simulation of static and dynamic cutting 

force was done. For vibration analysis the time domain model was used to identify the 

stability limits.  

Harsh Y Valera et al [13] performed an experimental study to identify the effects of 

cutting speed, feed rate and depth of cut on power consumption and surface roughness 

during turning of EN-31 alloy steel. The tool chosen was a coated tool whose substrate 

was made up with TiN and a coating of Al2O3 and TiCN was done on it.  
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The results revealed that cutting speed had a inverse effect on surface roughness and a 

direct effect in power consumption. Whereas both feed rate and depth of cut had a direct 

effect on surface roughness and power consumption. Their future scope of work 

suggested that in order to optimise the responses, design of experiments could be done 

and accordingly the experiments could be performed and the analyzation of results could 

be done. 

 

Gaurav Bartarya et al [14] carried out the experiments as per the full factorial design 

for studying the effects of cutting speed, feed and depth of cut on forces and surface 

roughness. They performed finish hard turning on AISI52100 steel using uncoated CBN 

tool. They developed second order mathematical models to identify the relationship 

between the input and the output parameters. They found from the ANOVA that the force 

models and the surface roughness model were adequate. They found that the percentage 

error between the predicted and experimental values was under the limits for forces but 

the same was very high for surface roughness. They attributed this effect to the material 

inhomogenity and variation in hardness. They found that the depth of cut was the most 

influential factor followed by feed for all the forces whereas cutting speed was the least 

significant factor for the axial and radial force and insignificant for the tangential force. 

They found that percentage error in model prediction of surface roughness was high; 

therefore they concluded that the model was insignificant. They concluded their study by 

identifying the ranges of input parameters for efficient machining. According to them, 

cutting speed should vary from low to moderate with depth of cut to be in the moderate 

region while for all the feed values within the selected range.  

Ravinder Tonk et al [15] attempted to develop mathematical model for thrust force and 

feed force and optimize the response parameters during turning of EN31 steel. Cutting 

speed, feed, depth of cut, cutting tool and cutting fluid were taken as the input 

parameters. Taguchi design was adopted for designing the experiments.  They concluded 

for thrust force, feed rate was the most influential factor followed by depth of cut, cutting 

tool, spindle speed and lastly cutting fluid. Whereas for feed force, they found that depth 

of cut was the most influential factor followed by cutting fluid, feed rate, spindle speed 

and lastly cutting tool. 
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Varaprasad.Bh et al [16] attempted to develop second order mathematical model for 

predicting tool flank wear in terms of cutting speed, feed and depth of cut during hard 

turning of AISI D3 steel with a mixed ceramic insert based on alumina with the 

incorporation of TiC. A three level RSM based Central Composite Design (CCD) was 

adopted for designing and conducting the experiments. They performed ANOVA for 

model adequacy checking. They plotted main and interaction plots, surface plots and 

contour plots. They concluded their study by identifying that the depth of cut was the 

most influential factor whereas speed and feed had a little effect on tool wear variation.  

V.Sivaraman et al [17] attempted to study the variation in cutting force while varying 

cutting speed, feed and depth of cut during turning of multiphase (ferrite-bainite-

martensite) microalloyed steel with uncoated P type tungsten carbide insert.  Taguchi 

design was adopted for designing the experiments. They performed ANOVA for 

identifying the significant contribution of machining parameters. They plotted the main 

effects and the contour plots and analyzed them to state that feed and depth of cut had a 

more pronounced effect on cutting force in comparison to cutting speed. They also 

identified the optimal machining parameters from the plots.  

Dr. G. Harinath Gowd et al [18] performed an experimental study to relate tool wear 

and material removal rate with spindle speed, feed rate & DOC during CNC turning of 

AISI S2 tool steel grade using carbide insert. They set all the input parameters at three 

levels and conducted the experiment as per the design matrix. They plotted main effects 

and interaction effects and analyzed the plots to state that all the three parameters had a 

proportionate effect on both MRR and tool wear. They concluded their study with the 

presentation of optimization of parameters with the formulation of multi objective 

optimization problem.  

Doriana M. D’ Addona et al [19] attempted to found the optimal machining parameters 

during machining of a cast steel blank by means of the HSS tool on a NC lathe. They 

adopted genetic algorithm as an optimization technique. Their objective was to minimize 

the production time. They developed the objective function in terms of tool idle time, tool 

set up time, tool change time, tool life, volume of the material removed and the MRR. 

Then they set up the constraints which were both technological and material based and 

performed optimization using the Matlab‟s GA toolbox.  
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They concluded their study by stating the advantages of GA like it could be used for 

multi objective optimization, secondly it provides fast solution. They also predicted the 

future scope of work in the sense that GA could be compared with other optimization 

techniques.  

S.S.K. Deepak [20] proposed a comparative study of different optimization techniques. 

He made a comparison amongst fuzzy logic, genetic algorithm, scatter search technique, 

taguchi technique, geometric programming and artificial neural network. In his 

comparison he defined the advantages, drawbacks and the application areas of each 

technique. He concluded his study by stating that the proposed research could provide a 

helping hand for industries for determining the optimal cutting parameters and 

consequently improving the process quality and simultaneously minimizing the costs. 

C.J.Rao et al [21] attempted to determine the optimal process parameters for predicting 

tool life, cutting force and surface finish. They chose aluminium as the work material and 

tungsten carbide as cutting tool and performed turning on a CNC machine. The input 

parameters taken were cutting speed, feed and depth of cut. They conducted the 

experiments by varying one of the parameters and keeping other two as constants and 

MRR, tool life, power consumption and cutting forces were recorded. Then they plotted 

the graphs of tool life versus MRR, cutting force and surface finish and concluded that 

there was a gradual decrease in tool life as MRR, Cutting speed and cutting force 

increased. 

Mithilesh Kumar Dikshit et al [22] attempted to study the influence of cutting 

parameters during ball-end milling of Al2014-T6 under dry condition. The input 

parameters taken were cutting speed, feed per tooth, axial depth of cut and radial depth of 

cut and the response parameters were tangential, radial and axial forces. A face centred 

rotary CCD was adopted for designing the experiments.  They performed ANOVA and 

found that the quadratic model was adequate for predicting the forces. The results 

revealed that the axial depth of cut was the most influential factor for all the three 

responses whereas radial depth of cut had a more pronounced effect for axial and radial 

cutting forces when compared to feed per tooth.  
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2.2    Conclusion 

 Literature review reveals that good amount of literature is available for the development 

of regression model of cutting forces and surface roughness but the areas of feed force, 

thrust force and tool wear were found to gain less importance from research point of 

view. Secondly for optimization, mostly researchers had used RSM or Taguchi technique. 

On the contrary, GA optimization technique had been hardly used for optimization of the 

aforesaid parameters during turning of EN-31 Steel.  

Lastly comparison of ANN model with the regression model was found to be an area of 

attraction for the researchers but most of the times it is only surface roughness which was 

modelled and the integrated approach of taking all the output parameters simultaneously 

and modelling them had been attempted rarely for EN 31 steel. Therefore the present 

research attempted to address these issues.  

2.3 Statement of the Problem 

“Modelling and Optimization of Cutting Force, feed force, thrust force and Surface 

Roughness during Turning of EN-31 Steel” 

2.4 Plan of Investigation 

 1. Identifying the important input machining parameters and the output responses to be     

studied during the research. 

 2. Setting the working range of the input parameters on the basis of selected cutting 

tool‟s parameters‟ range. 

 3. Designing the experiments and generating the design matrix. 

 4.  Conducting the experiments as per the design matrix and recording the responses. 

 5.  Development of regression models. 

 6. Checking the model adequacy using ANOVA. 

 7.  Drawing conclusions and representing them graphically. 

 8.  Performing optimization using response optimizer feature of Minitab as well as using 

Genetic Algorithm and drawing a comparison between them. 

 9. Develop a model using Artificial Neural Network technique for predicting the 

responses and making a comparison between the results obtained with Artificial Neural 

Network and regression model.   
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Chapter 3 

THEORY AND EXPERIMENTATION 

 

3.1    Machining 

Machining can be defined as an essential process of finishing by which jobs are produced 

to the desired dimension and surface finish by gradual removal of excess material from 

the preformed blank in the form of chips with the help of cutting tools moved past the 

work surface. Machining comes under the category of removal process. 

 

Machining aims to:  1. Fulfil its functional requirements. 

                               2. Improve its performance. 

                               3. Prolong its service. 

 

3.1.1 Requirements in Machining 

The essential basic requirements for machining are schematically represented in the 

following figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig 3.1 Requirements for Machining [1] 
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Both the blank and the cutting tool are properly mounted (in fixtures) and moved in a 

powerful device called machine tool which enables gradual removal of layer of material 

from the work surface which ultimately results in its desired dimensions and surface 

finish. Additionally the environment in the figure refers to cutting fluid which is 

generally used to ease machining by primarily cooling and secondary lubrication. After 

the product is manufactured, it is analysed and if it is not meeting the specifications, then 

accordingly corrections can be done either in blank, machine, fixture, tool or 

environment. 

 

3.2    Machine Tool 

A machine tool can be defined as a non-portable power operated and reasonably valued 

device or system of devices in which energy is expended in order to produce jobs of 

desired size, shape and surface finish by removing excess material from the preformed 

blanks in the form of chips with the help of cutting tools moved past the work surface [1]. 

 

3.2.1 Basic functions of Machine Tools 

 
Machine Tools basically produce geometrical surfaces such as flat, cylindrical or any 

contour on the preformed blanks by machining work with the help of cutting tools. 

The physical functions of a Machine Tool in machining are: 

• To firmly hold the blank and the tool. 

• To transmit motions to the tool and the blank. 

• To provide power to the tool-work pair for machining. 

• To control machining parameters, i.e., speed, feed and depth of cut. 

 

3.3     Parameters in Metal Cutting 

 

The following are the parameters which affect the machining operation on a machine tool 

[15]:  

1. Cutting parameters 

               a. Cutting Speed 

              b. Feed 

              c. Depth of cut 
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    2.  Cutting tool parameters 

                a. Tool geometry 

                b. Grade of the tool 

     3.  Work material Parameters 

                a. Geometry 

                b. Chemical composition  

      4.  Environmental parameters 

                a. Dry machining 

                b. Wet machining 

For this study, the parameters which were varied amongst them include cutting speed, 

feed, and depth of cut. Another set of readings were also performed using a different tool 

grade. Besides that, the tool geometry, workpiece geometry and its chemical composition 

remained same and the machining was performed under dry conditions. 

3.4    Work Material: EN 31 Steel 

 EN-31 Steel is high carbon low alloy steel giving good ductility & shock resisting 

properties along with wear resistance. 

 It is also known as bearing steel as it is used for production of bearings. 

 

Spectro Analysis of the work material was done and the chemical composition is as 

follows: 

Table 3.1 Chemical Composition of EN 31 Steel 

C % Si % Mn % Cr % S % P % 

1.01 0.2453 0.4673 1.1073 0.0247 0.0281 

  

  

The analysis says that the material complies with EN 31 specification. Test method used 

was ASTM E 415-15 and Protocol used was ASTM E-1507-2007. 
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3.5    Cutting Tool Materials 

 

Cutting tool is a device which is used for the removal of unwanted material from a given 

workpiece in the form of chips. Cutting tool is the essential and fundamental requirement 

for carrying out the metal removing process. 

 

3.5.1 Needs and Chronological Development of Cutting Tool Materials 

          

         With the progress of the industrial world it has become imperative to continuously 

develop and improve upon the cutting tool materials and its geometry [24]; 

 In order to meet the growing demands for high productivity, quality and economy 

of machining. 

 For micro and even nano machining. 

 For precision and ultra-precision machining. 

 To enable effective and efficient machining of the exotic materials which are 

coming up with the advancements in science and technology. 

 

The capability and overall performance of the cutting tools depend upon, 

 Material of the cutting tool 

 Geometry of the cutting tool 

 Proper selection and use of those tools 

 The machining conditions and the environments under which machining is done 

 

Out of which the tool material plays the most vital role. Productivity has been raised from 

a MRR of 8 to 70 while turning MS as the tool material progressed from HSS operating 

at a speed of 25 m/min in the year 1910 to high performance ceramics operating at a 

speed of 750 m/min in the year 2000 respectively. In between HSS and high performance 

ceramics, came carbides (brazed), operating at a speed of 60m/min, 80m/min and then 

coated carbide operating at a speed of 250 m/min and correspondingly MRR showed an 

increase from 10 to 35 respectively.  
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The chronological development of cutting tool materials is briefly indicated in Fig. 3.3. 

 

           Need                                         Year                                  Development 

         

                                                                            HSS (W: 18%; Cr: 4%; V: 1%; C: 0.7%) 

       Automobile                                                                           

                                                                                              Stellite                         

          WW - I                                                   HSS (V: 2~4%, Co: 5 – 12% in W & Cr) 

 

          Aircraft                                                                 Sintered carbide for C.I.                                                             

 

          WW – II                                                                       Carbide for steels 

Chem., Petro-chemical,                                                HSS with high V, Mo, Co & C 

NU and polymer industries                                          Plain ceramics, Syn. Diamond                                         

          Jet engines                                                                Ceramics & Cermets 

     Space programmes                                                      

     Reduction of cost                                                   Coated Carbides, PM-HSS, PCD 

      of manufacturing 

    Defence superalloys                                                       CBN, coated HSS, SIALON 

                                                                                     High performance ceramics 

 Just-in-time                                                           Diamond coated carbides   

 

Fig. 3.2 Chronological development of cutting tool materials. 

3.5.2   Characteristics and Applications of the Primary Cutting Tool Materials [24] 

    

(a) High Speed Steel (HSS) 

In around 1905, advent of HSS was a break through at that time in the history of cutting 

tool materials but it was later replaced by many other tool materials such as cemented 

carbides and ceramics which could machine much faster than the HSS tools. 

The basic composition of HSS is 18% W, 4% Cr, 1% V, 0.7% C and rest Fe. Such HSS 

tool could turn mild steel jobs at speed only upto 20 ~ 30 m/min (which was quite 

substantial in those days). 
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The addition of large amount of Co and V, microstructure refinement and the presence of 

coating increased strength and wear resistance and therefore productivity and life of the 

HSS tools were remarkably enhanced. 

 

(b) Stellite 

 
Stellite is a cast alloy of Co (40 to 50%), Cr (27 to 32%), W (14 to 19%) and C (2%). It is 

quite tough and more heat and wear resistive than the basic HSS (18 – 4 – 1) But its poor 

grindability and the arrival of cemented carbides made them obsolete.  

 

(c) Sintered Tungsten carbides 

 

The advent of sintered carbides made another breakthrough in the history of cutting tool 

materials. 

 Straight or single carbide 

The straight carbide tools also known as single carbide tools or inserts were produced by 

powder metallurgy by mixing, compacting and sintering 90 to 95% WC powder with 

cobalt. The hot, hard and wear resistant WC grains are held by the binder Co which 

provides the necessary strength and toughness. These are suitable for machining grey cast 

iron, brass, bronze etc. which produce short discontinuous chips and at cutting velocities 

which is two to three times of HSS tools. 

 

 Composite carbides 

The above mentioned carbide is not suitable for machining steels because of rapid wear, 

particularly crater wear, by diffusion of Co and carbon from the tool to the chip under the 

influence of high stress and temperature. Therefore for machining steels successfully, 

another type called composite carbide was developed by adding 8 to 20% of gamma 

phase to WC and Co mix. The gamma phase is a mix of TiC, TiN, TaC, NiC etc. which 

are more diffusion resistant as compared to WC because of their more stability and less 

wettability by steel. 
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 Mixed carbides 

 

Titanium carbide (TiC) has not only more stability but it is also much harder than WC. 

Therefore for machining ferritic steels which causes intensive diffusion and adhesion 

wear, a large quantity (5 to 25%) of TiC is added with WC and Co to produce another 

grade called Mixed carbide. But such an increase in content of TiC reduces the toughness 

of the tools. Therefore, for finishing with light cut but high speed, the harder grades 

containing upto 25% TiC are used and for heavy roughing work at lower speeds lesser 

amount (5 to 10%) of TiC is suitable. 

 

 Gradation of cemented carbides and their applications 

 
The standards developed by ISO for grouping of carbide tools and their application 

ranges are given in Table 3.3.2. 

 

Table 3.2 Broad classification of carbide tools 

ISO Code Colour Code Application 

P  For machining long chip forming 

common materials like plain carbon and 

low alloy steels 

M  For machining long or short chip 

forming ferrous materials like Stainless 

steel 

K  For machining short chipping, ferrous 

and non-ferrous material and non-

metals like Cast Iron, Brass etc. 

 

P-group is suitably used for machining long chipping ferrous metals i.e. plain carbon and 

low alloy steels. 

M-group is suitable for machining more difficult-to machine materials like strain 

hardening austenitic steel and manganese steel etc. 

K-group is suitable for machining short chip producing ferrous and nonferrous metals 

and also some non metals. 
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(d) Plain ceramics 

The high compressive strength, chemical stability and hot hardness of the ceramics led to 

powder metallurgical production of indexable ceramic tool inserts since 1950. Alumina 

(Al2O3) is preferred to silicon nitride (Si3N4) for higher hardness and chemical stability.  

Si3N4 is tougher but it is difficult to process. Because of their brittle nature, they have 

limited applications. 

 

Basically three types of ceramic tool bits are available in the market; 

 

• Plain alumina with traces of additives – these are white or pink sintered inserts which 

are cold pressed and are used mainly for machining cast iron and similar materials at 

speeds of 200 to 250 m/min 

• Alumina; with or without additives – these are hot pressed, black in colour, hard and 

strong – used for machining steels and cast iron at speeds of 150 to 250 m/min 

• Carbide ceramic (Al2O3 + 30% TiC) cold or hot pressed, black colour, quite strong 

and enough tough – used for machining hard cast irons and plain and alloy steels at 

speeds of 150 to 200 m/min. 

 

The plain ceramics outperformed the then existing tool materials in some application 

areas like high speed machining of softer steels mainly for higher hot hardness. 

 

However, the use of these brittle plain ceramic tools until their strength and toughness 

could be substantially improved since 1970, gradually decreased for being restricted to 

• Uninterrupted machining of soft cast irons and steels only 

• Relatively high cutting velocity but only in a narrow range (200 ~ 300 m/min) 

• Requiring very rigid machine tools 

 

The then ceramics became almost obsolete because of the advent of coated carbide which 

was capable of machining cast iron and steels at high velocity. 
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3.5.3. Selection of the Cutting Tool 

The following sequence of steps was utilized for selecting the insert which was Sandvik 

made [23]. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                             Fig. 3.3 Flowchart for tool selection 

After following these steps, CCMT 09 T3 08 was chosen with grade CT5015 and 

GC1525. 
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3.5.4 Cutting Tool Grades  

 CT5015  

It is uncoated titanium based cemented carbide, more frequently known as a cermet. The 

use of titanium instead of tungsten improves the chemical stability and makes CT5015 

ideal for machining of smearing materials. CT5015 is a hard wear resistant grade with 

good resistance to plastic deformation [23]. A pure cobalt binder adds toughness and 

security to the substrate. A sharp cutting edge will be maintained throughout the tool life 

is ensured by keeping the tool uncoated which ultimately results in good surface finish 

and low cutting forces. It is a finishing grade for high quality surfaces at both high and 

low cutting speeds. 

 GC1525 

 It is a PVD coated cermet used for finishing and semi-finishing. The substrate is of the 

same kind as CT5015 but tougher. The PVD coating of TiCN-TiN of thickness 3 μm 

adds wear resistance and resistance to plastic deformation. This coating is chosen because 

of its superior compatibility with the substrate, minimizing the risk of flaking. GC1525 is 

Sandvik‟s toughest available cermet for high process security and good surface finish 

[23].  

 3.6   Response Surface Methodology 

Response Surface Methodology, or RSM, is a collection of mathematical and statistical 

techniques that are useful for the modelling and analysis of problems in which a response 

of interest is influenced by several variables and the objective is to optimize the response 

[25].  

In most RSM problems, the form of the relationship between the response and 

independent variables is unknown. Thus, the first step in RSM is to find a suitable 

approximation for the true functional relationship between response and the set of 

independent variables. Usually, a low order polynomial in some region of the 

independent variables is employed. If the response is well modelled by the linear function 

of independent variables, then the approximating function is the first order model 

y = βo + β1x1 + β2x2 + ….. + βkxk + ε 

22 



If there is curvature in the system, then a polynomial of higher degree must be used, such 

as the second order model 

y = βo + ∑    
   βixi + ∑    

   βiixi
2
 + ∑∑ βijxixj + ε 

                                                                                  i<j 

  

Almost all RSM problems use one or both of these models. Of course, it is unlikely that a 

polynomial model will be a reasonable approximation of the true functional relationship 

over the entire space of independent variables, but for a relatively small region they 

usually work quite well.  

The method of least squares is used to estimate the parameters in the approximating 

polynomials. The response surface analysis is then performed using the fitted surface. If 

the fitted surface is an adequate approximation of the true response function, then 

analysis of the fitted surface will be approximately equivalent to analysis of the actual 

system. The model parameters can be estimated most effectively if proper experimental 

designs are used to collect the data.  

Designs for fitting response surfaces are called response surface designs.              

3.6.1 Experimental Designs for Fitting Response Surfaces 

Fitting and analyzing response surfaces is greatly facilitated by the proper choice of an 

experimental design. 

When selecting a response surface design, some of the features of a desirable design are 

as follows [25]: 

1. Provides a reasonable distribution of data points (and hence information) throughout 

the region of interest. 

2. Allows model adequacy, including lack of fit to be investigated. 

3. Allows experiments to be performed in blocks. 

4. Allows designs of higher order to be built up sequentially. 

5. Provides an internal estimate of error. 

6. Provides precise estimates of the model coefficients. 

7. Provides a good profile of the prediction variance throughout the experimental    

region. 
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8. Provides reasonable robustness against outliers or missing values. 

9. Does not require a large number of runs. 

10. Does not require too many levels of the independent variables. 

11. Ensures simplicity of calculations of the model parameters. 

 

3.6.2. Designs for Fitting the First Order Model 

 Suppose we wish to fit the first-order model in k variables 

y = βo + ∑    
   βixi + ε 

There is a unique class of designs that minimize the variance of the regression 

coefficients (βi). These are the orthogonal first order designs. The class of first order 

orthogonal designs includes the 2
k
 factorial and fractions of the 2

k
 series in which main 

effects are not aliased with each other. In using these designs, we assume that the low and 

high levels of the k factors are coded to the usual ±1 levels. 

The 2
k 

design does not afford an estimate of the experimental error unless some runs are 

replicated. A common method of including replication in the 2
k 

design is to augment the 

design with several observations at the center. The addition of center points to the 2
k 

design does not influence the (βi) for all i ≥ 1, but the estimate of βo becomes the grand 

average of all observations. Furthermore, the addition of center points does not alter the 

orthogonality property of the design.  

 

3.6.3. Designs for Fitting the Second Order Model 

The central composite design or CCD is the most popular class of designs used for fitting 

the second order models. Generally, the CCD consists of a 2
k
 factorial (or fractional 

factorial) with nF runs, 2k axial or star runs, and nc center runs. 

The practical deployment of a CCD often arises through sequential experimentation, i.e., 

firstly factorial runs are conducted to fit a first order model. If the model exhibits lack of 

fit, then the axial runs are added to allow the quadratic terms to be incorporated into the 

model. The CCD is a very efficient design for fitting the second-order model. There are 

two parameters in the design that must be specified: the distance α of the axial runs from 

the design center and the number of center points nc. The choice of these two parameters 

is based on rotatability and the spherical CCD. 
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Rotatability 

Rotatability is a desirable property because the experimenter does not have any prior 

information about the location of the optimum. Therefore, a design that provides equal 

precision of estimation in all directions would be preferred. Such a design will assure the 

experimenter that no matter what direction is taken to search for the optimum, the 

response value can be estimated with equal precision.  

A CCD is made rotatable by the choice of α. The value of α for rotatability depends on 

the number of points in the factorial portion of the design; in fact, α = (nF)
1/4

 yields a 

rotatable CCD where nf is the number of points used in the factorial portion of the design. 

Spherical CCD 

A central composite design is said to be spherical if all factorial and axial points are at 

same distance from the center of the design. In fact, for a spherical region of interest, the 

best choice of α from the prediction variance viewpoint for the CCD is to set α = √   This 

design, called a spherical CCD, puts all the factorial and axial design points on the 

surface of a sphere of radius  √ .  

 

3.6.4. The Box-Behnken Design 

Box and Behnken (1960) have proposed some three-level designs for fitting response 

surfaces. These designs are formed by combining 2
k
 factorials with incomplete block 

designs. The resulting designs are usually very efficient in terms of the required runs, or 

they are either rotatable or nearly rotatable. 

Box-Behnken designs are used when performing non-sequential experiments. That is, we 

are only planning to perform the experiment once. These designs allow efficient 

estimation of the first and second-order coefficients. Because Box-Behnken designs have 

fewer design points, they are less expensive to run than central composite designs with 

the same number of factors [26].  

The Box-Behnken design is a spherical design with all points lying on a sphere of 

radius √  . Also, the Box-Behnken design does not contain any points on the vertices of 

the cubic region created by the upper and lower limits for each variable. This could be 

advantageous when the points on the corners of the cube represent factor-level 

combinations that are prohibitively expensive or impossible to test because of physical 

process constraints. 
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3.7. Genetic Algorithm 

The genetic algorithm is a method to solve both constrained and unconstrained 

optimization problems. It is based on Darwin‟s theory of natural selection, the process 

that drives biological evolution. At each step, the genetic algorithm randomly selects 

individuals from the current population which will act as parents and uses them for the 

production of the children for the next generation. The genetic algorithm works by 

repeatedly modifying a population of individual solutions. Over successive generations, 

the population "evolves" toward an optimal solution. The optimization problems which 

are not well suited for standard optimization algorithms, including problems in which the 

objective function is discontinuous, nondifferentiable, stochastic, or highly nonlinear can 

be solved by applying the Genetic Algorithm. The genetic algorithm can also address 

mixed integer programming problems, where some components are restricted to be 

integer-valued [27]. 

To create the next generation from the current population, Genetic Algorithm utilizes the 

following three main rules: 

 Selection rules select the individuals, called parents which contribute to the population at 

the next generation. 

 Crossover rules which combine two parents to form children for the next generation. 

 Mutation rules apply random changes to individual parents to form children. 

 

Table 3.2 Difference between Classical Algorithm and Genetic Algorithm 

Classical Algorithm Genetic Algorithm 

It generates a single point at each iteration. 

The sequence of points approaches an 

optimal solution. 

Generates a population of points at each 

iteration. The best point in the population 

approaches an optimal solution. 

Selects the next point in the sequence by a 

deterministic computation. 

Selects the next population by 

computation which uses random number 

generators. 
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3.7.1 Working of Genetic Algorithm 

 

The following outline summarizes the working of genetic algorithm: 

1. The algorithm begins by creation of a random initial population. 

2. Then a sequence of new populations is created by the algorithm. At each step, 

the genetic algorithm randomly selects individuals from the current population which 

will act as parents and uses them for the production of the children for the next 

generation. 

In order to create the new population, the algorithm performs the following steps: 

a. Each member of the current population is given a score by computing its fitness 

value. 

b. In order to convert them into a more usable range of values, scaling of the raw 

fitness scores is done. 

c. On the basis of their fitness, members are selected, known as parents. 

d. Some of the individuals in the current population are passed to the next population 

as such even after having lower fitness. Such individuals are known as elite. 

e. Produces children from the parents. Children are produced either by mutation or 

crossover. 

f. The next generation is formed by replacing the current population with the children. 

3. The algorithm stops when one of the stopping criteria is met 
 

    The genetic algorithm uses the following conditions to determine when to stop: 

 Generations --- the algorithm stops when the number of generations reaches the value 

of Generations. 

 Time limit --- the algorithm stops after running for an amount of time in seconds equal 

to Time limit. 

 Fitness limit --- the algorithm stops when the value of the fitness function for the best 

point in the current population is less than or equal to Fitness limit. 

 Stall generations --- the algorithm stops when the average relative change in the fitness 

function value over Stall generations is less than Function tolerance. 

 Stall time limit --- the algorithm stops if there is no improvement in the objective 

function during an interval of time in seconds equal to stall time limit. 
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 Stall test --- the stall condition is either average change or geometric weighted. 

For geometric weighted, the weighting function is 1/2n, where n is the number of 

generations prior to the current. Both stall conditions apply to the relative change in the 

fitness function over Stall generations. 

 Function Tolerance ---the algorithm runs until the average relative change in the fitness 

function value over Stall generations is less than Function tolerance. 

 Nonlinear constraint tolerance --- the nonlinear constraint tolerance is not used as 

stopping criterion. It is used to determine the feasibility with respect to nonlinear 

constraints. Also, a point is feasible with respect to linear constraints when the constraint 

violation is below the square root of nonlinear constraint tolerance. 

The algorithm stops as soon as any one of these conditions is met. 

3.7.2 Genetic Algorithm Terminology 

Fitness Functions 

The fitness function is the function that we want to optimize. This is known as the 

objective function for standard optimization algorithms. The toolbox software tries to 

find the minimum of the fitness function. 

We write the fitness function as a M file in MATLAB‟s editor window, and pass it as a 

function handle input argument to the main genetic algorithm function. 

Individuals 

An individual is any point to which we can apply the fitness function. The score is the 

value of the fitness function for an individual.  

An individual is sometimes referred to as a genome and the vector entries of an individual 

as genes. 

Populations and Generations 

A population is an array of individuals. For example, if the population size is 100 and the 

number of variables in the fitness function is 3, then we can represent the population by a 

100-by-3 matrix. The same individual can appear more than once in the population. 

A series of computations on the current population is performed by the genetic algorithm 

at each step in order to produce a new population. Each successive population is called a 

new generation. 
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Diversity 

Diversity refers to the average distance between individuals in a population. If the 

average distance is large, then population has high diversity; otherwise it has low 

diversity. In the following figure, the population on the left has high diversity, while the 

population on the right has low diversity. 

 

Fig. 3.4 Diversity in genetic algorithm 

 

Diversity is essential to the genetic algorithm because it enables the algorithm to search a 

larger region of the space. 

Fitness Values and Best Fitness Values 

The value of the fitness function for a individual is its fitness value. Because the toolbox 

software finds the minimum of the fitness function, therefore the best fitness value for a 

population is the smallest fitness value for any individual in the population. 

Parents and Children 

To create the next generation, the genetic algorithm selects certain individuals in the 

current population, called parents, and uses them for the creation of individuals in the 

next generation, called children. Typically, the algorithm is more likely to select parents 

that have better fitness values. 
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3.8. Artificial Neural Network 

Neural networks are composed of simple elements operating in parallel. These elements 

are inspired by biological nervous systems. As in nature, the connections between 

elements largely determine the network function. We can train a neural network to 

perform a particular function by adjusting the values of the connections (weights) 

between elements [28]. 

Typically, neural networks are adjusted, or trained, so that a particular input leads to a 

specific target output. The figure below illustrates such a situation. Here, the network is 

adjusted, based on a comparison of the output and the target, until the network output 

matches the target. Typically, many such input/target pairs are needed to train a network. 

 

 

 

 

       Fig. 3.5 Working of a Neural Network 

 

 

Neural networks have been trained to perform complex functions in various fields, 

including pattern recognition, identification, classification, speech, vision, and control 

systems. 

Neural networks can also be trained to solve problems that are difficult for conventional 

computers or human beings. The toolbox emphasizes the use of neural network 

paradigms that build up to or are themselves used in engineering, financial, and other 

practical applications. 
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3.8.1 Elements of ANN 

Inputs  

The inputs refer to the single attribute of the system that we are designing. 

Weights 

Weight  is used to express the relative strength of the input. Inhibitory connections are 

reflected by negative weight values whereas the positive values represent excitatory 

connections. The bias is also similar to that of a weight except that it has a constant input 

of 1. 

Summation Function 

This function is used in order to find out the weighted average of all the input elements to 

each neuron. 

Transfer/Activation Function 

The transfer or activation function is used for the production of the desired output in 

accordance to the value of the weights and the inputs. It can be seen as a function which 

brings the output of the network within certain limits.  

Types of Activation Functions 

 Linear Activation function 

 

 

 

 

 

 

 

 

 

                         Fig. 3.6 Linear Activation Function 

 

Here the output is the scaled sum of inputs. 
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 Sigmoid Activation function 

 

 

 

 

 

 

 

 

 

 

                       Fig. 3.7 Sigmoid Activation Function 

 

A log-sigmoid function or simply sigmoid is given by the relationship: 

 ( )  
 

      
 

 

where β is a slope parameter. The sigmoid has the property of being similar to the step 

function, but the addition of region of uncertainty.  

 

Output 

One output signal is allowed for each processing element. Generally, the output is 

equivalent to the result of transfer function but some network topologies modify the 

transfer result for the incorporation of competition amongst neighbouring processing 

elements. 

 

3.8.2. Neural Network Design Steps 

The four major application areas of neural network are function fitting, pattern 

recognition, clustering and time series analysis. 

The work flow for any of these problems has seven primary steps 

1. Collect data 

2. Create the network 

3. Configure the network 
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4. Initialize the weights and biases 

5. Train the network 

6. Validate the network 

7. Use the network 

 

3.8.3. Artificial Neural Network algorithm 

 Back propagation neural network  

The back propagation algorithm is used in layered feed-forward ANNs. The word 

forward here refers to that the artificial neurons are organized in layers, and send their 

signals forward, and the back propagation refers to that the errors are propagated 

backwards. 

The network receives inputs via neurons in the input layer whereas the output of the 

network is given by the neurons on an output layer. In between the input and output layer, 

there may be one or more hidden neurons. This algorithm utilizes supervised learning, 

which means that we provide the algorithm with the inputs and the targets and the 

algorithm tries to reduce the error between the outputs and targets till ANN learns the 

training data. The training begins with allocation of random weights, and the goal is to 

adjust them so that the error will be the minimal difference between the outputs and the 

targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Working of a NN back propagation algorithm 
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3.9. Experimentation 

The main aim of this project was to find out the effect of machining parameters on 

cutting force, feed force, thrust force, surface roughness and tool wear and to develop 

mathematical models in order to describe the relationship between the input and response 

parameters.  

After that optimization is attempted using the response optimizer technique of Minitab 

and also with Genetic Algorithm optimization technique. 

After that ANN modelling was done and the results were compared with the RSM model 

results.  

To achieve the aforesaid objectives, following is the sequence of steps which were 

carried out: 

1. Identifying the important input machining parameters and the output responses to be     

studied during the research. 

 2. Setting the working range of the input parameters on the basis of selected cutting 

tool‟s parameters‟ range. 

 3. Designing the experiments and generating the design matrix. 

 4. Conducting the experiments as per the design matrix and recording the responses. 

 5.  Development of regression models. 

 6. Checking the model adequacy using ANOVA. 

 7.  Drawing conclusions and representing them graphically. 

 8. Performing optimization using response optimizer feature of Minitab as well as    

using GA   and drawing a comparison between them. 

 9. Develop a model using ANN technique for predicting the responses and making a 

comparison between the results obtained with ANN and regression model.   

 

3.9.1. Identification of the important machining parameters and the responses 

Based on the literature survey, it has been identified that cutting speed, feed and depth of 

cut are the most influential factors during machining and have a significant effect on 

cutting force, feed force, thrust force, surface roughness and tool wear.  

Although tool geometry also has a significant effect on the above mentioned response 

parameters but since here we are taking tool wear as a response parameter therefore it 

was not possible to take tool geometry as an input parameter. 
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3.9.2 Deciding the working range of the input parameters 

The working range of input parameters is based upon the tool-work combination, rigidity 

of the machine, machining conditions etc. 

The selected insert was Sandvik’s CCMT 09 T3 08- PM and the recommended values 

of feed and depth of cut were identified from the catalogue as follows: 

 

Table 3.3 Recommendations for Sandvik‟s CCMT 09 T3 08 

Recommended feed (mm/rev) Recommended DOC(mm) 

Minimum Maximum Minimum Maximum 

0.1 0.3 0.5 3 

 

The cutting speed is identified by using the tool (grade)-work combination. For that, first 

of all Brinell hardness test of the work material was conducted and the hardness came out 

to be 241.189 HB. Using this hardness value and the tool grade, the range of the cutting 

speed was fixed. 

Using the recommendations, trial runs were conducted and finally the ranges of the input 

parameters were set as follows: 

 

Table 3.4 Machining parameters with their limits 

Sl. No. Parameters Units Notation -1 0 +1 

1. Spindle speed rpm N 480 700* 910 

2. Feed mm/rev f 0.10 0.19 0.28 

3. Depth of cut mm d 0.5 0.8 1.1 

 

*Although the 0 level for spindle speed came out to be 695 rpm but due to the non 

availability of this speed, the nearest speed of 700 rpm was taken (% error of 0.714).  

 

Since V = 
   

    
 

Where V is cutting speed in m/min 

             D is diameter of workpiece in mm (=32 mm) 

    and   N is spindle speed in rpm 

Therefore we have taken spindle speed instead of cutting speed since cutting speed is 

directly proportional to spindle speed as the diameter of workpiece remains constant. 
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3.9.3 Developing the design matrix 

The design matrix is based upon RSM second order design. Since from the literature 

review, we know that the second order model is found to be adequate for fitting a model 

for forces and surface roughness, therefore it is better to opt Box-Behnken design instead 

of opting CCD. 

Since CCD is mainly used when we need to follow sequential experimentation, i.e. firstly 

carry out 2 level factorial runs, fit the first order model, if not found adequate, add the 

axial runs to the previous design and again fit a second order model. 

But since we know that second order model is adequate, therefore we had used Box-

Behnken design. Box-Behnken designs are used when performing non-sequential 

experiments. That is, we are only planning to perform the experiment once. These 

designs allow efficient estimation of the first- and second-order coefficients. Because 

Box-Behnken designs have fewer design points, they are less expensive to run than 

central composite designs with the same number of factors. 

 

Table 3.5 Design Matrix 

Std. order Run order N f d 

1 1 -1 -1 0 

6 2 +1 0 -1 

5 3 -1 0 -1 

13 4 0 0 0 

8 5 +1 0 +1 

15 6 0 0 0 

12 7 0 +1 +1 

7 8 -1 0 +1 

14 9 0 0 0 

11 10 0 -1 +1 

9 11 0 -1 -1 

4 12 +1 +1 0 

3 13 -1 +1 0 

10 14 0 +1 -1 

2 15 +1 -1 0 
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3.9.4. Conducting the experiments as per the design matrix 

The experiments were conducted at the project shop of Delhi Technological University 

with the following experimental set-up: 

 

 

Fig. 3.9 The lathe machine along with the dynamometer used for experimentation 

 

The base metal used: EN 31 Steel 

For conducting the experimentation, test specimens were prepared for which firstly 

centering was done. Then a thin layer of material was removed in order to get a clean 

surface. Diameter of the rod was 32 mm and machining was done for a length of 100 mm. 

As the experiments were conducted firstly with uncoated carbide insert and then with 

coated one, therefore in total 30 test pieces were required. 
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Fig. 3.10 shows the test samples 

 

 

Fig. 3.10 Test samples 

Tool: The insert used was titanium based cemented carbide whose geometry is CCMT 09 

T3 08, made was Sandvik‟s and the grade was CT5015 (uncoated) and GC1525 (coated). 

Tool holder: SCLCR 12 12 D09 WIDAX 

 

 

Fig. 3.11 Tool holder along with the coated insert 
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3.9.5. Recording the responses 

The experiments were conducted as per the design matrix. Turning was done and the 

forces in three dimensions were measured during turning using the lathe tool 

dynamometer. After turning was done, both the workpiece and tool were taken out in 

order to measure surface roughness and tool wear respectively. Surface Roughness was 

measured with Taylor/Hobson Precision Surtronic 3+ Portable Surface Roughness Tester. 

Tool wear was measured with the Tool maker‟s microscope. 

 

The table below shows the responses when turning was done with the uncoated carbide 

grade: 

 

Table 3.6 Recording of Responses (With CT5015) 

Std. 

Order 

Run 

Order 

N f d CF(N) FF(N) TF(N) Ra(µm) Tool 

Wear(mm) 

1 1 480 0.10 0.8 284.49  137.34  9.81  2.64  -----  

6 2 910 0.19 0.5 255.06  98.10  29.43  2.32  -----  

5 3 480 0.19 0.5 255.06  88.29  19.62  3.72  ----- 

13 4 700 0.19 0.8 382.59  176.58  19.62  2.60  -----  

8 5 910 0.19 1.1 461.07  206.01  39.24  2.68  -----  

15 6 700 0.19 0.8 441.45  206.01  0.00  2.48  0.0254  

12 7 700 0.28 1.1 745.56  304.11  0.00  3.06  0.0254  

7 8 480 0.19 1.1 559.17  255.06  0.00  3.23  0.0254  

14 9 700 0.19 0.8 372.78  137.34  0.00  2.14  0.0508  

11 10 700 0.10 1.1 333.54  176.58  0.00  1.38  0.0508  

9 11 700 0.10 0.5 166.77  78.48  29.43  1.36  Tool 

4 12 910 0.28 0.8     Chipped  

3 13 480 0.28 0.8     away  

10 14 700 0.28 0.5      

2 15 910 0.10 0.8      
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At the end of 11
th

 reading, the uncoated tool after showing a maximum tool wear of 

0.0508 mm chipped away completely; therefore the responses were recorded using the 

coated tool grade. 

 

Table 3.6 Recording of Responses (With GC1525) 

 

Std. 

Order 

Run 

Order 

N f d CF(N) FF(N) TF(N) Ra(µm) Tool 

Wear(mm) 

1 1 480 0.10 0.8 225.63  107.91  0.00  2.85    -----  

6 2 910 0.19 0.5 274.68  117.72  0.00  1.90   -----  

5 3 480 0.19 0.5 274.68  98.10  0.00  3.79  -----  

13 4 700 0.19 0.8 333.54  147.15  29.43  2.12  -----  

8 5 910 0.19 1.1 519.93  196.20  0.00  1.90  -----  

15 6 700 0.19 0.8 382.59  156.96  19.62  2.0  -----  

12 7 700 0.28 1.1 510.12  166.77  49.05  3.92  -----  

7 8 480 0.19 1.1 598.41  215.82  9.81  2.69  -----  

14 9 700 0.19 0.8 353.16  166.77  88.29  1.84  -----  

11 10 700 0.10 1.1 362.97  186.39  88.29  1.49  -----  

9 11 700 0.10 0.5 215.82  107.91  58.06  3.35  -----  

4 12 910 0.28 0.8 519.93  206.01  0.00  1.38  -----  

3 13 480 0.28 0.8 598.41  196.20  19.62  4.47  -----  

10 14 700 0.28 0.5 343.35  107.91  68.67  3.02  -----  

2 15 910 0.10 0.8 264.87  166.77  68.67  1.27  -----  

 

Where N = Spindle Speed 

             f = Feed 

             d = Depth of cut 

            CF = Cutting Force 

            FF = Feed Force 

            TF = Thrust Force 

             Ra = Surface Roughness 

 

 

 

40 



Chapter 4 

DEVELOPMENT OF MATHEMATICAL MODELS 

 

Mathematical models can be seen as the basis for establishing the interrelationship 

between the input parameters (spindle speed, feed and depth of cut) and the response 

parameters (cutting force, feed force, thrust force, surface roughness and tool wear). 

These mathematical models can be fed into the computer along with the input parameters 

to predict the aforesaid response parameters. The experimental data was utilized for 

developing the second order model and analysis of the developed models was performed 

using ANOVA and response graphs. All the calculations were carried out using Minitab 

17. 

 

4.1. Development of Mathematical Models 

The response function representing any of the response can be expressed as: 

Y = f (N, f, d) 

Where, 

Y = Cutting Force/Feed Force/Thrust Force/Surface Roughness/Tool Wear 

N = Spindle Speed 

f = Feed 

d = Depth of Cut 

 

A second order relationship is selected for representing the relation between the input 

parameters and the responses which is as follows: 

 

Y = bo + b1N + b2f + b3d + b11N
2
 + b22f

2
 + b33d

2 
+ b12Nf + b13Nd + b23fd 

Where bo is a constant and b1, b2, b3, b11, b22, b33, b12, b13, b23 are co-efficient of the 

model. 

4.1.1 Evaluation of the Coefficient of the Model 

 

 Sign of each coefficient indicates the direction of the relationship.    

 Coefficients represent the mean change in the response for one unit of change in 

the predictor while holding other predictors in the model constant.  
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The values of these coefficients were determined using the regression analysis. The 

calculations were carried out using Minitab 17 and the values are listed in table 4.1. 

 

Table 4.1 Estimated values of the coefficient of the model 

Sl. No. Coefficient Cutting Force Feed Force Thrust 

Force 

Surface 

Roughness 

1 bo 87 -170 -561 14.45 

2 b1 - 1.08 -0.124 1.582 - 0.00532 

3 b2 2513 810 108 - 22.2 

4 b3 408 521 114 - 17.90 

5 b11 0.001125 0.000296 - 0.000944 0.000001 

6 b22 - 807 -151 2473 54.4 

7 b33 91 -150 5 5.75 

8 b12 -1.57 - 0.656 - 1.137 - 0.01945 

9 b13 -0.316 - 0.155 -0.038 0.00427 

10 b23 182 - 182 - 454 25.56 

 

The responses were expressed as a non-linear function (second order model) of the input 

machining parameters as follows:  

 

Cutting Force (N) = 87 - 1.08 (N) + 2513 (f) + 408 (d) + 0.001125 (N
2
) - 807 (f

2
) 

+ 91 (d
2
) - 1.57 (Nf) - 0.316 (Nd) + 182 (fd) 

 

Feed Force (N) = -170 - 0.124 (N) + 810 (f) + 521 (d) + 0.000296 (N
2
) - 151 (f

2
)  

      -150 (d
2
) – 0.656 (Nf) – 0.155 (Nd) - 182 (fd) 

 

Thrust Force (N) = -561 + 1.582 (N) + 108 (f) + 114 (d) - 0.000944 (N
2
) + 2473 (f

2
)  

         + 5 (d
2
) – 1.137 (Nf) – 0.038 (Nd) - 454 (fd) 

 

Surface Roughness (µm) = 14.45 - 0.00532 (N) – 22.2(f) – 17.90 (d) + 0.000001 (N
2
) + 

54.4 (f
2
) + 5.75 (d

2
) – 0.01945 (Nf) + 0.00427 (Nd) 

+ 25.56 (fd) 
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4.2. Model Adequacy Checking 

For checking whether the developed models are adequate or not, the Analysis of Variance 

(ANOVA) technique is utilized. Analysis of variance (ANOVA) is similar to regression 

in that it is used to investigate and model the relationship between a response variable and 

one or more predictor variables. However, analysis of variance differs from regression in 

two ways: the predictor variables tend to be categorical. In effect, analysis of variance 

extends the two-sample t-test for testing the equality of two population means to a more 

general null hypothesis of comparing the equality of more than two means, versus them 

not all being equal. According to this technique: 

1. The F-ratio of the lack of fit of the developed model is calculated and is compared 

against the corresponding standard tabulated value for a specific confidence level. 

2.  If the calculated value of F-ratio exceeds the standard tabulated value, then with the 

corresponding confidence, we can say that the model is adequate. In this analysis, we 

have taken confidence interval to be 95%. 

4.2.1 Response: Cutting Force 

Table 4.2 ANOVA for Cutting Force 

Source DF Adj SS Adj MS F value p value 

Model 9 217064 24118 4.87 0.048 

N 1 1732 1732 0.35 0.580 

f 1 102430 102430 20.68 0.006 

d 1 97831 97831 19.75 0.007 

N
2 

1 9973 9973 2.01 0.215 

f
2 

1 158 158 0.03 0.865 

d
2
 1 247 247 0.05 0.832 

Nf 1 3709 3709 0.75 0.426 

Nd 1 1658 1658 0.33 0.588 

fd 1 96 96 0.02 0.895 

Error 5 24771 4954   

Lack of fit 3 23552 7851 12.88 0.073(not 

Significant) 

Pure Error 2 1219 609   

Total 14 241835    
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The model F value of 4.87 is an implication of the significance of the model, since the 

corresponding standard tabulated value is 4.77(F0.05, 9, 5) and 4.87>4.77 which implies that 

the model is adequate. The adequacy can also be checked using p value. The cut off level 

chosen is 0.05 and since the model p value is 0.048(<0.05), therefore the model is 

adequate. 

The “Lack of Fit F value” is 12.88 and the corresponding standard tabulated value is 

19.16 (F0.05, 3, 2) and since 12.88<19.16, therefore the lack of fit is insignificant. Non 

significant lack of fit is required as we want the model to adequately fit the data. We can 

also see that the Lack of Fit p value is 0.073(>0.05) which means that the lack of fit is 

insignificant. 

The R-squared value for the model came out to be 89.76% and the R-squared (adj) was 

71.32%. Since the R-squared value came out to be 89.76%, this implies that besides 

spindle speed, feed and depth of cut, there are other factors also which affects the cutting 

force such as tool geometry, machining conditions (wet/dry) etc. 

 

4.2.2 Response: Feed Force 

Table 4.3 ANOVA for Feed Force 

Source DF Adj SS Adj MS F value p value 

Model 9 18550.9 2061.2 2.67 0.146 

N 1 589.4     589.4      0.76 0.423 

f 1 1487.2    1487.2 1.92 0.224 

d 1 13979.8 13979.8 18.08 0.008 

N
2 

1 691.7 691.7 0.89 0.388 

f
2 

1 5.6       5.6 0.01 0.936 

d
2
 1 671.8 671.8 0.87 0.394 

Nf 1 644.0 644.0 0.83 0.403 

Nd 1 398.4 398.4 0.52 0.505 

fd 1 96.2 96.2 0.12 0.739 

Error 5 3865.7 773.1   

Lack of fit 3 3673.2 1224.4 12.72 0.074(not 

Significant) 

Pure Error 2 192.5 96.2   

Total 14 22416.6    
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The “Lack of Fit F value” is 12.72 and the corresponding standard tabulated value is 

19.16 (F0.05, 3, 2) and since 12.72<19.16, therefore the lack of fit is insignificant. Non 

significant lack of fit is required as we want the model to adequately fit the data. We can 

also see that the Lack of Fit p value is 0.074(>0.05) which means that the lack of fit is 

insignificant. 

The R-squared value for the model came out to be 82.76% and the R-squared (adj) was 

51.71%. Since the R-squared value came out to be 82.76%, this implies that besides 

spindle speed, feed and depth of cut, there are other factors also which affects the cutting 

force such as tool geometry, machining conditions (wet/dry) etc. 

 

4.2.3 Response: Thrust Force 

 

Table 4.4 ANOVA for Thrust Force 

Source DF Adj SS Adj MS F value p value 

Model 9 12686.2 1409.57 2.17 0.204 

N 1 192.5 192.5 0.30 0.610 

f 1 730.0 730.0 1.12 0.338 

d 1 49.2 49.2 0.08 0.794 

N
2 

1 7024.3 7024.3 10.80 0.022 

f
2 

1 1481.2 1481.2 2.28 0.192 

d
2
 1 0.6 0.6 0.00 0.977 

Nf 1 1938.2 1938.2 2.98 0.145 

Nd 1 24.1 24.1 0.04 0.855 

fd 1 601.5 601.5 0.93 0.380 

Error 5 3250.5 650.11   

Lack of fit 3 491.8 163.92 0.12 0.941(not 

Significant) 

Pure Error 2 2758.8 1397.38   

Total 14 15936.7    
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The “Lack of Fit F value” is 0.12 and the corresponding standard tabulated value is 19.16 

(F0.05, 3, 2) and since 0.12<19.16, therefore the lack of fit is insignificant. Non significant 

lack of fit is required as we want the model to adequately fit the data. We can also see 

that the Lack of Fit p value is 0.941(>0.05) which means that the lack of fit is 

insignificant. 

The R-squared value for the model came out to be 79.60% and the R-squared (adj) was 

42.89%. Since the R-squared value came out to be 79.60%, this implies that besides 

spindle speed, feed and depth of cut, there are other factors also which affects the cutting 

force such as tool geometry, machining conditions (wet/dry) etc. 

 

4.2.4 Response: Surface Roughness 

 

Table 4.5 ANOVA for Surface Roughness 

Source DF Adj SS Adj MS F value p value 

Model 9 13.4777 1.49752 13.45 0.005 

N 1 6.7528 6.7528 60.66 0.001 

f 1 1.8668 1.8668 16.77 0.009 

d 1 0.5436 0.5436 4.88 0.078 

N
2 

1 0.0072 0.0072 0.06 0.810 

f
2 

1 0.7162 0.7162 6.43 0.052 

d
2
 1 0.9904 0.9904 8.90 0.031 

Nf 1 0.5666 0.5666 5.09 0.074 

Nd 1 0.3033 0.3033 2.72 0.160 

fd 1 1.9044 1.9044 17.11 0.009 

Error 5 0.5566 0.11132   

Lack of fit 3 0.5172 0.17239 8.74 0.104(not 

Significant) 

Pure Error 2 0.0395 0.01973   

Total 14 14.0343    
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The model F value of 13.45 is an implication of the significance of the model, since the 

corresponding standard tabulated value is 4.77(F0.05, 9, 5) and 13.45>4.77 which implies 

that the model is adequate. The adequacy can also be checked using p value. The cut off 

level chosen is 0.05 and since the model p value is 0.005(<0.05), therefore the model is 

adequate. 

The “Lack of Fit F value” is 8.74 and the corresponding standard tabulated value is 19.16 

(F0.05, 3, 2) and since 8.74<19.16, therefore the lack of fit is insignificant. Non significant 

lack of fit is required as we want the model to adequately fit the data. We can also see 

that the Lack of Fit p value is 0.104(>0.05) which means that the lack of fit is 

insignificant. 

The R-squared value for the model came out to be 96.03% and the R-squared (adj) was 

88.89%. Since the R-squared value came out to be 96.03%, this implies that besides 

spindle speed, feed and depth of cut, there are other factors also which affects the cutting 

force such as tool geometry, machining conditions (wet/dry) etc. 

 

4.3 Testing the models 

The developed models were tested for their predictive ability. Five test cases were 

selected at random from the design matrix and the values of the responses as obtained 

from the experiment were compared with the corresponding values obtained from the 

mathematical models. 

Table 4.6 Testing of mathematical models 

Run 

No. 

N 

(rpm) 

f 

(mm/rev) 

d 

(mm) 

 CF 

(N) 

FF 

(N) 

TF 

(N) 

Ra 

(µm) 

3 480 0.19 0.5 Actual 274.68 98.10 0.00 3.79 

Predicted 300.685 96.589 -7.385 4.0247 

% error -9.46 1.54 ----- -6.19 

5 910 0.19 1.1 Actual 519.93 196.20 0.00 1.90 

Predicted 492.453 197.37 7.3866 1.6658 

% error 5.28 -0.5963 ----- 12.32 

7 700 0.28 1.1 Actual 510.12 166.77 49.05 3.92 

Predicted 585.577 192.258 46.3131 3.85508 

% error -14.79 -15.28 5.57 1.656 
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12 910 0.28 0.8 Actual 519.93 206.01 0.00 1.38 

Predicted 470.216 178.756 -3.6508 1.68055 

  % error 9.56 13.22 ---- -21.77 

15 910 0.10 0.8 Actual 264.87 166.77 68.67 1.27 

Predicted 304.774 176.857 59.3726 1.46695 

% error -15.06 -6.04 13.53 -15.50 
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Chapter 5 

RESULTS AND DISCUSSION 

The mathematical models developed previously can be used for the prediction of cutting 

force, feed force, thrust force and surface roughness for the range of input parameters 

used in the experimentation. On the basis of these developed models, main and the 

interaction effects, response graphs and the contour plots were plotted as shown in Figs. 

5.1. Main Effect of Input Parameters on the Responses 

Used in conjunction with an analysis of variance and design of experiments to examine 

differences among level means for one or more factors. A main effect is present when 

different levels of a factor affect the response differently. A main effects plot the response 

mean for each factor level connected by a line.  

5.1.1 Direct Effect of Spindle Speed, Feed and Depth of Cut on Cutting Force 

  

 

Fig. 5.1 Main Effects Plot for Cutting Force 

From Fig. 5.1. it can be seen that as the spindle speed increases from 480 to 700 rpm, 

there is a decrease in the cutting force from 424 to 357 N which can be attributed to the 

fact that as the speed increases, temperature increases and the material gets soften and 

hence the cutting force requirement decreases. 
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But as the speed increased from 700 to 910 rpm, there is an increase in the cutting force 

requirement from 357 to 394 N which may be due to wear of the tool because as the 

machining continues, sharp cutting edge of the tool is lost which results in an increase in 

the cutting force requirement. 

As the feed increases from 0.1 to 0.28 mm/rev, cutting force increases significantly from 

250 to 492 N. This is due to the fact that as the feed rate increases, the friction between 

the tool and the work increases which ultimately results in an increase in the cutting 

force. 

As the depth of cut increases from 0.5 to 1.1 mm, the cutting force increases linearly from 

277 to 497 N. This increase is justified by the fact that as the depth of cut increases, it 

results in an increase in the contact area between the tool and the work which results in an 

increase in the cutting force. 

5.1.2 Direct Effect of Spindle Speed, Feed and Depth of Cut on Feed Force 

Fig. 5.2 Main Effects Plot for Feed Force 

From Fig. 5.2. it can be seen that as the spindle speed increases from 480 to 700 rpm, 

there is a very slight decrease in feed force from 154 to 148 N and as the speed increases 

from 700 to 910 rpm, the feed force increases from 148 to 171 N which may be attributed 

to the fact that as feed velocity, Vf = fN and since f is constant so as N increases, Vf 

increases and hence the friction between the tool and the work increases and hence feed 

force increases. 
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As the feed increases from 0.1 to 0.28 mm/rev, there is an increase in the feed force from 

142 to 169 N which may be attributed to the reason stated above. 

As the depth of cut increases from 0.5 to 1.1 mm, there is a continuos and very significant 

increase in the feed force from 100 to 191 N, which may be attributed to the fact that as 

depth of cut increases, the contact area between the tool and work increases, which 

results in an increase in the feed force. 

 

5.1.3 Direct Effect of Spindle Speed, Feed and Depth of Cut on Thrust Force 

 

Fig. 5.3 Main Effects Plot for Thrust Force 

From Fig. 5.3., it can be seen that as the spindle speed increases from 480 to 700 rpm, 

there is an increase in the thrust force from 0 to 45 N and as spindle speed increases from 

700 to 910 rpm, the thrust force shows a decrease from 45 to 5 N, because when the 

spindle speed is less, the holding force requirements are more and vice versa. Here it can 

be seen that the maximum thrust force requirements are at around 700 rpm. 

As the feed increases from 0.1 to 0.19 mm/rev, it can be seen that the thrust force 

requirements decreases 74 to 43 N and as it increases from 0.19 to 0.28, there is an 

increase in the thrust force from 43 to 55 N. 

The depth of cut has almost a negligible effect on the thrust force. 
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5.1.4 Direct Effect of Spindle Speed, Feed and Depth of Cut on Surface Roughness 

 

Fig. 5.4 Main Effects Plot for Surface Roughness 

From Fig. 5.4., it can be seen that as the spindle speed increases from 480 to 910 rpm, 

there is a continuos decrease in the values of surface roughness from 3 to 1.1 µm which 

may be attributed to the fact that as spindle speed increases, built-up-edge formation 

decreases. Although as speed increases, temperature increases which is a favourable 

condition for built-up-edge formation but due to such a high speed, it does not get the 

time to form the bond and hence no built-up-edge formation and therefore we get good 

surface finish. 

As the feed increases from 0.1 to 0.28 mm/rev, surface roughness increases from 2 to 2.9 

µm because mathematically also Ra α f
2
 as the tool nose radius is kept constant. Higher 

feed means higher BUE and hence poor surface finish. 

As the depth of cut increases from 0.5 to 0.8 mm, there is a decrease in the value of 

surface roughness from 2.8 to 2 µm but as it increases from 0.8 to 1.1 mm, surface 

roughness shows an increase from 2 to 2.25 µm. This may be due to the fact that as depth 

of cut is increased from 0.8 to 1.1 mm, it results in higher BUE formation and hence poor 

surface finish. 
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5.2. Interaction Effect of Input Parameters on the Responses 

In a case when the effect of one factor depends on the level of the other factor, we can 

use an interaction plot to visualize possible interactions.  

5.2.1. Interaction Plot for Cutting Force 

 

Fig. 5.5 Interaction Plot for Cutting Force 

In interaction plots, we have to look for the lines which are not parallel. If the lines are 

parallel, then it is an indication of no interaction.  

In Fig. 5.5, we can see that for any value of the spindle speed, as the depth of cut 

increases, cutting force increases. But the lines for all levels of depth of cut are parallel 

which implies that depth of cut has no interaction effect with spindle speed. Also, for any 

value of the spindle speed, as the feed increases, cutting force increases. But here also, 

lines for all levels of feed are parallel which implies that feed has no interaction effect 

with spindle speed. 
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The figure also says that spindle speed levels have an interactive effect on the feed as we 

can see that the lines are intersecting. Here we can see that for any feed value, the change 

in the level of spindle speed does not have much influence on the cutting force 

requirements. The depth of cut levels does not show any interactive effect with the feed. 

We can see that for any value of the feed, as the depth of cut increases, cutting force 

requirement increases. 

The figure also reveals that spindle speed levels have an interactive effect on the depth of 

cut as the lines are intersecting. Here we can see that for any depth of cut value, the 

change in the level of spindle speed does not have much influence on the cutting force 

requirements. The feed level does not have any interactive effect on the depth of cut as 

the lines are parallel. Here, at any level of depth of cut, the cutting force requirement 

increases as the feed increases. 

5.2.2. Interaction Plot for Feed Force 

 

 Fig. 5.6 Interaction Plot for Feed Force 

 

54 



From Fig. 5.6., it can be seen that the levels of depth of cut does not have any interaction 

with the effect of spindle speed as the lines are parallel. We can see that for any level of 

spindle speed, the feed force requirement increases as the depth of cut increases. We can 

see that the feed levels have an interactive effect on the spindle speed as the spindle speed 

approaches to higher value. At lower spindle speeds, the feed levels has no interaction 

with the effect of spindle speed but the lines approaches to intersection as spindle speed is 

increased. 

The spindle speed levels have a significant interaction effect with the effects of feed on 

feed force as the lines are intersecting with each other. The level of depth of cut does not 

have any interactive effect on the feed effect on feed force as the lines are parallel. Here 

we can see that, for any level of feed, as the depth of cut increases, cutting force 

requirements increases.  

The figure also reveals that the levels of spindle speed have a significant interaction on 

the effect of depth of cut on feed force as the lines are intersecting. But the feed levels do 

not show any interaction effect on the effect of depth of cut on feed force as the lines are 

parallel. 

5.2.3. Interaction Plot for Thrust Force 

 

Fig. 5.7 Interaction Plot for Thrust Force 
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From Fig. 5.7., we can see that the depth of cut has significant interaction with the effect 

of spindle speed on thrust force as the lines are intersecting with each other. We can see 

that as the spindle speed goes from 700 to 910 rpm, the level of depth of cut has no 

meaning as almost all the lines are coinciding with each other. The feed levels also have 

an interaction effect on the spindle speed effect on thrust force as the lines are 

intersecting with each other.  We can see that as the spindle speed increases, firstly the 

thrust force increases and then decreases for any feed levels but the effect is more 

pronounced for the -1 level of feed. 

The spindle speed levels have a significant interaction effect with the effects of feed on 

thrust force as the lines are intersecting with each other. The levels of depth of cut also 

have interactive effect with the feed effect on thrust force as the lines are not parallel. 

The figure also reveals that the levels of spindle speed do not have interaction on the 

effect of depth of cut on thrust force as the lines are parallel. But the feed levels show 

slight interaction effect on the effect of depth of cut on thrust force as the lines are 

intersecting. We can see that as the depth of cut does not have a much effect on thrust 

force but at the -1 level of feed, the depth of cut has a significant effect on thrust force. 

5.2.4. Interaction Plot for Surface Roughness 

Fig. 5.8 Interaction Plot for Surface Roughness 
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From Fig. 5.8., we can see that the depth of cut has interaction with the effect of spindle 

speed on surface roughness as the lines are intersecting with each other but the 

convergence of lines is at extreme points i.e., when the spindle level is 480 rpm, then the 

depth of cut at +1 and 0 level are showing an interaction and when it is set at 910 rpm, 

then the depth of cut at +1 and -1 level are showing an interaction. The feed levels also 

have an interaction effect on the spindle speed effect on surface roughness as the lines are 

intersecting with each other but here only the feed levels of -1 and zero is showing an 

interaction when the spindle speed is set at 700 rpm.  

The spindle speed levels do not have any interaction effect with the effects of feed on 

surface roughness as the lines are parallel. The levels of depth of cut have interactive 

effect with the feed effect on surface roughness as the lines are not parallel. 

The figure also reveals that the levels of spindle speed do not have interaction on the 

effect of depth of cut on surface roughness as the lines are parallel. But the feed levels 

show interaction effect on the effect of depth of cut on surface roughness as the lines are 

intersecting. 

5.3. Contour Plots 

Contour plots show how response variables relate to two continuous variables while 

holding the rest of the variables in a model at certain settings. In a contour plot, the fitted 

response model is viewed as a two-dimensional surface where all points that have the 

same fitted value are connected to produce contour lines of constants. Contour plots are 

useful for establishing operating conditions that produce desirable response values. 

5.3.1. Contour Plots for Cutting Force 

From Fig. 5.9., we can see that the lowest values of cutting force (<200 N) if we keep the 

feed levels between 0.10 and 0.15 mm/rev. The depth of cut should be kept between 0.1 

to 0.7 mm. For spindle speed, if it set at 480 rpm, then the feed and depth of cut should be 

kept at the lowest level, if kept at 700 rpm, then feed should be kept at 0.15 mm/rev and 

depth of cut at 0.6 mm and if kept at 910 rpm, then again the feed and depth of cut should 

be kept at the lowest level. 
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Fig. 5.9 Contour Plots for Cutting Force 

5.3.2. Contour Plots for Feed Force 

 

Fig. 5.10 Contour Plots for Feed Force 
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From Fig. 5.10., we can see that the lowest value of feed force (<100 N) occurs when 

feed is kept between 0.10 and 0.19 mm/rev, depth of cut between 0.1 to 0.5 mm and the 

spindle speed to be kept at the lowest level. 

5.3.3. Contour Plots for Thrust Force 

 

Fig. 5.11 Contour Plots for Thrust Force 

From Fig. 5.11., we can see that the lowest values of thrust force occurs when the feed 

levels are set at 0.10 to 0.20 mm/rev, depth of cut to be set between 0.1 to 0.84 mm and 

the spindle speed to be kept at the lowest level, i.e., at 480 rpm. 

5.3.4. Contour Plots for Surface Roughness 

From fig. 5.12., we can see that the lowest values of surface roughness occurs at the 

highest spindle speed, i.e., at 910 rpm, the feed levels should be kept low and the depth of 

cut should be kept at almost 0.8 mm. 
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Fig. 5.12 Contour Plots for Surface Roughness 
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Chapter 6 

OPTIMIZATION OF MACHINING PARAMETERS 

6.1. Optimization Using Response Optimizer Technique 

Response optimization technique is used to help in identifying the combination of input 

variable settings that jointly optimize a single response or a set of responses. Joint 

optimization must satisfy the requirements for all the responses in the set, which is 

measured by the composite desirability [26]. 

Firstly, we must fit a model before using response optimizer. In the present case, we want 

optimization of multiple responses, therefore we fitted model for each response 

separately. 

In Minitab, we can use the Response Optimizer to search for optimal responses on the 

basis of requirements that we define for each response. 

 Minimize the response 

 Target the response 

 Maximize the response 

6.1.1 Individual desirability and composite desirability 

Individual and composite desirability assess how well a combination of variables satisfies 

the goals that we have defined for the responses. Individual desirability (d) evaluates how 

the settings optimize a single response whereas composite desirability (D) evaluates how 

the input settings optimizes a set of responses overall. 

Desirability has a range of zero to one. One is a representation of the ideal case; zero is an 

indication that one or more responses are outside their acceptable limits. 

Minitab‟s Response Optimizer calculates individual desirability using a desirability 

function (also known as utility transfer function). We have to select a weight (from 0.1 to 

10) to determine how much we are emphasizing on obtaining the target value. The weight 

determines how the desirability is distributed on the interval between the upper (or lower) 

bound and the target. 
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It determines the shape of the desirability function that is used for translating the response 

scale to the zero to one desirability scale in order to determine the individual desirability 

of a response. We can consider a weight of one as a neutral setting.   

Composite desirability can be defined as the weighted geometric mean of the individual 

desirabilities for the responses. Minitab determines the optimal settings for the variables 

by maximizing the composite desirability. 

6.1.2. Optimization Plot  

An optimization plot is a tool of Minitab‟s Response Optimizer which shows how 

different experimental settings affect the predicted responses for factorial, response 

surface and mixture designs [26]. 

Minitab calculates an optimal solution and draws a plot. The optimal solution serves as 

the starting point for the plot. This optimization plot allows us to interactively change the 

input variable settings to perform sensitivity analysis and possibly improve upon the 

initial solution. For factorial and response surface designs, we can adjust the factor levels. 

We might want to change these settings of variables on the optimization plot for many 

reasons, including: 

 To search for those variable settings which can provide a high composite 

desirability. 

 To explore the sensitivity of response variables as the design variables change. 

 To calculate the predicted responses for a variable setting of interest. 

 To explore variable settings in the neighbourhood of a local solution. 

6.1.3. Steps in response optimization technique 

1. Decide whether we have to minimize, maximize or target the response variables. 

2. Next, we have to set the importance for each response. If every response is equally    

important, then set the importance level for each response to be one. 

3. If our goal is minimization, the lower values will be disabled and the target becomes 

the lowermost values and the upper values will be set at the uppermost values of the 

responses. 
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4. The last is to set a weight for each response. A weight of one implies that we want our 

response to be between the set target value and the upper value of the response. 

 

Table 6.1 Response Optimization 

Response 

Parameters 

Importance Goal Lower Target Upper Weight 

Cutting Force 1 Minimum  215.82 598.41 1 

Feed Force 1 Minimum  98.10 215.82 1 

Thrust Force 1 Minimum  0.00 88.29 1 

Surface 

Roughness 

1 Minimum  1.27 4.47 1 

Solution       

Spindle Speed 

(rpm) 

Feed(mm/rev) Depth of   

Cut (mm) 

CF(N) FF(N) TF(N) Ra(µm) 

910 0.2 0.5 320.53 134.35 5.43 1.57 

Solution       

Composite 

Desirability 

0.808100      

Multiple Response Prediction      

Variable setting      

Spindle Speed 910      

Feed 0.2      

Depth of Cut 0.5      
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Fig. 6.1 Optimization Plot 

From fig. 6.1., it can be seen that the composite desirability is 0.8081. Individual 

desirabilities for cutting force, feed force, thrust force and surface roughness are 0.72631, 

0.69207, 0.93849 and 0.90398 respectively. This implies that the setting of spindle speed 

at 910 rpm, feed at 0.2 mm/rev and depth of cut at 0.5 mm is the most suited for the 

minimization of thrust force followed by surface roughness, cutting force and lastly feed 

force. 
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6.2. Optimization using Genetic Algorithm 

Optimization using Genetic Algorithm (GA) is performed using Matlab‟s Global 

Optimization Toolbox. Global Optimization Toolbox provides methods that search for 

global solutions to problems that contain multiple maxima or minima. It includes genetic 

algorithm, global search, multistart, pattern search and simulated annealing solvers [27].  

6.2.1 Multiobjective optimization 

We might need formulating problems which have more than one objective, since a single 

objective with several constraints may not represent the problem adequately. 

Multiobjective optimization is concerned with the minimization of a vector of objectives 

which can be subjected to a number of constraints or bounds. Multiobjective optimization 

is concerned with the generation and selection of noninferior solution points. Non inferior 

solution points can be defined as the one in which an improvement in one objective 

requires a degradation in other objective. 

  

 

                                   Fig. 6.2 Set of Noninferior Solutions 

Non inferior solutions are also called Pareto Optima. A general goal in multiobjective 

optimization is constructing the Pareto Optima. 
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6.2.2 Genetic Algorithm Options 

There are two ways in which we can use the multiobjective function; one is using the 

Genetic Algorithm Tool and the other is calling the function gamultiobj at the command 

line. We have used Genetic Algorithm Tool in the present case and it launches as we 

write optimtool („gamultiobj‟) at the command line. 

6.2.3. Steps in optimization using Genetic Algorithm 

1. Formulation of objective function, which is known as fitness function in case of   

Genetic Algorithm. 

2. Formulation of constraint functions. 

3. To write an M-file in Matlab‟s Editor Window. 

4. To open the GA tool by writing optimtool („gamultiobj‟) at the command line. 

5. Set the option values to default. 

6. Start the optimization process and plot the results. 

7. Analysing the GA results. 

 

6.2.4. Formulation of objective function 

The objective function, known as fitness function in GA is minimization of cutting force, 

feed force, thrust force and surface roughness. These responses are related to spindle 

speed, feed and depth of cut by response surface methodology, and are given by the 

developed regression models as follow [3]: 

 

Objective Function 

 

Min CF (N) = 87 - 1.08 (N) + 2513 (f) + 408 (d) + 0.001125 (N
2
) - 807 (f

2
) + 91 (d

2
) -

 1.57 (Nf) - 0.316 (Nd) + 182 (fd) 

 

Min FF (N) = -170 - 0.124 (N) + 810 (f) + 521 (d) + 0.000296 (N
2
) - 151 (f

2
)  

      -150 (d
2
) – 0.656 (Nf) – 0.155 (Nd) - 182 (fd) 

 

Min TF (N) = -561 + 1.582 (N) + 108 (f) + 114 (d) - 0.000944 (N
2
) + 2473 (f

2
) + 5 (d

2
) –

 1.137 (Nf) – 0.038 (Nd) - 454 (fd) 
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Min Ra (µm) = 14.45 - 0.00532 (N) – 22.2(f) – 17.90 (d) + 0.000001 (N
2
) + 54.4 (f

2
) + 

5.75 (d
2
) – 0.01945 (Nf) + 0.00427 (Nd) + 25.56 (fd) 

Constraint Functions  

N ≥ 480 

N ≤ 910 

f ≥ 0.10 

f ≤ 0.28 

d ≥ 0.5 

d ≤ 1.1 

 

6.2.5 Writing a M-File  

All the functions in the Genetic Algorithm Toolbox are MATLAB M-files which consists 

of MATLAB statements that implements specialized optimization algorithms. For using 

this toolbox, firstly an M-file has to be written which computes the function to be 

optimized. The M-file should accept a row vector, whose length is equal to the number of 

independent variables in the objective function, and return a scalar. 

 

The objective of present study is to minimize all the response parameters, therefore the 

M-file which computes this function must accept a row vector whose length is 3, which 

corresponds to the variables x1(spindle speed), x2(feed), x3(depth of cut), and must return 

a scalar equal to the function value at x. The following steps are to be followed while 

writing an M-file: 

 

1. In the MATLAB file menu, select New. 

2. Select M-file. This opens a new M-file in the editor. 

3. In the M-file, write the following: 

    

 function f = my_multi(x) 

 

f(1) = 87 - 1.08*x (1) + 2513*x (2) + 408*x (3) + 0.001125*x(1)^2 – 807* x(2)^2 

+ 91* x(3)^2 - 1.57*x(1)*x(2) - 0.3168*x(1)*x(3) + 182*x(2)*x(3) 
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f(2) = 14.45 - 0.00532*x (1) – 22.2*x (2)  – 17.90*x (3)  + 0.000001*x(1)^2  +  

54.4 * x(2)^2  + 5.75* x(3)^2 – 0.01945*x(1)*x(2) + 0.00427*x(1)*x(3)   

+ 25.56*x(2)*x(3) 

 

 

f(3) = -561 + 1.582*x (1) + 108*x (2)  + 114*x (3)  - 0.000944*x(1)^2 + 2473* x(2)^2  

+ 5* x(3)^2 – 1.137*x(1)*x(2) – 0.038*x(1)*x(3)  - 454*x(2)*x(3) 

 

f(4) = -170 - 0.124*x (1) + 810*x (2)  + 521*x (3) + 0.000296*x(1)^2 - 151* x(2)^2   

      -150* x(3)^2 – 0.656*x(1)*x(2) – 0.155*x(1)*x(3)  - 182*x(2)*x(3) 

 

 

where f(1) is cutting force 

           f(2) is surface roughness 

           f(3) is thrust force 

           f(4) is surface roughness 

 

4. Save this M-file in a directory on the MATLAB path. 

 

6.2.6. Using the Genetic Algorithm 

There are two ways of using Genetic Algorithm: 

1. Using the GA tool, a graphical interface to the genetic algorithm. 

2. Calling the genetic algorithm function, ga at the command line. 

Using the GA Toolbox 

In the present case, optimization was performed by utilizing the GA tool which enables 

us to use genetic algorithm without working at the command line. For launching this tool, 

enter at the command window: 

      optimtool („gamultiobj‟) 

For using this tool, following information is also required: 

1. Fitness function – The fitness function refers to the objective function which is to be 

minimized. Enter the fitness function as @my_multi, where my_multi.m is a M-file 

which will compute the objective function. The @ sign creates a function handle to 

my_multi. 
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2. Number of Variables – The number of variables refers to the length of input vector to 

the fitness function, i.e. my_multi.  

 

6.2.7. Setting the various options in Genetic Algorithm 

 All the options in genetic algorithm were set at their default values which are as follows: 

         1. Population 

Population type: Double Vector 

Population size: Use default: 50 for 5 or fewer variables; otherwise 200 

Creation Function: Constraint dependent 

Initial population: Use default: [] 

Initial scores: Use default: [] 

Initial range: Use default: [-10; 10] 

      

         2. Fitness scaling 

Scaling function: Rank 

 

         3. Selection 

Selection function: Stochastic uniform 

 

         4. Reproduction 

Elite count: Use default: 0.05*Population size 

Crossover fraction: Use default: 0.8 

 

         5. Mutation 

Mutation function: Constraint dependent 

 

         6. Crossover 

Crossover function: Constraint dependent 

 

          7. Migration 

Direction: Forward 

Fraction: Use default: 0.2 

Interval: Use default: 20 
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  8. Stopping criteria 

Generations: Use default: 100*number of variables 

Time limit: Use default: Inf 

Fitness limit: Use default: -Inf 

Stall generations: Use default: 50 

Stall time limit: Use default: Inf 

Stall test: average change 

Function tolerance: Use default: 1e-6 

Constraint tolerance: Use default: 1e-3 

 

           9. Plot functions 

Plot interval: 1 

Check in the plots that we want 

 

6.2.8. Optimized result 

The start button was clicked and the results were displayed in the status and results pane. 

 

Fig. 6.3. GA optimal result window for 1 to 7 Pareto front 
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Fig. 6.4. GA optimal result window for 8 to 14 Pareto front 

 

 

Fig. 6.5 GA optimal result window for 15 to 18 Pareto front 
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The above figures give us the values of decision variables and the corresponding function 

values which refer to the Pareto Front. All these eighteen values in the Pareto Front are the 

optimized results. It depends on the designer which value to choose. 

 

 

 Fig. 6.6 Different plots for the optimized results  
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Chapter 7  

MODELLING USING ARTIFICIAL NEURAL NETWORK 

 

7.1. Basic approach using Artificial Neural Network to mathematically model the present 

study 

Artificial Neural Network has always been an area of interest for the researchers in order 

to develop mathematical models. This is a cost effective technique in manufacturing and 

machine tool design approaches. When the regression models are not fitting the data well, 

then only modelling using ANN is attempted [20]. 

  

WEIGHTS                                             OUTPUT    

   INPUTS 

Fig. 7.1 Schematic representation of an Artificial Neural Network 

For using the network, inputs, outputs and hidden neurons must be present. The inputs 

refer to the machining parameters; outputs refer to the response parameters and hidden 

neurons play an internal role in the network. There has to be a connection amongst input, 

hidden and the output neurons. As shown in fig. 7.1., the activation function receives a 

number of inputs (the inputs may be from original data or from the output of other 

neurons), then processes them for the generation of output for that particular neurone. 

For the present modelling, the activation function is a sigmoid function and the output 

function is a linear function, which is same for all the neurons. For the processing of 

input signals and the generation of output, the following steps are to be followed: 
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ACTIVATION         

FUNCTION 

Input signal 

received 

Multiplied by weights at each 

post synaptic junction 



 

 

 

 

 

 

 

 

 

 

                              

                               

 

                        Fig. 7.2. Sequence of steps in signal processing 

 

The back propagation algorithm is used in layered feed forward ANNs. The term layered 

refers that the neurons are organized in layers; feed forward refers that the neuron signals 

are fed forward and back propagation implies that the errors are propagated backwards. 

This algorithm utilizes supervised learning, which means that we provide the algorithm 

with the inputs and the targets and the algorithm tries to reduce the error between the 

outputs and targets till ANN learns the training data. The training begins with allocation 

of random weights, and the goal is to adjust them so that the error will be the minimal 

difference between the outputs and the targets. 

The back propagation algorithm progresses through a number of iterations which are 

referred as epochs. At each epoch, the training data is submitted to the network and the 

output and the corresponding error is calculated. This error is utilized for the weights 

adjustment and this how the process is repeated till the outputs come within a desired 

level of accuracy.  
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From each junction, the 

inputs are summed up 

and if any bias is there, it 

is also added to the sum 

The net sum is then fed 

to the activation function 

which then generates the 

output 

The output of the neuron 

is then fed onto the next 

layer 



                                                                       

 

 

 

 

 

                  Input Layer                               Hidden Layer             Output Layer                          

Fig. 7.3. Back propagation Neural Network used for predicting the responses 

The network shown in the above figure is used in the present research for mathematical 

modelling. As stated before, three input parameters, namely spindle speed, feed and depth 

of cut were considered and their effect on four responses was studied, namely cutting 

force, feed force, thrust force and surface roughness. Therefore in the present case, three 

and four neurons were taken for the input and output layer respectively. The input layer is 

not a neural layer in the true sense of the word; it is mainly used for the introduction of 

the input parameters. The performance of any neural network is dependent on the number 

of hidden layers and the number of hidden neurons in them. Therefore, sufficiently large 

number of trials was conducted before deciding onto the number of hidden layers and 

hidden neurons. 

7.2. Computational work done while training a neural network 

Bayesian Regularization (trainbr) was taken as the training algorithm as it was the 

suggested algorithm if the data sets are small. The data division was done on random 

basis. Performance of the network was determined by the measure of Mean Square Error 

(MSE). Lower values of MSE are desired; zero means no error. A lot of networks were 

trained before deciding onto the optimal number of hidden layers and the number of 

hidden neurons in them. Firstly, trial was done with the 2 neurons in the hidden layer and 

then progressively the number of neurons and the number of hidden layers were 

increased. A large number of hidden neurons may result in overfitting; therefore it is 

necessary to keep a check on number of hidden neurons. 
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Surface Roughness 

(Ra) 

 



The performance of some of the network architectures is shown in table 7.1. 

Table 7.1 Performance of different network architectures 

Sl. no. Network Architecture Mean Square Error Epochs  made before 

attaining the desired 

goal 

1. 3-5-4 0.353 278 

2. 3-6-4 0.0696 206 

3. 3-7-4 0.00974 115 

5. 3-3-4-4 1.05 110 

6. 3-4-4-4 0.0193 98 

7. 3-5-5-4 0.0290 308 

8. 3-4-5-4 0.0351 191 

9. 3-4-5-4 0.0183 271 

 

For the present study, the network architecture selected was 3-7-4 (3 neurons in the input 

layer, 7 neurons in the hidden layer and 4 neurons in the output layer). The selection of 

this architecture was based on its performance as the mean square error for this network 

was the lowest amongst all the architectures. The network was trained and simulated to 

get the outputs ant then were compared with the set target values to determine the 

predictive ability of the ANN model.  

  

 

 

 

 

 

 

              Fig. 7.4 MSE versus number of Epochs 
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From Fig. 7.4., it can be seen that the best training performance is reached at epoch 114. 

As the network gets trained, the blue line which is a representation of training error 

decreases continuously and finally reaches to a minimum. As the training error decreases, 

it coincides with the best MSE line. The red line which is a representation of testing error 

is quite high almost 10
3
 which may be attributed to the fact that the number of data given 

for testing the network was low.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5 Regression plot for network architecture 3-7-4 
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The performance of the network can also be judged using the regression plots. R which is 

known of coefficient of determination, if equals to one represents that a perfect linear 

relationship exists between the outputs and the targets and if zero, this implies that there 

is no relationship between the outputs and the targets. 

7.3. Results and discussions  

7.3.1 Comparison of Experimental, RSM and ANN model results for Cutting Force 

Table 7.2 Comparison of Experimental, RSM and ANN model results for Cutting Force 

Sl.no. Experimental 

Value 

RSM Output % error in 

RSM 

prediction 

ANN Output % error in 

ANN 

prediction 

1 225.63 273.308 -21.13 225.63 -0.00178 

2 274.68 311.967 -13.57 274.68 -0.000382 

3 274.68 300.685 -9.46 274.67 0.001019 

4 333.54 356.43 -6.86 333.53 0.000387 

5 519.93 492.453 5.28 519.92 0.000347 

6 382.59 356.43 6.83 333.53 12.82 

7 510.12 585.557 -14.78 510.12 -0.000451 

8 598.41 562.595 5.985 598.41 0.0000823 

9 353.16 356.43 -0.925 333.53 5.55 

10 362.97 351.19 3.245 362.96 0.000093 

11 215.82 140.83 34.74 215.81 0.000668 

12 519.93 470.216 9.56 548.69 -5.53 

13 598.41 662.33 -10.68 598.40 0.000107 

14 343.35 356.53 -3.83 343.34 0.0000597 

15 264.87 304.77 -15.06 264.87 -0.000445 

 

Absolute mean % error for RSM prediction = 10.79 

Absolute mean % error for ANN prediction = 1.59 
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7.3.2 Comparison of Experimental, RSM and ANN model results for Feed Force 

Table 7.3 Comparison of Experimental, RSM and ANN model results for Feed Force 

Sl.no. Experimental 

Value 

RSM Output % error in 

RSM 

prediction 

ANN Output % error in 

ANN 

prediction 

1 107.91 134.31 -24.46 107.92 -0.012 

2 117.72 133.71 -13.58 117.71 0.00152 

3 98.10 96.58 1.54 98.09 0.00645 

4 147.15 156.96 -6.67 147.41 0.00641 

5 196.20 197.37 -0.59 196.20 -0.00237 

6 156.96 156.96 0 147.14 6.25 

7 166.77 192.25 -15.27 166.76 0.000449 

8 215.82 200.16 7.25 215.82 -0.00097 

9 166.77 156.96 5.88 147.14 11.77 

10 186.39 174.04 6.62 186.38 0.000687 

11 107.91 81.46 24.51 107.90 0.00296 

12 206.01 178.75 13.23 170.20 17.38 

13 196.20 185.98 5.20 196.91 0.00337 

14 107.91 117.89 -9.24 107.92 -0.00993 

15 166.77 176.85 -6.044 166.76 0.000809 

 

Absolute mean % error for RSM prediction = 8.99 

Absolute mean % error for ANN prediction = 2.36 
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7.3.3 Comparison of Experimental, RSM and ANN model results for Thrust Force 

Table 7.4 Comparison of Experimental, RSM and ANN model results for Thrust Force 

Sl.no. Experimental 

Value 

RSM Output % error in 

RSM 

prediction 

ANN Output % error in 

ANN 

prediction 

1 0 4.71 ------ 0.00735 ------ 

2 0 7.32 ------ 0.00736 ------ 

3 0 -7.38 ------ 0.001058 ------ 

4 29.43 45.78 -55.55 29.43 -0.015 

5 0 7.38 ------ 0.0043 ------ 

6 19.62 45.78 -133.33 29.43 -50.022 

7 49.05 46.31 5.58 49.05 -0.00283 

8 9.81 2.48 74.71 9.81 -0.0239 

9 88.29 45.78 48.14 29.43 66.66 

10 88.29 90.96 -3.02 88.27 0.014 

11 58.06 62.03 -6.83 58.85 0.00756 

12 0 -3.65 ------ 81.65 ------- 

13 19.62 30.28 -54.33 19.62 -0.00234 

14 68.67 66.50 3.16 68.66 0.0132 

15 68.67 59.37 13.54 68.66 0.00197 

 

Absolute mean % error for RSM prediction = 39.82 

Absolute mean % error for ANN prediction = 11.67 

 

 

 

 

80 



 

7.3.4 Comparison of Experimental, RSM and ANN model results for Surface Roughness 

Table 7.5 Comparison of Experimental, RSM and ANN model results for Surface       

Roughness 

Sl.no. Experimental 

Value 

RSM Output % error in 

RSM 

prediction 

ANN Output % error in 

ANN 

prediction 

1 2.85 2.55 10.52 3.06 -7.51 

2 1.90 1.63 14.21 1.79 5.68 

3 3.79 4.02 -6.06 3.78 0.021 

4 2.12 1.98 6.60 1.94 8.19 

5 1.90 1.66 12.63 2.11 -11.4 

6 2.0 1.98 1.00 1.94 2.68 

7 3.92 3.85 1.78 3.65 6.79 

8 2.69 2.95 -9.66 2.68 0.039 

9 1.84 1.98 -7.60 1.94 -5.77 

10 1.49 1.54 -3.35 1.6 -8.46 

11 3.35 3.43 -2.38 3.00 10.24 

12 1.38 1.68 -21.73 2.87 -108.105 

13 4.47 4.28 4.25 4.32 3.132 

14 3.02 3.01 0.33 3.33 -10.38 

15 1.27 1.46 -14.96 1.36 -7.56 

 

Absolute mean % error for RSM prediction = 7.80 

Absolute mean % error for ANN prediction = 13.06 
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Chapter 8 

CONCLUSION AND FUTURE SCOPE 

8.1. Conclusion 

The following conclusion can be drawn from the present research work: 

1. A three level box-behnken design can be suitably employed for studying the effects of 

spindle speed, feed and depth of cut on cutting force, feed force, thrust force and surface 

roughness. 

2. The experimental results indicate that the use of uncoated tool grade was not suitable 

for studying the aforesaid effects within the selected range of input parameters. 

3. Tool wear was not encountered while machining with coated tool grade within the 

selected range of input parameters. 

4. Mathematical models using RSM technique were developed for cutting force, feed 

force, thrust force and surface roughness and then tested for adequacy using ANOVA. 

5. As the spindle speed increases from 480 to 700 rpm, cutting force decreases from 424 

to 357 N but as spindle speed increased from 700 to 910 rpm, cutting force increases 

from 357 to 394 N. As the feed increases from 0.10 to 0.28 mm/rev, there is an increase 

in cutting force from 250 to 492 N. With the increase in depth of cut from 0.5 to 1.1 mm, 

cutting force increases from 277 to 497 N.  

6. As the spindle speed increases from 480 to 700 rpm, feed force decreases from 154 to 

148 N but as spindle speed increased from 700 to 910 rpm, feed force increases from 148 

to 171 N. As the feed increases from 0.10 to 0.28 mm/rev, there is an increase in feed 

force from 142 to 169 N. With the increase in depth of cut from 0.5 to 1.1 mm, feed force 

increases from 100 to 191 N.  

7. As the spindle speed increases from 480 to 700 rpm, thrust force increases from 0 to 45 

N but as spindle speed increased from 700 to 910 rpm, thrust force decreases from 45 to 5 

N. As the feed increases from 0.10 to 0.19 mm/rev, there is a decrease in thrust force 

from 74 to 43 N and as the feed increases from 0.19 to 0.28 mm/rev, thrust force 

increases from 43 to 55 N. The depth of cut has a negligible effect on thrust force.  
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8. As the spindle speed increases from 480 to 910 rpm, surface roughness decreases from 

3 to 1.1 µm. As the feed increases from 0.10 to 0.28 mm/rev, there is an increase in 

surface roughness from 2.0 to 2.9 µm. With the increase in depth of cut from 0.5 to 0.8 

mm, surface roughness decreases from 2.8 to 2 µm and as depth of cut increases from 0.8 

to 1.1 mm, surface roughness increases from 2 to 2.25 µm. 

9. The response optimizer technique sets the spindle speed, feed and depth of cut at 910 

rpm, 0.2 mm/rev and 0.5 mm respectively as the optimal parameters whereas using GA 

gives a Pareto front amongst which any of them can be taken depending on the choice of 

designer. 

10. For ANN modelling, 3-7-4 was the selected network architecture and the network was 

trained and the MSE for the corresponding architecture came out to be 0.00974. 

11. A comparison between the predictive ability of ANN and RSM models reveals that 

ANN model has an edge over RSM model values in case of cutting force, feed force and 

thrust force. But in case of surface roughness, RSM has less absolute mean percentage 

error in comparison to ANN model values. 
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8.2. Future Scope 

Every study has a scope for further improvement. Following are the areas which can be 

still explored in the context of present research: 

1. The present study includes spindle speed, feed and depth of cut as the input parameters 

which can be extended to tool geometry, wet machining versus dry machining.  

2. The response parameters can be further elaborated by including MRR, Power 

consumption etc. 

3. Other optimization techniques such as scatter search technique, fuzzy logic and taguchi 

technique can also be attempted and results can be compared. 
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