Major Project
Report

High Power Handling Tunable Low Pass Filter

Submitted in partial fulfillment of
the requirements for the award of the degree of

Master of Technology
in
Microwave and Optical Communication Engineering

Submitted by
Manisha Nand
2K15/MOC/11

Under the guidance of
Dr. Priyanka Jain
Assistant Professor

Hi \
YoLoaict

Department of Electronics and Communication
DELHI TECHNOLOGICAL UNIVERSITY
Delhi, India — 110042

July 2017



Department of Electronics and
Communcation

DELHI TECHNOLOGICAL UNIVERSITY

Certificate

This is to certify that the Major project report entitled ” HIGH POWER HAN-
DLING TUNABLE LOW PASS FILTER” is a bonafide work carried out
by Mr.Manisha Nand bearing Roll No.2K15/MOC/11, a student of Delhi
Technological University, in partial fulfillment of the requirements for the award
of Degree in Master of Technology in Microwave and Optical Communi-
cation Engineering.

Dr. S Indu Dr. Priyanka Jain
Head of Department Assistant Professor
(Electronics and (Project Guide and

communication) Coordinator)



Declaration

I hereby declare thay all the information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. This report
is my own, unaided work. I have fully cited and referenced all material and results
that are not original to this work. It is being submitted for the degree of Master
of Technology in Engineering at Delhi Technological University. It has not been
submitted before for any degree or examination in any other university.

Manisha Nand
2K15/MOC/11
M.Tech MOCE



Abstract

The goal of high-efficiency power amplifier operation from 30-520 MHz has been
addressed in the current design by the use of tunable reactive elements in the out-
put resonant network. Filtering at the target harmonic frequencies will be achieved
by maintaining a fixed inductance and utilizing a PIN diode switching circuit to
selectively introduce different capacitance values, presenting the frequency-specific
short and open circuits that will allow for power amplifier operation at the de-
sired fundamental frequency. This approach allows the power amplifier to cover
several octaves or more, achieving operation across a wide bandwidth and greatly
increasing the flexibility of the design for possible use in other frequency ranges.

The first chapter gives the overview and objective of the filter. The specifica-
tions of the filter required is listed in this chapter.

The second chapter gives an idea about the literature, several types of tech-
nologies used for tuning, how pin diode can be used as a switch, variation of series
resistance with frequency.

The third chapter has several methods of designing the filter .filter banks, and
which is suitable for desired specification.

The fourth chapter includes design of schematic in PADS and simulation in
simulation software ADS, tuning process.

At the end the last two chapters includes the response output of network
analyser and the project is concluded in the last chapter.
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Chapter 1

Introduction

1.1 Overview

Filters play an important role in many applications RF / microwave. They are
used to separate or combine different frequencies. The electromagnetic spectrum
is limited and has to be shared. Filters are used to select or limit the spectrum RF
/ microwave within the limits assigned. Emerging applications such as wireless
communications continue to challenge the filters RF / microwave with increasingly
demanding requirements of higher performance, smaller size, lighter weight and
lower cost. Depending on the requirements and specifications, filters RF / mi-
crowave may be designed as concentrated or distributed circuit elements [1], They
can be made in various structures of transmission lines, such as a waveguide, the
coaxial line and micro strip.

Filter type is defined with frequency, allowing or reject. There are low pass,
high pass, bandpass and bandstop filters with different types of performing fre-
quency selectivity. Historically, filters were first discrete inductors (L) and capac-
itors (C) for applying radio frequency (RF). Today, lumped element filters remain
in use in the frequency range of 50 MHz to 2 GHz. The simplicity of design, pro-
duction and low cost are the main advantages of using these type of filters. They
can often be very compact compared to filters based on resonators half wave struc-
tures and have no "natural” appearing in modes other technologies such as planar
filter resonator structures[2]. However, the output characteristics of lumped ele-
ments filters suffer from low quality factor (Q) components. Although the values
of Q increase inductors and capacitors modern even hundreds, are kept well below
Q of thousands that have cavity filters.



1.2 Objective

The main objective of this project is to design, simulate and fabricate a tunable
low pass filter for wide frequency band in the V/UHF range of 30-520 MHz fre-
quency band which meets the the specification requirements in software defined
radios(SDRs) for military purpose. Agilent Advanced Designed System(ADS) is
used for simulation of the filter and shows its response.

Requirements are:

e Design a Tunable low pass filter for frequency band 30-520 MHz with S21(RF_IN
RF_OUT) > -1.8dB, S11 < -15dB, S21(All harmonics) < -60dB.

e Choose components within the constraints of available technology, i.e use of
lumped elements, limit Q values of component to those that are commonly
available for production.

1.3 Motivation

In today RF environments, tunable microwave filters are attracting more attention
for research and development because of the emergence of multiple frequency bands
in different regions and different applications.It is important for the receivers and
transceivers that operate throughout the frequency spectrum to have maximum
tuning range and save filtering features, While the frequency is tuned[3].

Common applications for tunable filters include software defined radios,multi-
band transceivers, cognitive radio (CR) systems, next generation cell phones, wide-
band radars and satellite payloads.



Chapter 2

Literature Review

2.1 Low Pass Filter

A Low Pass Filter can be a combination of capacitance, inductance or resistance
intended to produce high attenuation above a specified frequency and little or no
attenuation below that frequency. The frequency at which the transition occurs is
called the “cut-oft” or “corner” frequency. The simplest low pass filters consist of
a resistor and capacitor but more sophisticated low pass filters have a combination
of series inductors and parallel capacitors.

2.2 Tunable Filter Technology

Microwave tunable filters can be realized by different types of technologies by
using:

e Mechanical tuning

Yttrium-iron-garnet filter (YIG)

Barium Strontium Titanate filter (BST)

MEMS tunable capacitors (Micro-Electro-Mechanical System)

Varactor diodes

Digitally Tunable Capacitors

2.2.1 Mechanically tunable filters

Mechanically tunable filters are the earliest type of tunable filters. Generally
speaking, the tuning mechanism is physically moving a material or tuning screws
to affect the resonant frequency of a coaxial, cavity or waveguide resonator. As
illustrative tuning methods presented in [4]-[5], by using piezoelectric transduc-
ers/actuators, a dielectric slab which can either be moved in the vertical direction
above a microwave filter, or be utilized to deform a conductive film to tune dielec-
tric resonator filters or evanescent-mode cavity filters. Usually this type of filters
offers high-Q and high-power-handling capabilities. However, their bulky size and
low tuning speed limit their applications in certain areas.



2.2.2 YIG filters

YIG filters utilizing yttrium-iron-garnet (YIG) spheres have been proved the
most popular type among the magnetically tunable filters [6]-]7].

Figure 2.1: Magnetic resonance filter

A small section of YIG ferrite is placed at the center and the two coils are
mutually perpendicular as shown in Figure 2.1. When the DC magnetic field is
applied along the z -axis and RF driven current which is frequency dependent
is provided at the terminal of x coil, magnetic dipole in the YIG ferrite precess
around the x-axis, which induces RF magnetic moment along the y-axis and and
voltage in the y circuit. Therefore, By changing the magnetic field and the current
that are externally applied to the ferrite the resonant frequency of the YIG filter
is tuned|8].

Drawbacks:- The main drawbacks are:

e Complex bias circuit to tune the device with high power consumption.
e Low tuning speed (ms)

e Large physical size, limiting their use in modern communication systems.

2.2.3 Barium Strontium Titanate (BST)

Barium Strontium Titanate (BST) is most intensively studied ferroelectric
material in tunable applications at room temperature. Ferroelectric materials (are
basically dielectric materials) known for their ability to achieve spontaneous po-
larization and it can be reversed in the presence of an external electric field. When
an external field is applied to a regular dielectric material, the electric dipole mo-
ments will align themselves in accordance with the direction of the applied electric
field. On the other hand, in materials such as ferro electrics, this polarization can
take place without the external electric field. When the extrenal electric field (not
exceeding the breakdown limit of the crystal) is applied to the ferroelectric, its
dipole moments will reverse to align with the field.

When used in the para electric phase(i.e above curie temperature), BST thin
film typically exhibits a large dielectric constant ( =300-800) that can be changed
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by an applied dc electric filed [9, 10, 11] . The high dielectric constant of BST film
results in compact BST thin film varactors that are widely used to implement tun-
able filter, tunable matching networks and delay lines. BST tunable filters can be
tuned at nanosecond speeds, and can be fabricated on a variety of substrates using
standard semiconductor manufacturing process with ease of integrating microwave
devices compatible with planar circuits.

Drawback:- Relatively high loss at room temperature limiting their microwave
applications.

Inspite of continuous effort to improve the quality factors of BST varactors.
But this is still challenging today.

2.2.4 RF MEMS (Micro-Electro-Mechanical System)

RF MEMS (Micro-Electro-Mechanical System) reconfigurable devices such
as MEMS switches or MEMS varactors, are quite popularly used in filter topolo-
gies with discrete and continuous tuning [12, 13]. RF MEMS devices mostly utilize
micrometer level movement to obtain a switching function or an adjustable capac-
itance with the applied dc voltage. In general, they can offer small size and good
integration capabilities with microwave electronics. They also have the merit of
low loss (about 0.05-0.2 dB from 1-100 GHz for switches [14]), high linearity with
low signal distortion, low power consumption, high isolation (for switches) and
high power-handling capability. However, the requirements of hermetic packag-
ing and high voltage drive circuits (20-100 V) besides the reliability issues have
prevented RF MEMS from being widely used in industry [15].

2.2.5 Varactor diode

Varactor diode or varicap diode, is a semiconductor whose capacitance varies
as a function of the reverse voltage applied across its terminals.So this can be used
where voltage controlled capacitance is required.

Under reverse bias condition, no current can flow and the diode’s reverse re-
sistance is almost infinity. The depletion region at the p-n junction acts like an
insulating dielectric sandwiched between conductive plates of a capacitor. The
symbol is given below in Figure 2.2

Anode Cathode

Figure 2.2: Varactor diode symbol

Generally, its operation is based on altering the width of the depletion region
under a reverse voltage, thus similarly changing the distance between the two
plates of a capacitor to vary the capacitance and is inversely proportional to the



square root of applied voltage [16]. The capacitance of varactor diode is described
by: .
C=—"2 2.1
(3= +1)" (2.1

In Equation (2.1), C is the varactor diode capacitance, C, is the zero bias
capacitance, V' is the reverse bias voltage, V}; is the built-in voltage potential, and
n represents the slope of the Log C vs. Log V curve. From Equation(2.1) as the
reverse bias increases the capacitance decreases and vice versa.lt also depends on
doping structure used at the time of wafer preparation.

Where,

~J0.33,if the diode has graded junction
B 0.5, if the diode has abrupt junction

(2.2)

Due to fast tuning speed, high tunability, compact size and low cost. Varactor
diodes have been used in Electronic Support Measure (E.S.M) systems.
Drawbacks:- The main drawbacks are:

e Low quality factor.
e Highly non-linear characteristics at higher frequencies.

e Poor power handling capabilities.

2.2.6 Digitally Tunable Capacitors (DTCs)

Digitally Tunable Capacitors (DTCs) are variable circuit components whose
capacitance is controlled by a set of PIN diode switches in a combination with a
NMOS interface [17]. The DTCs are made up of several high Q-factor capacitors
and an array of digitally controlled PIN diode switches that determine the total
value of the capacitors. This control setting is a digital input that feeds in a binary
value corresponding to a certain number of switches to be turned on and hence
determining how many capacitors will contribute to the total capacitance value.
The DTC filter with PIN diode switch is given in Figure 2.3.

Capacitors are generally connected in parallel and each capacitor is connected
to a PIN diode switch in series, which is connected to mosfet for biasing (i.e forward
bias for ON switch and reverse bias for OFF switch). The maximum capacitance
is achieved when all the switches are ON since the capacitors in parallel is additive.
The minimum capacitance is achieved when all the switches are in off state.
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Figure 2.3: DTC PIN diode tuning

2.2.7 Comparison of Several Component Technologies

Tuning Tech- | Mech YIG BST MEMS Varactor| DTC

nology

Unload Q >1000 >500 30-50 50-400 30-50 R,=1-4
Q

Tuning Speed >10us ns ns us ns ns

Bias >100V NA <30V 20-100V | <30V 10-
40mA

Linearity high <30 10-35 >60 10-35 >33

Power Handling high 2W mW 1-2W mW mW

Power consump- | high high negligible | negligible | low medium

tion

Size large large small small small small

Cost high high low medium low low

Integration difficult difficult good good good good

Table 2.1: Comparison of Typical Tunable Technologies [8, 10, 15, 16]

2.3 Pin Diode as an Rf Switch

A PIN diode is a current controlled semiconductor device having intrinsic layer
sandwiched between two highly doped P and N layers [18]. A model of the basic
structure of pin diode is given in Figure 2.4. In this a P-region is diffused to one
side of the diode and n-region to the other side. The intrinsic region thickness is
a function of silicon wafer used. Also the pin diode performance merely depends
on the material used in the intrinsic region. At RF and microwave frequencies it




act as a variable resistor The forward biased dc current determines the resistance
value of the PIN diode.

While using PIN diode as a switch the PIN diode should ideally control the
RF signal level without introducing any distortion which might change the shape
of the RF signal. Also a unique and important additional feature of the PIN
diode is that it can control large RF signals while using much smaller levels of dc
excitation.This is because for forward conduction it needs electrons in its intrinsic
layers but before the amount of electrons crosses the cut off level the RF signals
switches to opposite polarity so it needs dc current for overcoming the cut off level
for forward conduction as DC is constant.

— METAL PIN

y

K GLASS

INTRINSIC
LAYER

Figure 2.4: Cross Section Basic PIN Diode

2.3.1 Forward bias PIN diode

The equivalent circuit for the forward biased PIN diode is shown in Figure 1.1
(b). It basically consists of a series combination of the series resistance (R;) and
a small Inductance (Ls).



Figure 2.5: Forward biased equivalent model

When a PIN diode is forward biased, holes and electrons are injected from
the P and N regions into the Intrinsic region. A finite quantity of charge always
remains stored and results in a lowering of the resistivity of the I-region. The
quantity of stored charge, Q, depends on the carrier life time,7 and the forward
bias current Ir. Q is related to the carrier life time and forward current as follows:

Q= IrT (2.3)

The resistance of the intrinsic region under forward bias depends on the QQ and
is given by: ,
Ro= (2.4)
(b + 1)@
where W= intrinsic region width, s, is mobility of electron and y, is mobility
of hole.
putting equation (4.1) in (4.2) we get,
2
Ro=— (2.5)
(ﬂn + Np)[ FT
From equation (4.3), it can be seen that the series resistance R of the diode is
directly proportional to the square of the intrinsic region width W and inversely
proportional to the forward bias current .
Although in reality the R; is slightly depends on the width of the intrinsic
width. Generally it depends on the forward bias current Ir. This is shown in
Figure 2.6 of macom MA4P506-1072T Pin diode.
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Figure 2.6: Forward Current vs. Series Resistance

Figure 2.6 shows that R; is inversely proportional to the forward current Ip.

It should be noted that Skin effect is not a significant factor in PIN diodes
below X-Band frequencies. his is because skin depth is proportional to the square
root of the resistivity of the conducting material. Thus, RF signals penetrate
deeply into the semiconductor and skin depth is insignificant. PIN diode act as
normal PN junction diode when low frequencies or DC is applied.

2.3.2 Reverse bias PIN diode

The Reverse Bias Equivalent Circuit shown in Figure 2.7 . It consists a shunt loss
element (R,),a parasitic Inductance (L;) and the Capacitance (Cr).

1

L

Figure 2.7: Reverse bias Equivalent circuit
At high RF frequencies when a PIN diode is at reverse bias, it appears as a

10



parallel plate capacitor. Also the capacitance is independent of reverse bias. (Cr)
is given by:

€A
W

Where € is dielectric constant of silicon A is junction area and W I-region
thickness. The frequencies at which this effect begins is related to the dielectric
relaxation frequency of the I-region (f,),which may be computed as

Cp = (2.6)

1

Jr = 27 pe

(2.7)

where p is resistivity of Intrinsic region.
At frequencies much lower than f;, the capacitance characteristic of the PIN
diode resembles a varactor diode.

2.3.3 Selecting Minimum Reverse Bias for a PIN diode

A PIN diode has ability to control large RF and microwave signal with much lower
values of DC current or voltages. The instantaneous voltage across the PIN diode
must never exceed the avalanche breakdown voltage because high reverse current
may cause PIN diode to be burnt. The instantaneous value will include the self
generated voltage of pin diode given in Equation and the Dc reverse bias voltage
applied [19]. The unsafe condition is shown in Figure 2.8.
Condition:
Vbe + ‘VRF’ > VBr (28)

Voc

I

-VpEAK -

|

VBR I

Figure 2.8: Unsafe Bias

Selection of minimum reverse bias is important as it should not be less so that
it forces the diode to be forward conduction mode or not above the breakdown
voltage which will cause failure of the diode [20]. This is safe region of operation
shown in Figure 2.9

Conditions:

11



VDC + |VRF| < VBR (29)
Vbc > Vrr (2.10)

Voc

|
v i"vFEAI'E -*]I i
i

.

Figure 2.9: Safe bias

In safe region we apply large reverse bias which in some application isn’t avail-
able. Also this can be too much costly. So PIN diode are used in conditionally
safe region given in Figure 2.10.

Condition

Ve + |Vrr| < Var (2.11)
Vbe < Vrr (2.12)

12



Figure 2.10: Conditionally safe bias

where an instantaneous spikes of voltage into the forward conducting region
may be tolerated.The self-generated dc voltage was influenced by the peak RF
voltage level, the frequency, and the thickness of the Intrinsic region and given in
Equation(4.11) [21] [22] [23].

Vir|
[1+ (0.0285 far 1= W2., /Vip/D)2]05
The Self generated DC voltage V. can be considered as the minimum reverse
bias to operate the diode in conditionally safe region. Also the devices may be

selected at a voltage level below the breakdown voltage, which increases the reli-
ability and lower the cost of PIN diodes.

Ve = (2.13)

13



Chapter 3

Approach

The current state-of-the-art of the RF section filter types, topologies, and tunable
elements that can be used to adjust the cut off frequency of the filter has been
researched. The filter topologies were using ideal lumped elements in ADS.

The next step was to investigate and compare the performance of different
types of filters including Butterworth and Chebyshev. The filter response of were
observed by plotting the S21 and S11 parameter in ADS. The responses and com-
plexity of these filters were compared and the best solution that satisfies the desired
specification is determined.

Once fully realized, the filter would not perform according to the ideal behav-
ior of the virtual components. So, we decided to simulate the lumped elements
with appropriate Q values. To determine the () values of each component, we
researched several available components in the market. It was expected that de-
sign modifications would become necessary in order for the filter to perform to
specification with the lessened quality factor of the components.

Determining component values that provided the desired response was a key
consideration in designing our filter configuration. In this section, we used the
ADS/Genesis simulator as well as a mathematical model to determine values for
the filter components. It was expected that the mathematical model would be
more useful in the initial design phase.
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3.1 Fundamental Filter Theory

For designing a filter with desired specifications first we have to take a normalized
low pass filter or a prototype low pass filter, which can then be synthesized into
unique filter performance[24].

A prototype Low pass filter has the cut-off frequency of 1 radian per second
and is terminated by 1 €2 resistance. It can be realized in two ways:

e Minimum capacitor
e Minimum inductor

These two equivalent realization of low pass filter is given in Figure 3.1

Ry=gp=1 L=g
’—'\/V\/\/—< Y i iy
» ] 1
Cf/' = C0=g = G=g N+

()

Figure 3.1: (a) Minimum inductor (b) Minimum capacitor

The values for the g’s in Figure 3.1, involve inductors and capacitors in Hen-
ries and Farads, respectively and can be found in many pre-calculated tables for
different types of filters [25]. In order to arrive at the realizable filters, these coeffi-
cients are de-normalized to meet realistic frequency and impedance requirements.
Impedence and frequency scaling is done to transform normalized low pass filter
to the desired low pass filter.

3.1.1 Impedence and Frequency scaling

These low pass filter were normalized designs having a source impedance of Ry =
1 Ohm and a cutoff frequency of w. = 1 rad/sec. Now, we have to scale these
designs in terms of frequency and impedence.

Impedence Scaling

In the normalized design, the load and source impedences are unity. A source
resistance of Ry can be obtained by multiplying all the impedances of the prototype
design by Ry €2. So the new filter component values are given by:
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L' = RyL, (3.1)
, C

C =— 3.2

RO’ ( )

R, = Ry, (3.3)

R, = RyRy, (3.4)

Where, L. ,C R, are the values of normalized low pass filter.

Frequency Scaling

In normalized design, the cut-off frequency is unity. A cut-off frequency of wy can

be obtained by replacing w by w/w,.. So the new filter component values are given
by:

/ Ly,
L, == .
k wcv (3 5)
/ Ck
o= (3.6)

When both impedence and frequency scaling is applied at then the component
values can be transformed as given below:

r RoLy

L, = 3.7
k W, ) ( )
, Cy

C, = 3.8
=R (3.8)

3.2 Ideal filter simulation

Using ADS software tool, I investigated different ideal filter topologies which in-
cludes the Butterworth filter , the Chebyshev filter 0.5dB and 3dB [26]. Also I
chose minimum inductor type prototype model low pass filter as given in Figure
3.2.

Term

Term1 .
Num=1 L1 12 L3 L4
=50 0hm?} C ic¢ C C
C1 C2 C3 C4
Sl s Sl Sl

Figure 3.2: 9th Order Ideal Low Pass Filter
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3.2.1 Butterworth Filter

In this section, insertion loss and return loss at cut-off frequency 60 MHz and
input-output impedence of 50 2 using the g coefficients for the maximally flat But-
terworth filter design is presented. By using formulas in given equation(3.7)(3.8)
and taking the g-values (given in Appendix B ) from butterworth low pass filter
we can calculate the inductors and capacitor values which is given in Table 3.1

Coefficients ~ Inductor(mH)  Capacitor(uF)
1 113.35 15.74
2 213.04 69.47
3 213.04 90.687
4 113.35 69.47
5 NA 15.74

Table 3.1: Component values for a 9th order Butterworth filters.

After using these component values in the filter shown in Figure 3.1 we get the
following responses give in Figure,3.3

m1i
freq=60. 00M Hz m3
dB(S(2,1))=-0.250 freq=60.00MHz

ot

u dB(S(1,1))=-12.527
o ™3

[
5
|

ma2
freq=120.0M HZ
dB(S(2,1))=-41.9

dB(S(2, 10
s
1

dB(S(1,13)

&
&
|

LS5 PR NP SR T P ) P ) ) P s
20 40 81 50 100 12 140 60 130 L I B S Sy S B I Sy S
20 40 60 00 12 140 160 10

freq, MHz
fag, MHz

(a) Insertion Loss (b) Retum Loss

Figure 3.3: 9th order butterworth filter response

In the above response we are getting only -41.911 dB rejection for second
harmonics for 9th order butterworth filter. So we proceed to next type of filter.

3.2.2 Chebyshev (0.5dB)

By using formulas in given equation(3.7)(3.8) and taking the g-values from Cheby-
shev (0.5dB) low pass filter given in Appendix B, we can calculate the inductors
and capacitor values which is given in Table 3.2

After using these component values in the filter shown in Figure 3.1 we get the
following responses give in Figure 3.2.
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Coefficients ~ Inductor(mH)  Capacitor(uF)
1 168.31 92.86
2 181.34 141.533
3 181.34 144.51
4 168.31 141.533
5) NA 92.86

Table 3.2: Component values for a 9th order Chebyshev (0.5 dB) filters.

m1
freq=60.00MHz
dB(8(2,1))=-0.487

LLLE!

] ] m3
20 e 3freq=60‘00MHz
| 1 dB(S(1,1))=-9.740
= s = 2
o =
(2] (2]
g o m2 g o]
-100— o
B m2 404
120 fregq=120.0MHz ]
i dB(S(2,1))=-87.787 ]
s B e L B R S S B R B m
20 40 60 80 100 120 140 160 130 20 40 60 80 100 120 140 160 180

freq, MHz freq, MHz

(a) Insertion Loss (b) Return Loss
Figure 3.4: 9th order chebyshev(0.5 dB) filter response

In the above response we are getting rejection at second harmonics as per the
desired specification but we are getting 0.5 dB Insertion loss at cut off which will
increase above the desired specification after realization with ohysical compnents
and return loss is also not as per the specification for 9th order chebyshev(0.5 dB)
filter. So we proceed further to next type of filter.

3.2.3 Chebyshev (0.25 dB)

We have calculated the component values by g-values (Appendix B) in the cheby-
shev 0.25 dB ripple table.The component values we get is in Table 3.3

Coefficients ~ Inductor(mH)  Capacitor(uF)
1 176.61 57.04
2 197 102.83
3 197 131.89617155
4 176.61 102.830
5 NA 97.04

Table 3.3: Component values for a 9th order Chebyshev (0.25 dB) filters.

After using these component values in the filter shown in Figure 3.1 from Table
3.3 we get the following responses after simulating in ADS given in Figure 3.5

18



\r\ll\2

S

|
=30/

20 m1 ] 3
] \ |freq=60.00MHz 10 A~
\ |dB(S(2,1))=0.279 /
_ A i o 3
¢ AN £ freq=60 00MHz |
g ! = dB(S(1,1))=-12.054
= ]

m2 40 i

freq=120.0MHz 1

1 dB(S(2,1))=-14.471 ]
T | T T ‘ T | T T '50 T | T T | T T ‘ | T |

40 60 B0 100 120 140 160 180 o 2 40 60 80 100 120 140 160 180

freq, MHz freq. MHz

(a) Insertion Loss (b) Retum Loss

Figure 3.5: 9th order chebyshev(0.25 dB) filter response

In the above response we are getting insertion loss and rejection at second
harmonics as per the desired specification. Although return loss is not as per
the requirement but We can get it by tuning the capacitor a bit but in earlier
two topologies(Butterworth Filter, Chebyshev (3dB)), we can’t get the desired
response even after tuning the capacitors.

3.3 Switched Filter Banks

This is very traditional technique of making filter tunable. Initially fixed frequency
filter is made of different frequency bands. Then the tunability is achieved by using
switches among these filters in both at input and output end [27]. An example of
switched filter bank is illustrated in Figure 3.6. Although, this type of conventional
filter banks is not cost and size effective. As the tuning range increases the cost
and size increases. This led to the realization of a new and compact cost and size
effective tunable low pass filter.

[ Switch Driver Control |
1-1.2 GH=z

=i

1.2 GHz

&

|
—
=

&

SP4T

SP4T 1.4-1.

Input Qutput

a

Figure 3.6: Electronically switchable filter bank block diagram
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Chapter 4

Design and simulation of Tunable
LPF

For desigining a tunable filter which can tune in the wide frequency band in the
V/UHF range of 30-520 MHz [28]. Three individual tunable filters banks has been
designed in ADS design using Chebyshev(0.25) topology, of the frequency range
30-90 MHz, 90-270 MHz, 270-520 MHz as shown in block diagram 4.1. These
filters have pin diode switch connected to the shunt capacitor to tune the value
of capacitance.For giving bias to the pin diode switching circuit mosfet are used.
Here HV5533 Driver IC has been used to provide biasing to the switch. The
Ic is digitally controlled by microcontroller PIC32MX695F512H. The single pole
triple throw (SP3T) switch MASW-011040 is also controlled by the microcontroller
quoted before.

BANK1
T BANK2 el
o N i " I RF_OUT
BANK3
SP3T spaT
SWITCH SWITCH

Figure 4.1: Tunable Filter Block Diagram(30-520 MHz)

Now the three filters banks are individually tuned in ADS designing tool for
several values of capacitors. By tuning we can find the minimum and maximum
value of capacitance required for tuning in desired frequency range. Then the
switch is connected to each capacitor branch and tunning is done manually by
switching the pin diode.
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After simulation PADS design software is used to make the digital schematic
diagram.

4.1 PIN diode Switch circuit

Using PIN diode as a switch the circuit requires two pin diode connected in op-
posite direction and parallel high value resistance for voltage divider. The circuit
that has been used as a switch is given in Figure 4.2

Ziml
-

Sep-iOMHz . . .

T=Zin &1 PorZ1}

Figure 4.2: PIN diode switching circuit

After simulating the circuit in ADS , we can get the loss which can come by
using the circuit as a switch [29]. The main advantage of using this circuit is that
the loss when switch is ON is very less shown in Figure 4.3.

&
=
o

=)
2
[
|

dB(S(2,17)

-00585

=]
15
a
B

PN T T T I B O A A A O

G L R S T ) PR S I RN PG
] R0 100 150 200 250 300 350 400 450 5HOD 650

freq, MHz

Figure 4.3: Loss when circuit is in conducting state

Also it has very less capacitance so it has very little effect to the overall ca-
pacitance of that branch which is switched on given in Figure 4.4 .
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freq Zin1
30.00 MHz 50688 -]0.013
60.00 MHz 50.685 -)0.007
90.00 MHz 50.684 -]0.005
120.0 MHz 50624 -)0.004
150.0 MHz 50.684 -)0.003
180.0 MHz 50.684 -)0.002
210.0 MHz 50624 -)0.002
240.0 MHz 50.684 -)0.002
270.0 MHz 50.684 -)0.002
300.0 MHz 50684 -)0.002
330.0 MHz 50.684 -)0.002
360.0 MHz 50.684 -)0.002
390.0 MHz 50624 -)0.002
420.0 MHz 50.684 -)0.001
450.0 MHz 50.684 -0.001
480.0 MHz 50624 -)0.001
510.0 MHz 50.684 -)0.001
520.0 MHz 50.684 -)0.001

Figure 4.4: Impedence of the switching Circuit

While using simply PIN diode and biasing causes losses in RF signal as its
reactive impedence value is inductive which has a property to block RF that is
why the above circuit has been used.

L
7

dBIS(2.1))
w 1 L
[=] m [=]

G
o

L
[=]

i
n

T T T T T T T T T T
50 100 150 200 250 300 350 400 450 500 550

(=]

freq, MHz

Figure 4.5: Isolation

For switching off the switch we have to give bias from the driver IC. Figure
4.5 shows the isolation when the switch is in OFF state.

22



4.2 Tuning Process

First filter is designed which can tune in the frequency range from 30 MHz to 90
MHz. For this frequency range, fixed filter is designed for the mid frequency i.e
60MHz. Which can be calculated from equation (4.1) Then the capacitor of this
filter is tuned. To meet the specifications of the objective 9" order chebyshev
filter is designed as described in Section (3.2.3) [30].

As this is the chebvyshev filter so the filter is symmetric so only three values
of capacitor is tuned. The filter which is tuned is shown in Figure 4.6 and Figure
4.7.
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Figure 4.7: Tuning process(ii)

In tuning process we have taken some intermediate frequencies with equal
interval and find each capacitance value at that intermediate frequency by tuning.
Then by plotting capacitance value of intermediate cut off frequencies in graph we
can get the approximate equation by which we can tune the filter for frequencies
within the specified range.

To meet the capacitance requirement we have taken the lowest value capacitor
fixed and then added capacitors values in binary. These capacitors are added in
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parallel (As capacitors have additive property in parallel). So that we can get
intermediate values of capacitor which is required.

4.3 Filter Bank (30-90 MHz)

For designing filter 30-90 MHz, we have made a fixed filter of the cut-off frequency
of 60 MHz by Equation (4.1). A dc blocking capacitor is used at input and output
of the filter which is connected to switch. The corresponding value of capacitors
at intermediate frequency is given in Table 4.1:

fa+ I

frized = 9 (4.1)
S.No. | Freq(MHz) | Capacitorl| Capacitor2| Capacitor3
(PF) (PF) (pF)
1 30 151.4 342.8 304.2
2 39 111.3 251.8 238.3
3 40 85.3 192.8 192.8
4 45 67.5 152.3 160.0
) 50 54.7 123.4 135.4
6 99 45.2 102.0 116.5
7 60 38.0 85.7 101.5
8 65 32.4 73.0 89.4
9 70 28.0 63.0 79.5
10 75 24.4 54.8 71.2
11 80 214 48.2 64.3
12 85 19.0 42.7 58.4
13 90 17.01 38.1 53.4

Table 4.1: Tuned capacitor value FILTER 1

By plotting these values of capacitors, we can get the frequency dependent
equation by which the capacitance is varying. The graph plotted for capacitor 1,
capacitor 2 and capacitor 3 is given in Figure 4.8 (a)(b)(c) respectively.
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Figure 4.8: Tuned capacitor value plot

The equation which is generated after plotting these values which is mentioned
in Table 4.1 is given below:

Cy = 133042, 199 (4.2)
Cy = 308492 f, 200 (4.3)
C3 = 066509 f, 1% (4.4)

The schematic in PADS logic is given in Figure 4.9

25



4.3.1 Schematic of RF section
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Figure 4.9: PADS schematic for Filter 1
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4.3.2 ADS simulation (30-90 MHz)

Simulation schematic diagram in Agilent ADS is given in Figure 4.10 .
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Figure 4.10: ADS schematic (30-90MHz)

In this in place of capacitor tuning capacitor block is used. In tuning block
the one capacitor is fixed which is the lowest value of capacitance after tuning
(i.e capacitance value when filter is tuned to the highest frequency). Then the
capacitor is connected in parallel in binary form so that all the intermediate value
is generated precision up to one places on decimal.

The capacitor block which is used in place of single capacitor is shown in Figure
4.11

2 Capacitor :

B B Wd, WA
Lcaw_ B lcma lcazn_ B lcmu
> Cei .
o - T o -

GeizigF
=

weoom | ¥ 3 B

Figure 4.11: Equivalent Capacitor Block
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In ADS, tuning is done manually by switching the PIN-Diode.The PIN diode
switch shown in Figure 4.11 contains the circuit shown in Figure 4.2. Switching
is done by changing the biasing of the diode. Bias is changed by taking the two
variables (i.e. z=100 v and x= 0 V).

If Z=100 is selected then the switch is open and if x=0 is selected then the
switch is closed. The manually tuning block is shown in Figure 4.12.

\/AR- - VAR - g | VAR

VAR2_4 VAR2.5 | VAR2.6

A‘|_4:Z A2_4=Z A3_4=Z
' - M5z A2 5 A3 5=z
T A6 A26X A3.6=x
Wk e e o e Fedie -
VAR3  A18=x. . A2.8x A3.8=x .
f_req_uency=_30 A1 9=z A2 9=x A3 9=z
z=100 A‘]_‘]O:x A2_10=Z A3_10=Z

=0 AL 1=z A2 M= A3 11=x
Figure 4.12: Manually Tuning Block

4.3.3 Simulation Response

Filter is tuned by changing the value of capacitor according to the Equations(4.2)(4.3)(4.4).
There are two types of simulation done in this schematic.

e S-Parameter simulation

e Harmonic Balance Simulation

In S-Parameter simulation S(2,1) and S(1,1) is plotted in the responses shown
in Figure 4.13 for several intermediate frequencies. While in Harmonic Balance
simulation Input is given which is having harmonics and the output is observed.
First response in Figure 4.14 shows the time domain input and output and the
second one shows dBm input output.
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S-Parameter Simulation Response(30-90 MHz)
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Figure 4.13: S Parameter simulation Response
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Harmonic Balance Simulation Response (30-90 MHz)
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4.4 Filter Bank (90-270 MHz)

For filter bank from 90-270 MHz, fixed filter of 180 MHz has been made by the
Equation (4.1). The capacitors and inductors values has been calculated as given

in Section (3.2.3). The capacitance and inductance value is mentioned in Table
4.2.

Coefficients ~ Inductor(mH)  Capacitor(uF)
1 60.24 27.8
2 66.39 36.5
3 66.39 42.9
4 60.24 36.5
5) NA 27.8

Table 4.2: Component values of 180 MHz fixed filter.

Now tunning has been done as per section 4.2. The values of capacitors for

intermediate frequencies is given in Table 4.3. The frequencies are taken in interval
of 10 MHz.

S.No. | Freq(MHz) | Capacitorl| Capacitor2| Capacitor3
(PF) (pF) (pF)

1 90 53.2 125.9 111.1
2 100 49.2 102.2 94.0
3 110 45.4 84.7 80.8
4 120 41.7 71.3 70.4
) 130 38.3 60.9 62.0
6 140 35.1 52.6 55.2
7 150 32.0 45.9 49.4
8 160 29.2 40.4 44.6
9 170 26.6 35.8 40.6
10 180 24.1 32.0 37.0
11 190 21.9 28.7 34.0
12 200 19.9 26.0 31.3
13 210 18.0 23.6 29.0
14 220 16.4 21.5 27.0
15 230 15.0 19.7 25.1
16 240 13.7 18.1 23.5
17 250 12.7 16.7 22.0
18 260 11.9 15.5 20.7
19 270 11.2 14.3 19.5

Table 4.3: Tuned capacitor value FILTER 2
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Now these values of capacitors are plotted in MS-excel, where we can get the
equation by which it is varying. The graph is plotted in Fig 4.15 (a) (b) (c)

Capacitorl

Capacitor 2
y=-4252in(x) + 2442 P

y=010490¢457
500

40.0
300
200

100

0.0

0 0 W) ¥ o L 300 0 50 w (b) =0 0 0 30

Capacitor3

y= 13837201

0 50 100 150 200 250 300

c)
Figure 4.15: Tuned capacitor value plot Filter2

After plotting the values as shown above we get the frequency dependent equa-
tion of by which these capacitance vales varies with frequency.
The equations which we get is given below:

Cy = —42.521n(f.) + 244.2 (4.5)
Cy = 919490 f 1997 (4.6)
Cs = 138372158 (4.7)

The schematic in PADS logic is given in Figure 4.16.
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4.4.1 Schematic of RF section
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4.4.2 ADS simulation (90-270 MHz)

Simulation schematic diagram in Agilent ADS is given in Figure 4.17 .

Figure 4.17: ADS schematic (90-270 MHz)

4.4.3 Simulation Response

As we have done in section 4.3.2. Both the S-parameter and Harmonic balance
simulation is done by manually tuning the capacitors in ADS.

In S-parameter simulation we have find the S(2,1) and S(1,1) as it gives the
insertion loss and return loss.

In Harmonic balance simulation we have given the a harmonic signal input and
compared the output. First figure in harmonic simulation is time domain input
output signals and the second one is input output signal in dBm.
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S-Parameter Simulation Response(90-270 MHz)
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Figure 4.18: S Parameter simulation Response filter bank 2
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Harmonic Balance Simulation Response (90-270 MHz)
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Figure 4.19: Harmonic Balance simulation Response filter bank 2
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4.5 Filter Bank (270-520 MHz)

For filter bank from 270-520 MHz, fixed filter of 400 MHz has been made by the
Equation (4.1). From equation 4.1 395 MHz frequency is coming. So we took its
nearest decimal value. The capacitors and inductors values has been calculated

as given in Section (3.2.3). The capacitance and inductance value is mentioned in
Table 4.4.

Coefficients  Inductor(mH)  Capacitor(uF)
1 27 9.6
2 30.5 16.8
3 30.5 18.3
4 27 16.8
5 NA 9.6

Table 4.4: Component values of 400 MHz fixed filter.

Now tunning has been done as per section 4.2. The values of capacitors for
intermediate frequencies is given in Table 4.5. The frequencies are taken in interval
of 10 MHz.

S.No. | Freq(MHz) | Capacitorl| Capacitor2| Capacitor3
(PF) (PF) (PF)
1 270 20.0 32.5 28.3
2 290 18.1 29.4 26.1
3 310 16.4 26.6 24.1
4 330 14.8 24.1 22.2
) 350 13.4 21.8 20.5
6 370 12.1 19.7 18.9
7 390 11.0 17.8 17.5
8 400 10.4 17.0 16.8
9 420 9.4 15.4 15.5
10 440 8.5 13.9 14.3
11 460 7.7 12.6 13.2
12 480 7.0 11.4 12.2
13 500 6.3 10.3 11.3
14 520 5.7 9.3 10.4

Table 4.5: Tuned capacitor value FILTER 3

Now these values of capacitors are plotted in MS-excel, where we can get the
equation by which it is varying. The graph is plotted in Fig 4.20 (a) (b) (c)
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Figure 4.20: Tuned capacitor value plot Filter3

After plotting the values as shown above we get the frequency dependent equa-
tion by which these capacitance values varies with frequency. The equations which
we get is given below:

(] = 85.188¢(70:005/c)
Cly = 138.58¢(70:005/c)
Oy = 90.126¢(~0:004/c)

The schematic in PADS logic is given in Figure 4.21.
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4.5.1 Schematic of RF section
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Figure 4.21: PADS schematic for Filter 3
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4.5.2 ADS simulation (270-520 MHz)

Simulation schematic diagram in Agilent ADS is given in Figure 4.17 .

Figure 4.22: ADS schematic (270-520 MHz)

4.5.3 Simulation Response

As we have done in section 4.3.2. Both the S-parameter and Harmonic balance
simulation is done by manually tuning the capacitors in ADS.

In S-parameter simulation we have find the S(2,1) and S(1,1) as it gives the
insertion loss and return loss.

In Harmonic balance simulation we have given the a harmonic signal input and
compared the output. First figure in harmonic simulation is time domain input
output signals and the second one is input output signal in dBm.
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S-Parameter Simulation Response(270-520 MHz)
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Harmonic Balance Simulation Response (270-520 MHz)
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Figure 4.24: Harmonic Balance simulation Response filter bank 3
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4.6 SP3T Switch

For switching the filter banks SP3T switches are used both at the input and output.
Here in this project MACOM MASW-011040 SP4T switch has been used. This
is a 20 PIN IC having one RF;n/RFoyr port and four switched port. Proper
biasing of the ports is shown in Figure 4.25. For voltages V1 and B1 FDC3601N
is used. This is a dual n channel 100 V specified MOSFET. Schematic is given in
Figure 4.26.

The SP3T switch is used in both input and output end. MASW-011040 is
SP4T switch. So the RF2 and RF3 port is shorted and then fed to the FILTER
BANK 2. Also these two pins are low power pin so we have shorted two pins to
fulfill the power requirement. The other two ports i.e. RF1 and RF2 are high
power ports. The datasheet of this switch in given in Appendix A.

(b)

(a)

Figure 4.25: SP3T switch biasing schematic

Figure 4.26: MOSFET biasing schematic
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4.7 Digital Section

4.7.1 Driver

Drivers are used to for pin diode switching. In this project HV5523 is used. The
datasheet is given in Appendix A. This is a low-voltage serial to high-voltage
parallel converter with open drain outputs. The schematic and biasing is shown
in Figure .The driver is connected to the microcontroller which sends serial data
to the driver as per the frequency is tuned. Also remaining Pin diode is connected
to the MOSFET (ZVN2120G) is used. This is 200V n-channel enhancement mode
MOSFET.

Figure 4.27: Driver schematic schematic
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4.7.2 Microcontroller schematic

PIC32MX695F512H microcontroller is used to control the SP3T switch and the
Driver ICs. For SP3T the MV1 and MBI is is connected to the microcontroller
which decides which one of the three filter banks to be selected.

For driver the DATA_IN | Latch enable/disable, Clock_IN pins are controlled
by microcontroller. The biasing circuit is given in Figure 4.28.
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Figure 4.28: Microcontroller schematic schematic
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4.8 Components Used
S. Part Number Description Package Supplier Supplier Qty
No. /Case part num-
ber
1 MA4P506-1072T DIODE 2-SMD digikey | 1465-1232-1- 340
PIN ND
SMQ CE-
RAMIC
SI
2 HV5523K7-G IC 32BIT | 44- digikey | HV5523K7- 4
SRL PAR- | VFQFN G-ND
ALLEL Exposed
44WQFN Pad
3 PIC32MX695F512H- IC  MCU | 64- digikey | PIC32MX695F312H-
80V/MR 32BIT VFQFN 80V/MR-ND
512KB Exposed
FLASH Pad
64QFN
4 SN74LV4T125PWR] 1C 14-TSSOP digikey | 296-40545-1- 2
BUFFDVR | (0.1737, ND
NON- 4.40mm
INVERT Width)
14TSSOP
5 LT3482EUD#PBF | IC REG | 16- digikey | LT3482EUD#DPBE-
BST WFQFN ND
SWITCHD | Exposed
CAP ADJ | Pad
16QFN

Table 4.6: Components Used
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S. Part Number Description Package Supplietr Supplier Qty
No. /Case part num-
ber
6 ZVN2120GTA MOSFET TO-261-4, digikey | ZVN2120GCT-| 5
N-CH TO-261AA ND
200V
320MA
SOT223
7 22225Q-181_E_ 180nH RF chipin- | coilcraft 2
ductor
8 22225Q-221_E_ 220nH RF chipin- | coilcraft 2
ductor
9 1515SQ_68_N_E 68nH RF chipin- | coilcraft 4
ductor
10 1111.SQ_27N 27nH RF chip in- | coilcraft 2
ductor
11 1111 _SQ_30N 30nH RF chipin- | coilcraft 2
ductor
12 251R14S130FV4T | CAP CER | 0603 (1608 | digikey | 251R14S130FV4T2
13PF 250V | Metric) ND
NP0 0603
13 251R14S360GV4AT | CAP CER | 0603 (1608 | digikey | 251R14S360GVHT2
36PF 250V | Metric) ND
CO0G/NPO
0603
14 251R14S510F V4T | CAP CER | 0603 (1608 | digikey | 251R14S510FV4T:
51PF 250V | Metric) ND
NPO 0603
15 251R14S680GVAT | CAP CER | 0603 (1608 | digikey | 712-1361-6- 15
68PF 250V | Metric) ND
CO0G/NPO
0603
16 251R145470GV4AT | CAP CER | 0603 (1608 | digikey | 712-1353-1- 5
ATPF 250V | Metric) ND
CO0G/NPO
0603
17 251R145560JV4T | CAP CER | 0603 (1608 | digikey | 712-1358-1- 5
56PF 250V | Metric) ND
CO0G/NPO
0603
18 251R145270JV4T | CAP CER | 0603 (1608 | digikey | 712-1334-6- 10
27PF 250V | Metric) ND
CO0G/NPO
0603
19 251R145240JV4T | CAP CER | 0603 (1608 | digikey | 712-1169-1- 15
24PF 250V | Metric) ND
CO0G/NPO
0603

Table 4.7: Components Used cont(I)




S. Part Number Description Package Supplietr Supplier Qty
No. /Case part num-
ber
20 251R145120GV4T | CAP CER | 0603 (1608 digikey 712-1313-1- 12
12PF 250V | Metric) ND
CO0G/NPO
0603
21 251R14S6R8CV4T | CAP CER | 0603 (1608 | digikey 712-1364-1- 10
6.8PF Metric) ND
250V
C0G /NP0
0603
23 251R14S3R3BVAT | CAP CER | 0603 (1608 | digikey 712-1348-1- 15
3.3PF Metric) ND
250V
C0G /NP0
0603
24 251R14S1R5BVAT | CAP CER | 0603 (1608 | digikey 712-1327-1- 15
1.5PF Metric) ND
250V
C0G /NP0
0603
25 251R14S9R1CV4T | CAP CER | 0603 (1608 | digikey 712-1369-1- 6
9.1PF Metric) ND
250V
C0G /NP0
0603
26 | 251R14S160GV4AT | CAP CER | 0603 (1608 | digikey | 712-1319-1- 1
16PF 250V | Metric) ND
CO0G/NPO
0603
27 | 251R14S300GVAT | CAP CER | 0603 (1608 | digikey | 712-1339-1- 5
30PF 250V | Metric) ND
CO0G/NPO
0603
28 251R148330JV4T | CAP CER | 0603 (1608 | digikey | 712-1342-1- 5
33PF 250V | Metric) ND
CO0G/NPO
0603
20 | 251R14S390GVAT | CAP CER | 0603 (1608 | digikey | 712-1345-1- 5
39PF 250V | Metric) ND
CO0G/NPO
0603

Table 4.8: Components Used cont(II)
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S. Part Number Description Package Supplietr Supplier Qty
No. /Case part num-
ber
30 | 251R14S110GV4T | CAP CER | 0603 (1608 | digikey | 712-1311-1- 5
11PF 250V | Metric) ND
COG/NPO
0603
31 251R14S150GV4T | CAP CER | 0603 (1608 | digikey | 712-1317-1- 5
15PF 250V | Metric) ND
CO0G/NPO
0603
32 | 251R14S8R2CVAT | CAP CER | 0603 (1608 | digikey | 712-1368-1- 12
8.2PF Metric) ND
250V
CO0G/NPO
0603
33 | 251R14S6R2CV4T | CAP CER | 0603 (1608 | digikey | 712-1363-1- 15
6.2PF Metric) ND
250V
CO0G/NPO
0603
34 | 251R14S4R7BVAT | CAP CER | 0603 (1608 | digikey | 712-1172-1- p
4.7PF Metric) ND
250V
CO0G/NPO
0603

Table 4.9: Components Used cont(I1I)
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Chapter 5
PCB layout and Result

5.1 PCB layout

9
Figure 5.1: IQCB Layout



PCB layout of one filter is given in Figure 5.1. Three same type of PCB has been
individually made for the three tunable filter. In the PCB given upper and lower
side has the drivers and there are five blocks of capacitor places side by side. In
between respective inductors are there. RF board is fabricated on a 0.5mm thick
Rogers 4350 substrate. At the top layers filters, switches, Drivers are there and
the bottom layer include the digital section which has the micro-controller, buffer

IC.
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5.2 Result

We have connected the filter module to the network analyzer of Agilent tech-
nologies E5071B with the help of coaxial cable. Digital controls are given to the
micro-controller through the respective pins. The response is given in Figure given
below.
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Figure 5.2: Respoonse at 49 MHz
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Figure 5.3: Response at 81 MHz
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First figure is each page above gives the insertion loss and the second figure
gives return loss. There are several problems faced while physically designing the
filter with actual component. Some of the major problems are listed below:

e Parasitic capacitance : Initially components with large pads size were
taken. But they were causing extra parasitic capacitance which was affecting
the value of overall capacitance. This affects both insertion and return loss.

So We have then used less pad sized components to make the parasitic
capacitance as low as possible.

e Quality factor: At first large single valued capacitance were taken. But
the quality factor is decreased by taking single high valued capacitor. This
will increase the insertion as well as return loss.

For this we have taken two or three smaller valued capacitance in parallel.
So that the quality factor will increase which in turn gives the good response.

e Power Dissipation: As it is high power handling and also made up of
passive components, so power dissipation is a major factor. This loss is in
the form of heat. In the responses which is taken from network analyzer
maximum insertion loss is 2 dB and return loss is 19 dB. If 100 W signal
is applied to the filter then 64 watt power is transmitted and rest power is
reflected back and dissipated in the form of heat.

If return loss is 19 dB then the power reflected is nominal i.e. 1.2 Watts.

So the remaining power loss is due to the power dissipation in form of heating
effect. The value of that power which is lost is 34.8 Watts. In future we have
to work on the power dissipation.

e Switch isolation: In stop band some spikes are coming, which is undesir-
able. This is because stop band of first filter is in pass band of other two
filter. So this means isolation among the three ports are less.

For further development we will try to design a switch which have higher
isolation than the current one. So that it will not interfere with the stop
band of other filter.
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Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The specifications provided in the project is for military applications in software
defined radios. My intension behind this project is to create something like this
specification. It is very challenging as well as motivational to create as per the
industrial standards. Although many compromises were made to save time and
reduce complexity.

In the beginning several designs were tested in ADS, and one is selected which
suited best for the specifications. As it should be used in the transmitter side so
it will require high power handling, so we cant use varactor diode based tuning.
Earlier six fixed filter banks were there to meet the above specification. While
my design reduced the number of filter banks by half. Also it is going to tune
at each frequency individually so comparatively less sharp roll off will meet the
specifications well which in turn result in the reduction of filter order. We used
ROGERS 4350, 0.5mm thick substrate to reduce loss. With some compromise
with the insertion loss other requirements has been achieved.

6.2 Future Scope

In this thesis we have used conventional and a relative simple chebyshev filter to
design the tunable filter. An improvement in filter design will further enhance the
insertion loss and increase the power handling capacity of the filter. It can be
made for more wide band frequency. We can work on the miniaturization of the
circuit board.
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