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ABSTRACT 

The field of surveillance and forensics research is currently shifting focus and is now showing an ever 

increasing interest in the task of people re-identification. It is a fundamental task in the automated 

surveillance system essential to track a person in multi-camera setting. Re-identification (Re-ID) can be 

defined as a process of identifying the resemblances of a set of probe images or a single probe image 

representing a single person from a set of gallery images of people taken from the same or different cameras 

placed at different locations.  

However, established identification techniques being used presently face many difficulties and 

shortcomings. Traditional surveillance cameras provide low resolution images and thus state of the art face 

recognition and iris recognition algorithms cannot be easily applied to surveillance videos and images as 

people are required to face the camera at a close range. The different lighting environment inherited by each 

camera scene and the strong variations in illumination induce large changes in their appearance of a person 

walking through the scene. In addition, people images are occluded by other passers-by or objects in the 

scene making people detection further difficult to achieve. 

So to address the challenges in person re-identification problem, major contributions are being made to 

design robust feature representations and good discriminant metrics to evaluate the similarity between two 

person images effectively. Recently, it seems that more researches have been made in metric learning. So in 

this work potentials of feature design are emphasized. A novel and efficient person descriptor is proposed by 

utilizing knowledge on dense sampling of low-level statistics. We simply model a multi-layer representation 

of pixel features using multiple Gaussian distributions. More specifically, first we have created a pixel 

feature representation using color and texture information, then we have extracted local patch Gaussians 

inside overlapping regions. Further to describe these regions we have again used a Gaussian model on the 

local patch Gaussians. Thus we are able to use the discriminative properties of mean and covariance together 

along with considering the local structures in the image while globally analyzing them. 

For metric learning we have used a discriminant subspace and kernel learning method described in Liao 

et. al (2015), i.e. XQDA. It learns a discriminant low dimensional subspace and a QDA metric on the 

projected subspace, simultaneously. 

The proposed descriptor and metric is compared on benchmark datasets with current state-of-art-methods 

and has proven to give efficient and robust results. It exhibits remarkably high performance which 

outperforms some of the state-of-the-art descriptors for person re-identification. We have then considered it 

as a retrieval or recognition problem with the expectation that the n-highest ranked matches in the gallery 

will provide an identity for the unknown person, thereby identifying the probe. 
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CHAPTER 1 

INTRODUCTION 

Nowadays, widespread networks of cameras are being used in various public places like railway 

stations, airport, hospitals, office buildings, shopping malls, college campuses and streets. They 

cover large areas and have non-overlapping view-points and thus provide huge amount of data 

encoded well within the images/videos. This data can be utilized effectively for public safety 

applications, including surveillance for threat detection, detection of unusual events, monitoring of 

elderly people and patients in hospital, customer tracking in stores, etc. Manual monitoring of this 

data is cumbersome, time consuming and prone to errors thus reducing the efficiency of human 

surveillance system. Therefore, researchers are working towards automating this procedure using 

computer vision system. There has been impressive progress in pattern recognition and machine 

learning techniques recently which has consequently given more efficient automated surveillance 

system and improved the scope of usage in forensics industries. 

Understanding of a surveillance scene through computer vision requires the ability to track 

people across multiple cameras, perform crowd movement analysis and activity detection. Person 

Re-Identification is an elementary task in this automated surveillance system essential to track a 

person in multi-camera setting. It is referred as a process of identifying the resemblances of a group 

of probe images or a single probe image representing a single person from the other group called 

gallery images of people captured from same or different cameras placed at different locations. In 

simple words, if we feed an image/video of a person taken from one camera to the system, the 

system tries to identify the instances of the same person from images/videos taken from disjoint 

cameras. Depending on the number of available images per individual, two types of frame settings 

are considered in person re-identification: (a) single-shot (1) (2), if only one frame is captured per 

individual for both probe and gallery sets; and (b) multiple-shot (1) (2), for multiple frames per 

individual gathered over time using multiple views of the subjects. Besides surveillance it has 

applications in robotics, multimedia, and many more popular utilities like automated photo tagging 

or photo browsing. 

People Re-identification can also be defined as the task of assigning the same identifier to all the 

instances of the same object or, more specifically, of the same person, by utilizing some kind of 

visual properties that have been captured and extracted from an image or a video. As humans, we 

do this task all the time without much effort. Our eyes and brain is trained to detect, localize, 
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identify and later re-identify objects and people in the real world. Technically speaking, it can be 

broken down into three modules, i.e., person detection, person tracking, and person retrieval. It is 

generally believed that the first two modules are independent computer vision tasks, so most re-ID 

works focus on the last module, i.e., person retrieval. 

The person re-identification challenges mainly have three broad steps. First, it is determined that 

which part of the image is the area of interest and thus needs to be segmented before its analysis 

and comparison to find the matches. Second, invariant discriminative signatures of each individual 

are then constructed for analogous parts to be compared. Third, a suitable and discriminative metric 

must be applied to match these signatures to identify the correct instances of a person. In this text, 

we assume that the appearance of the person, specifically the clothes and the rare objects (like 

bagpacks, purse, etc.), does not change while it appears in different cameras in short span of time 

disregarding the case of considering images taken days or months apart. This is called short-period 

Re-Id. Then the simplest and most obvious descriptors considered are appearance based descriptors 

of a person, utilizing features like color, shape and texture. But it is not an easy job to tackle the 

several challenges offered by the problem.  

1.1 CHALLENGES 

Challenges faced by this task of re-identification increases the difficulty level as compared to just 

the identification task. The challenges differ in different scenarios, however, all applications face 

some common problems.  

➢ Illumination Variations - Illumination conditions may vary largely due to difference in 

camera settings and as well as in the same camera, in different phases of day and night, due 

to changes in the open environment conditions. Brightness levels in outdoor situations may 

consistently differ amid different time durations as climatic conditions change and light of 

the sun fluctuates. Then, again the lighting state in indoors may deviate between two 

cameras because of various sorts of lights glowing (neon, tungsten).This results in 

significant variations in the appearance of a person across disjoint camaras and during 

different time periods. 

➢ Pose and View-Angle Variations - The relative pose of a person, as he walks across 

the camera views in a camera network, varies with the walking path and direction of that 

person, and also depends on the camera view angle or scale changes inherent in a multi-

camera setting. This may create problems for gait based methods focused on the gait of the 
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moving person as it constantly varies across different view-angles and poses. This is a 

serious issue as it largely diminishes the recognition rates. 

➢ Occlusion - Partial or complete occlusion is another issue and may be caused by objects, 

clothing accessories and other humans in the scene. It can lead to the failure of segmentation 

algorithms which try to separate target person from the rest of the scene.  

➢ Changes in color response – One camera usually differs from others in its color 

sensitivities and thus sees the same colors slightly in difference to others which can 

sometimes largely affect the person’s appearance. Color response of the sensors may 

likewise deviate succumbing to open conditions outside and due to the programmed color 

normalization that frequently happens in-camera. 

➢ Low Resolution images - Moreover, due to relatively low resolution of the traditional 

surveillance cameras which capture very little or none of the facial properties, images of 

two different individuals may appear closer than the true image pairs, thus preventing the 

use of state of the art biometric and soft-biometric approaches. 

➢ However, another challenge is less studied in existing work, which is “cross dataset person 

re-identification”. In practical systems, a large dataset is collected first and then a model is 

trained on them. Then this model is superimposed on other datasets or videos for person re-

identification. We call the training datasets as source domain and test datasets as target 

domain. The source and target datasets are totally dissimilar, because they are usually 

captured by different cameras under different environments, i.e., have different probability 

distributions. A practical person re-identification algorithm is expected to have good 

adaptation to the dataset changes. Therefore, cross dataset person re-identification is an 

important rule to analyze the performance of algorithms in practice.  

So comparing person descriptors is challenging due to the uncertainty attributed by the possible 

lack of prior known spatio-temporal relationships between cameras. Additionally, appearance of the 

same person can differ drastically due to changes in other objects like bags, unzipped jackets across 

front and back views, etc. when at the same time appearance of different people might be rather 

similar. This implies that within class variations can be larger than inter-class variations. 

Moreover, even if the person's descriptors may be captured effectively, matching them across 

cameras in the presence of large number of people observed is non-trivial. Comparing these 

descriptors across large number of potential candidates is a hard task as the descriptors are captured 

in different locations, time instants, and over different durations. Complexity of the matching 

process further increases with increase in the number of candidates leading to loss of descriptor 
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non-ambiguity, increasing the possibility of matching errors. It also requires intensive memory and 

high computation capabilities. 

1.2 ADDRESSING ISSUES 

Person Re-ID system consists of mainly three stages as shown in Figure 1. Jointly they lead to two 

elementary problems which become the center of our focus in handling the task, i.e. feature 

representation and metric learning. An efficient feature representation is desired to have robustness 

to illumination and camera viewpoint changes, and a discriminant metric is required for matching 

given people images. Most of the trouble is taken along these two subjects to address the challenge 

of person re-identification. Most of the approaches followed in re-ID acquire appearance-based 

features that are viewpoint quasi-invariant (3) (4) (1) (5), such as color and texture models. 

However, different approaches vary greatly in the quantity and structure of features used and it 

becomes difficult to fairly evaluate how they affect the performance.. 

 

Fig.1: Person Re-Identification System.  

Using fixed simple metrics like Euclidean distance on these basic feature types result in poor 

matching results since they consider all kinds of features equally important neglecting that some 

features are weak due to large variations in pose and illumination and limited training data. Thus, 

researchers have started designing classifiers that learn advanced metrics (4) (6) (7), which compel 

the features of the true individual to be at lesser distance than that from different individual. Yet, 

most algorithm results are still low, slightly above 30% for the nearest match.  

Now coming to appearance based descriptors that exploit the appearance information of person’s 

clothing, specifically color and texture, robust models are tried to be constructed that can tackle 

intra-person variations and also provide good discrimination from other persons. Most works used 

these basic features (i) Color space values (1), usually embedded in histograms, (ii) object figure 

information, e.g. HOG descriptor (8), (iii) imbibed texture, often extracted by Gabor filters (9) (5), 

Schmid filters and differential filters (5) (iv) interest point descriptors, e.g. SURF and SIFT. 
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To address the low resolution issue and varying poses, the color information like color 

histograms of desired color channels and color name descriptors (10) come to the rescue and is able 

to discern two different person images. But for this an assumption is made that person clothes are 

not changed in the process. Some texture descriptors have also been successful in this objective 

namely, Maximally Stable Color Regions (MSCR) (11), Local Binary Patterns (LBP) and 21 

texture filters (8 Gabor filters and 13 Schmid filters). But color information have shown better 

outcomes in comparison to texture data as in most of the scenes resolution achieved is low.  

However, they have their own drawbacks, as illumination variations and camera parameters change 

them and also cannot sufficiently differentiate different persons of similar color. Additionally, the 

color histogram discards any information regarding the spatial structures and texture of person data 

in images. These downsides confine the utilization of the color based methods in the person re-

identification frameworks. So the performance of feature representation by color histograms 

methods is likewise not attractive. 

Since those rudimentary features (color, shape, texture, etc.) captured diverse domains of the 

data imbibed in these images, many a times they are fused together to serve as a high quality 

signature mark. Some of those effective approaches are mentioned here: (12) combine the 8 color 

features and 21 texture filters (Gabor and differential filters). (13) (14) fuse together Maximally 

Stable Color Regions (MSCR) and weighted Color Histograms (wHSV), achieving outstanding 

results, and he ensemble of local features (ELF) (5), SDALF (14), kBiCov (15), fisher vectors 

(LDFV) (16), salience match. (17), and mid-level filter (18), all of these do some kind of fusion. 

These handcrafted models have made attractive enhancements in robust feature construction, and 

have propelled the person re-identification research. Some features based on covariance descriptor 

(19) were proposed which described an area of interest as a co-variance. of pixel features. It gives 

an easy approach to inter-wine different properties, e.g., color and texture surface, of image pixel 

into the solitary meta-descriptors. As we know that covariance descriptor is acquired by taking 

average of the features inside the local area, it cures impacts of noise-clamor and spatial 

misalignments. And thus, it effectively handles person re-identification (20) (21) (22).  

We construct a n-dimensional random vector for pixel feature depiction,  𝑋 ∈ ℝ𝔫, where X may 

contain three color channel (RGB) data. Then spatial data of each pixel, including x, y values and 

gradient values are accumulated in X. Then more specifically X may take the representation as: 

𝑋 =  [ 𝑥 , 𝑦 , 𝑅 , 𝐺 , 𝐵 , |𝐼𝑥|, |𝐼𝑦|, √𝐼𝑥
2 + √𝐼𝑦

2]      1.2 (i) 
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where x. and y. are horizontal and vertical positions,  respectively; R, G and B are values of the 

three color channel; 𝐼𝑥 and 𝐼𝑥 are the gradients in two direction. 

We then present data as a pdf. One of the ways used to estimate a pdf is histogram. However, a 

structure of the space framed by histograms is difficult to evaluate. Along these lines, it is difficult 

to design powerful similarity functions and learning algorithms for histograms. Another elementary 

property of pdfs are covariance matrices, and so other way to describe the signal is by utilizing its 

co-variance matrices as region co-variances. We have different shapes of pdf curves and surfaces 

delivered by different co-variance matrices. Those which are symmetric positive definite (SPD), 

then tend to be a connected Riemannian manifold. In this way, successful algorithms using region 

co-variances can be designed by examining its structure utilizing Riemannian geometry theory. But 

we cannot ignore the fact that region co-variance is only a partially parameterized multivariate 

Gaussian, which disregards the importance of mean values. If a feature vector X is contemplated 

with a complete parameterized multi-variate Gaussian then more viable feature descriptors can be 

designed as compared to region co-variances. So, building such robust feature descriptors is still an 

open issue in re-ID problem. 

The other focused part in our work is to find ways to learn an efficient distance function so as to 

manage complex match and classification challenge. Most re-ID methodologies are  formulated as 

the supervised metric learning algorithm where a projection matrix P is looked for such that the 

projected Mahalanobis-like distance (23)  𝐷𝑀(𝑥𝑖𝑘 , 𝑥𝑗𝑘) = (𝑥𝑖 − 𝑥𝑗)
𝑇

𝑀(𝑥𝑖 − 𝑥𝑗), where 𝑀 = 𝑃𝑇𝑃, 

is minimal when feature vectors 𝑥𝑖𝑘 𝑎𝑛𝑑 𝑥𝑗𝑘   refer to same individual and large in the opposite case. 

Numerous distance evaluation methods have been put forward by considering this viewpoint (24) 

(12) (25) (7) (26) (27) (28). Practically, many metric learning methods given earlier (12) (6) (25) 

(26) demonstrate a two-step working where firstly, an algorithm called Principle Component 

Analysis (PCA) is used to reduce dimensions and then our matching work is analyzed on this 

subspace using some metric learning. But this type of two-level implementation is optimum only 

when the original feature dimensions are high, since otherwise for a low-dimension feature space 

there might be cluttering of samples from different classes after the first stage of dimension 

reduction itself. In LOMO (29), a subspace and metric learning method was proposed named as 

Cross-view Quadratic Discriminant Analysis (XQDA) which we have used for discriminant 

subspace and metric learning..  
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1.3 PROPOSED METHOD 

We have considered the problem of Re-ID as the retrieval or recognition task: Given single or 

multiple image frames of an unknown person (query) and a gallery set that consists of a number of 

known or unknown people, the objective of the method used is producing a list of ranks of all the 

individuals in the gallery data group based on their visual similarity to the unknown person. The 

expectation is that the n-highest ranked matches in the gallery will provide an identity for the 

unknown person, thereby identifying the probe. 

To tackle the various downfalls of other methods, we have proposed a framework with multi-

layer representation of pixel features using Gaussian distribution. Earlier a hierarchical co-variance 

model has already been used effectively for image identification. In any case, important 

discriminative information provided by the mean data of pixels is missing in co-variance model. 

This issue is taken care of in this work by portraying local regions in an image by means of two 

level Gaussian distribution in which both the mean and co-variance characteristics are incorporated. 

Particularly, we first compactly extract local patch features in a part based region model and then 

describe the region by parameters extracted from local patches falling under that region. As we 

know that a human in an image has different body parts, each part having some intra-similarity in 

features. So to utilize this local structure in a person image we have roughly divided the image into 

horizontal strips called regions. Then to create a deeper structure we have also worked on smaller 

consistent patches in the image with (k x k) pixel neighborhood. Appearance of each local patch is 

characterized by a Gaussian distribution which we refer to as patch level or first level Gaussians. 

Now we are left with multiple Gaussian distributions of patches, and then on a fixed and defined set 

of patches in a region we model our region level or second level Gaussian distribution for each 

region. Finally the vectors of second level Gaussian are concatenated and used as a descriptor to 

analyze the image. First level Gaussians are constructed on some kind of pixel features which can 

be color or texture data. For this we have used some kind of statistical methods to extract varied 

information in a pixel and then created d-dimensional pixel features. Details of this are given in 

chapter 4 and 6. 

Consequently, we have learned a discriminative and compact model on Gaussian distributions 

and now we need to learn distance between shrewd Gaussian segments to measure the separation 

between two image sets. However, a Gaussian distribution lies on a particular Riemannian 

manifold, as per information geometry, where we cannot apply Euclidean functions (30) while most 

existing discriminant metric methods just work in Euclidean space. 
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So, Riemannian manifold needs to be locally flattened into a Euclidean space. This can be done 

by mapping it onto a tangent space favored by Riemannian metric functions. There’s this 

Riemannian metric called the Log-Euclidean metric (31) which does this work on Symmetric 

Positive Definite (SPD) matrix and renders us with an effective method for projecting some point 

lying on the manifold onto a Euclidean tangent space utilizing the operator called matrix logarithm 

operator. The abilities of Log-Euclidean metric can be harnessed well if our Gaussian distribution 

at each level is embedded in the SPD matrix as described in the work (32). SPD matrix lies on a 

space which is also in fact a Riemannian manifold. So we first embed our Gaussian distribution in 

the SPD matrix and then apply LEM and half-vectorization approach to convert each SPD matrix 

logarithm of size  𝑑 ×  𝑑  into a 𝑑 ( 𝑑 + 1 )/ 2  size vector. 

For our final stage of learning a metric, we have utilized a metric proposed in (29) i.e. XQDA 

which learns a distinctive low dimensional subspace, and simultaneously a QDA metric, on the 

learned subspace. This metric formulates the problem as a Generalized Rayleigh Quotient, and 

obtains a solution utilizing Eigen value decomposition. This framework is proven to be highly 

efficient and compelling for re-ID task by investigations on four challenging databases. 

1.4 MOTIVATION 

The idea to use deep levels of extraction in the model originated from the understanding of distinct 

information stored in the local structures in a person image and the need to harness it. The people’ 

clothing is usually in a way that differentiates the local regions like head, middle body, legs and 

arms. Each of these neighborhood parts are mostly isolated by contrasts in color or texture. The 

way these parts are spatially arranged adds up to determine the global model. However, a large set 

of existing descriptors (33) (34) (35) (36) (37) (19) describe the global evaluation of pixel features 

inside defined image divisions and loose some important information imbibed in the local structure. 

Conversely, the method presented in this work is portraying the global distribution utilizing the 

localized structure distribution of the pixel features. 

Now proceeding to why we used Gaussian distribution. As it is known that mean data contains 

relevant information about the local parts, so it is equally important to be considered while 

considering co-variances in an area. And the best known way to use mean and co-variance in a 

single model is Gaussian distribution. Many hierarchal co-variance descriptors were proposed (38) 

(39), but they lack valuable mean data. As examples of parametric estimation, some works 

modelled these subareas of images using Gaussian mixture model (GMM). A similarity between 

two distributions was defined by a kernel function proposed by them, and was used on a support 
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vector machine (SVM). In addition, Zhou et al. (40) used the characteristics of a GMM model 

constructed on each image as the visual features. Such models can be understood as calculating 

statistics of high level on local features and sampling them. This ideally provides the most optimum 

evaluation of a distribution. But we cannot overlook the fact that sampling local features from every 

single image in the database and approximating a GMM on such a large scale is quite impossible. 

Therefore, (40) a hierarchical estimation of GMM was applied, and the distribution for every single 

image was approximated as the amount by which it was varying or deviating from the entire 

training collection. But since this approximation depends on the properties of training set, this 

method obviously cannot always give a powerful image description. So we have instead used a 

Unimodal Gaussian for describing the pixel features in the local patches as they usually consists of 

only a small number of textures and colors.  

A specific and important genre of distance metrics that show great classification capabilities for 

some distance learning issues is Mahalanobis metric learning. Its aim is mainly to emphasize 

relevant dimensions and discarding the irrelevant ones by finding a global mapping of the feature 

space which is at the same time linear as well. Thus, resulting in the reduction of feature vector 

dimensions for reduced computation in classification and analysis of the image sets. The class of 

Mahalanobis distance functions and the set of multivariate Gaussian have a bijection in between 

them usually described by corresponding co-variance matrix.  Distance learning and classification 

problems utilizing a Mahalanobis metric learning are being the center of attraction recently. They 

include Large Margin Nearest Neighbor Learning (LMNN) (41), Information Theoretic Metric 

Learning (ITML) (24) and Logistic Discriminant Metric Learning (LDML) (42), which are at the 

top of chart recently. Considering the consistently developing large chunk of valuable data has 

raised the issue of scalability and the required level of supervision to learn any metric on a heavy 

range of dataset. 

To meet these requirements, KISSME algorithm was learnt as a reliable metric working using 

coequality constraints. These constraints are interpreted as inherent inputs to the class of distance 

metric learning algorithms. The method which we are considering is also inspired by the same 

statistical inference perspective following likelihood-ratio test and is an extension of KISSME and 

Bayesian Metric methods. This metric does not present the problem of over-fitting and can be 

obtained easily with good efficiency. It was first described in the LOMO (29). It does not involve 

tedious iterative computation for optimizing the procedure. It just needs to compute two small sized 

co-variance matrices and is thus scalable to large datasets.  
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CHAPTER 2 

RELATED WORKS 

Recent efforts in this field are focused on developing discriminative features and learning distance 

models, or both, for robust matching. In general, more focus is given on two main areas of solution:  

1. Designing a discriminative and robust appearance descriptors to describe a person's 

appearance. 

2. Learning appropriate similarity function that maximizes the chance of getting a true 

correspondent. 

2.1 FEATURE DESCRIPTORS 

Generally, feature extraction methods can be branched as two broad sets of methods. The first set is 

appearance dependent and includes all those methods that try to utilize properties like color, texture 

and other appearance factors inherited by the image. While the other set is collection of those 

methods that investigate gait and movements of a person through the image frames. Their use is 

restricted though, when we are working on and considering varied view-point information from the 

camera as the gait appears to be changing from different angles. According to literature, appearance 

dependent methods have better discrimination capabilities and also readily available features which 

make them more appropriate than the other set despite being faced with pose and illumination 

challenges. 

We know that the humans have a non-rigid body and is broken into a number of distinctive parts 

which gives the idea to construct part based models on them. Additionally, what is seen is that this 

also affects the clothing pattern (e.g., the upper and lower body parts are mostly clothed separately) 

and this gives distinct local information. To harness this information part based body models are 

being adapted recently. They can be further categorized roughly into three divisions: 

• Fixed models, have pre-defined fixed regions describing different body parts positions. 

• Adaptive models, they are subdivision models that are also pre-defined.  

• Learned models, that first take a labelled training set of images and then learn model 

constraints (e.g., relative parts disposition). 
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2.1.1 LOW DIMENSIONAL FEATURE 

They are formed by simple features with few dimensions and can describe a body part globally or 

locally as per the requirement. 

Global features usually analyze the entire image as a whole set and derive a vector of fix size 

on image. Likely the most extensively utilized global feature is color histograms (43) (44). Given a 

color image of size N = W × H pixels, quantization of colors is first carried out into B bins 1, . . . , 

B. And then the histogram is built by counting the occurrences of a color as bin value. They may 

use different kinds color spaces as per the need, also evaluated by Du et al. (45). Color histograms 

on one hand provide decent robustness and also invariance to scale, but on the other hand are 

affected by change in saturation levels, illumination and color responses of the camera sensor. 

Probably the simplest solution to this is normalization of color data (45) achieved by dividing color 

channel values by summation of all channel values of that pixel. Another method was also proposed 

to handle these issues by Piccardi and Cheng (46) which created a histogram using top N color 

values and called it as Major Color Spectrum Histogram (MCSH).  

Usually the peripheral pixels carry lower correspondence to the actual person information and 

mostly represent the background data. This issue was also handled in (2) (1) by rendering them 

with lesser weights than the pixels surrounding the vertical symmetric axis of person. One of the 

methods used was Dominant Color Descriptor (DCD) (in some methods called Representative Meta 

Color Model RMCM) of MPEG-7 in (47) (48), which gives the compact depiction of max 

illustrative hues.  

Global features do not just comprise of color characteristics but also gradients, textures and 

repetitive patterns in the image as a whole. There are Gabor filters that detect vertical and 

horizontal lines in the image and Schmid filters (49) that try to capture the circular gradients. In 

whole they are orientation sensitive filters that extract texture and edge information on the image. 

They have been effectively used in other appearance descriptors as well (50) (44) (16) (5) in fusion 

with some color-related features. Here it must me pointed out that texture describing features are 

usually not distinctive enough when used alone for person re-identification problem thus must be 

used along with color ones. 

Local features referred to an appearance characteristic over a limited area in the image (like 

neighborhood of a pixel). Each bounded and constrained neighborhood is then depicted as a feature 

vector which can be a histogram or any other suitable vector.. In the end we will be left with a 

collection of such local features. One of such classes is interest points like SIFT (Scale Invariant 

Feature Transform) (51), a famous local points descriptor. In this an interest point operator is 



Thesis Work | 2017 
 

  P a g e | 18 
 

applied to choose salient points in image that are invariant over varying scales and rotations. This 

work is done by computing a convolution between a 2-D Gaussian function of σ standard deviation 

and the image pixel value at some location co-ordinates x and y to detect out scale-extrema 

locations on different scales σ, and is denoted as : 𝐿 ( 𝑥, 𝑦, 𝜎) =  𝑁 ( 𝑥 , 𝑦 , 𝜎) ∗  𝐼 ( 𝑥 , 𝑦) where 

∗ is the convolution operation and N (x, y, σ) is the Gaussian referred. Then by utilizing functions 

such as Difference-of-Gaussians again in convolution with image finally stable key-points are 

detected in each scale space. Some other approaches utilized Maximally Stable Color Regions 

(MSCR) described in (11). It first finds some local regions showing maximal chromatic distance by 

performing constrained-agglomeratve-clustering. Then we depict these local clustered areas by 9-D 

feature vector formed by combining the details of their statistical characteristics. 

Recurrent Highly-Structured Patches (RHSP), instead focuses on extracting repetitive patterns 

from clothes of a person. Firstly, it extracts small patches randomly which may be overlapping 

most often. Then those patches which are not having any gradient information, like the ones having 

uniform color distribution, are thrown out from consideration by calculating the patch entropy and 

then applying some threshold on it. Out of the residual patches, the one which are rotation invariant 

are kept and rest again discarded. Second, around the region where the selected patch is located a 

Locally Normalized Cross-Correlation function is applied to evaluate each patch recurrence. 

Thirdly, those patches with patches large degrees of recurrence are accumulated to maintain a final 

accumulation of the patches closest to the centroid. Then finally LBP histogram is used to represent 

these patches  

Many person re-identification methods based on appearance descriptors as mentioned above 

used only one kind of features, either texture or color or interest points. But, as studied, combining 

different areas of information, that are complementary and captures different aspects of problem 

(like color and texture), usually tend to achieve a better performance. So such descriptors were also 

described in many works. In (12), color histograms in two color spaces is combined with Gabor and 

Schmid filter responses and extracted on strips of predefined height and position. Similarly, in (52) 

Color histograms in HSV space are fused with LBP hists, that capture the texture and repeated 

patterns, to depict partly overlapping rectangular patches sampled from image.  
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2.1.2 HIGH DIMENSIONAL FEATURES 

Many works done on establishing robust features have also constructed high dimensional feature 

descriptors like Symmetry-Driven Accumulation of Local Features (SDALF) (14). It is also a part 

based model but also considers the symmetric element present in human body parts through the 

vertical axis to handle view-point variations. Then we have a method called unsupervised salience 

learning (52) which focuses on the rare objects (like some specific colored coats, baggage, 

umbrella, etc.) present in a person image that may differentiate it from other persons. It then 

evaluate these rare patches while matching two images. Ma et al. (16) performed some kind of 

conversion of local descriptors into a Fisher Vector to construct a global representation. of an 

image. While Cheng et al. (2) concluded the task by using color information of separate body parts 

and color displacements which were called as Pictorial Structures. 

From the study on supervised metric learning approaches used widely in recent research areas it 

is inferred that they work well when fed with simple high dimensional feature that contain a lot of 

data irrespective of whether this data is discriminative or not. So, some less discriminative but high 

dimensional features were also proposed like [32, 42] where LBPs, SIFTs and compactly sampled 

color histograms were used.  

A Covariance-of-Covariance feature (38) was proposed, in which region co-variance is 

approximated over local patch co-variances of pixel features. This is one of the source of 

motivation for the use of two level distribution model in this work. Co-variances are basically low-

level statistical property of the image and thus are predicted to be stable. However, main issue is 

that they neglect the importance of mean data. But as we know that mean data also captures the 

local representation, thus we have added it to co-variance property to improve our representation so 

as to form a Gaussian distribution model. Earlier many works have used Gaussian distribution 

models such as Gaussians of Local Descriptors (GOLD) (37), Shape of Gaussians (34) and Global 

Gaussian (36). 

However, Gaussian distributions lie on a particular Riemannian manifold as described in 

information geometry (30) that do not allow Euclidean operations on it. So to be able to use metrics 

with Euclidean functions some works (53) are focused on transforming the Gaussian matrix to an 

SPD matrix which can be further mapped onto a tangent space where we can apply Euclidean 

functions. This further mapping to a tangent space is required to be done because SPD matrices also 

in fact lie on a Riemannian manifold (31) (54) (55) and not on a vector space as desired. So to get 

the desired space to be able to work on it easily, some Riemannian metrics were proposed on the 

SPD manifold. One of the proposed metric was Affine-Invariant Metric (AIM) (55). It is effective 
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in its approach but its computational cost is high because of the curvature of SPD manifold and thus 

is not often used in practice. Then later (31) introduced a new Riemannian metric named Log-

Euclidean Metric (LEM) which allows the space of SPD matrices to be equipped with a bi-invariant 

metric using a Lie-group structure. This reduces the Riemannian manifold to a flat space. It 

evaluates only classical Euclidean computations on the domain of SPD matrix logarithm (i.e., the 

tangent space at identity matrix on SPD manifold), thus drastically reducing the computation time 

unlike AIM framework while preserving good theoretical properties. 

So we have also used this approach where we first derive SPD matrices from our Gaussian 

model and then using the established combination of log Euclidean metric with half-vectorization 

of the matrix logarithm we project the manifold to a flat space as in the works (33) (37). Similar 

coding of Gaussian from low-level pixel features has been implemented for the task of person re-

identification in (35), but they lack a multi-layer structure that we are using. 

2.2 METRIC LEARNING METHODS 

Besides deriving high quality features, research works are also focused on the second important 

task for person re-identification, i.e. metric learning (24) (12) (25) (7) (26) (27) (28) which mainly 

aims at maximizing the probability of a true match pair being closer intrinsically to each other than 

to a wrong sample. 

Some of these works are mentioned here. One is these works is (5) where the capabilities of 

Adaboost algorithm is utilized to derive a strong classifier from number of two-class classifiers,  

considered weak, with each one associated to only one type of feature vector. Then another method 

is proposed in (50) where a linear function is derived by training a group of RankSVM method 

(56). This function is then able to measure the absolute difference between samples for some pair-

wise relevance constraints. Further (57) proposed a Probabilistic Relative Distance Comparison 

(PRDC) technique to maximize the probability of a true match pair being closer intrinsically than to 

a wrong sample. In (16), a method called (58)Pair-wise Constrained. Component Analysis (PCCA) 

was used to learn a metric which can project the data points onto a low dimensional space where 

the distance computations between data points follow the constraints of the reduced space. Hirzer et 

al. (28) tried to acquire a simplified Mahalanobis metric learning by relaxing the PSD constraint on 

it, without compromising its performance. Li at al. (7) gave a joint model of distance metric with a 

locally adaptive threshold rule which he named as Locally-Adaptive Decision Functions(LADF), 

and used it for person verification purpose. Prosser et al. (50) defined the issue of re-identification 

as a ranking task, and applied RankSVM on it to learn a subspace. 
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Then recently LOMO (29), proposed XQDA algorithm in its work which can learn a lower 

dimensional subspace matrix and a metric kernel on that subspace simultaneously by following 

generalized Rayleigh-quotient formulation. It is closely associated and motivated by Bayesian face 

(59), KISSME (25), Linear Discriminant Analysis (LDA) (60), local fisher discriminant analysis 

(LF) (6), and CFML (13). It is described in (29) as more of an extension to Bayesian face and 

KISSME. The LF algorithm applies FDA together with PCA and LPP to determine a low 

dimensional yet discriminant subspace. The CFML also learns a comparable subspace to XQDA 

but altogether points to a different task. However, both LF and CFML, after deriving a subspace, 

simply uses the Euclidean function on it, while XQDA further approach to use an efficient metric 

as well. 

Metric learning and similar methodologies reliably help in accelerating re-identification 

performance. But it must be noted that these mentioned strategies require a labelled set of training 

data that must be fixed in size and cannot be altered while performing the algorithm. 
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CHAPTER 3 

BASIC FRAMEWORK 

The system presented is designed to recognize any person from a noisy image given as a query. 

Input to the system is a blur test image acquired by a scanner or a digital camera, and its output is 

the person re-identified image from the stored database.  
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Fig. 2 Person Re Identification System Flowchart 
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3.1 BASIC MODULES 

It is a type of image retrieval system where we try to find the correct matches of the probe image in 

a set of gallery images and thus retrieve correct reoccurring instances of a person from massive 

databases of images from multiple camera images/videos. 

The system consists of the following modules: 

1. Training Phase from different camera images 

a) Human Detection  

b) Image Pre-Processing 

c) Descriptor Construction 

d) Database Generation 

e) Training the Classifier/Metric Learning 

2. Testing Phase for a probe image from some other camera 

a) Image Pre-processing 

b) Descriptor Construction 

c) Distance Metric Matching/Ranking 

d) Image Retrieval 

3.1.1 PERSON DETECTION 

If the data we have is a video sequence then first the person must be detected out of all the objects 

in the video frame and then further tracking is done using suitable algorithms. Picking out humans 

in captured images is a challenging task mainly because their body is non rigid and thus they have 

more than one shape models. So firstly a robust feature set is desired that can distinctly separate 

humans from other objects, even in cluttered scenes under difficult illumination. One of the 

methods which perform this task quite impressively compared to other existing methods is 

Histogram of Oriented-Gradient (HOG) (8) descriptors. It detects the human model by extracting 

gradient information at different scales of resolution applying a sobel convolution mask on the 
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image. Then the pixels corresponding to this model are segmented from the scene in each frame 

using some kind of fore-ground extraction algorithms. 

3.1.2 PRE-PROCESSING OPERATIONS 

They are required to alter the nature of the image, which makes extraction of features easier. The 

point to perform pre-processing of images is to smother any undesired contortions or improve the 

quality of image features that are critical for further evaluation. It significantly improves the 

performance of the recognition system. It includes: 

➢ Image Resizing 

The initial form of image captured from the scanning device is usually having high dimensions and 

also different devices may have different resolution settings. So, to ease down our computational 

complexity and also to work on uniform dimensional images, we perform image resizing. This is 

usually done by some kind of interpolation techniques which can perform operations like zooming, 

rotation, shrinking and geometric corrections. 

➢ Image Smoothening 

When we use a scanner for image acquisition then due to sensitivity issues of the scanner some 

kind of noise may get added in the image. Removing this undesired noise component is an 

important task in this image pre-processing, because this noise may affect segmentation and pattern 

matching. Convolution method is used for image smoothening. In this method some transformation 

or statistical operation is applied on the neighborhood of the target pixel and this value then 

replaces the original pixel value. We may also use median filters. 

So if we have a dataset of images then the images are first resized to fixed dimensions and then 

enhanced using filter operations before getting further processed. Most methods presume that these 

basic elementary steps of detection, tracking and segmentation are performed on the dataset already 

and then focus only on the rest of the tasks for re-ID. This work also gives importance to only the 

third and fourth step in the re-identification system, i.e. learning efficient descriptor and a metric. 

3.1.3 DESCRIPTOR CONSTRUCTION 

For person re-identification usually the non-rigid behavior of human body is taken care of by 

applying some kind of part based model. Then the descriptor is constructed by either estimating 
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local or global features, or both from the silhouettes of people. This representation is then finally 

saved in a database to be used further in search algorithms.  

These type of descriptors first divide the human body into subparts using segmentation methods 

or simply divide the image into regions which may be non-overlapping or overlapping based on a 

rough estimation of different portions of human body in the image. These regions may be fixed in 

size and position or adaptive to the human subparts (after being derived by an algorithm). Once we 

are done with this we represent these parts by global features or a. bag of local features. In this 

work we have used fixed part based model. The image is subdivided into seven overlapping 

horizontal strips of equal size which we are referring to as regions, that is approximately capturing 

the subparts of body, i.e. head, upper and lower torso and upper and lower legs. 

3.1.4 METRIC LEARNING 

Then the final step is comparing the derived features to find the most similar resemblances and so 

to get successful results, we require a good distance metric. Usually these metric learning methods 

are categorized as supervised learning and unsupervised learning, global learning and local 

learning, etc. In person re-ID, most of the works utilize supervised global distance metric learning 

techniques. They generally try to minimize the distance values between the same class objects 

while maximizing those from different classes. The most commonly used algorithms embrace the 

class of Mahalanobis distance functions, where the Euclidean distance is generalized through linear 

scaling and rotations of the feature space. The squared distance between the two vectors (23) 

𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 can be given as: 

𝐷𝑀(𝑥𝑖𝑘, 𝑥𝑗𝑘) = (𝑥𝑖 − 𝑥𝑗)
𝑇

𝑀(𝑥𝑖 − 𝑥𝑗) ,       3.1.4 (i) 

where M represent the learnt metric kernel. 

Then some other functions, used widely to find the most similar individuals by comparing their 

feature vectors, are quadratic distance’ sum on all points, sum of absolute differences and the 

correlation coefficients. But Mahalanobis distance overshadows all these by considering number of 

correlations among all feature vectors. But all of these simple metrics are restrictive in nature and 

non-flexible in a way that they consider all the features with same importance and have no 

intelligence to eliminate useless ones. Since some features may be more distinctive than others due 

to severe variations of illumination, pose and view point in the scene and thus they must be given 

more weight while weaker ones must be discarded. 
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So to overcome these shortcomings, distance metric learning techniques are being focused on by 

researchers like SVM, PRDC, etc. The general aim of SVM is to optimize an objective function and 

select the hyper-plane that separates two classes with maximum margins. While in PRDC, the 

objective function maximizes the probabilities of a true match pair being closer intrinsically to each 

other than to a wrong sample. 

3.2 PROPOSED METHOD 

In this work, we have presented a framework for re-Id problem and in the process we have created 

a deep structure of Gaussian model using two layers of Gaussian evaluation for re-identifying 

people across challenging datasets taking motivation from (61) (29) (35) and (38). We have called 

this descriptor as multi-layer Gaussian descriptor. 

Particularly, we first compactly extract local patch features in a part based region model and then 

describe the region by parameters extracted from local patches falling under that region. As we 

know that a human in an image has different body parts, each part having some intra-similarity in 

features. So to utilize this local structure in a person image we have roughly divided the image into 

horizontal strips called regions. Then to create a deeper structure we have also worked on smaller 

consistent patches in the image with (k x k) pixel neighborhood. Appearance of each local patch is 

characterized by a Gaussian distribution which we refer to as patch level or first level Gaussians. 

Now we are left with multiple Gaussian distributions of patches, and then on a fixed and defined set 

of patches in a region we model our region level or second level Gaussian distribution for each 

region. Finally the vectors of region Gaussian are concatenated and then used as a descriptor to 

represent the image. First level Gaussians are constructed on some kind of pixel features which can 

be color or texture data. For this we have used some kind of statistical methods to extract varied 

information in a pixel and then created d-dimensional pixel features. Details of this are given in 

chapter 4 and 6. 

However, there is an issue that we have overlooked. A Gaussian distribution lies on a particular 

Riemannian manifold, as per (30)information geometry, where we cannot apply Euclidean 

functions. While, to estimate our second level Gaussian distribution on a region we need to evaluate 

two parameters of a Gaussian, i.e. the mean and co-variance matrix (mathematical operations), on a 

set of first level Gaussians where mathematical functions cannot be applied simply because they do 

not lie on a Euclidean space. So, Riemannian manifold needs to be locally flattened into a 

Euclidean space. This can be done by projecting it onto a tangent space favored by Riemannian 

metric functions. There’s this Riemannian metric called the Log-Euclidean metric (31) which does 
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this work on Symmetric Positive Definite (SPD) matrix and thus renders us with an effective 

method to map a point on the manifold to a Euclidean tangent space via a matrix logarithm 

operator. The abilities of Log-Euclidean metric can be harnessed well if our Gaussian distribution 

at each level is embedded in the SPD matrix as described in the work (32). SPD matrix lies on a 

space which is also in fact a Riemannian manifold. So we first embed our Gaussian distribution in 

the SPD matrix and then apply LEM and half-vectorization approach to convert each SPD matrix 

logarithm of size  𝑑 ×  𝑑  into a 𝑑 ( 𝑑 + 1 )/ 2  size vector. 

Consequently, we have learned a discriminative and compact model on Gaussian distributions 

and now we need to learn distance between shrewd Gaussian segments to measure the separation 

between two image sets. But again our final descriptor is a Gaussian model which lies on a 

particular Riemannian manifold and most existing discriminant metric methods just work in 

Euclidean space. So we further apply this flattening space geometry approach to transform the 

space of second level Gaussians. Finally our proposed descriptor is obtained by concatenating all 

the feature vectors, derived for separate overlapping regions in the image, to give a single vector 

representation of the image as depicted in Fig. 3. 

Once we have constructed the feature vector representation of all the images, we have then used 

a discriminant distance metric to evaluate these features to find the closest matches to our probe 

image. We have used metric given in (29) as our discriminant metric. It learns a discriminant low 

dimensional subspace and a QDA metric on the derived subspace at the same time. This metric 

formulates the problem as a Generalized Rayleigh Quotient, and obtains a closed form solution by 

the generalized Eigen value decomposition. 

             (a) Pixel feature        (b) Patch  (c) Flatten Patch      (d) Region        e) Flatten      (f) Feature  

extraction     Gaussian layer       Gaussian Gaussian layer Region Gaussian      Vector 

Fig. 3 Multi-layer Gaussian descriptor model  



Thesis Work | 2017 
 

  P a g e | 28 
 

CHAPTER 4 

MULTI-LEVEL GAUSSIAN DESCRIPTOR 

4.1 PIXEL LEVEL FEATURES 

The basic element of an image is a pixel. It has immense amount of valuable data and what to use 

for our work depends on the need. Sometimes we use the color information and thus depict the 

pixel by its color values or we can use texture data in that pixel or gradient of its value with respect 

to adjacent pixels and the list goes on. In this work we have used a fusion of features and have 

depicted each pixel 𝑖 as a d – dimensional feature vector 𝒇𝒊 . This feature vector can be any such 

combination of features. We have performed our work on four different kinds of feature vectors 

where we have used the most sorted out feature, i.e. color values and color moments, texture 

features including Schmid filter responses and gradient values and spatial location of pixels. Their 

detailed explanation is as follows: 

4.1.1 SPATIAL FEATURES 

To credit the spatial information inherited by the pixels we have used pixel location as one of the 

element in pixel representation. As we know that the human body parts are symmetrical across the 

vertical axis and always follow a fixed representation in vertical direction, i.e. first comes the head 

then torso and then legs, and that is universal and do not change with any view point variations or 

little misalignments, while this cannot be said true for the body model in horizontal direction. So it 

is more trustworthy and distinctive to use the spatial location of a pixel in vertical direction (35) as 

our spatial feature rather than unreliable horizontal spatial positioning. For each pixel 𝑖  this is 

defines as 𝑦𝑖 ,considered in reference to the highest point of the image. 

4.1.2 TEXTURE DATA 

It is believed generally that our capabilities of recognizing the minute details of the scene and its 

understanding comes from the ability to process texture information and thus it is an important 

characteristic of a pixel. It can be broadly understood as a measure of variation of intensity values 

through the image surface. As already discussed in the related works section of this text that texture 

as a feature is not self-sufficient in depicting the person images distinctly but can separate out 
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textured images from non-textured ones. But when used along with some color description can 

prove to be effective.  

When texture features are evaluated by deriving a statistical distribution on intensity values of 

the pixels in an image then methods are called statistical methods. Some of these methods are 

namely, Fourier power-spectra., co-occurrence matrices, shift in-variant principal component 

analysis (SPCA), Tamura features, Wold decomposition, Markov random field, and also include 

some multi-resolution filtering techniques like Gabor and. wavelet trans-forms. They are also 

extracted either directly on the local surface level of the image or in the orientation level also called 

frequency domain of image. Then depending on the domain of evaluation, they are broadly 

classified into spatial domain texture methods and spectral domain texture methods. They both have 

their own advantages and disadvantages as summarized in Table 1. 

Table 1. Comparison of different textural feature extraction methods 

 

 

4.1.2.1 GRADIENT INFORMATION 

The gradient information can be understood as the variations in the intensity values of the adjacent 

pixel across different directions and their derivatives. Let I defines a image region and 𝑟 = (𝑥, 𝑦) 

gives the position vector of a point in I. Then the image gradient ( 𝜕𝐼/𝜕𝑥 , 𝜕𝐼/𝜕𝑦 ) at each pixel can 

be defined in terms of the magnitude  𝑚 = (
𝜕𝐼

𝜕𝑥
)2 +  (

𝜕𝐼

𝜕𝑦
)2  and the orientation angle 𝜃 =

 𝑎𝑟𝑐𝑡𝑎𝑛 (  𝜕𝐼 / 𝜕𝑥, 𝜕𝐼 / 𝜕𝑦 ) calculated from x and y derivatives 𝐼𝑥, 𝐼𝑦 of intensity I. The orientation 

θ is quantized into D orientation bins (61), we have used four, by voting weights to the nearest bins, 

and is described as a sparse vector 𝑓(∈  ℝ𝐷), and then called the gradient orientation vector (in 

short, GO ) now defined as : 𝑂𝜃 𝜖 {0°, 90°, 180°, 270°}. These weight values are estimated linearly by 

utilizing the distance approximations from the quantized orientations similar to the way we 

calculated GO vector as in (62). We have also demarcated the high gradient value points as edges 

by multiplying the gradient magnitude 𝑀 = √(𝐼𝑥
2 + 𝐼𝑦

2) to the quantized orientation 𝑂𝜃  and thus 

obtained the oriented gradient magnitude: 𝑀𝜃 = 𝑀𝑂𝜃. 
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4.1.2.2 SCHMID FILTER 

Schmid proposed texture feature filter banks which have rotational invariance property and can be 

estimated by convolving isotropic “Gabor-like” filters (49) with the image. It is a grey value 

descriptor 𝑑𝑙  computed for each image pixel location. Each texture channel is computed by 

convolving image points with the filter values and luminance channel. These filters combine 

different frequencies and scales together as follows: 

𝐹(𝑟, 𝜎, 𝜏) =
1

𝑍
cos (

2𝜋𝜏𝑟

𝜎
)exp (−

𝑟2

2𝜎2
)       4.1.2.2 (i) 

Here, 𝑟 depicts the radius, 𝑍  depicts the number of cycles of the harmonic function within the 

Gaussian envelope of the filters in context of Gabor filters and is called normalizing constant. 𝜎 

represents the scale of the filter. 

For our experiments we have used same settings as in (5), we have used 13 filters with scales σ 

between 2 and 10 and τ between 1 and 4. For smaller scales only small τ are used to avoid high 

frequency responses. In this work, several filters are generated by taking different banks parameters 

(𝜎, 𝜏) pairs. They are taken by ranges (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), (8,2), (8,3), (10,1), 

(10,2), (10,3) and (10,4), 13 filters in all and the responses of the image from Schmid filter bank are 

shown in Fig. 4. We are using these filters to create feature invariance to pose and view-point, 

while originally their creator designed them to handle rotational variations. A comparison of 

Schmid filters with rotational in-variant combinations of derivatives has shown that the Schmid 

filters outcasts them in its performance. 

 
 

Fig. 4 Rotationally Symmetric Schmid filters 

4.1.3 COLOR FEATURE 

Color is basically the way we humans understand and depict a range of wavelengths, approximately 

300 to 830 nm, in the electromagnetic spectrum, Color features are some property of these 

wavelengths that can describe an image pixel. Some already proposed and extensively used 

properties are color histogram, color moments (CM), color coherence vector (CCV) and color 
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Correlograms. Same color value can also be depicted differently just based on different color 

evaluation characteristics of the system and these different representations are called color spaces. 

Some widely used ones are RGB, LUV, HSV and HMMD. In Table 2 we enlist some of the color 

based features used in research works along with their merits and demerits. 

Table 2. Summarized Comparison of Several Color Descriptors 

 
 

4.1.3.1 COLOR SPACES 

The choice of the color space sometimes can largely influence the results of processing and thus it 

is important to select it wisely. Various color spaces describe the same color information in 

different ways such that it makes certain computations easier. They left us with a distinct way to 

identify colors. 

Some common color spaces are: RGB, CMYK, YUV, YCbCr, LAB, LUV and HSV. 

In the proposed method we have utilized the representation of color information on two different 

color spaces, namely normalized RGB and HSV. 

➢ RGB - RGB stands for red, green and blue color components. As stated by RGB model, each 

color image is a combination of intensity values of three different images, a Red, Green, and 

Blue image as shown in Fig. 5(a). Thus a color image matrix has three dimensions, each 

corresponding to one of the three colors, while a gray scale image is defined by only one 

dimension matrix. It can also be described as addition of three different color matrices. 

➢ HSV - The HSV color space (Hue, Saturation. and Value) describe color information in a way 

that is closer to how humans perceive them than what RGB values give. It is similar to 

selecting colors on a color wheel or palette. As hue value varies from 0 to 1.0, relatively the 
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colors vary from red to yellow to green, cyan, blue, magenta, and then back to red, i.e. in a 

circular base. As saturation varies from 0 to 1.0, the corresponding colors value or hues 

successively change from an unsaturated (gray shades) to completely saturated form of that 

color (no white component). As brightness parameter varies from 0 to 1.0, the corresponding 

colors become progressively brighter. Fig. 5(b) illustrates the HSV color space. 

 

   

(a) RGB      (b) HSV 

Fig. 5 Illustration of RGB and HSV color spaces 

Hue values linearly follow a high to low transition. When original image is compared with the 

hue plane image it clearly shows that shades of deep blue correspond to the highest possible values, 

and shades of deep red represent the lowest ones possible. Saturation can be defined as how pure a 

color is. The colors having higher saturation content have the highest values in the saturation plane 

image. Value roughly describes the brightness levels. 

 

4.1.3.2 COLOR MOMENTS 

As we know that moments are statistical parameters mostly used to describe a probabilistic 

distribution, in the same way moments on color spaces are measures that portray color distributions 

in an image. They have ability to distinctly depict an image and thus can give an estimation to 

measure similarity between image pairs. The premises for extracting moments on color spaces 

come from the presumption that color in an image can be depicted as a probabilistic distribution 

and as these moments can uniquely describe the probability distribution similarly moments on color 

space can also be used as discriminative features to describe an image. 

We usually utilize only the first three color moments as our feature due to the fact that major 

distribution information is inherited by the lower order moments. So if a color space used has three 
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dimensions like RGB space then total moments computed are 9, since it is evaluated on each 

channel separately. They are inclusive of both shape and color data in the pixels thus give a 

illumination invariant as well as scale and rotation invariant feature representation but they are 

weak at handling any occlusion. 

If we represent the 𝑗𝑡ℎ  image pixel at the 𝑖𝑡ℎ color channel as 𝑃𝑖𝑗 and number of image pixels 

being considered as N, then the three color moments are derived as: 

➢ Mean: It is defined as the average color value of the image pixels and denoted as 𝐸𝑖. 

𝐸𝑖 = ∑
1

𝑁
𝑃𝑖𝑗

𝑁
𝑗=1          4.1.3. (i) 

➢ Standard Deviation: The standard deviation is the square root of the variance of the 

distribution : 

𝜎𝑖 = √(
1

𝑁
∑ (𝑃𝑖𝑗 − 𝐸𝑖)

2𝑁
𝑗=1 )        4.1.3. (ii) 

where 𝐸𝑖 is the mean value, or first color moment, for the ith color channel of the image. 

➢ Skewness: Skewness is defined as a measure of the degree of asymmetry in the color 

distribution and thus it provides some insight on the shape of the color distribution. 

𝑆𝑖 = √(
1

𝑁
∑ (𝑃𝑖𝑗 − 𝐸𝑖)3𝑁

𝑗=1 )
3

       4.1.3 (iii) 

4.2 PATCH LEVEL GAUSSIANS 

Let I be a three-dimensional color image i.e. each pixel has three-dimensional representation and F 

be a transformed image representation of  𝑊 × 𝐻 × 𝑑  dimensions where d denotes the new 

dimensions of each pixel feature. Then this is learned from the image I by some transformation 

function, such that 

𝐹(𝑥, 𝑦) = ϕ(I, x, y),         4.2 (i) 

F can consists of any combination of feature values like intensity, color, gradients, filter responses, 

etc. Using this approach we have used a combination of color moments, Schmid filter responses, 

gradients and pixel location as our pixel feature vector. One of them is represented as:  

𝒇𝒊 =  [𝑦, 𝑀0° , 𝑀90° , 𝑀180° , 𝑀270° , 𝐻, 𝑆, 𝑉]𝑇 ,      4.2 (ii) 
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where y is the coordinate in the vertical direction, which can be used to keep the spatial orientation 

of the body, next 3 dimensions represent the gradient values and last three dimensions give the 

HSV space values. It is an 8-dimesion vector. Similarly we have defined a13-dimensional pixel 

feature using Schmid filter responses and a 7-dimension vector with color moments as it elements 

as: 

𝒇𝒊 = [𝑦 𝑚𝑒𝑎𝑛(𝑅)𝑠𝑡𝑑(𝑅)𝑚𝑒𝑎𝑛(𝐺)𝑠𝑡𝑑(𝐺)𝑚𝑒𝑎𝑛(𝐵)𝑠𝑡𝑑(𝐵)]     4.2 (iii) 

So after we extract the pixel features inside a patch, we then summarize them via the most 

classical parametric distribution which has mean and covariance as parameters: Gaussian 

distribution. 

Let F = { f1 : : : fD } be the set of d-dimensional local features and assume that they are 

independent and identically distributed, then we have demarcated the local neighborhood of ( k x k 

) pixels as a patch and then, considering number of such overlapping patches with some fixed patch 

interval,  for every patch ‘S’,  the Gaussian model 𝒩(ƒ ;  𝜇𝑠, 𝛴𝑠) is defined as,  

𝒩(ƒ ;  𝜇𝑠, 𝛴𝑠) =  
1

(2𝜋)𝑑/2|Σs|
[exp (−

1

2
(ƒ −  𝜇𝑠)𝑇Σs

−1(ƒ −  𝜇𝑠))] ,    4.2 (iv) 

as also described in (61) where | ∙ | is the determinant of a matrix, 𝜇𝑠 is the mean vector and Σs is 

the co-variance matrix of the patch s. ƒ, 𝜇𝑠 𝜖 ℝ𝑑  𝑎𝑛𝑑 Σs ϵ 𝕊d
+  and 𝕊d

+ is the space of real symmetric 

positive semi-definite matrices. The mean and. co-variance matrix are estimated as follows: 

𝜇𝑠 =  
1

𝑁
∑ 𝑓𝑖𝑖𝜖ℒ𝑠

          4.2 (v) 

Σs =  
1

N−1
∑ (𝑓𝑖 −  𝜇𝑠)(𝑓𝑖 −  𝜇𝑠)T

𝑖𝜖ℒ𝑠
       4.2 (vi) 

Where ℒ𝑠  is the area of the sampled patch ‘S’ and N denotes the number-of-pixels in ℒ𝑠 . The 

approximated co-variance matrix imbibes the information on variances of the features and their 

correlations. When combined with mean, it improves the overall representation of feature F.  

This covariance matrix is  𝑑 ×  𝑑  dimensional and is evaluated on the patch pixel points. The 

diagonal entries of the covariance matrix represent the variance of each feature, and the non-

diagonal entries are their respective correlations. Covariance computation serves a dual purpose as 

on one hand it depicts the variance of feature values in a local area and on the other hand filters out 

the noisy samples in the patch due to the applied average filter used in its computation. Due to the 

symmetry observed, Co-variance matrix have only (𝑑2 + 𝑑)/2 distinct values. Referring to a patch 

S, its co-variance Σs have no information about the order and the number of points. This points to 
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some level of invariance to scale and rotation for the related patch. But if we use some kind of 

orientation data, like the gradient with respect to x and. y, in the feature point representation then 

we can no longer see its rotation invariance property. The compactly derived mean vectors and 

covariance matrices can be effectively computed from integral images (10). Integral image used is 

constructed for the entire image and not for local regions separately, as the areas considered are 

overlapping in nature. 

Integral images as described in (10) are intermediate image representations utilized for the fast 

computation of region sums. Each pixel in a integral image is the sum of all the pixels inside a. 

rectangle whose boundary is defined by the upper left corner of the image and the pixel at interest 

point. For an image I, its integral image is depicted as:  

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐼𝑚𝑎𝑔𝑒(𝑥′ , 𝑦′)  =  ∑ 𝐼( 𝑥 , 𝑦 )𝑥 ≤ 𝑥′,𝑦 ≤ 𝑦′      4.2 (vii) 

It provides a fast computation method where sum of any rectangular region can be computed in a 

constant time. 

Now our next step is to compute a Gaussian distribution on a predefined region. So, we need to 

evaluate two parameters of a Gaussian, i.e. the mean and co-variance matrix (mathematical 

operations), on a set of first level Gaussians. But from the information geometry we know that 

Gaussian distribution lie on Riemannian manifold where Euclidean functions cannot be applied 

simply. So, this Riemannian manifold need to be flattened into a Euclidean space (54) (55) (31). 

This can be done by projecting it onto a tangent space favoured by Riemannian metric functions. So 

the Riemannian metric being used here is Log-Euclidean metric (31) which does this work on 

Symmetric Positive Definite(SPD) matrix and thus renders us with an effective method to map a 

point on the manifold to a Euclidean tangent space via a matrix logarithm operator. This is 

explained in detail in the next subsection. So it can be inferred from this that the abilities of Log-

Euclidean-metric can be harnessed well if our Gaussian distribution at each level is embedded in 

the SPD matrix, which is also considered as a Riemannian manifold, as described in the work (32). 

4.3 DEALING WITH RIEMANNIAN SPACE  

A manifold is a topological space that is locally similar to a Euclidean space. Each point on the 

manifold has a neighborhood for which there exists a homeomorphism (one-to-one, onto, and. 

continuous mapping in both directions), mapping the neighborhood to ℝ𝑚.  
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Fig. 6 A co-ordinate system ξ for a manifold S. It shows a one-to-one mapping from S to ℝ𝑛 

For differentiable manifolds, described as in (10), we can define the derivatives of the curves on the 

manifold. The derivatives which are derived at a point X on the manifold M lie in a vector space 

𝑇𝑋M., which is the tangent space at that point. 

A Riemannian manifold is a differentiable manifold M endowed with a Riemannian metric. In 

this every tangent space have inherit inner product <, >𝑋ÎM  , which transcends gradually and 

smoothly between points. A norm in this tangent space is denoted as: 

∥  𝑦 ∥𝑋
2  = < 𝑦 . 𝑦 >𝑋.         4.3 (i) 

The minimum length curve joining a pair of given points on the manifold is called the geodesic, 

and the distance between a pair of points on the manifold denoted as, 𝑑 ( 𝑋 , 𝑌 ), is delivered by 

the length of this curve. Let 𝑦 𝜖 𝑇𝑋M and 𝑋 𝜖 M. From X, we existentially have a unique curve or 

geodesic with its start point being on the tangent vector𝑦. Then the vector 𝑦 can be mapped to the 

end point of this geodesic by applying the exponential map 𝑒𝑥𝑝𝑋  :   𝑇𝑋 M ↔ M, and the distance of 

the geodesic can be defined as: 

 𝑑 ( 𝑋 ,  𝑒𝑥𝑝𝑋( 𝑦 )) = ∥  𝑦 ∥𝑋        4.3 (ii) 

Generally this map is onto, but in the neighborhood of a point 𝑋 ∈  M it is only one-to-one. 

Therefore, the inverse mapping logX : M ⟷ TXM  is distinctly established just around a small 

neighborhood of this point X. If for any  Y ∈ M , there exists many 𝑦 ∈ 𝑇𝑋M  such that 𝑌 =

𝑒𝑥𝑝𝑋(𝑦), then 𝑙𝑜𝑔𝑋(𝑌) is produced by the tangent vector with smallest norm. This is well depicted 

in Fig. 7. At this point it must be mentioned that both the operators are point-dependent clearly 

denoted by use of subscript. 
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Fig. 7 Mapping in Riemannian Space: (a) Homogeneous Spaces (b) Exponential Map  

        (c) Gaussian curvature of the 2-D surface S at p  

    (d) Approximating the true geodesic distance 

4.3.1 SPD MATRIX MANIFOLD 

As it is well described in (54) (55) (31), that the space of 𝑑 ×  𝑑  SPD matrices also lie on a 

particular Riemannian manifold when applied with suitable Riemannian metric and so is called as 

SPD manifold 𝑆𝑑
+. The SPD manifold, showing much resemblance to a Euclidean space locally, is a 

topological space with globally defined differential structures, which creates a possibility that 

curves’ derivatives can be defined on the manifold by using a logarithm map:  

𝑙𝑜𝑔𝑃: 𝑆𝑑
+  →  𝑇𝑃𝑆𝑑

+(𝑋 ∈ 𝑆𝑑
+)  i.e. equivalent to  𝑙𝑜𝑔𝑋:M ⟷ TXM ,   4.3.1 (i) 

These derivatives at the point 𝑃 on the manifold lie on a tangent space 𝑇𝑃𝑆𝑑
+, which has an inner 

product <, >𝑃. 

Now we need to perform the embedding of Gaussian distribution on a SPD matrix. This was 

well described by (53) (63) in their work where they transformed a Gaussian model to an SPD 

matrix using the theory of information geometry (30). In the manner similar to the work (32), we 

have also embedded our d-dimensional multi-variate Gaussian distribution into another 𝑑 + 1 

dimensional SPD matrices space which is also a Riemannian manifold denoted by 𝑆𝑃𝐷𝑑+1
+  .  

Let 𝒩(0, 𝐼) is the definition of a d-dimensional Gaussian distribution with the mean vector 0 

and co-variance matrix I which is an identity matrix and | ∙ | denotes the matrix determinant. Now if 
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a random vector x follows this Gaussian distribution 𝒩(0, 𝐼), then its afine transformation denoted 

as  𝑄𝑥 +  𝜇  also follows a Gaussian model 𝒩 (𝜇, 𝛴), where 𝛴 is a covariance matrix which can be 

decomposed as 𝛴 =  𝑄𝑇𝑄,   𝑓𝑜𝑟 |𝑄|  >  0 , and vice versa. Following this analysis (32), the 

Gaussian 𝒩(𝜇, 𝛴) can then be characterized by a affine transformation(𝜇, 𝑄). Now let us denote 𝜏1 

as the mapping from affine group - 

 AFF𝑑
+ = {(𝜇, 𝑄)|𝜇 𝜖 ℝ𝑑 , 𝑄 𝜖  ℝ𝑑×𝑑 , 𝑓𝑜𝑟 |𝑄| > 0}      4.3.1 (ii) 

to the special general linear group  

𝑆ℒ𝑑+1 =  {𝐴|𝐴 ∈  𝑅(𝑑+1)×(𝑑+1), |𝐴|  >  0},       4.3.1 (iii) 

and 𝜏2 denote the mapping from 𝑆ℒ𝑑+1 to SPD matrix space, then represented as, 

𝑆𝑃𝐷𝑑+1
+  =  {𝑃|𝑃 ∈  ℝ(𝑑+1)×(𝑑+1), 𝑃 =  𝑃𝑇 , |𝑃|  >  0}, i.e.,    4.3.1 (iv) 

𝜏1 ∶ AFF𝑑
+ →  𝑆ℒ𝑑+1   𝜏2 ∶  𝑆ℒ𝑑+1  →  𝑆𝑃𝐷𝑑+1

+      4.3.1 (v) 

(𝜇, 𝛴)  →  𝐶𝑄 [
𝑄 𝜇

0𝑇 1
]    ,   𝑆 →  𝑆𝑆𝑇       4.3.1 (vi) 

where 𝐶𝑄  =  |𝑄|−1/(𝑘+1). Through these two mappings, a d-dimensional patch Gaussian 𝒩(𝜇𝑠, 𝛴𝑠) 

can be embedded into a d+1 dimensional SPD space denoted as 𝑆𝑃𝐷𝑑+1
+  and thus is uniquely 

represented by a (𝑑 +  1)  ×  (𝑑 +  1) SPD matrix 𝑃𝑠 ; that is, 

𝒩(ƒ ;  𝜇𝑠, 𝛴𝑠) ~ 𝑃𝑠 = |𝛴𝑠|−1/(𝑑+1) [
 ∑𝑠 + 𝜇𝑠𝜇𝑠

𝑇 𝜇𝑠

𝜇𝑠
𝑇 1

]     4.3.1 (vii) 

 

But a problem occurs when there are not enough pixel points within a patch and consequently 

the matrix representation of a patch becomes singular. So this problem is handled by avoiding it as 

described in (61), and thus we add the identity matrix Id  to Σs with a small positive multiplied 

constant value, ϵs, as: 

Σs ← Σs + ϵsId.          4.3.1(viii) 

After this process is completed we are left with patch level Gaussian on the SPD manifold 𝑃𝑠 

which is then required to be mapped onto a tangent space via a matrix logarithm as described in the 

next subsection.   
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4.3.2 TANGENT SPACE MAPPING 

As described in (54) (31) (55), that SPD matrices do not lie on a vector space but instead on a 

specific Riemannian manifold. Therefore, to work with metrics that operate on Euclidean 

structures, we need to find a suitable mapping method that can transform each local neighborhood 

of a point on manifold to an open set in a Euclidean space, thus projecting the data points from the 

manifold to a Euclidean space. Firstly we need to choose a suitable tangent space 𝑇𝑋M on which 

our data is to be mapped (𝑋 ∈  M). The exponential map (𝑒𝑥𝑝𝑋) and logarithmic map (𝑙𝑜𝑔𝑋) can 

then be utilized to define appropriate coordinates values on that space. 

So now we will try to understand the Log-Euclidean metric. As observed in (31) and explained 

in (33) the simple matrix exponential (exp) is a diffeomorphism from the Euclidean space of 

symmetric matrices (𝑇𝑃𝑆𝑑
+) to the space of  𝑆𝑑

+. The important point is that a matrix logarithm 

of  𝑃 ∈ 𝑆𝑑
+  is unique, well defined and is a symmetric matrix 𝑢 =  𝑙𝑜𝑔(𝑃) ∈ 𝑇𝑃𝑆𝑑

+  whereas the 

matrix exponential  𝑃 =  𝑒𝑥𝑝(𝑢) of any symmetric matrix 𝑢 ∈  𝑇𝑃𝑆𝑑
+ gives a matrix ∈ 𝑆𝑑

+ . The 

Log-Euclidean framework employs the simple matrix logarithm as a mapping, resulting in a space 

of 𝑆𝑑
+ that is isomorphic (the algebraic structure of the vector space is conserved), diffeomorphic 

and isometric (distances are conserved) to the associated Euclidean space of symmetric matrices. 

The matrix logarithm can be viewed as the logarithm map with base point set at the identity matrix 

𝐼𝑑 

4.3.2.1 LOG-EUCLIDEAN METRIC 

By name we can understand that it points to a Euclidean metrics in the logarithmic domain. In the 

Log-Euclidean framework, the logarithmic multiplication  and the scalar logarithmic 

multiplication  are defined such that  𝑆𝑑
+  has a linear space structure.  

The exponential map associated to the Riemannian metric (10) is a global diffeomorphism (one-

to-one, onto, and with continuously differentiable mapping in both directions). 

𝑒𝑥𝑝𝑃(𝑦) =  𝑃
1

2exp (𝑃−
1

2𝑦𝑃−
1

2)𝑃
1

2       4.3.2.1 (i) 

Therefore, at all the points on the manifold on which we have embedded the patch Gaussians,i.e,  

𝑆𝑑+1
+ , the logarithm is uniquely derived and then the projected tangent vector of SPD matrix 𝑃𝑠 is 

given by : 

𝑦 =  𝑙𝑜𝑔𝑃(𝑃𝑠) ≜  𝑃
1

2log (𝑃−
1

2𝑃𝑠𝑃−
1

2)𝑃
1

2      4.3.2.1 (ii) 
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The exp and log operators are the ordinary matrix exponential and logarithm operators. They are 

different than 𝑒𝑥𝑝𝑋  and 𝑙𝑜𝑔𝑋 , which denote the point dependent manifold specific operators, 

depending on points 𝑃 𝜖 𝑆𝑑+1
+  to which the hyperplane is tangent.  

As we know, for symmetric matrices, the ordinary matrix exponential and logarithm operators 

can be calculated easily, so we apply simple matrix logarithm as a mapping to give us the projected 

vector on an Euclidean Space. At some specified tangency matrix P, this space can be seen tangent 

to the Riemannian manifold. The tangent space of 𝑆𝑑+1
+  is the space of (𝑑 + 1) × (𝑑 + 1) 

symmetric matrices, and both the manifold and the tangent spaces are  𝑚 =
(𝑑2+3𝑑)

2
+ 1 

dimensional. The matrix logarithm operators on our embedded SPD matrix 𝑃𝑠 can be derived by 

Eigen-value decomposition of a symmetric matrix (𝑃𝑠  =  𝑈𝐷𝑈𝑇 ) and is defined as, 

log(𝑃𝑠) =  ∑
(−1)𝑘−1

𝑘
(𝑃𝑠 − I)𝑘 = 𝑈log (𝐷)∞

𝑘=1 𝑈𝑇     4.3.2.1 (iii) 

Similarly, the matrix exponential series is defined as, 

exp(𝑃𝑠) =  ∑
𝑃𝑠

k

𝑘!

∞
𝑘=0 = 𝑈𝑒𝑥𝑝(𝐷)𝑈𝑇      4.3.2.1 (iv) 

where exp (𝐷)  denotes the diagonal matrix of the eigen-value exponentials. The exponential 

operator defined for all matrices, while the logarithmic operator is defined only for symmetric 

matrices with non-negative Eigen-values, 𝑆𝑑+1
+  . 

In the next step, some orthonormal co-ordinates are extracted from the projected vector so that 

the points in the tangent space can be presented with a minimal representation. Now the upper 

triangular or lower triangular part of the extracted matrix consists of 𝑑(𝑑 + 1)/2  independent 

coefficients in the tangent space for the symmetric matrix of dimensions 𝑑 × 𝑑 as the tangent space 

itself is the space of symmetric matrices and thus the off-diagonal points are counted twice during 

norm estimation.  

The orthonormal coordinate system is defined at point P on the tangent space via utilizing vector 

operation. For a tangent vector y in the tangent space at point P, the orthonormal co-ordinates can 

be derived by the vector operation as follows: 

𝑔𝑠 =  𝑣𝑒𝑐𝑃(𝑦) =  𝑣𝑒𝑐𝐼(𝑃−
1

2𝑦𝑃−
1

2)       4.3.2.1 (v) 

where 𝐼 denotes a identity matrix, and the vector operator at identity of a symmetric matrix Y is 

derived as: 
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𝑣𝑒𝑐𝐼(𝑌) =  [ 𝑦1,1 , √2𝑦1,2 , … , √2𝑦1,𝑑+1 , 𝑦2,2 , √2𝑦2,3 , … , 𝑦𝑑+1,𝑑+1 ]
𝑇
  4.3.2.1 (vi) 

This must be pointed out here that the orthonormal coordinates of 𝑦 acquired by this vector 

operator  𝑣𝑒𝑐𝑃(𝑦)  lie in a Euclidean space in ℝ𝑚  while tangent vector 𝑦  itself is a symmetric 

matrix is. So it is shown how this vector operator maps the Riemannian metric (64) defined on the 

tangent space onto a canonical metric validated in ℝ𝑚 

< 𝑦, 𝑦 >𝑃 =  ∥ 𝑣𝑒𝑐𝑃(𝑦) ∥2
2       4.3.2.1 (vii) 

Then by Substituting y from Eq. 4.3.2.1 (iii) in Eq. 4.3.2.1 (v), the projection vector of 𝑃𝑠 on a 

hyperplane, tangent to P, reduces to 

𝑔𝑠  =  𝑣𝑒𝑐𝐼(log (𝑃−
1

2𝑃𝑠𝑃−
1

2))       4.3.2.1 (viii) 

So the matrix of patch Gaussian Ps becomes m = (d2 + 3d)/2 + 1 dimensional vector 𝑔𝑠. The 

studies show that at the point of projection P, the neighborhood relation between the data points 

remain same on the manifold. Therefore the best choice for P, to ease down the computations, is the 

point of identity matrix, which simply means to apply the 𝑣𝑒𝑐𝐼   operator to the standard matrix 

logarithm. This also leads to a formulation of a generalized descriptor as we don’t need to optimize 

the projection points for each data under consideration, specifically. 

4.4 REGION LEVEL GAUSSIAN 

As we know that a human in an image has different body parts, each part having some intra-

similarity in features. So to utilize this local structure in a person image we have roughly divided 

the image into horizontal strips called regions. Now after we are done with estimating local 

Gaussian patches we are left with multiple Gaussian distributions of these patches, and now on a set 

of patches falling under these regions we model our region level or second level Gaussian 

distribution for each region. The patch Gaussians are already flattened and thus the mean and 

covariance information of a set of these Gaussian distributions can be easily determined to describe 

the second level Gaussian. We usually don’t order these patches while considering inside a region, 

since pose changes in the person images may change these local patch positions. 

 Here we have also considered the issue that some patches represent the background areas which 

differ from one image to other and also that mostly the person information is centrally placed in the 

image and thus to reduce the effects of these background data we give more importance to the 
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center aligned patches as in (61)by adding weight parameter to every patch similar to as it was done 

in weighted color histograms. In this work we have defined these weights as:  

𝑤𝑠 =  𝑒𝑥𝑝(−(𝑥𝑠 − 𝑥𝑐)2/2𝜎2)         4.4 (i) 

where 𝑥𝑐 = 𝑊/2, 𝜎 = 𝑊/4. Here 𝑥𝑠 refer to the x coordinate of the center pixel of patch ‘S’ and 

W is width of the image. Then the new weighted mean vector and co-variance matrix can be 

defined as 

𝜇 𝒢 =
1

∑ 𝑤𝑠𝑠 𝜖 𝒢
∑ 𝑤𝑠𝑔𝑠𝑠 𝜖 𝒢 ,         4.4 (i) 

Σ𝒢 =
1

∑ 𝑤𝑠𝑠 𝜖 𝒢
∑ 𝑤𝑠(𝑔𝑠 −𝑠 𝜖 𝒢 𝜇 𝒢)(𝑔𝑠 − 𝜇 𝒢)𝑇,      4.4 (ii)  

where 𝒢 represents the overlapping regions. Then incorporating both these values, i.e. the mean 

vector and co-variance matrix, we define the second level Gaussian distribution as 𝒩(𝑔; 𝜇 𝒢 , Σ𝒢). 

Consequently, we have learned a discriminative and compact model on Gaussian distributions 

and now we need to learn distance between shrewd Gaussian segments to measure the separation 

between two image sets. However, region Gaussian distribution also lies on a Riemannian 

manifold, as per information geometry (30), where we cannot apply Euclidean functions while most 

existing discriminant metric methods just work in Euclidean space. So, we further apply flattening 

and half-vectorization on these second level Gaussians to map them to a Euclidean space. Firstly 

the m-dimensional region distribution (61) is embedded into a m+1 dimensions SPD matrix 

denoted as Q, same as explained in the previous section: 𝒩(𝑔; 𝜇 𝒢 , Σ𝒢)~𝑄  . Here 𝑄  will be a 

(𝑚 + 1) × (𝑚 + 1) SPD matrix. Then again the regularization of co-variance matrix Σ𝒢 is done as 

Σ𝒢 ← Σ𝒢 +∈𝒢 𝐼𝑚. And then applying matrix logarithm and vectorization Q is mapped to tangent 

space of 𝑆𝑚+1
+  by to form a 

𝑚2+3𝑚

2
+ 1 dimensional feature vector denoted as 𝒛. 

Now we have feature vectors of all the predefined overlapping regions depicted as {𝒛𝒈}𝑔=1
𝐺 . We 

just concatenate them to form a single vector to maintain the spatial location helpful in matching 

the corresponding regions. Then the final representative features of a person image are depicted as 

𝒛 =  [𝒛𝟏
𝑻, . . . , 𝒛𝑮

𝑻]𝑇 

4.5 NORMALIZATION OF FEATURE VECTOR 

The final features that we have extracted have very high dimensions due to deep structure of the 

model. As mentioned in (65) normalization must be performed on the high dimensional features to 
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get better results out of them. So we have used a widely approached normalization method i.e. L2 

norm normalization on our features vector as described in (61). Since we are using varying 

properties of an image pixel as our pixel feature vector which can have different distribution 

characteristics on the same image, so it may happen that some dimensions will have higher values 

while some very low thus some dimensions values may dominate the others while computing 

distance functions on it after normalization. To deal with this biasing of dimensions, we perform 

mean removal, prior to normalization, on training set images as in (61), defined as: 

 𝒛 =  (𝒛 − 𝒛̅)/∥ 𝒛 − 𝒛̅ ∥2,        4.5 (i) 

where 𝒛̅  is the mean vector of the training set feature vectors. 
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CHAPTER 5 

METRIC EVALUATION 

In machine learning and Computer Vision, Classification is a challenge of finding to which set 

of categories (sub-classes) a new observation/query belongs, on the basis of a training dataset 

containing observations (or instances) whose category or sub-class membership is known. 

The distance metric learning approach has been proposed for both unsupervised and supervised 

problems. For a large data set of images {𝑥𝑖}𝑖=1
𝑁 ⊂  ℝ𝑛  in an unsupervised setting it would be 

expensive and tedious for a human to examine and label the entire data set. Then practically it 

would be better to select only a small subset of data points and examine them for getting the 

information on the relation between these points. Then this knowledge can be used further to 

classify the test data point to its correct class. 

Any algorithm that performs this classification is known as a Classifier. The terminology 

"classifier" may also refer to a mathematical function, implemented by an algorithm for 

classification that maps input data to a known identity of class. Some of them are namely, linear 

classifier, quadratic classifier, Bayesian classifiers, etc. 

5.1 QUADRATIC CLASSIFIER 

A quadratic classifier usually implemented in the field of machine learning and classification to 

divide representations of many classes of elements on a quadratic surface. It is closely related to 

linear classifiers. Statistical form of classification considers an object as a group of vectors for all 

observations A and each of this objects has a known class C. This set is called a training set. Then 

for a given new test vector problem is to determine the closest class. Then the quadratic solution for 

this classifier is given as 

𝐴𝑇𝑋𝐴 + 𝑌𝑇𝐴 + 𝑍          5.1 (i) 

5.1.1 Quadratic Discriminant Analysis 

Linear Discriminant Analysis and Quadratic Discriminant Analysis are two efficient classifiers, 

with one having linear decision planes and the other constructing quadratic decision planes, 

respectively as shown in Fig. 8. They are efficient and used widely because they have closed-form 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Categorical_data
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Quadric_surface
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Training_set
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solutions that are easy to compute, are suitable for multiclass classification, have been proved as 

effective in practice and have no hyper parameters to tune. 

 

Fig. 8 LDA vs QDA 

QDA can also be used to perform supervised dimensionality reduction, by projecting the training 

or test data to a quadratic subspace consisting of the directions which try to maximize the 

separation between classes. The projected subspace has dimensions necessarily less than the 

number of classes that proves it as a strong quality reduction. They are types of Bayesian classifiers 

and thus they can be derived from simple probabilistic models in which the class conditional 

distribution of the data points is modeled as 𝑃(𝑋|𝑦 = 𝑐)  for each class 𝑐. Baye’s rule is then used 

to estimate the predictions: 

𝑃(𝑦 = 𝑐|𝑋) =
𝑃(𝑋|𝑦 = 𝑐)𝑃(𝑦=𝑐)

𝑃(𝑋)
=

𝑃(𝑋|𝑦 = 𝑐)𝑃(𝑦=𝑐)

∑ 𝑃(𝑋|𝑦 = 𝑙).𝑃(𝑦=𝑙)𝑙
    5.1.1 (i) 

and we select the class c such that class conditional probability is maximized. 
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Now let’s consider that a random data point is given which was selected from class c, then the 

likelihood that it looked like a data point X is equivalent to the part – 𝑃(𝑋|𝑦 = 𝑐). To calculate this 

‘likelihood value’, LDA and QDA use a Multivariate Gaussian Distribution model for each class.  

More specifically, for linear and quadratic discriminant analysis, 𝑃(𝑋|𝑦)  is modelled as a 

Multivariate Gaussian distribution with density: 

𝑃(𝑋 | 𝑦 = 𝑐) =
1

( 2 𝜋 )𝑛| Σ𝑐 |1/2 exp (−
1

2
( 𝑋 − 𝜇𝑐 )𝑡Σ𝑐

−1( 𝑋 − 𝜇𝑐 ))   5.1.1(ii) 

A probability distribution model is a way for an algorithm to understand how data points are 

distributed in a d-dimensional space. To utilize this function as a classifier, we just need to estimate 

the class priors from the training data, i.e. P(y = c) (using the proportion of events of class c), the 

class means μc (d-dimensional mean vector) and the covariance matrices Σc ( d × d dimensional 

covariance matrix).They are learnt during training phase. 

In the case of LDA, it is assumed that the Gaussians for each class have the same covariance 

matrix: Σc = Σ for all classes c. LDA estimates separate μc for each class (using training points of 

that particular class), but Σc is computed for the entire training dataset. This gives linear decision 

planes. While for QDA, there are no assumptions on the covariance matrices Σc of Gaussians of 

different classes which leads to quadratic decision planes. 

5.2 XQDA METRIC LEARNING 

This was first described in LOMO (29). It is a subspace and metric learning method that learns a 

subspace projection matrix and a metric kernel on the subspace simultaneously. Here firstly we 

project the original high dimensional feature vector on the subspace and thus the dimensionality of 

the feature vector is reduced. Then using Mahalanobis distance metric on the reduced dimension 

feature vector we calculate the similarity score between the probe and gallery images. 

XQDA (29) is largely an extension of Bayesian face and KISSME, as in this algorithm a 

discriminant subspace is further learned along with a metric kernel. So first let us revise these 

methods in short. 

5.2.1 RELATED WORKS REVISIT 

Work summary as in (29), denoted the samples by vector X and their corresponding classes by 

vector Y. Consider a sample difference 𝜆 = 𝑥𝑖 − 𝑥𝑗. If 𝑦𝑖 = 𝑦𝑗  then 𝜆 will be called as intrapersonal 

https://www.youtube.com/watch?v=S6jXyRXn_vY
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difference while it will be called the extra-personal. difference if 𝑦𝑖 ≠ 𝑦𝑗 (59). Accordingly, two 

categories of variations can be defined: the intra class variations ΨI and the external class variations 

ΨE. Therefore, by distinguishing the above two classes our multi-class classification problem can 

be easily solved. Moghaddam et al. (59) proposed that each of the two classes be modelled with a 

Multivariate Gaussian distribution. This will lead us to a QDA model with ΨI and ΨE defined as 

our two classes. Furthermore, looking into (59) tells us that both ΨI and ΨE have zero mean. This 

algorithm was called Bayesian face and was applied to face recognition. Interestingly, in (25), a 

similar approach called KISSME was derived via the log likelihood ratio test of the two Gaussian 

distributions, and was applied to the problem of person re-identification. 

In (29) its given that for both of these techniques under the zero-mean Gaussian distribution the 

likelihoods of observing 𝜆 in ΨI and ΨE are defined as: 

𝑃(𝜆|ΨI) =
1

(2𝜋)𝑑/2|Σ𝐼|1/2 exp (−
1

2
𝜆𝑇Σ𝐼

−1𝜆)        5.2.1 (i) 

𝑃(𝜆|ΨE) =
1

(2𝜋)𝑑/2|Σ𝐸|1/2 exp (−
1

2
𝜆𝑇Σ𝐸

−1𝜆)       5.2.1 (ii) 

where Σ𝐼 𝑎𝑛𝑑 Σ𝐸 are the co-variance matrices of ΨI and ΨE, respectively, and 𝜂𝐼 𝑎𝑛𝑑 𝜂𝐸  tells the 

number of samples in the two classes. By applying the Bayesian rule and the log-likelihood ratio 

test (29), the decision function can be simplified as: 

𝑓(𝜆) = 𝜆𝑇(Σ𝐼
−1 − Σ𝐸

−1)𝜆         5.2.1 (iii) 

and so the distance function is derived between 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  as: 

𝑑(𝑥𝑖 , 𝑥𝑗) = ( 𝑥𝑖 − 𝑥𝑗)
𝑇

(Σ𝐼
−1 − Σ𝐸

−1)( 𝑥𝑖 − 𝑥𝑗)      5.2.1 (iv) 

This is equivalent to estimating covariance matrices Σ𝐼 𝑎𝑛𝑑 Σ𝐸 

5.2.2 XQDA METRIC 

As we know that our final feature dimensions d is large, and for classification this will require high 

computational capabilities of the system. So, a low dimensional space ℝ𝑟(𝑟 <  𝑑) is more suitable. 

In Bayesian Face method (59) it was suggested that  Σ𝐼 𝑎𝑛𝑑 Σ𝐸 be decomposed separately so as to 

reduce the feature dimensions. In KISSME algorithm (25), dimensionality reduction was first done 

by PCA and then  Σ𝐼 𝑎𝑛𝑑 Σ𝐸 were estimated in the subspace of PCA. However, in both methods the 

dimension reduction does not care for the distance metric learning and thus they are not optimal. 
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So in LOMO (29), Bayesian face and KISSME algorthims were extended to cross-view metric 

learning, where a subspace was learnt, represented as  𝑊 =  (𝑤1, 𝑤2, … , 𝑤𝑟)  ∈  ℝ𝑑×𝑟, with cross-

view data. It also learnt a distance metric kernel in r-dimensional subspace, for getting similarity 

measure between the cross-view data, simultaneously. Liao. et. al (29) represented a cross-view 

training set as {𝑋, 𝑍} with total c classes. 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈  ℝ𝑑×𝑛 containing 𝑛 samples in a d-

dimensional space from one view and 𝑍 =  (𝑧1, 𝑧2, … , 𝑧𝑚)  ∈  ℝ𝑑×𝑚 containing 𝑚 samples in the 

same d-dimensional space but from the other view. The distance function given in Bayesian face 

method when computed in the r dimensional subspace 𝑊  (29) is defined as: 

𝑑𝑊(𝑥, 𝑧) = (𝑥 − 𝑧)𝑇𝑊(Σ𝐼
′−1 − Σ𝐸

′−1)𝑊𝑇(𝑥 − 𝑧)      5.2.2 (i) 

where Σ𝐼
′ = 𝑊𝑇Σ𝐼𝑊 and  Σ𝐸

′ = 𝑊𝑇Σ𝐸𝑊. Then the kernel matrix is learnt as: 

𝑀(𝑊) = 𝑊(Σ𝐼
′−1 − Σ𝐸

′−1) 𝑊𝑇        5.2.2 (ii) 

Now we need to optimize  𝑑𝑊, but doing this directly is difficult because the subspace matrix W 

is constrained by the two inverse matrices. 

 It was told in previous works (59) that ΨI and ΨE have zero mean. So the projected samples of 

the two classes, on a given basis 𝑤, (29) will also centre at zero. But they may have variances 

𝜎𝐼 𝑎𝑛𝑑 𝜎𝐸 differing from each other and thus can be used for distinguishing two classes as shown in 

Fig. 9. Therefore, in the method being used in our work we try to maximize 𝜎𝐸(𝑤)/𝜎𝐼(𝑤) 

(objective function) by optimizing the projection direction 𝑤. Here 𝜎𝐼(𝑤) =  𝑤𝑇Σ𝐼𝑤 and  𝜎𝐸(𝑤) =

𝑤𝑇Σ𝐸𝑤 , therefore as described in (29) the objective function  𝜎𝐸(𝑤)/𝜎𝐼(𝑤)  is equivalent to 

Generalized Rayleigh Quotient 

𝐽(𝑤) =
𝑤𝑇Σ𝐸𝑤

𝑤𝑇Σ𝐼𝑤
          5.2.2 (iii) 

Maximization of 𝐽(𝑤) can be defined as 

max
𝑤

𝑤𝑇 Σ𝐸𝑤, 𝑠. 𝑡.  𝑤𝑇Σ𝐼𝑤 = 1        5.2.2 (iv) 

Then using the Generalized Eigen-value Decomposition problem as used in LDA this can be 

solved. According to this problem (29), of all the eigenvalues of  Σ𝐼
−1Σ𝐸  the largest one is the 

maximum value of 𝐽(𝑤), and the corresponding eigenvector 𝑤1 is our solution. The eigenvector 

corresponding to the second largest eigenvalue gives the second largest value of 𝐽(𝑤) and is also 

orthogonal to 𝑤1. Then our discriminant subspace is given as 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑟) and a kernel 
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matrix is also learnt. This kernel is then used in the distance function applied on the learned 

subspace. We have used Mahalanobis distance function to get the similarity scores between the 

probe and gallery set images. 

 

Fig. 9 Distributions of Intra Class (I) and External Class (E) Gaussian in one projected dimension 

5.2.3 MAHALANOBIS DISTANCE METRIC 

It often happens in many machine learning problems that the Euclidean distance functions applied 

between data points may not present the topology that we are trying to capture. Then Kernel 

methods come to the rescue and address this problem by mapping the input data points into new 

spaces where the Euclidean distance function can be applied. But there is an alternative approach 

that has been used widely in recent researches, i.e. to construct a Mahalanobis distance (quadratic 

Gaussian metric) over the original input space instead of using Euclidean distances. Recently a lot 

of interest has been taken in learning a kernel matrix function for getting the distance or similarity 

metric based on the class of Mahalanobis distance functions. In general, a Mahalanobis distance 

metric tries to measure the distance between the square of two data points 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗 : 

𝐷𝑀(𝑥𝑖𝑘, 𝑥𝑗𝑘) = (𝑥𝑖 − 𝑥𝑗)
𝑇

𝑀(𝑥𝑖 − 𝑥𝑗)        5.2.3 (i) 

where 𝑀 ≥ 0 is a kernel learnt during the training phase and is a positive semi-definite matrix and 

𝑥𝑖 , 𝑥𝑗 ∈ ℝ𝑑 is a pair of samples (𝑖, 𝑗).  

So using this function we calculate the similarity or distance score between the feature vectors of 

the probe set of images and the gallery set in the projected subspace. Then we sort these score 

values in ascending order so as to get the closest or most similar match at the top of the ranking 

scale. Using these sorted scores we can then retrieve all the occurrences of a person in other camera 

views. 



Thesis Work | 2017 
 

  P a g e | 50 
 

CHAPTER 6 

EXPERIMENT 

To show the efficiency of our method we have performed various analysis and comparisons with 

other feature descriptors and metrics and have showed the results in the form of CMC curves and 

Ranking tables. We have also performed image retrieval experiment on some of the datasets 

considering person re-identification as a recognition problem. 

 

Figure 10: Re-Id as a Recognition problem 

6.1 DATASETS AND DATABASE INFORMATION 

As we know that various challenges occur while acquiring the dataset of images across different 

cameras which change the visual characteristics of a person. Some of them are illumination 

variations, poses, view angles, scales and camera resolutions. Further there may be occlusion by 

objects or people and cluttered. Thus, in order to analyse and compare the robustness of Re-ID 

techniques it is important to acquire data that inherits these factors. We have used four datasets for 

the evaluation of the method’s effectiveness, namely VIPeR, CUHK01, PRID450S and GRID. 

For evaluation database of each dataset is created that has the following fields: 

o allimagenames -- all image names of the dataset 

o traininds_set/testinds_set -- index of the training/test images for each division (index order 

is the same as allimagenames) 

o trainimagenames_set/testimagenames_set -- image names of the each training/test division 

o trainlabels_set/testlabels_set -- person IDs of the training/test images for each division 

o traincamIDs_set/testcamIDs_set -- camera IDs of the training/test images for each division 
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6.1.1 VIPER  

The VIPeR dataset (5) has total 1264 images of 632 individuals captured from two different camera 

views Camera A and Camera B. Each individual has a single image in each camera. This dataset 

was collected to test viewpoint invariant pedestrian recognition and hence different viewpoints 

were captured. The view angles were roughly quantized into 45° angles. The dataset also has 

illumination variations between image pairs. The images are cropped and resized to 128 × 48 

pixels.  

For evaluation using training and testing phases the set of 632 image pairs is randomly split into 

two sets, one for training and other for testing with 316 image pairs in each and 10 such sets are 

created. For each image pair, Image from one camera is assigned as probe and the other camera as 

gallery, randomly.  This is done in both training and testing phase. Then the process of selecting a 

single image from the probe set and matching it with all images from the gallery set is then repeated 

for all images in the probe set. 

 

(a)VIPeR  (b) CUHK01  (c) PRID450s  (d) GRID 

Fig. 11 Dataset Image pairs: Pairs of images of the same person taken from different cameras, from 

four benchmark datasets 

6.1.2 CUHK01 

The Campus dataset (66) has 3884 images in total of 971 individuals manually cropped to 60x160 

pixels. Two disjoint camera view were selected where camera A captures more pose and viewpoint 

variations while camera B captures mainly frontal view and back view. Each person has two images 

captured in each camera. 

Training set contains 486 while testing set contains 485 individuals selected randomly and  

further they are divided into probe and gallery set same as we did in the case of VIPeR dataset. 
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6.1.3 PRID450S 

The PRID 450S dataset (23) is taken from PRID 2011, but then it re ordered as pair of images in 

two different camera A and B as done in VIPeR. It contains 450 single-frame image pairs of 

walking humans taken in two spatially disjoint camera views. Then the patches which contained the 

person were segmented manually by boundaries of resolution 100-150 pixels from original content 

in which the resolution was 720×576 pixels. 

In this we have assigned 225 individuals each to training and testing set selected randomly and 

separated as probe and gallery sets in the same manner as above. 

6.1.4 GRID 

The QMUL underground Re-Id (GRID) (67) dataset contains 250 pedestrian image pairs. For every 

single individual we have two frames, each captured in different camera view in a busy 

underground station. It has captured the challenges of variations of pose, colors, lighting changes; 

as well as poor image quality caused by low spatial resolution very well. Two folders are provided 

namely ‘Probe’ and ‘Gallery’ each containing 250 images of 250 individuals while gallery folder 

also contains additional 775 images that do not belong to probe set. These images are kept fixed in 

the testing set during cross validation. 

Each image in all these datasets is resized to 128×48 pixels to provide equal grounds for 

analyzing the descriptor. 

6.2 FEATURES SETTING 

We have used four different sets of d-dimensional pixel level feature vector  

Pixel Feature 1 (YCM) - In this we have used y distance and first two color moments i.e. 

mean and standard deviation of RGB color space to create a 7-d pixel feature. Color moments are 

calculated on patches of size 5 × 5  with patch interval of size 2 to reduce the computational 

complexity. Thus it reduces the size of the image to 64 × 24 . It can be represented as - 

[𝑦, 𝑚𝑒𝑎𝑛(𝑅), 𝑠𝑡𝑑(𝑅), 𝑚𝑒𝑎𝑛(𝐺), 𝑠𝑡𝑑(𝐺), 𝑚𝑒𝑎𝑛(𝐵), 𝑠𝑡𝑑(𝐵)]. 

Pixel Feature 2 (SCHMID) – This is a texture feature representation of pixels comprising of 

13-d Schmid filter responses using Schmid filter banks applied on 10 × 10  non-overlapping 

patches. Banks parameters (𝜎, 𝜏) pairs for 13 filters are  (2,1), (4,1), (4,2), (6,1), (6,2), (6,3), (8,1), 

(8,2), (8,3), (10,1), (10,2), (10,3) and (10,4). 
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Pixel Feature 3 (YGOHSV) – Then we have used a combination of 1-d y distance value, 4-d 

gradient orientation and 3-d HSV color space values; in total 8-d pixel feature representation. 

Pixel Feature 4 (YGOnRnG) – It is a 7-d pixel feature representation comprising of a 

combination of 1-d y distance value, 4-d gradient orientation and 2-d nRnG color space values. 

Here the nRGB is the normalized color space obtained by normalizing RGB color space values 

(e.g., nR = R/(R+G+B)). We have used only {nR, nG} values, since this color space has 

redundancy. 

After constructing d-dimensional pixel feature we have extracted multi-level Gaussian descriptor 

for seven horizontal strips or regions (R=7) that are overlapping. Each strip comprises 32 × 48 

pixels. In each region local patch Gaussians are extracted from the patches of 5 × 5 pixels with 

patch interval 2.  

6.3 PERFORMANCE ANALYSIS AND COMPARISON 

We have the evaluated our procedure on 10 sets of random data splits into training and testing sets. 

We have represented the results in the form of average Cumulative Matching Characteristic (CMC) 

curves and comparisons of recognition percentage of ranks in tabular form. The training data is 

divided uniformly into a gallery and probe set. Then every pair of image is further divided and then 

assigned, in no specific rule, to probe and gallery set. Then CMC curve is generated for the query 

set by selecting a query image (image from camera a/camera b) and sorting its similarity scores to 

the gallery images (i.e. every image in camera b/camera a). It gives the rank for every image in the 

gallery, relative to the selected probe image. This procedure is done in repetition for each image in 

probe set and averaged. Thus the CMC curve is then the expectation of getting the true match in 

first r matches.  

6.3.1 Comparison Of Different Pixel Features 

We have shown the effectiveness of each pixel feature separately and also by combining them on 

CMC curves as shown in Fig. 12 (a), (b), (c). In the Table 3 we have presented rank-1, rank-10 and 

rank-20 recognition rates. Clearly rank-1 recognition rate of Y-Color Moment pixel feature is 

highly greater than that of Schmid filter pixel feature. It proves that for person re-id problem color 

features perform much better than texture features. But texture feature when combined with color 

feature exceeds the rank-1 recognition rates of the color feature when used alone. We have also 

showed the identification rates for different combination of pixel features in Table 3. 
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Fig. 12(a) CMC curves for VIPeR dataset 

 

Fig. 12(b) CMC curves for PRID450s dataset 
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Fig. 12(c) CMC curves for GRID dataset 

Table 3: Comparison of recognition rates for different combination of pixel features on VIPeR, 

PRID450s and GRID dataset. The best results are highlighted by bold numbers. 

Pixel Feature Used 
VIPeR 

R=1 R=10 R=20 

PRID450s 

R=1 R=10 R=20 

GRID 

R=1 R=10 R=20 

Y+Color moment(YCM) 31.2 72.9 86.8 34.2 73.3 85.7 11.8 38.2 49.2 

Schmid 7.4 34.2 50.1 19.0 49.8 65.3 10.3 35.4 44.1 

YCM+Schmid 34.7 78.1 86.8 43.1 81.1 90.3 16.9 45.7 56.7 

YCM+Schmid+HSV 43.9 85.1 92.5 56.7 89.6 95.4 22.5 55.3 66.4 

YCM+Schmid+nRnG 43.4 85.1 92.0 56.8 91.2 96.0 20.3 52.0 64.2 

YCM+Schmid+HSV+nRnG 47.5 87.9 93.7 62.4 93.5 96.9 23.7 58.2 68.1 

6.3.2 Comparison with Other Meta Descriptors 

We have compared our multi-level Gaussian distribution model with covariance distribution 

models. Covariance descriptor (19) when used globally on the image gives 26.9 % rank-1 rates on 

VIPeR dataset. The Cov-of-Cov is also a hierarchical descriptor which uses only covariance 
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modelling of both patch and region (39) (38). It gives 33.9% rank-1 rates on VIPeR approximately 

7 % better than non-hierarchal single level covariance rates.  

We also compare our descriptor with other single-layered meta descriptors as chosen in (61) 

namely: Heterogeneous Auto-Similarities of Characteristics (HASC) (68), Hybrid Spatiogram and 

Covariance Descriptor (HSCD) (20), Local Descriptors encoded by Fisher Vector (LDFV) (16), 

Second-order Average Pooling (2AvgP) (33) and GOLD (37) . 

The HASC (68) is a fusion descriptor of the covariance and the Entropy and Mutual Information 

(EMI) descriptor. It encodes linear relations using co variances while nonlinear associations are 

encoded by information-theoretic measures like mutual information and entropy. Both of these 

descriptors have equal dimensions and EMI descriptor tries to capture the non-linear dependency 

within pixel features. The HSCD is again a hybrid descriptor composed of spatiogram and 

covariance feature. Spatial histograms of different regions are accumulated and three sub features 

are then extracted in spatiogram. While in covariance feature, several color spaces and intensity 

gradients are taken as pixel features and then statistical feature vectors are extracted from pyramid 

of covariance matrices. 

In LDFV pixel features are encoded using Fisher Vector coding. This coding tries to encode 

difference of pixel features from GMM means which are pre-trained. We have set the number of 

GMM components to 16 as recommended in (16). The GOLD (37)uses mean vector and covariance 

matrix to describe a region of image and also applies Log-Euclidean metric and half vectorization 

to flatten the covariance matrix. The 2AvgP (33) also describes an image region by the zero-mean 

covariance matrix using second-order generalizations of average and max-pooling, and applies 

LEM and half-vectorization to obtain a robust feature vector. 

We have listed the performance of our method in Table 4(a) and 4(b)and the compared descriptors. 

All these descriptors in Table 4(b) are non-hierarchical or single layered descriptors and ignore the 

local properties of regions. They have similar performances. We can clearly see that our descriptor 

has good rank-1 rate of 47.5 % that is outperforming all these methods. It is also evident from the 

table that the both the hierarchical methods i.e., our method and the one given by (38) cov-of-cov, 

have higher rank-1 matching rates than the non-hierarchical ones and thus it can be inferred that 

hierarchical model always performs better. Between the two hierarchical methods mentioned, the 

difference is that we have used mean information together with the covariance value while (38) has 

used just the covariance information. Since our method has 13.6 % better rank-1 rates than 
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covariance hierarchical descriptors so this proves that mean information is valuable feature of the 

image. 

Table 4: Comparison of our descriptor with other meta descriptors wirh best results highlighted in 

bold 

(a) 

Descriptors 
VIPeR 

R=1   R=10   R=20 

PRID450s 

R=1  R=10  R=20 

GRID 

R=1  R=10  R=20 

CUHK01 

R=1  R=10  R=20 

MLGD (Our method) 47.5   87.9   93.7 62.4   93.5   96.9 23.7   58.2   68.1 54.5   83.5   90.5 

COV-of-COV (38) 33.9   76.6   87.7 47.0   83.4   91.6 16.6   45.0   55.2 40.9   72.5   81.1 

 

(b) 

HASC (68) 30.9   70.6   81.8 41.8   76.3   85.2 12.9   35.6   47.3 38.6   68.7   77.1 

GOLD (37) 27.1   66.5   77.7 40.5   73.8   82.2 10.9   29.2   37.4 35.3   65.2   74.2 

HSCD (20) 31.2   86.5   91.8 - - - - - - - - - 

2AvgP (33) 28.8   68.5   79.2 44.7   75.8   83.8 12.9   36.7   47.4 36.1   68.1   76.3 

LDFV (16) 25.3   66.8   79.4 32.1   66.9   77.6 16.2   41.9   53.1 36.4   71.0   80.3 

Cov (19) 26.9   65.8   77.1 40.4   73.4   82.1 10.6   29.0   36.7 34.5   64.5   73.6 

6.3.3 Comparison with Descriptors Using XQDA Metric 

We have also shown that despite of using the same metric learning method our descriptor is also 

better than some other descriptors using the same XQDA metric. This idea to apply the XQDA 

metric on them comes from (61), and the descriptors used are also same, namely, LOMO (29), 

Color Histogram + LBP (69) and gBiCov (15). To compare them on different datasets their features 

these features were extracted on these datasets using the available source codes  

We can clearly see from Table 5 that, excluding PRID450s dataset, in rest all, the rank-1 

matching rates of our Gaussian fusion method exceed all other descriptor in matching. LOMO 

feature rates are the second highest in the comparison table. So we can infer from this that since the 

classification step in all the cases has used a common metric so the difference in rates is all due to 

descriptor performance. Thus our descriptor clearly has some robust qualities. 

Table 5: Comparison of our descriptor with other descriptors using the same XQDA metric for all. 

Descriptors 
VIPeR 

R=1   R=10   R=20 

PRID450s 

R=1   R=10   R=20 

GRID 

R=1   R=10   R=20 

CUHK01 

R=1   R=10   R=20 

MLGD(Our method) 47.5   87.9   93.7 62.4   93.5   96.9 23.7   58.2   68.1 54.5   83.5   90.5 

LOMO (29) 41.1   82.2   91.1 62.6   92.0   96.6 17.9   46.3   56.2 49.2   84.2   90.8 
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CH+LBP (69) 27.7   69.3   82.4 21.5   60.8   74.4 16.2   45.0   57.1 31.3   70.4   81.5 

gBiCOV (15) 22.8   64.0   77.8 27.9   67.2   76.8 10.6   30.4   41.4 24.1   55.6   67.2 

6.3.4 Comparison With Some Popular State-Of-The-Art Methods 

In Table 6, we have listed the reported results on some of the state-of-the-art methods, including 

Metric Ensemble (69), Mid Level Filter Learning (MLFL) (18), SCNCD (70), Salience Matching 

(17), Semantic attribute representation (71) and LOMO (29). It is clearly visible that our descriptor 

performance goes above many state-of-the-art methods and creates new state-of-the-art results, i.e., 

47.5%, 62.4%, 54.5% and 23.7% rank-1 rates on VIPeR, PRID450S, CUHK01 and GRID dataset, 

respectively. Since LOMO and our method make use of the common metric learning method, it is 

evident that our feature descriptor has better design and recognition capabilities. The proposed 

descriptor also outperforms the efficient metric ensemble (69) by 1.6 % rank-1 rates. 

Table 6: Comparison with well known State-of-art results. The best results are highlighted with 

bold font. 

Descriptors 
VIPeR 

R=1 R=5 R=10 R=20 

CUHK01 

R=1 R=5 R=10 R=20 

MLGD(Our method) + XQDA 47.5 78.8 87.9 93.7 54.5 75.7 83.5 90.5 

Metric Ensemble (70) 45.9 77.5 88.9 95.8 53.4 76.4 84.4 90.5 

LOMO + XQDA (29) 40.0 - 80.5 91.1 49.2 75.7 84.2 90.8 

SCNCD (71) 37.8 68.5 81.2 90.4 - - - - 

Semantic (72) 31.1 68.6 82.8 94.9 32.7 51.2 64.4 76.3 

SalMatch (17) 30.2 52.0 65 - 28.5 45.0 55.0 - 

MLFL (18) 29.1 - 65.9 70.9 34.3 55 65 75 

6.3.5 Running time 

We have evaluated a working model for the system by coding on Matlab. We have used MEX 

functions given by (61)  for calculating the covariance matrices. The system used for computations 

is a PC with Intel(R) Core(TM) i5-2450M @ 2.50GHz CPU. The total evaluation time for single 

feature descriptor and as well as the fusion case is as shown in Table 6. The time displayed 

represents the average time taken for all the images in a dataset. Results in Table 6 correspond to 

the images of VIPeR dataset. The proposed descriptor is computationally expensive and slower 

than covariance descriptor while it is 5 times faster than BiCov[29]. The recognition cost of our 
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method is nearly equal to LOMO while descriptor is slower than LOMO. But there are methods 

like (18) (17) (14) which have even higher computational cost compared to our method and thus 

our method still ought to be approached for. 

Table 7: Average feature extraction time (seconds/image). 

Cov(for RGB 

pixel features) 

YCM Schmid Fusion MLGD LOMO gBiCov 

0.021 1.451 2.821 5.21 0.016 7.8 

6.4 IMAGE RETRIEVAL RESULTS 

We have also performed an image retrieval experiment where we have tried to retrieve the true 

match of a probe image from the disjoint camera images. We have performed this on three datasets 

namely, VIPeR, CUHK01and PRID450s and displayed the results in the Fig 13. 

We have first given a probe image to the system and then retrieved closest 10 images from the 

disjoint gallery set. One of these 10 retrieved images contain the true match of the probe image 

from a different view angle and is highlighted by red boxes in the Fig 13. It must be mentioned here 

that while VIPeR and PRID450s have singleframe per person in each camera images, CUHK01 has 

two or more image frames per person in each camera images. 
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Fig. 13(a) Image retrieval results on VIPeR 

 

 

 

 

Fig. 13(b) Image retrieval results on PRID450s 
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Fig 13(c) Image retrieval results on CUHK01 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

This work presents an efficient and effective method, a multi-layer Gaussian descriptor model, for 

the problem of person re-ID. The descriptor presented in this work utilizes both value of mean and 

covariance of pixel features present in an image and thus returns a robust and discriminative 

representation of data. It first models the local patches as Gaussian distribution and then from a set 

of local patches it models the region descriptor as Gaussian. In this way it does not neglect the 

relevant information in the local structures of the image while acquiring a global representation. 

The results of our in depth experiments proved that the proposed descriptor can even outperform 

the state-of-the-art performances on four public datasets. We have also conducted image retrieval 

experiment where we treat this problem as a recognition problem. The results prove that our 

descriptor is robust against viewpoint changes and illumination variations. For effective metric 

learning we have used XQDA metric described in LOMO (29). It is formulated as a Generalized 

Rayleigh Quotient, and by applying generalized eigenvalue decomposition a closed-form solution 

can be obtained. 

In future the deep network of Gaussian descriptors can be explored to consider the local 

structure of human appearances in more depth. In addition, some other kinds of pixel features can 

be tested to search for any further improvements in the process accuracies. We can try to find 

computationally low cost features to reduce the extraction and search time of the system. Then we 

can also try to learn a new metric which is highly discriminative for high dimensional feature 

vectors. 
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