
Project report

on

“Software Test Data Generation Using Evolutionary Techniques”

submitted under Major Project-II

in

Master of Technology in Computer Science and Engineering

(M.Tech CSE)

By

Tina Arora

2K14/CSE/503

Under the Guidance of:

Dr. Ruchika Malhotra
(Assistant Professor, Department of Computer Science and Engineering)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

July 2017

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

 CERTIFICATE

This is to certify that Project Report entitled “Software Test Data Generation Using

Evolutionary Techniques” submitted by Tina Arora (Roll No: 2K14/CSE/503) for partial

fulfilment of the requirement for the award of Degree in Master of Technology (Computer

Science and Engineering) is a record of the candidate work carried out by her under my

supervision.

Dr. Ruchika Malhotra

Project Guide

Assistant Professor

Department of Computer Science & Engineering

Delhi Technological University

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

DECLARATION

I hereby declare that the Major Project-II work entitled “Software Test Data Generation

Using Evolutionary Techniques” which is being submitted to Delhi Technological

University, in partial fulfilment of requirements for the award of degree of Master of

Technology (Computer Science and Engineering) is a bonafide report of Major Project-II

carried out by me. The material contained in the report has not been submitted to any

university or institution for the award of any degree.

Tina Arora

2K14/CSE/503

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

ACKNOWLEDGEMENT

I owe my profound gratitude to my project guide, Assistant Professor, Dr. Ruchika

Malhotra who has been a constant source of inspiration to me throughout the period of

this project. It was her competent guidance, constant encouragement and critical

evaluation that helped me to develop a new i n s i g h t into my project. Her calm,

collected and professionally impeccable style of handling situations not only steered

me through every problem, but also helped me to grow as a matured person.

I am also thankful to her for trusting my capabilities to develop this project under

her guidance.

Date : Tina Arora

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

TABLE OF CONTENTS

 Page No.

Certificate 2

Declaration 3

Acknowledgement 4

Table of Contents 5

 List of Figures 7

 List of Tables 8

List of Abbreviations

Abstract 9

1. Chapter 1 : Introduction 10

1.1 Motivation of the work 11

1.2 Objective of the Work 11

1.3 Organization of the Thesis 11

2. Chapter 2 : Literature Survey 13

3. Chapter 3:Evolutionary Algorithms 15

3.1 What are Genetic Algorithms? 15

3.2 Genetic Operators 15

3.2.1 Selection 15

3.2.2 Crossover 15

3.2.3 Mutation 16

3.3 Fitness Function 16

3.4 Flowchart 17

3.5 Pseudocode of Genetic Algorithm 19

4. Chapter 4:Test Data Generation 20

4.1 Automation in Test Data Generation 20

4.2 Test Adequacy Criteria 20

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

5. Chapter 5:Test Data Generation Tools 22

6. Chapter 6: Genetic Algorithm Based Approach To Test Data Generation23

6.1 Basic Concepts and Definitions 23

6.1.1 Control Flow Graph 23

6.1.2 Path Testing Terminologies 23

6.2 Implementation 24

7. Chapter 7: Experiment and Results 25

7.1 Initial Experimental Settings 25

7.2 Execution of TG_GA 25

7.3 Impact of change in range of input variable to the 28

number of generations required for convergence

8. Chapter 8: Case Study: Working of TG_GA for a Sample Problem 29

8.1 GCD program 29

8.2 CFG (Control flow Graph) of the GCD program 30

9. Chapter 9: Conclusions and Future Work 32

References 33

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

List of Figures

Figure No Title Page No

1 Flowchart for a Genetic Algorithm

17

2 Pseudocode for a typical Genetic Algorithm

19

3 Execution of TG_GA for fitness function as in

Section 7.1

26

4 Execution of TG_GA for fitness function as in

Section 7.1(contd)

26

5 Generation number vs best fitness value for first 30

generations

27

6 Graph showing variation in number of generations

required for convergence with change in range of 3

variables for the fitness function as given in Section

7.1

28

7 Program to find GCD of two numbers 29

8 Control flow graph for the GCD program

30

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

List of Tables

Table No Title Page No

1 Popular test data generation tools

22

2 Initial experimental settings for TG_GA

25

3 Best Fitness values of first 30 generations of

TG_DA for fitness function as in 7.1

27

4 Variation in number of generations required for

convergence with change in range of 3 variables for

the fitness function as in (i)

28

5 Time taken by TG_GA and random testing for

GCD program of Fig.7

31

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

List of Abbreviations

S.No Acronym Full Form

1

CFG Control Flow Graph

2 du paths Definition Use Paths

3 dc paths Definition Clear Paths

4 PAN Permanent Account Number

5 SQL Structured Query Language

6 CSV Comma Separated Values

7 GA Genetic Algorithms

8 TG_GA Test Data Generator using

Genetic Algorithms

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

ABSTRACT

Test data generation is the task of constructing test cases for predicting the acceptability of

novel or updated software. Test data could be the original test suite taken from previous run

or imitation data generated afresh specifically for this purpose. The simplest way of

generating test data is done randomly but such test cases may not be competent enough in

detecting all defects and bugs. In contrast, test cases can also be generated automatically and

this has a number of advantages over the conventional manual method. One of the

automation techniques is using Genetic Algorithms (GA). They are iterative algorithms that

apply basic operations repeatedly in greed for optimal solutions, or in this case, test data. By

finding out the most error-prone path using such test cases one can reduce the software

development cost and improve the testing efficiency. During the evolution process such

algorithms pass on the better traits to the next generations and when applied to generations of

software test data they produce test cases that are closer to an optimal solution. Most of the

automated test data generators developed so far work well only for continuous functions. In

this study, we have used Genetic Algorithms to develop a tool and named it TG_GA (Test

Case Generation using Genetic Algorithms) that searches for test data in a discontinuous

space.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

1. Chapter 1 : INTRODUCTION

Software Testing is a vital and a time extensive process that consumes more than 50% of

the software development resources and cost [10, 11]. Also, in the software industry

constant novel assessment approaches and metrics are required for predicting the quality

and reliability of the software by executing test cases. These test cases could be inputs to

variables of the software, execution paths, execution conditions, or testing requirements.

Thus, test cases play a prominent role in testing and problems usually require them in

large number. This calls for high manpower cost, and considerable amount of time for

their generation. The most straightforward way to generate test cases is manual and

random in nature but such test cases may not be competent enough to reveal all defects

and bugs. Moreover, manual generation is quite inefficient and software industry has

constantly tried to automate this process. Therefore, automated and efficient generation of

test cases is a potential and a critical research problem in the domain of testing.

Automation of test cases has a number of other advantages also besides from being fast

and accurate. An automated generator may implement algorithms to generate correctly

formatted special data like PAN (Permanent Account Number) card numbers, email

addresses, etc. This eliminates the need to look up the algorithms for generating the

special test data by the tester. It can also create both valid and invalid test data and this

quantity can be controlled by a percentage distribution between them. Such generators

also provide options to either generate the test data directly in the desired format (e.g.

Excel, CSV or SQL) or export it to a desired format.

Genetic Algorithm is an adaptive search procedure based on the concept of selection and

evolution. It is a computational technique that resembles biological evolution as a problem

solving approach [1]. It enhances a population of separate solutions in a recursive manner

and for this at each step it randomly chooses individuals from the present population and

uses them as parents to produce off springs for the next generation. Thus, the population

moves towards an optimized result over consecutive generations.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Evolutionary Algorithms, particularly, Genetic algorithms are meta-heuristic search

techniques that change the task of building up of test cases into an optimization task [2].

Thereafter, they search for optimal test parameter combinations that fulfill some pre-

defined test condition which is represented using a fitness function. They behave well to

problems of higher dimensions in short span of time and can be seamlessly modified to the

new problem and can be changed for customization as well. Because of these inherent

qualities they are a promising technique for test case generation.

In our paper we develop a tool, TG_GA, that looks for optimal solution in a discontinuous

search space and collect inputs for such solutions as test data. A discontinuous search space

is one which has solutions that are isolated from each other in a graph and hence, they do

not represent a continuous curve. Thus, problems like finding GCD of two numbers,

greatest of ‘n’ numbers, division, etc, have discontinuous search spaces. During the

development process, we make a file geneticdata.txt and specify the range of the

permissible input variables in this. Initial discontinuous values of the individuals during the

run are pseudo randomly generated in this specified range and the fitness function is

computed for them. On several runs of the tool, observations show the suitability of such an

approach using Genetic Algorithms for discontinuous spaces.

1.1 Motivation Of The Work

This work was motivated by the fact that Software Testing consumes for more than

50% of the total software development cost. Manual and random generation of test

cases is a time intensive activity and produce test cases having low error detecting

capability. Genetic algorithms were chosen as a testing method because in the recent

years they have grown in popularity in optimization of engineering problems [19].

1.2 Objective of The Project

The goal of the work is to analyze the effectiveness of Genetic Algorithms in

automated test data generation and to compare its performance over random sampling

particularly for discontinuous spaces.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

1.3 Organization of the Thesis

The Thesis is divided into chapters and each chapter is organized as follows:

Chapter 2 gives a summary of Literature Review done and works done concisely in

each article. This Literature Survey was done before the implementation of this

Project was started.

Chapter 3 describes basic concepts related to Genetic Algorithms that are used in the

rest of the chapters. Concepts like Genetic Operators (Selection, Crossover and

Mutation); Fitness Function; Flowchart and Pseudocode for a Genetic Algorithm are

given.

Chapter 4 discusses Test Data Generation, advantages associated with its automation

and Test Adequacy Criteria.

Chapter 5 talks of some popular Test Data Generation Tools available. It presents a

concise summary in a tabular form with respect to basic functionality, platform or

languages supported, etc.

Chapter 6 discusses Control Flow Graphs (CFG), various path testing terminologies

and TG_GA the tool developed.

Chapter 7 presents the working of TG_GA, its initial experimental settings and

various tables and graphs analyzing data obtained from its working.

Chapter 8 presents a Case Study of Greatest Common Divisor (GCD) Problem,

Fitness Function associated with it and the Control Flow Diagram for it.

Chapter 9 gives the conclusions from the working of TG_GA. It shows the

comparison between generation of test cases by TG_GA as compared to generation

done using random values.

Finally, we give the list of references.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

2. Chapter 2: LITERATURE SURVEY

Over the years, many researchers and scientists have carried out extensive and in-depth study

in the domain of software test data generating using evolutionary algorithms. Sharma et al [18]

have suggested methods in increasing performance of Genetic Algorithms in search space

exploration and exploitation fields with better convergence rate for test data generation. Al-

Zabidi et al [8] have applied Genetic Algorithms successfully to software systems of different

complexities for same. Nirpal and Gupta have successfully used GAs to generate data for the

triangle classification problem [7]. Yang et. al.[14], presented an approach of generating test

data for a specific single path based on genetic algorithms. A similarity between the target

path and execution path with sub path overlapped is taken as the fitness value to evaluate the

individuals of a population and drive GA to search the appropriate solutions. Srivastava and

Tai-hoon, applied the Genetic Algorithm technique to find the most critical paths

discontinuous spaces [15].

1.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

3. Chapter 3: EVOLUTIONARY ALGORITHMS

3.1 What are Evolutionary Algorithms?

Evolutionary Algorithms are based on a heuristic search strategy and compute an optimal

solution using operators that are derived from genetics of natural selection [9]. The most

popular forms of evolutionary techniques are the Genetic Algorithms in which goal is

steered by the use of various combinations of input variables in order to satisfy the goal of

testing. Such algorithms are based on biological genetic theory and Darwin’s Principle of

the continuation of the fittest. Each organism has a set of features, encoded and

represented in the form of bits for purpose of computer programming.

3.2 Genetic Operators

A genetic operator is an operator used in biological as well as computational genetics to

drive the algorithm towards an optimal solution for a given problem statement.

3.2.1 Selection

It examines the fitness of an individual allowing the fitter one to transfer its genes to the

next generation.

 More weightage is given to better individuals, permitting them to transfer their

genes to the oncoming generation.

 The suitability of an individual is determined by its fitness.

 Fitness is computed using an objective or fitness function

 Popular selection techniques are Roulette Wheel Selection, Tournament Selection,

Rank selection

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

 Right selection of initial population is vital for the convergence rate because better

parents drive individuals to better and faster optimal values.

3.2.2 Crossover

It is the interchanging an allele of an individual with another from a different individual.

The formula mentioned below is a proposed implementation of crossover [6]:

off spring1 = cr*p1 + (1-cr)*p2

off spring2 = (1-cr)*p1 + cr*p2

(cr: chromosome; p1:parent1; p2:parent2)

Two point crossover involves selecting two random bits in the selected individuals and

then swapping bits between these two genes (bits)

 It is the important differentiating factor of Genetic Algorithms from other search

techniques.

 It operates at the individual level.

 Ant two candidates are selected from the existing population

 A crossover bit among all the bits is chosen

 The instances of the two sub-strings are swapped till the selected bit

 If X=000111 and Y=111000 and the crossover point is 3 then X'=111111 and

Y=00000

 The novels off springs born become part of the next generation.

 By recombination of good off-springs, Genetic Algorithms have a tendency to

make even better individuals.

3.2.3 Mutation

Allele of genes is randomly replaced by another to produce a new individual. The primary

aim of mutating is to maintain introduce variety in the population and avoid early

untimely convergence.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

 Some of the bits of the individuals get complemented.

 Its goal is to sustain variety in the population and thus make untimely

convergence to a local solution

 It spans through the entire search space randomly

 It inducts individuals into the population that may not be originally present

 Low mutation probability leads to insufficient global sampling and prevents

convergence to a local optimum

3.3 Fitness Function

A fitness function is an objective function used to summarize and compare the closeness

of a solution in achieving optimal solution.

It accepts as input any candidate solution to the problem and finds out as resultant how

much superior the solution is in contrast to the question in consideration.

Computation of fitness value is done repeatedly and thus it must be reasonably fast. A

slow computation of the fitness value can adversely affect a Genetic Algorithm and make

it exceptionally slow.

Every point in the search space has a fitness value. Any candidate that is closer to an

optimal value possesses a higher value of the objective function as compared to one who

is farther.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

3.4 Flowchart

Fig 1: Flowchart for a Genetic Algorithm

Figure 1 shows the basic steps involved in a Genetic Algorithm in the form of a

flowchart. It consists of the following steps:

1. Randomly generate an initial population.

2. Then compute the fitness value of all candidates in the population using Fitness

Function.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

3. Evaluate the individuals using their respective fitness values.

4. Check the condition satisfying the stopping criteria.

i. Select the best solutions from the population.

ii. Apply crossover to the solutions at random points.

iii. Apply mutation to the new solution according to mutation probability.

iv. Goto step 2.

5. Return the current generation of solutions.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

3.5 Pseudocode of Genetic Algorithms

Fig 2: Pseudocode for a typical Genetic Algorithm

Pseudocode of a Genetic Algorithm can be given as in Fig 2 and the variables have the

following meanings:

i. p_size :Population size

ii. elit_rate: Percentage of individuals passed on to next generation

iii. best_pop: Number of individuals passed on to next generation

iv. rem_pop: Number of remaining individuals in the current population after fit

individuals passed onto next generation.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

4. Chapter 4: TEST DATA GENERATION

Test data generation is the process of making test suites for software testing in order to

determine the acceptability of a new or an altered system.

STATIC AND DYNAMIC TEST DATA GENERATION

Techniques that do not require execution of the software under consideration are known as

static test data generation techniques. All the possible paths of the program are examined and

traversed without actually running them. The software under test here acts as a passive entity.

Static evaluation parameters are considered for evaluation.

During dynamic test data generation the software under test is actually executed are called

dynamic test data generation. It is ensured that every path is executed and if not the control is

backtracked to find out which statement diverted the flow of the program wrongly.

APPROACHES TO TEST DATA GENERATION

Random Testing: In this the test cases are created arbitrarily and executes the software using

this data. It is the most simplest of all approaches but does not ensures maximum error

detection as the random data may not cover all functionalities or internal structure or

adequacy criteria. It just requires a random number generator and hence is easy and not

expensive to carry out. It has low chances of finding out semantically small bugs.

SYMBOLIC EXECUTION

Some old approaches of test data generation used neumonic execution for creating test cases

where symbols are assigned to variables in place of their actual values. In this the constraints

based on inputs are specified which determines the conditions necessary for the traversal of

the paths. We look for paths and then only find out the conditions that traverse those paths.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

4.1 Automation in Test Data Generation

Automated generation of test cases generation refers to machine driven approach of

creating test suites based on some functionality or inherent structure of the software under

consideration [4]. Clearly, it has a number of advantages over the conventional manual

and random method of writing test cases. Automated test data generators, which are not

random in nature, carry out test assessment based on some constraint popularly known as

test adequacy criteria. This condition is written in the form of a mathematical formula

called as the fitness function.

4.2 Test Adequacy Criteria

Automated test data generators, which are not random in nature, carry out test assessment

based on some constraint popularly known as test adequacy criteria. This condition is

written in the form of a mathematical formula called as the fitness function.

Some popular test adequacy criteria are as:

1. Statement Coverage: All statements of the software under test must be executed

at least one time.

2. Branch Coverage: All branches of the source code should be executed at least

once.

3. Condition Coverage: Every conditional statement must be under test at least

once.

4. Path Coverage: All paths of the software under test must be executed at least

once.

5. Independent Path Coverage: All independent paths of the source code should be

executed at least once.

6. Every point from the Software Requirements Specification must be executed at

least once.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

7. Every possible output of the program should be verified at least once. Every du

(definition use) and dc (definition clear) path must come under test at least once.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

5. Chapter 5: TEST DATA GENERATION TOOLS

Testing an application is one of the most important and time intensive tasks. Lately,

automated test data generation tools have been used for populating the software under

test, with test cases. Although, use of automated tools for test data generation is still in its

early stages but accuracy is the main advantage that comes with it. Speed is also an

important factor that makes this time intensive task faster. The data can be filled in during

non-working hours, where tester interaction is not required at all.

Advantages of automated test data generating tools are:

 Massive savings in time

 Generation of more accurate data

 Ensuring that the data in question is high in volume

Table 1 : Popular test data generation tools

Product Name
Vendor/Company

Paltform/Language

compatibility

Description Remarks

T-VEC Data Generator TVEC Java and C++ Uses branch

coverage,generates

variety of HTML

reports

Popular for ease of use

SQL Data generator Red-Gate My SQL Server Creates realistic data

based on column and

table names

High success rate

DTM Data Generator GSApps ERP,CRM and data

warehouse

development. SQL

Server,DB2,Oracle

Automatically fills a

database with test data

for acceptance

Testing

Focuses on version

control and RDBMS

repository

Advanced Data

Genarator

Upscene Productions InterBase,Firebird,MyS

QL

Generates realistic data

into database,CSV files

or SQL scripts

High compatibility

IBM DB2 Test

Database generator

IBM Only for DB2 Creates realistic test

data generation tools

for database application

Not compatible with

DBMS other than DB2

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

6. Chapter 6: GENETIC ALGORITHM BASED APPROACH TO

TEST DATA GENERATION

6.1 Basic Concepts and Definitions

6.1.1 CFG(Control Flow Graph

The Control Flow Graph (CFG) is a graph that is used for pictorial representation of

control structure of software. It shows the structure of flow or the path followed by

the program during runtime. It is a directed graph (V, E) comprising of set of vertices

V and a set of directed edges E. It has a start node, end nodes, connection edges,

decision nodes, junction nodes, and bounded regions.

 Node: It denotes procedural statements of the program. In the CFG, they

are drawn using an oval shape. They are either numbered or labeled.

 Edges or links: A CFG has directed edges. They are drawn as arrows in

the graph. It shows the control flow from one node to another.

 Decision Node: It is a node with one or more arrows leaving from it.

 Region The area bounded by some nodes and edges.

6.1.2 Path Testing Terminologies

Path: A lineage of instructions or statements covered during the execution of a program.

In a CFG, it begins from a start node and stops at the end node with some other nodes and

edges in between.

Independent Path: It is a path in which there must be at least one new statement or node

or edge that is not traversed by any other existing paths.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Path Testing: In this tester checks whether the given input covers the expected path or

not.

6.2 Implementation

This section provides a description of the technique and all parameter settings used in

the tool developed and named TG_GA.

 Single point crossover operation was used in TG_GA and the crossover

probability was computed as a scaled pseudorandom number R8 between 0

and 1.Further, the crossover point was computed as a pseudorandom number

I4 between 0 and number of variables in each individual.

 In the mutation sub process the variable to undergo mutation was selected

randomly and it was replaced with a random value between the upper and

lower bund of that variable.

 Crossover and mutation are performed only if their probability of execution is

less than the initial pre-defined probability.

 The fitness function is problem dependent but for a sample run it was taken as:

f(x,y,z)=x*x*x-(x*y)+z

 timestamp() function computes the run time for execution till specified

number of generations by capturing current time twice and subtracting them.

 The user defined function evaluation computes the fitness value of each

individual which is the same as the objective function

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

7. Chapter 7: EXPERIMENTING WITH TG_GA AND RESULTS

7.1 Initial Experimental Settings

During the initial run of TG_GA, we initialized count of individuals in population ,

maximum number of generations, Probability of Crossover and Probability of

Mutation in the program. These variables in the program can be easily reinitialized to

any value suited to the problem under consideration. The values of the variables used

in the initial run of TG_GA are as given in the Table 2. The range of three input

variables namely, x, y and z are specified in a file named geneticdata.txt. TG_GA

opens this text file in input or read mode to get the initial values of these variables.

Table 2: Initial experimental settings for TG_GA

PARAMETER INITIAL VALUE USED

Population Size 60

Maximum Generations 200

Number of variables in each

individual

3

Crossover Probability 0.80

Mutation Probability 0.15

Initial range of 1st variable 0 -5

Initial range of 2nd variable 0-5

Initial range of 3rd variable (-5) to (+5)

Although the fitness function is problem and test adequacy dependent and for this

trial run og TG_GA it was formulated as a cubic function mentioned below

f(x,y,z)=x*x*x-(x*y)+z

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

where x,y and z are the three input variables to TG_GA within their due range

specified in geneticdata.txt

7.2 Execution of TG_GA

TG_GA was executed with the initial parameter settings and fitness function as

mentioned in Section 7.1.

Fig 3: Execution of TG_GA for fitness function as in Section 7.1

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Fig 4: Execution of TG_GA for fitness function as in Section 7.1(contd.)

Fig 3 and 4 give us the values of the three input variables for the best instance of fitness

function of Section 7.1 as 4.98954, 0.0169359 and 1.98683.The screenshots captured also

show the best fitness, average fitness and the standard deviation for the first hundred

generations of population, numbered from 0 to 100.These values indicate the tendency of

Genetic Algorithms to get trapped in local optima, here, 125.42, 125.942 and 126.12.

Since, the number of iterations, however large, in any computational procedure cannot be

unbounded, thus such local optima prevents TG_GA to converge to the global optimum.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Table 3 shows the best fitness values of the first thirty generations of TG_GA captured by

screenshots of Fig.3 and Fig.4.

Table 3:Best Fitness values of first 30 generations of TG_DA for fitness function as in 7.1

Generation Number Best Fitness Value

1 101.443

2 107.956

3 109.374

4 114.552

5 114.552

6 114.552

7 116.152

8 121.259

9 121.259

10 121.259

11 121.893

12 121.893

13 121.893

14 122.071

15 123.736

16 123.736

17 123.978

18 124.321

19 124.321

20 124.34

21 124.376

22 124.376

23 125.421

24 125.421

25 125.421

26 125.421

27 125.421

28 125.421

29 125.421

30 125.421

Fig 5: Generation number vs best fitness value for first 30 generations

0

50

100

150

1 5 9 1317212529

B

e

s

t

F

i

t

n

e

s

s

V

a

l

u

e

Generation Number

Convergence Graph

Best Fitness
Value

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Fig.5 shows the variation in the best fitness value computed against the generation

number and more importantly it shows the convergence of GA for the data of Table 3

in local optima.This is a critical problem of GA irrespective of the fitness function

used.

7.3 Impact of change in range of input variable to the number of

generations required for convergence

Table 4 shows that the number of genrations required has no dependency on the range

of values of variables.

Table 4: Variation in number of generations required for convergence with change in range of 3

variables for the fitness function as in (i)

Range of
Variables(MAX-

MIN)

No. of generations
before convergence

1 175

2 152

3 155

4 83

5 150

6 85

7 117

8 166

Fig.6: Graph showing variation in number of generations required for convergence with change

in range of 3 variables for the fitness function as given in Section 7.1

0

50

100

150

200

1 2 3 4 5 6 7 8

N

o

o

f

G

e

n

e

r

a

t

i

o

n

s
Range in the variable values of individuals

No. of genrations

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

It is apparent from graph in Fig. 6 that change in the range of values of different

individuals in GA has no effect on the count of generations and hence the running

time required to converge to a global optimum (or local optimum if trapped)

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

8. Chapter 8: CASE STUDY:WORKING OF TG_GA FOR A SAMPLE

PROGRAM

To determine the potential effectiveness of TG_GA, a case study comprising of a

GCD program as shown in Fig.7 was carried out.

8.1 GCD Program

Fig.7: Program to find GCD of two numbers

Fig.7. shows an instrumented GCD program that accepts two integer parameters

namely x and y and computes their greatest common divisor or highest common

factor and outputs it as z.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

8.2 CFG(Control Flow Graph) of the GCD Program

Fig 8: Control flow graph for the GCD program

The simple independent paths for the program of Fig.7 can be easily inferred from the

CFG of Fig.8 as:

1. P1: 1-2-6-7-11-12-13

2. P2:1-2-6-7-8-9-10-7-11-12-13

3. P3:1-2-3-4-5-6-7-11-12-13

4. P4:1-2-3-4-5-6-7-8-9-10-7-11-12-13

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Fitness function for the problem based on path dependency is given as:

f(x)=∑ Wi for all i =0 to n

where Wi denotes the weights assigned to the respective paths.

TG_GA was executed for the GCD program of Fig.7 and it was also executed with

randomly generated test data. The results summarized in Table 4 show that for the same

para\meter settings of input, random testing took execution time which was more than

five times when compared to TG_GA to reach the same fitness value for which the

associated values of variables can serve as competent enough test data for the purpose of

error detection.

Table 5: Time taken by TG_GA and random testing for GCD program of Fig.7

Testing Number Time taken by TG_GA(

in msec)

Time taken by

Random Testing(in

msec)

1 2.1 11.5

2 1.06 8.8

3 3.4 13.99

4 2.86 16.07

5 1.1 8

6 3.1 19.66

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

Chapter 9: CONCLUSIONS AND FUTURE WORK

In this project, are presented the overview and possibilities of applying Genetic

Algorithms to automated build up of test data and for this a tool named TG_GA was

developed. The methodology presented tries to detect a collection of test cases that

escort to fulfilling a given condition or a constraint, represented in the form of a fitness

function, for the software under test.

The tool TG_GA was applied on the program of finding GCD of two numbers (case

study). Such small C programs are used as basis in test data generation approach.

Using the same experimental settings, the GCD program was executed again but using

randomly generated test cases this time. It was inferred that for the same parameter

settings of input, random testing took execution time which was more than 5 (five)

times when compared to TG_GA to reach the same fitness value for which the

associated values of variables can serve as competent enough test data for the purpose

of error detection. In random testing, since data points do not have dependence with

time, it becomes inefficient as the quantity of test data to be generated becomes large.

Also, the competence of test cases produced by GAs is far better than the quality of

test cases produced randomly because they can direct the constructing of test data to

the sensible range fast. Thus, the important merits of Genetic Algorithms have been its

simplicity, speed and accuracy.

However, during this experimental study it was observed that within few numbers of

generations, solutions derived by GAs might get trapped around local optimum

because of unwanted paths and consequently, fails to detect the global optimum. In

real sense, the execution time cannot be limitless, so the repititions in the algorithm

also have to be bounded.

In future, there is a possibility to compare GAs with other exhaustive search

techniques to see if cooperation among them has the potential to eliminate the

problem of GAs being trapped in local optimum. Exploring effect of multiple

crossover points instead of a single one and a lower value of mutation probability

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

might also bring more diversity into the population and might be able to reduce the

likeliness of GA being trapped in such local optima.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

REFERENCES

[1] Nagori, M., Kale, J.(2010). Genetic Algorithms and Evolutionary Computation. IJCSNS

International Journal of Computer Science and Network Security, VOL.10 No.12, 126-

133.

[2] Xie, X., Xu, B., Shi, L., Nie, C., & He, Y. (2005, December). A dynamic optimization

strategy for evolutionary testing. Software Engineering Conference, 2005. APSEC'05.

12th Asia-Pacific (pp. 8-pp),121-130

[3] Miller, J., Reformat, M., & Zhang, H. (2006). Automatic test data generation using

genetic algorithm and program dependence graphs. Information and Software

Technology, 48(7), 586-605.

[4] Korel, B. (1996, May). Automated test data generation for programs with procedures.

In ACM SIGSOFT Software Engineering Notes, 21(3), 209-215.

[5] Kaur, A., & Goyal, S. (2011). A genetic algorithm for regression test case prioritization

using code coverage. International journal on computer science and engineering, 3(5),

1839-1847.

[6] Umbarkar, A. J., & Sheth, P. D. (2015). Crossover Operators In Genetic Algorithms: A

Review” Ictact Journal On Soft Computing. ICTACT journal on soft computing, 6(1),

1083-1092.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

[7] Nirpal, P. B., & Kale, K. V. (2011). Using genetic algorithm for automated efficient

software test case generation for path testing. International Journal of Advanced

Networking and Applications, 2(6), 911-915.

[8] Al-Zabidi, M.S., Kumar, A., & Shaligram, A.D. (2013). Study Of Genetic Algorithm For

Automatic Software Test Data Generation, Galaxy International Interdisciplinary

Research Journal. 1(2), 65-74.

[9] Ansari, A., Khan, A., Khan, A., & Mukadam, K. (2016). Optimized regression test using

test case prioritization. Procedia Computer Science, 79, 152-160.

[10] Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing. John

Wiley & Sons.

[11] Bertolino, A. (2007, May). Software testing research: Achievements, challenges,

dreams. In 2007 Future of Software Engineering (pp. 85-103). IEEE Computer Society.

[12] Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test

case prioritization. IEEE Transactions on software engineering, 33(4). 225-237.

[13] Camazine, S. (2003). Self-organization in biological systems. Princeton University

Press.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

[14] Cao, Y., Hu, C., & Li, L. (2009, July). An approach to generate software test data for

a specific path automatically with genetic algorithm. In Reliability, Maintainability and

Safety, 2009. ICRMS 2009. 8th International Conference on (pp. 888-892). IEEE.

[15] Srivastava, P. R., & Kim, T. H. (2009). Application of genetic algorithm in software

testing. International Journal of software Engineering and its Applications, 3(4), 87-96.

[16] Mitras, B., & Aboo, A. K. (2014). Hybrid of Genetic Algorithm and Continuous Ant

Colony Optimization for Optimum Solution. International Journal of Computer Networks

and Communications Security, 2(1), 1-6.

[17] McMinn, P., & Holcombe, M. (2003). The state problem for evolutionary testing.

In Genetic and Evolutionary Computation—GECCO 2003 (pp. 214-214). Springer

Berlin/Heidelberg.

[18] Sharma, A., Rishon, P., & Aggarwal, A. (2016). Software testing using genetic

algorithms. Int. J. Comput. Sci. Eng. Surv.(IJCSES), 7(2), 21-33.

[19] Wegener, J., Buhr, K., & Pohlheim, H. (2002, July). Automatic test data generation

for structural testing of embedded software systems by evolutionary testing.

In Proceedings of the 4th Annual Conference on Genetic and Evolutionary

Computation (pp. 1233-1240). Morgan Kaufman.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

[20] You, L., & Lu, Y. (2012, May). A genetic algorithm for the time-aware regression

testing reduction problem. In Natural Computation (ICNC), 2012 Eighth International

Conference on (pp. 596-599). IEEE.

[21] Alzabidi, M., Kumar, A., & Shaligram, A. D. (2009). Automatic Software structural

testing by using Evolutionary Algorithms for test data generations. International Journal

of Computer Science and Network Security, 9(4), 390-395.

[22] Rajappa, V., Biradar, A., & Panda, S. (2008, July). Efficient software test case

generation using genetic algorithm based graph theory. In Emerging Trends in

Engineering and Technology, 2008. ICETET'08. First International Conference on (pp.

298-303). IEEE.

[23] Peng, X., & Lu, L. (2011, May). A new approach for session-based test case

generation by GA. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd

International Conference on (pp. 91-96). IEEE.

[24] Girgis, M. R. (2005). Automatic Test Data Generation for Data Flow Testing Using a

Genetic Algorithm. J. UCS, 11(6), 898-915.

[25] Ahmed, M. A., & Hermadi, I. (2008). GA-based multiple paths test data

generator. Computers & Operations Research, 35(10), 3107-3124.

 Software Test Data Generation using Evolutionary Techniques, Tina Arora

[26] Ghiduk, A. S., Harrold, M. J., & Girgis, M. R. (2007, December). Using genetic

algorithms to aid test-data generation for data-flow coverage. In Software Engineering

Conference, 2007. APSEC 2007. 14th Asia-Pacific (pp. 41-48). IEEE.

[27] N Meghna, KJyoti,”Genetic Algorithms and Evolutionary Computation” IJCSNS

International Journal of Computer Science and Network Security, VOL.10 No.12,

December 2010.

[28] Xiaoyuan Xie, Baowen Xu, Liang Shi, Changhai Nie, Yanxiang He” A dynamic

optimization strategy for evolutionary testing,IEEEXplore, 2006.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Xiaoyuan%20Xie.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Baowen%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Liang%20Shi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Changhai%20Nie.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Yanxiang%20He.QT.&newsearch=true

