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ABSTRACT 

 
In this project, we are addressing the problem of matching sketches (forensic) to mug shot 

images. In previous researches, forensic sketch matching offered only solutions to highly 

accurate viewed sketches(sketches that are drawn by looking at the person). The difference 

between forensic sketches and viewed sketches is that the former is drawn by a police artist with 

the help of the description provided by an eye witness. We here present a framework called local 

feature based discriminant analysis(LFDA)to differentiate between various forensic drawings. In 

LFDA we separately express both drawings and pictures using SIFT feature descriptor and 

multi-scale local binary patterns(MLBP). We then use multiple discriminant projections on 

subdivided vectors of feature based representation for least separation matching. On comparison 

to a leading face recognition system, LFDA provides substantial rectification in comparing 

forensic drawings to corresponding face images.  
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1 INTRODUCTION 

 There has been seen tremendous progress in biometric recognition. In law field, 

additional tools have been used in determining criminal’s identity. In addition to circumstantial 

evidence and DNA reports, if any fingerprint is been found at the scene of investigation or if the 

surveillance camera captures the image of the face of the suspect, then these clues can be helpful 

in determing the identity of the culprit using automated biometric identification. But, in many 

crime cases occur when none of this information can be provided but there is an eye witness is 

present in the place of crime scene. In such cases, a forensic sketch is drawn by the sketch artist 

with the help of eye witness with the information provided by the witness. After the successful 

completion of the sketch, it is distributed among police officers and media in order to be 

distributed to people with the hope that someone would recognize the suspect. These sketches 

which are drawn with the help of eye witnesses are called forensic sketches and in this paper we 

will describe a robust method to match these sketches (forensic sketches) to large mug shot 

images (database) maintained by law enforcement agencies. 

 There are two different kinds of face sketches which we are going to discuss here: first, 

viewed sketch and second, forensic sketch. Viewed sketches are the ones which are drawn as the 

one making sketch views the photograph of any person or in some cases it could be that he is 

making sketch while looking at the person only. Forensic sketches are the ones which are drawn 

with the help of details provided by the eye witness. Many research papers which are published 

have focused on matching of viewed sketches in spite of the fact that in real world situations 

forensic sketches are involved. But these both kinds of sketches prove to be a great challenge 

when it comes to face matching as that sketch image may contain different kinds of textures 

when compared to the stored photographs with which they are being matched. Still, forensic ones 

have to face extra challenges as the eye witness may not be able to provide or may forget the 

exact look of the suspect which in return leads to incomplete and inaccurate sketch. 

 We focus on two important difficulties here in matching the forensic sketches: firstly, 

matching across image modalities, and secondly, performing face recognition despite the 

inaccurate face sketch. So, in order to solve the first problem, we have used LFDA (local-based 

feature discriminant analysis to perform minimum matching of distances between sketches 
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drawn and photos available as explained in fig. 1. The second mentioned problem is faced when 

we match forensic sketches to large mug shot images. 

 

                       

                             
(a)                (b) 

 

   

   
(c) 

Figure 1. The difference between forensic sketches and viewed sketches. (a) Viewed sketches and their 
corresponding photographs, (b) two pairs of good quality forensic sketches and the corresponding 
photographs, and (c) two pairs of poor quality forensic sketches and the corresponding photographs. 
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2 RELATED WORKS 

 Compared to photo-based face recognition, there is only a limited amount of research on 

sketch recognition, and most of the published work is focused on hand drawn sketches. 

The initial research in this field focused on matching sketches that are drawn by an artist while 

looking at the corresponding photograph of the person or the person himself (called viewed 

sketches). Although both viewed and forensic sketches are drawn by an artist, the difference is 

that forensic sketches are drawn following the verbal description of an eyewitness or the victim, 

instead of looking at a person or photograph. During the drawing of a forensic sketch, the 

witness usually cannot exactly recall the facial appearance of a suspect. Additionally, it is often 

the case that a disparity exists between the understanding and depiction of facial features 

between an artist and the eyewitness. Thus, additional challenges are posed when matching 

forensic sketches against face photographs. The studies on viewed sketches can be grouped into 

two categories: modal transformation and modal-insensitive feature representation. Approaches 

in the first category convert images from one modality (e.g. sketch) into a different modality 

(e.g. photo). Methods for modal transformation include eigen transformation, local linear 

embedding (LLE), multi-scale Markov Random Fields model, and embedded hidden Markov 

model (E-HMM) . The merit of these approaches is that traditional face matching algorithms, 

designed for the target modality, can be used following the modal transformation. However, the 

synthesized photo (for example) can only be called a pseudo-photo due to its inferred content. In 

fact, these synthesis methods are often solving a more difficult problem than the recognition task. 

The second approach to sketch recognition attempts to learn or design feature representations 

that reduce the intra-class difference caused by modality gap while preserving interclass 

separability. Representative methods in this category include common discriminant space, 

coupled spectral regression (CSR), coupled information-theoretic projection (CITP) and partial 

least squares (PLS). 

 Major work (on viewed sketches) was performed by Tang et al., these studies shared a 

common approach i.e., a synthetic photograph is generated from a given sketch (or vice versa 

method is used) and then a standard face recognition is used to match the synthetic photographs 

to the ones in the gallery. The different synthesis methods used to recognize the face included an 

eigen transformation method, local linear embedding and belief propagation on a Markov 
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random field. Other methods for synthesis were also proposed as well. Al Nizami studied the 

impact of the sketches which various artists drew. 

 Klare and Jain had proposed a method of matching sketches that used same feature 

based approach that had been successful in many other scenarios of heterogeneous face 

recognition(especially when matching near infrared face image to visible light). In using SIFT 

feature descriptors, the intrapersonal variations between the sketch and photo modality were 

diminished while still maintaining sufficient information for interclass discrimination. Such an 

approach is similar to other methods of matching near-infrared images (NIR) to visible light 

images (VIS), where local binary pattern feature descriptors are used to describe both NIR and 

VIS images. In this paper, we extend our previous feature-based approach to sketch matching. 

This is achieved by using local binary patterns (LBP) in addition to the SIFT feature descriptor, 

which is motivated by LBP’s success in a similar heterogeneous matching application by Liao et 

al. Additionally, we extend our feature-based matching to learn discriminant projections on 

“slices” of feature patches, which is similar to the method proposed by Lei and Li. 

 

Xiaoou Tang et. al. proposed a method in which automatic retrieval of face images from police 

mug-shot databases is critically important for law enforcement agencies. It can effectively help 

investigators to locate or narrow down potential suspects. However, in many cases, the photo 

image of a suspect is not available and the best substitute is often a sketch drawing based on the 

recollection of an eyewitness. In this paper, we present a novel photo retrieval system using face 

sketches. By transforming a photo image into a sketch, we reduce the difference between photo 

and sketch significantly, thus allowing effective matching between the two. Experiments over a 

data set containing 188 people clearly demonstrate the efficacy of the algorithm. A novel face 

sketch recognition algorithm is developed in this paper. The photo-to-sketch transformation 

method is shown to be an effective approach for automatic matching between a photo and a 

sketch. Surprisingly, the recognition performance of the new approach is even better than that of 

human beings. Of course, like most of the regular photo-based face recognition researches, 

further verification of our conclusions are needed on a larger scale of test. Nevertheless, without 

considering the absolute recognition accuracy, the relative superior performance of the new 

method compared to the human performance and the conventional photo based methods clearly 

demonstrates the advantage of the new algorithm. 
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Xiaogang Wang et. al. proposed a novel face photo-sketch synthesis and recognition method 

using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) 

given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a 

photo; and 3) searching for face photos in the database based on a query sketch drawn by an 

artist. It has useful applications for both digital entertainment and law enforcement. We assume 

that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and 

have no occlusions. To synthesize sketch/photo images, the face region is divided into 

overlapping patches for learning. The size of the patches decides the scale of local face structures 

to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch 

model is learned at multiple scales using a multiscale MRF model. By transforming a face photo 

to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is 

significantly reduced, thus allowing effective matching between the two in face sketch 

recognition. After the photo-sketch transformation, in principle, most of the proposed face photo 

recognition approaches can be applied to face sketch recognition in a straightforward way. 

Extensive experiments are conducted on a face sketch database including 606 faces.  A novel 

face photo-sketch synthesis and recognition system. Given a face photo (or a face sketch), its 

sketch (or photo) can be synthesized using a multiscale Markov Random Fields model, which 

learns the face structure across different scales. After the photos and the sketches have been 

transformed to the same modality, various face recognition methods are evaluated for the face 

sketch recognition task. Our approach is tested on a face sketch database including 606 faces. It 

outperforms existing face sketch synthesis and recognition approaches. 

 

Xinbo Gao et. al. proposed a technique in which sketch synthesis plays an important role in face 

sketch-photo recognition system. In this manuscript, an automatic sketch synthesis algorithm is 

proposed based on embedded hidden Markov model (E-HMM) and selective ensemble strategy. 

First, the E-HMM is adopted to model the nonlinear relationship between a sketch and its 

corresponding photo. Then based on several learned models, a series of pseudo-sketches are 

generated for a given photo. Finally, these pseudo-sketches are fused together with selective 

ensemble strategy to synthesize a finer face pseudo-sketch. Experimental results illustrate that 

the proposed algorithm achieves satisfactory effect of sketch synthesis with a small set of face 

training samples.  
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Framework of sketch synthesis algorithm based on E-HMM. 

 
Framework of the sketch synthesis algorithm based on selective ensemble. 

By analyzing the difference between sketches and photos systematically, we have presented a 

sketch synthesis algorithm based on E-HMM and selective ensemble. First, the E-HMM is 

adopted to model the nonlinear relationships in sketch-photo pairs, and a series of pseudo-

sketches of the same photo are generated using different models. Then those generated pseudo-

sketches are fused together with the selective ensemble strategy. Finally, a finer face pseudo-

sketch is synthesized. The experimental results show that the proposed method achieves 
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satisfactory sketch synthesis effect with a small set of face training samples. Whereas, a clear 

disadvantage of the E-HMM is that it is hard to learn more complex nonlinear relationship. So, 

we plan to research on how to improve the structure of the E-HMM in the future. The proposed 

method can be used to set up an automatic face sketch recognition system, which can find 

various applications in the fields of counter-strike, safety guard, and image or video retrieval 

based on sketches. 

 

Brendan F. Klare et. al. in this previous research in sketch matching only offered solutions to 

matching highly accurate sketches that were drawn while looking at the subject (viewed 

sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police 

sketch artist using the description of the subject provided by an eyewitness. To identify forensic 

sketches, we present a framework called local feature-based discriminant analysis (LFDA). In 

LFDA, we individually represent both sketches and photos using SIFT feature descriptors and 

multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on 

partitioned vectors of the feature-based representation for minimum distance matching. We apply 

this method to match a data set of 159 forensic sketches against a mug shot gallery containing 

10,159 images. Compared to a leading commercial face recognition system, LFDA offers 

substantial improvements in matching forensic sketches to the corresponding face images. We 

were able to further improve the matching performance using race and gender information to 

reduce the target gallery size. Additional experiments demonstrate that the proposed framework 

leads to state-of-the-art accuracys when matching viewed sketches. 
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3 PROPOSED METHOD 

3.1 FEATURE-BASED SKETCH MATCHING 

 Image feature descriptor describes an image or a part of image using any type of feature 

vector that usually captures the distinct characteristics of the given image. These kinds of 

features (image-based) have proven to be successful in face recognition, mostly with the use of 

LBPs (local binary patterns). 

 

3.1.1 Feature-Based Representation: 
 
 “We will now be describing the way to represent any face with image-descriptors. As 

most image-descriptors are not sufficiently verbose to fully describe any face image, the image 

descriptors are calculated or estimated over a set of evenly distributed sub-regions of the face 

image. The feature vectors located at sampled regions are summed up together to describe the 

face. The feature sampling point is chosen using two parameters: s as region or patch size and 

δ as displacement size. The region size denoted as s is defined as the size of the square window 

over which we compute the image feature. The displacement size denoted as δ denotes the 

number of pixels the patch is displayed for each sample; hence, (s- δ) is the number of 

overlapping pixels in two adjacent patches. This is like scanning a window of s x s on the 

complete face image. For any H x W dimensional image, the number of vertical (M) and 

horizontal (N) sampling locations are given by M= (H-s)/δ+1 and N= (W-s)/δ+1. At each of the 

N.M patches, we calculate the d-dimensional image feature vector φ. Now we concatenate these 

image feature vectors into a single (N. M. d) - dimensional image vector φ.  Whereas f(I) : 

I         φ denotes the extraction of a single feature descriptor from an image, sampling multiple 

features using overlapping patches is denoted as F(I) :I         φ. Minimum distance sketch 

matching can be performed directly using this feature-based representation of subjects i and j by 

computing the normed vector distance ||F(Ii) –F(Ij) ||.” 

 
 “In our sketch matching framework, two feature descriptors are used: SIFT and LBP. The 

SIFT feature descriptor quantizes both the spatial locations and gradient orientations within an s 

x s-sized image patch, and computes a histogram in which each bin corresponds to a combination 
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of a particular spatial location and orientation. For each image pixel, the histogram bin 

corresponding to its quantized orientation and location is incremented by the product of 1) the 

magnitude of the image gradient at that pixel and 2) the value of a Gaussian function centered on 

the patch with a standard deviation of s=2. Tri-linear interpolation is used on the quantized 

location of the pixel, which addresses image translation noise. The final vector of histogram 

values is normalized to sum to one. It is important to reiterate that because we are sampling SIFT 

feature descriptors from a fixed grid and we do not use SIFT key-point detection, the SIFT 

feature descriptor is computed at predetermined locations. 

 For the local binary pattern feature descriptor, we extended the LBP to describe the face 

at multiple scales by combining the LBP descriptors computed with radii r ϵ {1; 3; 5; 7}. We 

refer to this as the multi-scale local binary pattern (MLBP). MLBP is similar to other variants of 

the LBP, such as MB-LBP, but we obtained slightly improved accuracy using MLBP. 

 The choice of the MLBP and SIFT feature descriptors was based on reported success in 

heterogeneous face recognition and through a quantitative evaluation of their ability to 

discriminate between subjects in sketches and photos. Though variants of LBPs have led to 

substantial success in previous heterogeneous face recognition scenarios, the use of SIFT feature 

descriptors for this application is quite novel. However, the recent work clearly demonstrates the 

success of SIFT feature descriptors for viewed sketch recognition. SIFT feature descriptors have 

also been shown to perform comparatively with LBP feature descriptors in a standard face 

recognition scenario. These feature descriptors are well-suited for sketch recognition because 

they describe the distribution of the direction of edges in the face; this is the information that 

both sketches and photos contain. By densely sampling these descriptors, sufficient 

discriminatory information is retained to more accurately determine a subject’s identity over 

previously used synthesis methods. The feature-based representation requires each sketch and 

photo image to be normalized by rotating the angle between the two eyes to 0 degree, scaling the 

images to a 75 inter-ocular pixel distance, and cropping the image size to 200 by 250 pixels..” 
 

3.1.2 Local Feature-Based Discriminant Analysis: 
 “ 
With both sketches and photos characterized using SIFT and MLBP image descriptors, we 

further refine this feature space using discriminant analysis. This is done to reduce the large 
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dimensionality of the feature vector ϕ. A straightforward approach would be to apply classical 

subspace analysis (such as LDA) directly on ϕ, and to extract discriminant features for 

classification. However, there are several problems with this approach. First, the feature 

dimensionality is too high for direct subspace analysis. In our experiments, each image is divided 

into either 154 overlapping patches (for s = 32) or 720 overlapping patches (for s = 16), with 

each patch producing a 128-dimensional SIFT descriptor or a 236-dimensional MLBP descriptor. 

The second problem is the possibility of over fitting due to the small sample size (SSS). 

 In order to handle the combination of a large feature size and small sample size, an 

ensemble of linear discriminant classifiers called LFDA is proposed. Other discriminant analysis 

methods have been proposed to handle the SSS problem, such as random sampling LDA, 

regularized LDA, and direct LDA. However, we chose the proposed LFDA method because it is 

designed to work with a feature descriptor representation (as opposed to an image pixel 

representation), and it resulted in high recognition accuracy.” 

 “In the LFDA framework, each image feature vector ϕ is first divided into “slices” of 

smaller dimensionality, where slices correspond to the concatenation of feature descriptor 

vectors from each column of image patches. Next, discriminant analysis is performed separately 

on each slice by performing the following three steps: PCA, within class whitening, and between 

class discriminant analysis. Finally, PCA is applied to the new feature vector to remove 

redundant information among the feature slices to extract the final feature vector. 

 To train the LFDA, we use a training set consisting of pairs of a corresponding sketch 

and photo of n subjects (which are the n training classes). This results in a total of 2n training 

images with two supports for each subject i: the image feature representation of the sketch Φi
s = 

F(Ii
s) and the photo Φi

p = F(Ii
p). We combine these feature vectors as a column vector in training 

matrices and refer to them as Xp = [Φ1
p Φ2

p ….Φn
p] for the photo, Xs = [Φ1

s Φ2
s ….Φn

s] for the 

sketch, and X = = [Φ1
s Φ2

s ….Φn
s Φ1

p Φ2
p ….Φn

p] for the sketch and photo combined.” 

 “The first step in LFDA is to separate the image feature vector into multiple sub vectors 

or slices. Given the M x N array of patches consisting of SIFT or MLBP descriptors, we create 

one slice for each of the N patch columns. With a d-dimensional feature descriptor, each of the N 

slices is of dimensionality (M. d). We call this a “slice” because it is similar to slicing an image 

into N pieces. After separating the feature vectors into slices, the training matrices now becomes 

Xs
k ϵ ℝM.d,n , Xp

k ϵ ℝM.d,n , and Xk ϵ ℝM.d,2n (k = 1 . . . N), which are all mean-centered. 
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 “We next reduce the dimensionality of each training slice matrix Xk using the PCA 

matrix Wk ϵ ℝM.d;r with r eigenvectors. The purpose is to remove the noisy features which are 

usually associated with the trailing eigenvectors with the smallest eigen values. In our 

experiments, we use the 100 eigenvectors with the largest eigen values (which preserves about 

90 percent of the variance). The discriminant extraction proceeds by generating the mean 

projected class vectors  

                                            Yk = Wk
T(Xk

s + Xk
p)/2                                                                     (1)” 

“which are used to center the sketch and photo training instances of each class by  

                                   Ẍk
s = Wk

T Xk
s – Yk                                                                                                                   (2) 

                                      Ẍk
p = Wk

T Xk
p – Yk        

 “To reduce the intrapersonal variation between the sketch and the photo, a whitening 

transform is performed. Whitening the within class scatter matrix reduces the large feature 

dimensions that represent the principal intrapersonal variations, which in this case correspond to 

intrapersonal differences between sketches and photos. To do so, we recombine the training 

instances into Ẍk = [ Ẍk
s Ẍk

p ]. PCA analysis is performed on ~Xk such that the computed PCA 

projection matrix Ṽ ϵ ℝ100,100 retains all data variance from ~Xk Let Ak ϵℝ100,100 be a diagonal 

matrix whose entries are the eigen values of the corresponding PCA eigenvectors Ṽk. The 

whitening matrix is Vk = ( Λk
-1/2 Vk

T)T.” 

 “The final step is to compute a projection matrix that maximizes the intra person scatter 

by performing PCA on VT Yk (which is the whitening transform of the mean class vectors). 

Using all but one of the eigenvectors in the PCA projection matrix, the resultant projection 

matrix is denoted as Uk ϵ ℝ100,99. This results in the final projection matrix for slice k: 

                                                     Ψk = Wk Vk Uk                                                                      (3) 

 With each local feature-based discriminant trained, we match sketches to photos using 

the nearest neighbor matching on the concatenated slice vectors. We first separate the feature 

representation of an image into individual slices.” 

                                            Φ = [Φ(1)T Φ(2)T      Φ(N)T]T                                             (4) 

Where Φ(i) ϵ ℝM.d is the ith slice feature vector. We then project each slice using the LFDA 

projection matrix ψk, yielding the new vector representation ψ ϵ ℝM.99: 

Ψ = [(ψk
T φ(1))T (ψk

T φ(2))T……( ψk
T φ(1))T]T 
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With the LFDA representation of the sketch Ψs and photo Ψp, the normed distance || Ψs – Ψp|| is 

used to select the gallery photo with the minimum distance to the probe sketch.” 

  “The proposed LFDA algorithm is a simple yet effective method. From the results, we 

can clearly see that LFDA is able to significantly improve the recognition performance over the 

basic feature-based sketch matching framework First, LFDA is more effective in handling large 

feature vectors. The idea of segregating the feature vectors into slices allows us to work on more 

manageable sized data with respect to the number of training images. Second, because the 

subspace dimension is fixed by the number of training subjects, when dealing with the smaller 

sized slices, the LFDA algorithm is able to extract a larger number of meaningful features. This 

is because the dimensionality of each slice subspace is bounded by the same number of subjects 

as a subspace on the entire feature representation would be.” 

3.2 TRAINING 

Training set of sketch/         Break each image                         Group patch vectors into slices 

Photo correspondences        into set of  

          overlapping  patches 

                              
= 
 

        
 
      φ(1)                      ψ1 
      φ(2)     ψ2 
         .             .                       
         .      . 
         .      . 
     φ(N)    ψN 
 

Figure 2:  An overview of the training using the LFDA framework. 
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3.3 MATCHING 

 

             

Probe sketch                              

           
Gallery photos             Feature extraction   Discriminant 

   and grouping into   projection 

   slices 
Figure 3: An overview of the recognition using the LFDA framework. 

3.4 METHODOLOGY USED 
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3.4.1 SIFT (Scale Invariant Feature Transform) 
 

Sketch matching is a key aspect in many fields like computer vision which would include 

tracking of objects, matching of objects or it could be scene recognition. It is widely used in 

forensic studies for matching of objects. The main step in matching of images is done by 

extracting features from images or sketches. This is an essential part in matching as we cannot 

compare complete images or sketches in every case. In case of forensic recognition we have 

sketches, which are to be compared to either real time images or mug shot images already saved 

in our database. So in such cases we cannot compare complete images. Hence we extract key 

features from the sketches to compare them with the test images. We use such properties of the 

features that will make them suitable for matching different images of an object. The features 

which we extract do not vary with image scaling and rotation but they are partially invariant in 

illumination. The feature are well localized in both spatial and frequency domains, thereby 

reducing the probability of disruption by clutter, occlusion, or noise. Efficient algorithms can 

help in extracting large number of features from typical images. Highly distinctive features allow 

matching of single feature with high probability against large data base of features, thereby 

providing a basis for object recognition. Cascade filtering approach minimizes the cost of 

extraction of features. There are four major stages of computation in this method which are used 

to generate the set of image features: 

1. Scale-space extrema detection: It is the first stage of our method. It searches over all 

scales and image locations. Difference-of-Gaussian function is used to identify potential 

interest points that do not vary with scale and orientation. 

2. Key-point localization: A detailed model is fit to determine the location and scale for 

each candidate location. Based on measures of their stability, key-points are selected. 

3. Orientation assignment: Based on local image gradient directions more than one 

orientation can be assigned to each key-point location. All future operations are 

performed on image data that has been transformed relative to the assigned orientation, 

scale, and location for each feature, thereby providing invariance to these 

transformations. 
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4. Key-point descriptor: we measure local image gradients at selected scales in the each 

around each key-point. These are transformed into a representation that allows for 

significant level of local shape distortion and change in illumination. 

 Since it transforms image data into scale invariant co-ordinates relative to local features, 

this approach has been named Scale Invariant Feature Transform(SIFT).  

 An important aspect of the approach is that it produces large numbers of features which 

densely cover the images over the full range of scale and location. A typical image of size 

500*500 pixels will give rise to around 2000 stable features (although this value depends on both 

images material and choice of various parameters). The quantity of features available are 

particularly important for object recognition, where ability to detect smaller objects in cluttered 

background requires that at least 3 features are to be correctly matched with each object for 

reliable identification. 

 To do image matching and recognition, SIFT feature is first extracted from a reference 

pack images and entered in a database. New image is matched by individually comparing the 

feature from the new image to the previous database and finding the matching features based on 

Euclidean distance of its feature vectors.  

 The key point descriptions are highly distinctive, which allows single feature to find its 

correct match with appreciable probability in a large database of attributes. However, for a 

cluttered image, many features of the background won’t have any correct match in the database, 

leading to rise in many false matches in addition to the correct answers. The correct matches can 

be extracted from the full set of values by identifying subsets of key points that agree on the 

object, its location, scale and orientation of the new image. The probability that some features 

will agree on such parameters by chance is much lesser than the probability that any individual 

function match will be in error. The determination of such consistent clusters must be performed 

rapidly by use of an efficient hash table implementation of available generalized Hough 

transform. 

 

 Every such cluster of 3 or greater features that agree upon an object and its pose are then 

subject to further depth verification. First, a least-squared calculation is made for an affine 

approximation for the given object poses. Also, any other image features consistent with the pose 

is identified, and outliers are to be discarded. Finally, detailed computations are to made of the 
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probability that a given set of features indicates for the presence of an object, given the 

suitability of fit and cases of probable false matches. Object matches that shall pass all these tests 

can be selected as correct with high probability and confidence. 

 

3.4.1.1 Detection of scale-space extrema:  
 
As described above, we will detect key points by using a cascade filtering approach that makes 

use of efficient algorithms to identify candidate’s locations that are examined in further detail. 

Now, the first stage of key-point detection is to find such locations and scales that can be 

repetitively assigned with differing views of the same entity. Detecting locations that are 

invariant to scale change of the image may be accomplished by searching for suitable features 

across all possible scales, using continuous function of scale called as scale space.  

 It has been seen that that for a variety of reasonable assumptions, the only possible type 

of scale-space kernel is the Gaussian function. So, the scale space for an image is defined as a 

function, L(x, y, σ) that is produced using the convolution of a variable-scale Gaussian statement, 

G(x, y, σ), with an input image, I(x, y): 

   L(x, y, σ) = G(x, y, σ) * I(x, y) 

where * is the convolution operation for x and y, and 

   퐺(푥,푦,휎) = 푒 ( )/   

 To detect efficiently stable key-point locations in a scale space, we have proposed a 

method using a scale-space extrema in the difference-of-Gaussian function given with the image, 

D(x, y, σ), which can be computed from difference of two nearby scales which have been 

separated by a constant multiplicative factor referred k: 

  D(x, y, σ) = (G(x, y, kσ) – G(x, y, σ)) * I(x, y)  

   = L(x, y, kσ) – L(x, y, σ)       (1) 

 There are many reasons for choosing this type of function. Firstly, it is a particularly 

efficient type of a function for computing as the smoothed images, L; needs to be computed as in 

any case for scale space feature description. Similarly, D can also be computed by feature of 

simple image subtraction. 
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 Figure 4 : For each octave of scale space, the initial image is repeatedly convolved with Gaussians to 

produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the 

difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-sampled by a factor of 2, 

and the process repeated. 

In addition, a difference-of-Gaussian function gives a close approximation to the scale 

normalized Laplace of Gaussian, 휎 ∇ 퐺 as studied and given by Lindeberg. Lindeberg explained 

that the normalization of the Laplacian with the factor σ2 which is selected for true scale 

invariance. In detailed experiments, Mikolajczyk found that maxima and minima of 휎 ∇ 퐺 

produces more stable images compared to a range of other possible image functions, such as 

gradient function Hessian or Harris corner function.  

 

 The relationship between D and 휎 ∇ 퐺 can be evaluated using the heat diffusion 

equation (parameterized in terms of σ rather than more usual t = 휎 . 

∇ 퐺 

 From this, we see that, ∇ 퐺 can be computed from the finite difference approximation to 

휕퐺
휕휎 , using the difference of nearby scales at kσ and σ. 
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∇ 퐺 ≈
퐺(푥,푦,푘휎) − 퐺(푥, 푦,휎)

푘휎 − 휎
 

and therefore, 

퐺(푥, 푦,푘휎) − 퐺(푥,푦, 휎) ≈ (푘 − 1)휎 ∇ 퐺 
 The above equation shows that when the difference-of-Gaussian function is having scales 

differing by a constant value factor it already incorporates the σ2 scale normalization required in 

by the scale-invariant Laplacian. The factor (k-1) in the shown equation is a constant value on 

over all scales and hence does not give any influence on extrema location points. The 

approximation error tends to go to zero as k tends to 1, but we have found that approximate value 

results have almost no impact upon the stability and results of extrema detection for significant 

differences in scale, like in case of k=√2.  

 A more efficient approach is the construction of D(x, y, σ) which is shown in Figure. 

Initially, value is incrementally convolved with Gaussians for producing images separated using 

a constant factor k in scale space, as shown arranged in the left column stack. We have chosen to 

divide each octave of scale space (i.e., doubling of σ) into a integer number, s, in intervals, so 

푘 = 2 / . Using this, we shall produce s + 3 images in the stack which will consist of blurred 

images for each of the octaves, so that final extrema detection will cover an entire octave. 

Adjacent image scales are to subtracted in order to produce a difference-of-Gaussian images 

which are available on the right. Once a complete octave gets processed, we undergo a re-

sampling process of the Gaussian image that will again have twice the initial value of σ. (it will 

be made up of 2images starting from the top of the stack) by taking into consideration every 

second pixel in each of the rows and columns. The accuracy of taking the samples is relative to σ 

is not different than for the start of the previous taken octave, whereas the computation is greatly 

reduced to a certain extent.  
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 Figure 5: Minima and maxima of the difference-of-Gaussian images are detected by comparing a pixel 

(marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked with circles). 

 
(a) Local extrema detection: For doing the detection of the local maxima and minima of 

D(x; y; σ) each of the sample point is to compared with respect to its eight neighbors in the 

current available image and nine neighbors in the scale below and above. It is to be selected only 

in case if it is larger than all of its neighbors or relatively smaller than all of them under 

consideration. The cost of this check is comparatively low due to the fact that a lot of the sample 

points will get eliminated in the first few checks of the evaluation process.  

 An important issue that may be faced is to calculate the frequency of sampling in the 

images and scale domains that are needed to reliably detect the value of the extrema. 

Unfortunately, it results that there is no minimum spacing in the samples that will be able to 

detect all extrema, since the extrema can randomly close together. This can be seen by assuming 

a white circle over a black background, which would have a single scale of space maximum 

where the circular positive region of difference-of-Gaussian function matches to the size and 

location of the circle. For an elongated ellipse, there shall be two maxima near to each end of an 

ellipse. As these locations of maxima is a continuous function of the images, for some ellipse of 

intermediate elongation there will be a transition stage from a single maximum to two with the 

maxima closing arbitrarily to each other near the next transition. 

 Therefore, we are required to settle for a solution that trades off the efficiency 

completely. In fact, it might be expected and is confirmed in our experiments, extrema that are 

closer together are generally unstable to small perturbations of the images. We can determine the 
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best options experimentally by studying upon a range of sampling frequencies and using them to 

provide the most reliable results for a realistic simulation of the given matching task. 

 

3.4.1.2 Accurate Key-point Localization:  
 
Once a key point has been found on comparing a pixel to its neighbors, the next task is to 

perform a detailed fit for the nearby data for location, scale along with ratio of principal 

curvatures. This information enables points to be rejected that have lower contrast (and are 

therefore quite sensitive to noise) or are poorly localized along the given edge. 

 The initial implementation of such approach (Lowe, 1999) simply located key-points at a 

given location and scale of the central sample point of the analysis. However, recently Brown 

developed a method (Brown and Lowe, 2002) for fitting a given 3D quadratic function using the 

local sample points to determine the interpolated locations of the maximum. His experiments 

showed that it provides a substantial improvement for matching and stability and of the points. 

His approach uses the facts of Taylor expansion (till quadratic terms) of the scale-space function, 

D(x, y, σ) shifted so that origin coincides to the sample point: 

                                                           푫(풙) = 푫 + 흏푫푻

흏풙
풙 + 	ퟏ

ퟐ
풙푻 흏

ퟐ푫
흏풙ퟐ

풙	                                                 

where D and its derivatives are calculated at the sample point and x = (x; y; σ)T is an offset from 

this point of consideration. The location of the extremum, ^x, is calculated by taking the derivative 

of this given function with respect to x and setting it as zero, giving 

                                                                    ẍ = 	− 휕
휕푥2              (3) 

 As suggested by Brown, the Hessian and derivative of D are calculated by using 

differences 

of neighboring sampling points. Hence, the resulting 3x3 linear system can be solved within a 

minimal cost. If the offset ^x is larger than 0.5 in any of the dimension, then it would mean that 

the extremum will lies closer to another different sampling point. In this case, the sample point 

gets changed and the interpolation shall be performed about that new point. The final offset ^x is 

to added to the location of its sample point to make the interpolated estimate for these location of 

the extremum. 

 The functional value at the extremum, D(^x), will be useful for rejecting unstable 

extrema with low contrast. Now, it can be obtained by substituting equation (3) in (2), giving 
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퐷(ẍ) = 퐷 + 	
1
2
푑퐷
푑푥 ẍ 

 (a)           (b)   

 (c)          (d)   
 

Figure 6: This figure shows the stages of key-point selection. (a) The 233x189 pixel original image. 

(b) The initial 832 key point locations are at maxima and minima of the difference-of-Gaussian function. Key-points 

are indicated as vectors indicating scale, orientation along with location. (c) After applying threshold on minimum 

contrast, 729 key-points remain. (d) The final 536 key-points that exist following an additional threshold on ratio of 

principal curvature. 

  

 For the experiments mentioned in this paper, all extrema with a value of jD(^x)j lesser 

than 0.03 were being discarded (as before, here we have assumed image pixel value lies in the 

range [0,1]). 

 Figure shows the effects of key point selection for a natural image. In order to avoid this 

large amount of clutter, a low-resolution 233 by 189 pixel image shall be used and key points can 

be shown as vectors indicating the location, scale along with orientation of each of the key point. 

Figure (a) shows the original image of our analysis, which is shown at a reduced contrast behind 

the subsequent images. Figure (b) shows the 832 key-points at all detected maxima and minima 

of the difference-of-Gaussian function, while (c) shows the 729 key-points that remain following 
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removal of those points with a value of jD(^x)j less than 0.03. Part (d) will be explained in the 

following subsequent section to follow: 

 

Eliminating edge responses: For stability, it is insufficient to reject the key-points with low 

contrast. The difference-of-Gaussian function will result a strong response along the edges, even 

if the locations along the edges are poorly determined. Hence, they are unstable to small amounts 

of noise. 

 A poorly defined peak result in the difference-of-Gaussian function will generate a large 

principal curvature across its edge but having a small one in its perpendicular direction. The 

principal curvatures can be computed from a 2x2 Hessian matrix, H, computed at the location 

and scale of the key-point: 

                                                                H = 	Dxx Dxy
Dxy Dyy                                                           (4) 

The derivatives are calculated by taking the differences of the found neighboring sample points. 

As the eigen values of H are proportional to the principal curvatures of D. Borrowing from the 

methods used by Harris and Stephens (1988), we can always on our part avoid explicitly 

computing up the eigen values, as here we are only concerned with its ratio. Let α be the chosen 

eigen value with the largest magnitude and let β be the smaller one. Now, we will compute the 

sum value of the eigen values using the trace of H and its product from the determinant function: 

Tr(H) 	= 	Dxx + 	Dyy = 	α	 + 	β 

 

Det(H) 	= 	DxxDyy	 − 	(Dxy)2	 = αβ 

 In an unlikely event that the determinant result is negative, the curvatures will have 

different signs so the point shall be discarded as not being an extremum value. Let r be the 

computed ratio between the largest magnitude eigen value and smaller one, so that α = rβ. Then, 
( )

( )
= 	 ( ) = 	 ( ) = 		 ( ) ; 

 Which will ultimately depend only on the value of the ratio of the eigen values rather 

than its individual values. The quantity (r+1)2=r gives its minimum when the two eigen values 

are taken equal and it increases with factor r. Hence, to check the ratio value of principal 

curvatures below some threshold r, we are required to only check 
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Tr(H)2
Det(H) <

(푟 + 1)
푟  

 

 This is very easy to compute, with lesser than 20 floating point operations needed in 

order to test each key point accurately. The experiments done in this paper use a value of r = 10, 

which further eliminates key points which are having ratio in between the principal curvatures 

greater than 10. The transition from Figure 5 (c) to (d) clearly shows the effects of this operation. 

 

3.4.1.3 Orientation assignments:  
 
By assigning a consistent orientation to each of the key-point based upon local image properties, 

the key-point descriptor can be portrayed relative to this orientation and henceforth achieve 

invariance in image rotation. This approach works in contrast with the orientation invariant 

descriptors given by Schmid and Mohr (1997), in which each of the image properties are based 

on a rotationally invariant measure value. The disadvantage of this method of approach is that it 

limits the descriptors which however can be used and discards the generated image information 

by not requiring all measures that are to be based upon a consistent rotation concept. 

 Following experimentation with a number of approaches pertaining to assigning a local 

orientation, the study showed that following approach was found to produce the most stable 

results. The scale of a key point is used for choosing the Gaussian smoothed image, L, with the 

nearest scale, so that all the above computations are performed on a scale-invariant manner. For 

each image sample available, L(x; y), at this scale for the gradient magnitude, m(x; y) having 

orientation, θ(x, y) is pre-evaluated using the differences in the pixel: 

m(x, y) = 	 (퐿(푥 + 1,푦) − 퐿(푥 − 1,푦)) + 	(퐿(푥,푦 + 1)− 퐿(푥, 푦 − 1))2 

θ(x, y)= tan-1 ((퐿(푥,푦 + 1) − 퐿(푥,푦 − 1)/(퐿(푥 + 1, 푦)− 퐿(푥 − 1,푦)) 

 An orientation histogram is generated from the gradient orientations of available sample 

points within a enclosed region around the key-points. The orientation histogram is having 36 

bins covering the entire 360 degree range of orientations. Each of the values of the sample added 

to the histogram is weighted by its magnitude gradient and by a Gaussian-weighted having 

circular window with a σ that is exactly 1.5 times the scale of the key-point. 

 Peaks in these orientation histogram corresponds to dominant directions for the local 

gradients. Once the highest peak of the histogram is detected, afterwards any other local peak 
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that lies within 80% of the highest peak result is used to also create a key-point within that 

orientation. Henceforth, for locations having multiple peaks for similar magnitudes, there will be 

existing multiple key-points created at the same location and for the same scale but having a 

different orientation. Only about 15% of such points are assigned with multiple orientations, but 

these however contribute significantly towards the stability of matching. Finally, a parabola is 

made to fit the 3 histogram values closest to each of the peak values to interpolate the peak 

positions, thereby resulting in better accuracy. 

 

3.4.1.4 The local image descriptor:  
 
The previous operations have been assigned an image location, scale along with orientation to 

each key-point. These parameters impose a repetitive local 2D coordinate system in which we 

can describe the local image region.  Thereby, provide invariance to these parameters. The next 

step involves the computation of a descriptor for the image region which are highly distinctive 

yet are seen as invariant as possible to existing variations, such as changes in illumination or 3D 

view point.  

 One such obvious approach would be sampling the local image intensities around the 

available key point at the appropriate scales, so as to match these using up normalized correlation 

measure. However, a simple correlation of image patches is extremely sensitive to changes 

which may cause mis-registration of samples, such as affine or 3D viewpoint changes or non-

rigid deformations. A better approach had been demonstrated by Edelman, Intrator along with 

Poggio(1997). Their proposed representation was subjected upon a model of biological vision, 

that in particular of complex neurons is primary visual cortex. Hence, these complex neurons 

respond actively to a gradient at a particular orientation apart from the spatial frequency. Since 

the location of these type of gradient on the retina is mostly allowed to shift over a very small 

receptive field instead being precisely localized. Edelman et al. virtualized that the function of 

these types of complex neurons was actually to allow for matching and identification of 3D 

objects from a range of large viewpoints. They have performed detailed experiments using 3D 

computer modeling of objects and animal shapes showing that matching gradients would be 

allowing for a shift in these position and their results in better classification under 3D rotation 

system. Say for example, recognition accuracy for any 3D object rotated in depth by 

approximately 20 degrees increased by nearly 35% for correlation of the gradients to 94% using 
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a complex cell model. Our method of implementation described below was in relation to the 

context by this idea, but allows us for positional shift using a different method of computational 

mechanism. 

 

4.1 Descriptor representation: Figure illustrates the calculation of the key-point descriptor. 

Firstly, the image gradient magnitude and orientations are sampled in and around the key-point 

location, using the given scale of the key point in selecting the level of Gaussian blur for an 

image. In order to achieve such orientation, the Gaussian weighting function with invariance 

results, the coordinates of the descriptor and its gradient orientations are to be rotated relative its 

key-point orientation. For increased efficiency, the gradients are pre-computed at all levels of the 

pyramid. These are portrayed with small arrows at each and every sample location. 

                           
 Figure 7: A key-point descriptor is created by first computing the gradient, magnitude and orientation at 

each stage of image sample point in a region in and around the key point location which has been shown.  
These are weighted in a Gaussian window, indicated by the overlaid circle as shown. These 

samples are then arranged into orientation histograms summarizing these contents over 4x4 sub 

regions as shown with the length of each such arrow corresponding to a sum of the gradient 

magnitude near that direction within that region. This figure shows about a 2x2 descriptor array 

evaluated from a 8x8 set of samples whereas the experiments in this document use a 4x4 

descriptors computed from a 16x16 sample array value. 

 
 A Gaussian weighting function with σ equal to 0.5 times the width of the descriptor 

window is used to assign a magnitude for each sample point. This is demonstrated with a circular 

window on the left side, although, the weight falls downwards smoothly. The purpose of this 
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kind of Gaussian window is to avoid sudden changes in descriptor with small changes in the 

position of window and giving less emphasis to gradients which are far from the center of the 

descriptor, since these are mostly affected by wrong registration errors. 

 The key-point descriptor is shown on the right side. It allows a significant shift in 

gradient locations by creating orientation histogram over 4x4 sample regions. The figure 

indicates eight directions for each orientation histogram, with the length of each arrow being the 

magnitude of its histogram entry. A gradient sample on the left side may shift up to 4 sample 

locations while still contributing to the same histogram on right side, thereby achieving an 

objective of allowing for larger positional shifts. It is intended to avoid all boundary affects 

wherein the descriptor abruptly changes as the sample shifts from being within one histogram to 

another one or from one orientation to another one. Hence, tri-linear interpolation is applied to 

distribute the value of all gradient samples into adjacent histogram. In a way, each entry is 

multiplied by a corresponding value of weight of 1-d for each dimension. Here d is the distance 

of the sample from the mid value as measured in units of the histogram spacing. 

 The descriptor is formed using a vector containing the values for all the orientation 

histogram values, corresponding to the length of the arrows. The figure shows a 2x2 array of 

orientation histograms, while our experiments below show that the appreciable results are 

achieved with a 4x4 array with 8 orientation bins in each. Hence, the experiments in this paper 

use a 4*4*8 =128 element feature vector for each of the key-point. Lastly, the feature vector is 

modified in order to reduce the effects of illumination changes. Firstly, the vector is normalized 

to a unit length vector. Changes in image contrast in which each and every pixel value is 

multiplied by a constant value of gradients by the same constant, so this contrast change shall be 

canceled by use of vector normalization. A brightness change where a constant is added to its 

entire images pixel will not change the gradient values, as these are computed incorporating 

pixel differences. So, the descriptor is invariant to changes in an illumination. However, non-

linear illumination change may occur due to camera color saturation or due to its illumination 

changes that may change 3D surfaces with differing orientations by unequal amounts. 

These effects may cause a huge difference in relative magnitudes for little number of gradients, 

but are less likely to cause any change in the gradient orientations. So, we prefer to reduce the 

influence of such large gradient magnitudes by keeping the values in the unit feature vector to 

each be not greater than 0.2 and then normalizing it to unit length. It would mean that matching 
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the magnitudes overlarge gradients is now not as much important and that too the distribution of 

orientations involves greater emphasis. The value of 0.2 was found experimentally by using the 

available images containing differing illuminations for a same 3D object. 

 

3.4.2 MLBP (Multi-scale Local Binary Pattern) 

 LBP is the most commonly used feature descriptor in computer vision field such as in 

biometrics, face recognition, pattern recognition etc. It is seen as a powerful tool in texture 

classification it has further been determined that when LBP is combined with the Histogram of 

oriented gradients (HOG) descriptor, it improves the detection performance considerably on 

some datasets. 

 “The LBP feature vector, in its simplest form, is created in the following manner: 

1. Divide the examined window into cells (e.g. 16x16 pixels for each cell). 

2.  For each pixel in a cell, compare the pixel to each of its 8 neighbors (on its left-top, left 

middle, left-bottom, right-top, etc.). Follow the pixels along a circle, i.e. clockwise or 

counterclockwise. 

3. Where the center pixel's value is greater than the neighbor's value, write "0". Otherwise, 

write "1". This gives an 8-digit binary number (which is usually converted to decimal for 

convenience). 

4. Compute the histogram, over the cell, of the frequency of each "number" occurring (i.e., 

each combination of which pixels are smaller and which are greater than the center). This 

histogram can be seen as a 256-dimensional feature vector. 

 
Figure 8: Three neighborhood example 
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5. Optionally normalize the histogram. 

6. Concatenate (normalized) histograms of all cells. This gives a feature vector for the entire 

window. 

 The feature vector can now be processed using the Support vector machine or some other 

machine-learning algorithm to classify images. Such classifiers can be used for face recognition 

or texture analysis.” 

 

 Lets take an example on LBP, which is operating on a fixed 3x3 neighborhood pixels as 

showen below: 

 
 Figure 9. The first step in constructing a LBP is to take the 8 pixel neighborhood surrounding a center 

pixel and threshold it to construct a set of 8 binary digits. 

 

 In the above figure shown, we have taken a center pixel(red in color). We will now 

threshold it against the 8 neighborhood pixels. If the intensity of the center pixel is greater than 

or equal to the the intensity of the neighbor, then we will set the value of that neighbor as 1 else 

it will be set as 0. With the 8 pixels which are surrounding the center pixel , we will be having a 

total of 2^8= 256 possible combinations of LBP codes. 

 From this, we have to calculate the LBP value of the center pixel. We have the choice 

that we can start from any pixel according to our own choice, this can be either clockwise or 

anti-clockwise, but this way of ordering should be kept consistent for each and every pixel of our 

image as well as all the images in the dataset. We get a 8-bit binary number according to the 

method mentioned above, this number can be converted to decimal as follows: 
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 Figure 10:  Taking the 8-bit binary neighborhood of the center pixel and converting it into a decimal 

representation. 

 

 In the given example, we have started from the top right corner and moving in clockwise 

direction gathering the binary numbers along the way. We will then convert the binary number 

into decimal, which results in decimal value of 23 in our case. 

 This value of 23 which we get is stored as the output of the LBP 2-D array, which can be 

seen as below: 

 Figure 11 : The calculated LBP value is then stored in an output array with the same width and height as 

the original image. 
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 This process of firstly taking a threshold, accumulating binary digits, and storing the 

output decimal value in the LBP array is repeated for each and every pixel in the input image. 

Here is an example of computing and visualizing a full LBP 2D array: 

 

 The last step of finding LBP is to compute a histogram which is computed over the 

output LBP array. Since a 3 x 3 neighborhood will have 2 ^ 8 = 256 possible patterns, hence our 

LBP 2D array will have a minimum value of 0 and a maximum value of 255, therefore allowing 

us to construct a 256-bin histogram of LBP codes which will be our final feature vector 
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 The primary benefit of this original LBP implementation will be that we can capture 

extremely fine-grained details in the image. However, capturing details at such a small scale is 

also the biggest drawback to the algorithm — here we cannot capture details at varying scales, 

only the fixed 3 x 3 scale! 

 Hence to account for variable neighborhood sizes, new methods were introduced which 

involved two parameters as follows: 

1. The number of points p in a circularly symmetric neighborhood to consider. 

2. The radius of the circle r, which allows us to account for different scales. 

Below follows a visualization of these parameters: 

 
 Figure 12. Three neighborhood examples with varying p and r used to construct Local Binary Patterns. 

 Lastly, it is very important to consider the concept of LBP uniformity. LBP is considered 

to be uniform if it has at-most two 0 to 1 or 1 to 0 transitions. For example, the pattern 

00001000 (it has 2 transitions) and 10000000(it has 1 transition) are both considered to 

be uniform patterns since they are having at most two 0 to 1 and 1 to 0 transitions. On the other 

hand, the pattern 01010010 will not be considered a uniform pattern since it has six 0 to 1 or 1 to 

0 transitions. 

 The number of uniform models in a LBP is totally dependent on the number of points p. 

As the value of p increase, the dimensionality of our resulting histogram will also increase. For 
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given number of points p in the LBP, there are p + 1 uniform patterns. The final dimensionality 

of the histogram will thus be p + 2,  

 Uniform LBP just adds an extra level of rotation and grayscale invariance, hence they 

are commonly used when extracting LBP feature vectors from images. 

 

3.4.3 Principal Components Analysis 
 

 In principal components analysis (PCA) and factor analysis (FA) one wishes to extract 

from a set of p variables a reduced set of m components or factors that accounts for most of the 

variance in the p variables.  In other words, we wish to reduce a set of p variables to a set of m 

underlying superordinate dimensions. 

 These underlying factors are inferred from the correlations among the p variables.  Each 

factor is estimated as a weighted sum of the p variables.  The ith  factor is thus  

 

  pipiii XWXWXWF  2211  

  

 One may also express each of the p variables as a linear combination of the m factors, 

 

  jmmjjjj UFAFAFAX  2211  

 

where Uj  is the variance that is unique to variable j, variance that cannot be explained by any of 

the common factors. 

 

Goals of PCA and FA 

 One may do a PCA or FA simply to reduce a set of p variables to m components or 

factors prior to further analyses on those m factors.  For example, Ossenkopp and Mazmanian 

(Physiology and Behavior, 34:  935-941) had 19 behavioral and physiological variables from 

which they wished to predict a single criterion variable, physiological response to four hours of 

cold-restraint. They first subjected the 19 predictor variables to a FA.  They extracted five 
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factors, which were labeled Exploration, General Activity, Metabolic Rate, Behavioral 

Reactivity, and Autonomic Reactivity.  They then computed for each subject scores on each of 

the five factors.  That is, each subject’s set of scores on 19 variables was reduced to a set of 

scores on 5 factors.  These five factors were then used as predictors (of the single criterion) in a 

stepwise multiple regression. 

 

 One may use FA to discover and summarize the pattern of inter correlations among 

variables.  This is often called Exploratory FA.  One simply wishes to group together (into 

factors) variables that are highly correlated with one another, presumably because they all are 

influenced by the same underlying dimension (factor).  One may also then operationalize (invent 

a way to measure) the underlying dimension by a linear combination of the variables that 

contributed most heavily to the factor. 

 

 If one has a theory regarding what basic dimensions underlie an observed event, e may 

engage in Confirmatory Factor Analysis.  For example, if I believe that performance on 

standardized tests of academic aptitude represents the joint operation of several basically 

independent faculties, such as Thurstone’s Verbal Comprehension, Word Fluency, Simple 

Arithmetic, Spatial Ability, Associative Memory, Perceptual Speed, and General Reasoning, 

rather than one global intelligence factor, then I may use FA as a tool to analyze test results to 

see whether or not the various items on the test do fall into distinct factors that seem to represent 

those specific faculties. 

 

 Psychometricians often employ FA in test construction.  If you wish to develop a test that 

measures several different dimensions, each important for some reason, you first devise 

questions (variables) which you think will measure these dimensions.  For example, you may 

wish to develop a test to predict how well an individual will do as a school teacher.  You decide 

that the important dimensions are Love of Children, Love of Knowledge, Tolerance to Fiscal 

Poverty, Acting Ability, and Cognitive Flexibility.  For each of these dimensions you write 

several items intended to measure the dimension.  You administer the test to many people and 

FA the results.  Hopefully many items cluster into factors representing the dimensions you 

intended to measure.  Those items that do not so cluster are rewritten or discarded and new items 
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are written.  The new test is administered and the results factor analyzed, etc. etc. until you are 

pleased with the instrument.  Then you go out and collect data testing which (if any) of the 

factors is indeed related to actual teaching performance (if you can find a valid measure thereof) 

or some other criterion (such as teacher’s morale). 

There are numerous other uses of FA that you may run across in the literature.  For example, 

some researchers may investigate the differences in factor structure between groups.  For 

example, is the factor structure of an instrument that measures socio-politico-economic 

dimensions the same for citizens of the U.S.A. as it is for citizens of Mainland China?  Note such 

various applications of FA when you encounter them. 

 

 

 

 
A Simple, Contrived Example 

 Suppose I am interested in what influences a consumer’s choice behavior when e is 

shopping for beer.  I ask each of 20 subjects to rate on a scale of 0-100 how important e 

considers each of these qualities when deciding whether or not to buy the six pack:  low COST 

of the six pack, high SIZE of the bottle (volume), high percentage of ALCOHOL in the beer, the 

REPUTATion of the brand, the COLOR of the beer, nice AROMA of the beer, and good TASTE 

of the beer.  Here are the contrived data, within a short SAS program that does a PCA on them: 

 

 DATA BEER; 

 INPUT COST SIZE ALCOHOL REPUTAT COLOR AROMA TASTE; 

 CARDS; 

 ------- see the data in the file “factbeer.sas” 

 PROC FACTOR; 

 

Checking For Unique Variables 

 Aside from the raw data matrix, the first matrix you are likely to encounter in a FA is the 

correlation matrix.  Here is the correlation matrix for our data: 
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 COST SIZE ALCOHOLREPUTATCOLOR AROMA TASTE 

COST 1.00 .83 .77 -.41 .02 -.05 -.06 

SIZE .83 1.00 .90 -.39 .18 .10 .03 

ALCOHOL .77 .90 1.00 -.46 .07 .04 .01 

REPUTAT -.41 -.39 -.46 1.00 -.37 -.44 -.44 

COLOR .02 .18 .07 -.37 1.00 .91 .90 

AROMA -.05 .10 .04 -.44 .91 1.00 .87 

TASTE -.06 .03 .01 -.44 .90 .87 1.00 

  

 Unless it is just too large to grasp, you should give the correlation matrix a good look.  

You are planning to use PCA to capture the essence of the correlations in this matrix.  Notice 

that there are many medium to large correlations in this matrix, and that every variable, except 

reputation, has some large correlations, and reputation is moderately correlated with everything 

else (negatively).  There is a statistic, Bartlett’s test of sphericity, that can be used to test the null 

hypothesis that our sample was randomly drawn from a population in which the correlation 

matrix was an identity matrix, a matrix full of zeros, except, of course, for ones on the main 

diagonal.  I think a good ole Eyeball Test is generally more advisable, unless you just don’t want 

to do the PCA, someone else is trying to get you to, and you need some “official” sounding 

“justification” not to do it. 

 

 If there are any variables that are not correlated with the other variables, you might as 

well delete them prior to the PCA. If you are using PCA to reduce the set of variables to a 

smaller set of components to be used in additional analyses, you can always reintroduce the 

unique (not correlated with other variables) variables at that time.  Alternatively, you may wish 

to collect more data, adding variables that you think will indeed correlate with the now unique 

variable, and then run the PCA on the new data set. 

 

 One may also wish to inspect the Squared Multiple Correlation coefficient (SMC or R2 ) 

of each variable with all other variables. Variables with small R2 s are unique variables, not well 

correlated with a linear combination of the other variables. 
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 Partial correlation coefficients may also be used to identify unique variables.  Recall that 

the partial correlation coefficient between variables Xi and Xj is the correlation between two 

residuals, 

 pjiii XX )..)..(..(12.
ˆ  and  pjijj XX )..)..(..(12.

ˆ  

 

A large partial correlation indicates that the variables involved share variance that is not shared 

by the other variables in the data set.  Kaiser’s Measure of Sampling Adequacy (MSA) for a 

variable Xi is the ratio of the sum of the squared simple r’s between Xi and each other X to (that 

same sum plus the sum of the squared partial r’s between Xi and each other X).  Recall that 

squared r’s can be thought of as variances. 
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 Small values of MSA indicate that the correlations between Xi and the other variables are 

unique, that is, not related to the remaining variables outside each simple correlation.  Kaiser has 

described MSAs above .9 as marvelous, above .8 as meritorious, above .7 as middling, above .6 

as mediocre, above .5 as miserable, and below .5 as unacceptable. 

 

 The MSA option in SAS’ PROC FACTOR [Enter PROC FACTOR MSA;] gives you a 

matrix of the partial correlations, the MSA for each variable, and an overall MSA computed 

across all variables. Variables with small MSAs should be deleted prior to FA or the data set 

supplemented with additional relevant variables which one hopes will be correlated with the 

offending variables. 

 

For our sample data the partial correlation matrix looks like this: 

 

 COST SIZE ALCOHOL REPUTAT COLOR

 AROMA TASTE 

COST 1.00 .54 -.11 -.26 -.10 -.14 .11 

SIZE .54 1.00 .81 .11 .50 .06 -.44 
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ALCOHOL -.11 .81 1.00 -.23 -.38 .06 .31 

REPUTAT -.26 .11 -.23 1.00 .23 -.29 -.26 

COLOR -.10 .50 -.38 .23 1.00 .57 .69 

AROMA -.14 .06 .06 -.29 .57 1.00 .09 

TASTE .11 -.44 .31 -.26 .69 .09 1.00 

MSA .78 .55 .63 .76 .59 .80 .68 

 

OVERALL MSA = .67 

 

 These MSA’s may not be marvelous, but they aren’t low enough to make me drop any 

variables (especially since I have only seven variables, already an unrealistically low number). 

 

 

Extracting Principal Components 

 

 We are now ready to extract principal components.  We shall let the computer do most of 

the work, which is considerable.  From p variables we can extract p components.  This will 

involve solving p equations with p unknowns.  The variance in the correlation matrix is 

“repackaged” into p eigenvalues.  This is accomplished by finding a matrix V of eigenvectors.  

When the correlation matrix R is premultiplied by the transpose of V and postmultiplied by V, 

the resulting matrix L contains eigenvalues in its main diagonal.  Each eigenvalue represents the 

amount of variance that has been captured by one component. 

 

 Each component is a linear combination of the p variables. The first component accounts 

for the largest possible amount of variance.  The second component, formed from the variance 

remaining after that associated with the first component has been extracted, accounts for the 

second largest amount of variance, etc.  The principal components are extracted with the 

restriction that they are orthogonal.  Geometrically they may be viewed as dimensions in p-

dimensional space where each dimension is perpendicular to each other dimension. 
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 Each of the p variable’s variance is standardized to one. Each factor’s eigenvalue may be 

compared to 1 to see how much more (or less) variance it represents than does a single variable. 

With p variables there is p x 1 = p variance to distribute.  The principal components extraction 

will produce p components which in the aggregate account for all of the variance in the p 

variables.  That is, the sum of the p eigenvalues will be equal to p, the number of variables.  The 

proportion of variance accounted for by one component equals its eigenvalue divided by p. 

 

 For our beer data, here are the eigenvalues and proportions of variance for the seven 

components: 

 

COMPONENT 1 2 3 4 5 6 7 

EIGENVALUE 3.31 2.62 .57 .24 .13 .09 .04 

PROPORTION .47 .37 .08 .03 .02 .01 .01 

CUMULATIVE .47 .85 .93 .96 .98 .99 1.00 

 

Deciding How Many Components to Retain 

 

 So far, all we have done is to repackage the variance from p correlated variables into p 

uncorrelated components.  We probably want to have fewer than p components.  If our p 

variables do share considerable variance, several of the p components should have large 

eigenvalues and many should have small eigenvalues.  One needs to decide how many 

components to retain.  One handy rule of thumb is to retain only components with eigenvalues of 

one or more.  That is, drop any component that accounts for less variance than does a single 

variable.  Another device for deciding on the number of components to retain is the scree test.  

This is a plot with eigenvalues on the ordinate and component number on the abscissa.  Scree is 

the rubble at the base of a sloping cliff.  In a scree plot, scree is those components that are at the 

bottom of the sloping plot of eigenvalues versus component number.  The plot provides a visual 

aid for deciding at what point including additional components no longer increases the amount of 

variance accounted for by a nontrivial amount. 
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 For our beer data, only the first two components have eigenvalues greater than 1.  There 

is a big drop in eigenvalue between component 2 and component 3.  On a scree plot, components 

3 through 7 would appear as scree at the base of the cliff composed of components 1 and 2.  

Together components 1 and 2 account for 85% of the total variance.  We shall retain only the 

first two components. 

 

 With SAS one can specify the number of components to be retained by adding  

NFACT = n, where n is the desired number, to the PROC FACTOR command.  One may specify 

the total amount of variance to be accounted for by the retained components by adding P = p, 

where p = the proportion or percentage desired.  One can specify the minimum eigenvalue for a 

retained component with MIN = m.  I used MIN = 1 for the beer data. 

 
Loadings, Unrotated and Rotated 

 

 Another matrix of interest is the loading matrix, also known as the factor pattern matrix.  

This matrix is produced by postmultiplying the matrix of eigenvectors by a matrix of square 

roots of the eigenvalues.  We are retaining only two components, so we shall get a 7 x 2, 

variables x components, matrix. 

 

Here is the loading matrix for our beer data:  

 

COMPONENT 1 2 

 

COST .55  .73 

SIZE .67  .68 

ALCOHOL .63  .70 

REPUTAT -.74  -.07 

COLOR .76  -.57 

AROMA .74  -.61 

TASTE .71  -.61 
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 The entries in this matrix, loadings, are correlations between the components and the 

variables.  Since the two components are orthogonal, they are also beta weights, that is, 

jjjj UFAFAX  2211 , thus A1  equals the number of standard deviations that Xj  changes for 

each one standard deviation change in Factor 1.  As you can see, almost all of the variables load 

well on the first component, all positively except reputation.  The second component is more 

interesting, with 3 large positive loadings and three large negative loadings.  Component 1 seems 

to reflect concern for economy and quality versus reputation.  Component 2 seems to reflect 

economy versus quality. 

  

 Remember that each component represents an orthogonal (perpendicular) dimension.  

Fortunately, we retained only two dimensions, so I can plot them on paper.  If we had retained 

more than two components, we could look at several pairwise plots (two components at a time). 

 

 

 For each variable I have plotted on the 

vertical dimension its loading on component 1, 

on the horizontal dimension its loading on 

component 2.  Wouldn’t it be nice if I could 

rotate these axes so that the two dimensions 

passed more nearly through the two major 

clusters (COST, SIZE, ALCH and COLOR, 

AROMA, TASTE). Imagine that the two axes 

are perpendicular wires joined at the origin 

(0,0) with a pin.  I rotate them, preserving their 

perpendicularity, so that the one axis passes through or near the one cluster, the other through or 

near the other cluster.  The number of degrees by which I rotate the axes is the angle PSI. For 

these data, rotating the axes -40.63 degrees has the desired effect. 

 

 After rotating the axes I need recompute the loading matrix. This is done by 

postmultiplying the unrotated loading matrix by a orthogonal transformation matrix.  The 

orthogonal transformation matrix for this two dimensional transformation is 
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  COS PSI -SIN PSI  .76 .65  

    =    

  SIN PSI  COS PSI  -.65 .76  

 

  

 

The rotated loading matrix, with the variables reordered so that first come variables loading most 

heavily on component 1, then those loading most heavily on component two, is: 

 

 

 

COMPONENT 1 2 

TASTE .96 -.03 

AROMA .96 .01 

COLOR .95 .06 

SIZE .07 .95 

ALCOHOL .02 .94 

COST -.06 .92 

REPUTAT -.51 -.53 

 

The rotated loadings plot is shown to the left. 

 

 

 

 All of the statistics and plots we have discussed so far can be produced by SAS with this 

command:  

 

PROC FACTOR CORR MSA SCREE REORDER MIN=1 ROTATE=VARIMAX PREPLOT 

PLOT; 
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Number of Components in the Rotated Solution 

 

 I generally will look at the initial, unrotated, extraction and make an initial judgment 

regarding how many components to retain.  Then I will obtain and inspect rotated solutions with 

that many, one less than that many, and one more than that many components.  I may use a 

"meaningfulness" criterion to help me decide which solution to retain – if a solution leads to a 

component which is not well defined (has none or very few variables loading on it) or which just 

does not make sense, I may decide not to accept that solution. 

 One can err in the direction of extracting too many components (overextraction) or too 

few components (underextraction).  Wood, Tataryn, and Gorsuch (1996, Psychological Methods, 

1, 354-365) have studied the effects of under- and over-extraction in principal factor analysis 

with varimax rotation.  They used simulation methods, sampling from populations where the true 

factor structure was known.  They found that overextraction generally led to less error 

(differences between the structure of the obtained factors and that of the true factors) than did 

underextraction.  Of course, extracting the correct number of factors is the best solution, but it 

might be a good strategy to lean towards overextraction to avoid the greater error found with 

underextraction. 

 

 Wood et al. did find one case in which overextraction was especially problematic – the 

case where the true factor structure is that there is only a single factor, there are no unique 

variables (variables which do not share variance with others in the data set), and where the 

statistician extracts two factors and employs a varimax rotation (the type I used with our example 

data).  In this case, they found that the first unrotated factor had loadings close to those of the 

true factor, with only low loadings on the second factor.  However, after rotation, factor splitting 

took place – for some of the variables the obtained solution grossly underestimated their loadings 

on the first factor and overestimated them on the second factor.  That is, the second factor was 

imaginary and the first factor was corrupted.  Interestingly, if there were unique variables in the 

data set, such factor splitting was not a problem.  The authors suggested that one include unique 

variables in the data set to avoid this potential problem.  I suppose one could do this by including 

"filler" items on a questionnaire.  The authors recommend using a random number generator to 

create the unique variables or manually inserting into the correlation matrix variables that have a 
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zero correlation with all others.  These unique variables can be removed for the final analysis, 

after determining how many factors to retain. 

 

Explained Variance 

 

 The SAS output also gives the variance explained by each component and each variable’s 

communality estimates, both before and after the rotation.  The variance explained is equal to the 

sum of squared loadings (SSL) across variables.  For component 1 that is (.762 + .742 +...+ .672) 

= 3.31 = its eigenvalue before rotation and (.962 + .962 +...+ -.512) = 3.02 after rotation.  For 

component 2 the SSL’s are 2.62 and 2.91.  After rotation component 1 accounted for 3.02/7 = 

43% of the total variance and 3.02 / (3.02 + 2.91) = 51% of the variance distributed between the 

two components.  After rotation the two components together account for (3.02 + 2.91)/7 = 85% 

of the total variance. 

 

Naming Components 

 Now let us look at the rotated loadings again and try to name the two components.  

Component 1 has heavy loadings (>.4) on TASTE, AROMA, and COLOR and a moderate 

negative loading on REPUTATION.  I’d call this component AESTHETIC QUALITY.  

Component 2 has heavy loadings on large SIZE, high ALCOHOL content, and low COST and a 

moderate negative loading on REPUTATION.  I’d call this component CHEAP DRUNK. 

 

Communalities 

 Let us also look at the SSL for each variable across factors. Such a SSL is called a 

communality.  This is the amount of the variable’s variance that is accounted for by the 

components (since the loadings are correlations between variables and components and the 

components are orthogonal, a variable’s communality represents the R2  of the variable predicted 

from the components).  For our beer data the communalities are COST, .84; SIZE, .90; 

ALCOHOL, .89; REPUTAT, .55; COLOR, .91; AROMA, .92; and TASTE, .92. 

 

 The SSL’s for components can be used to help decide how many components to retain.  

An after rotation SSL is much like an eigenvalue.  A rotated component with an SSL of 1 
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accounts for as much of the total variance as does a single variable.  One may want to retain and 

rotate a few more components than indicated by the MIN = 1 criterion.  Inspection of the 

retained components’ SSL’s after rotation should tell you whether or not they should be retained.  

Sometimes a component with an eigenvalue > 1 will have a postrotation SSL < 1, in  which case 

you may wish to drop it and ask for a smaller number of retained components. 

 

 You also should look at the postrotation loadings to decide how well each retained 

component is defined.  If only one variable loads heavily on a component, that component is not 

well defined. If only two variables load heavily on a component, the component may be reliable 

if those two variables are highly correlated with one another but not with the other variables. 

 

Orthogonal Versus Oblique Rotations 

 

 The rotation I used on these data is the VARIMAX rotation. It is the most commonly 

used rotation.  Its goal is to minimize the complexity of the components by making the large 

loadings larger and the small loadings smaller within each component. There are other rotational 

methods.  QUARTIMAX rotation makes large loadings larger and small loadings smaller within 

each variable.  EQUAMAX rotation is a compromise that attempts to simplify both components 

and variables.  These are all orthogonal rotations, that is, the axes remain perpendicular, so the 

components are not correlated with one another. 

 

 It is also possible to employ oblique rotational methods. These methods do not produce 

orthogonal components.  Suppose you have done an orthogonal rotation and you obtain a rotated 

loadings plot that looks like this: 

The cluster of points midway between axes in the upper left quadrant indicates that a third 

component is present.  The two clusters in the upper right quadrant indicate that the data would 

be better fit with axes that are not orthogonal.  Axes drawn through those two clusters would not 

be perpendicular to one another.  We shall return to the topic of oblique rotation later. 
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4 RESULTS  

Comparison 

For Forensic sketches 

 Rank-1 accuracy (%) Rank-10 accuracy (%) Rank-50 accuracy (%) 

With LFDA 24.09 32.71 47.20 

Without LFDA 18.02 21.14 39.00 

FaceVACS 2.04 4.08 8.16 

 

 

 “Forensic sketch recognition performance using the 159 forensic sketch images (probe 

set) and 10,159 mug shot images (gallery) will now be presented. In these matching experiments, 

we use the local feature-based discriminant analysis framework. Our matching uses the sum of 

score fusion of MLBP and SIFT LFDA, as this was the highest performing method for matching 

viewed sketches. We evaluated our method using viewed sketches from the CUHK data set This 

data set consists of 606 corresponding sketch/photo pairs that were drawn from three face data 

sets: 1) 123 pairs from the AR face database, 2) 295 pairs from the XM2VTS database , and 3) 

188 pairs from the CUHK student database. Each of these sketch images was drawn by an artist 

while looking at the corresponding photograph of the subject. 

  The performance of matching sketches classified as good and poor. There is a substantial 

difference in the matching performance of good sketches and poor sketches. Despite the fact that 

poor sketches are extremely difficult to match.” 
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Figure 13 : CMS curve for Forensic sketches 

 

 
Figure 14 : CMS curve for Viewed sketches 
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5 CONCLUSIONS & FUTURE WORK 

5.1 CONCLUSION 

 “We have presented methods and experiments in matching forensic face sketches to 

photographs. Matching forensic sketches is a very difficult problem for two main reasons:  

1) Forensic sketches are often an incomplete and poor portrayal of the subject’s face. 

2) We must match across image modalities since the gallery images are photographs and the 

probe images are sketches. 

One of the key contributions of this method is using SIFT and MLBP feature descriptors to 

represent both sketches and photos. We improved the accuracy of this representation by applying 

an ensemble of discriminant classifiers, and termed this framework local feature discriminant 

analysis. The LFDA feature-based representation of sketches and photos was clearly shown to 

perform better on a public domain-viewed sketch data set than previously published approaches. 

Another major contribution is the large-scale experiment on matching forensic sketches. While 

previous research efforts have focused on viewed sketches, most real-world problems only 

involve matching forensic sketches. 

 Continued efforts on matching forensic sketches are critical for assisting law enforcement 

agencies in apprehending suspects. A larger data set of forensic sketches and matching 

photographs needs to be collected to further understand the nature and complexity of the 

problem.” 

 

5.2 FUTURE WORK 

 

 Continued efforts on matching forensic sketches are critical for assisting law enforcement 

agencies in apprehending suspects. A larger data set of forensic sketches and matching 

photographs needs to be collected to further understand the nature and complexity of the 

problem. 
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