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ABSTRACT 

 
Human emotion recognition plays an important role in the interpersonal relationship. 

The automatic recognition of emotions has been an active research topic from early 

eras. Therefore, there are several advances made in this field. Emotions are reflected 

from speech, hand and gestures of the body and through facial expressions. Hence 

extracting and understanding of emotion has a high importance of the interaction 

between human and machine communication. 

 

The clinical, emotionless computer or robot is a staple of science fiction, but science 

fact is starting to change: computers are getting much better at understanding 

emotions.  Automated customer service “bots” will be better able to know if a 

customer is getting the help they need. Robot caregivers involved with telemedicine 

may be able to detect pain or depression even if the patient doesn’t explicitly talk 

about it. Insurance companies are even experimenting with call voice analytics that 

can detect that someone is telling lies to their claims handers. 

 

This project will use deep learning techniques to detect human emotions from faces, 

since face is the prime source for recognizing human emotions. In particular, we 

used convolutional neural network(CNN) as the deep learning technique. Network 

was designed in Python language with the help of deep learning library by Google 

called TensorFlow without the CUDA framework. 
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Chapter 1 

Introduction 

 

Emotions play a key role in human life. Research on human emotion recognition 

over past few decades has resulted in several important real-world applications. 

Human emotion analysis has consistently been an active topic as the Physiognomy 

has been waxing and waning over the time.  

In the 19th century, Charles Darwin’s work related to automatic facial expression 

recognition is the fundamental for today’s theories and applications. Darwin also 

cataloged the facial deformations related to the different class of expressions. For 

example: “the contraction of the muscles round the eyes when in grief”, “the firm 

closure of the mouth when in reflection”, “the depression of the corners of the mouth 

when in low spirits”. 

 

Most of the current theory and applications related to emotion recognition are built 

around the work of Ekman. According to Ekman human emotions can be broadly 

classified into 6 categories: Anger, Happy, Sad, Surprise, Fear and Disgust. Ekman 

developed a facial action coding system (FACS) in which he defined the various 

movements of facial muscles as Action Units (AU). With the help of these action 

units various class of emotion can be easily classified. For example, in the happy 

state of any person, intensity of action units related to ‘cheeks raising’ and ‘lip corner 

movement’ will increase.  

 

There are mainly two models to encode the facial muscle movements: 

1. Ekman’s Facial Action Coding System (FACS) 

2. MPEG’s Facial Action Potential (FAP) 

 



2 
 

For images, FACS shows very robust performance but for videos it is a challenging 

task. Emotional state of a person can be recognized by determining the facial 

expressions using FACS. For real-time applications, AUs should be recognized from 

profile views too. 

 

FAPs defines the deformation of face from its neutral state. The value of FAP shows 

the magnitude of the deformation with respect to neutral face. There is a total of 68 

FAPs grouped into 10 categories. 

 

Before the advent of deep learning techniques, these two models were used mostly 

for emotion recognition. But for real world applications, the performance of the 

systems built upon these models were not much robust. For example, in real world 

applications, it is difficult to obtain the frontal view of the face thus the system 

should be robust enough to classify emotion from profile view also. Another 

common problem is of occlusion which can limit the performance of the system. 

Example images of FACS and FAPs are shown below. A common workflow to 

detect the emotion with the help of these two models will also be described briefly. 

    

Figure 1.1: Examples of AU from FACS 
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AUs can be either additive or non-additive. Additive AUs are independent and do 

not affect the appearance of other AUs while AUs are called non-additive if they 

modify the appearance of each other’s. Facial Action Coding System greatly 

simplified representation of facial expression. Now with the help of FACS, each 

facial expression can be represented as a combination of one or more additive or 

non-additive AUs. 

 

 

 

                  Figure 1.2: MPEG-4 facial feature points 

 

The first step in the emotion recognition is to extract face from the input image. Most 

commonly used method is the Haar cascade classifier. Now features can be extracted 

from these face regions with the help of different methods like: Gabor transform, 

Active appearance models, Hidden Markov models etc. FACS and FAPs also acts 

like a feature set. There are different methods which can extract Action Units (for 

FACS) and Facial Action Potentials (For MPEG-4 FAP). At last, machine learning 

classifiers like support vector machine, multi-layer perceptron, k nearest neighbor 

can be used to classify the features. Workflow of this process is shown in figure on 

the next page. 
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Figure 1.3: Flowchart for emotion recognition system (Using machine learning techniques) 

 

There are some limitations on the performance of the systems based on this approach 

like: 

1. Works well for posed expressions but gives poor results for spontaneous 

expressions. 

2. Occlusions are not handled much efficiently 

3. Don’t give satisfactory results for real world applications   
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Deep learning techniques especially the CNN (convolutional neural networks) can 

counter these issues very efficiently because of the fact that CNNs are very good at 

the classification of images. Convolutional neural networks can find even the 

complex patterns in images like the facial expressions. In the recent years, many 

state of the art networks were presented by researchers for different image 

classification problems like the famous IMAGENET challenge. A brief introduction 

to the evolution of deep learning techniques is presented below.  

 

1.1 Deep Learning 
Deep learning is a branch of machine learning which deals with the deep neural 

network architectures. Deep learning is used mainly to solve various problems in 

computer vision, NLP, and bioinformatics, among other fields. With the 

advancement in computational resources, deep learning has emerged as an efficient 

solution to many real-world problems as mentioned above. 

Deep learning is the implementation of deep neural networks. Deep neural networks 

have more than a single hidden layer of neurons. However, this is not a general 

definition for DNN rather it is a very simplistic view of deep learning. Architecture 

of DNN varies considerably according to the different tasks and goals. Many state 

of the art DNN models are implemented in recent years and is used as the core of 

many giant tech companies like Google, Facebook, Amazon etc.  

Below is presented a brief introduction of the evolution of deep learning models 

from the very basic element i.e. perceptron. 

1.1.1 Perceptrons 

Perceptron, a basic neural network building block, is the earliest supervised learning 

algorithm. 
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Consider the case of binary classification problem, where only two classes exist 

denoted by 0 and 1. The task is to assign a class to the new input data point, either 0 

or 1. In the simplest way, it can be done by calculating the distance of input data 

point to some specific neighbors and assign the input to the class having majority of 

nearest distance. A better approach is to first draw a line to separate the data and 

then assign the class to input data according to the region in which it lies. 

 

In this case, each data point is represented as a vector 𝑥 = (𝑥1, 𝑥2). And the 

separating function will be like ‘0’ to the area below the line and ‘1’ to area above 

the line. Mathematically it can be represented by defining the separating function as 

a vector of weights w and a vertical offset (or bias) b. Then, the function will take 

the weighted sum of the inputs and weights: 

 

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 

Figure 1.4: Example of a linear classifier 
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An activation function is used to produce the labeling according to the input. For 

example, a threshold cutoff activation function (e.g., 1 if greater than some value) 

can be used as below: 

 

ℎ(𝑥) =  {
1 ∶ 𝑖𝑓 𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 > 0
0 ∶                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

1.1.2 Training of Perceptron 

Perceptron can be trained by feeding multiple training examples and calculating the 

output for each of them. After each sample, error is calculated between the desired 

output and actual output and the weights w are adjusted accordingly to minimize 

the output error. Error functions may differ according to the need of application but 

training of the perceptron will always be done in the same way as described above.  

1.1.3 Drawbacks of single perceptron 

Major drawback to use single perceptron for deep learning is, it can separate only 

linearly separable data. Perceptron can’t handle the nonlinearity in the input data, it 

can’t draw complex decision boundaries. This can be seen clearly with an example 

below, in which perceptron is unable to draw a single classifier to separate even the 

very simple non-linear XOR problem. 

Figure 1.5: Fail attempt of a single perceptron to classify nonlinear problems 
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This problem can be resolved by using multi-layer perceptron also called feed-

forward neural network. MLP is a bunch of perceptrons arranged in some specific 

manner. 

1.1.4 Feedforward Neural Networks for Deep Learning 

As mentioned above, MLP is just a collection of perceptrons, connected in some 

specific way and operating on different activation functions. 

Feedforward neural network has the following properties: 

• Basic component of any MLP is an input, output, and one or more hidden layers. 

In the example figure below, feed-forward network has a 3-unit input layer, 4-

unit hidden layer and an output layer with 2 units (the terms units and neurons 

can be used interchangeably). 

• The neuron of input layer serves as the input for hidden layer while the neurons 

of the hidden layer serves as the input for output layer. 

• Weights are defined for every interconnection of neurons. 

• The neurons in each layer s is typically connected to every neuron of the 

previous layer s - 1 (although they can be disconnected by setting their weight 

to 0). 

• The data is processed by clamping the input vector to the input layer and setting 

the values of desired output to the output layer. Values of input layer are then 

propagated forward to the hidden units after the weighted sum (hence the term 

forward propagation), which in turn produces the output with the help of 

activation function. 
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• The output of the network is calculated at hidden layer in the same way as hidden 

layer. 

Figure 1.6:  Feed forward neural network (Multi-layer perceptron) 

1.1.5 Problems with Linearity 

If each of our perceptrons is allowed to use only linear activation function, then, the 

final output of the network will still be some linear function of the inputs. Thus, if 

neurons are restricted to use linear activation function, then the feed forward network 

will be of no significant use, no matter how many number of layer it consists. 

This is the reason why non-linear activation functions are used for most of the feed 

forward networks. Most commonly used non-linear activation functions are: 

• logistic  

• tanh 

• binary or rectifier 

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Tanh
https://en.wikipedia.org/wiki/Artificial_neuron#Step_function
https://en.wikipedia.org/wiki/Rectified_linear_unit
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1.1.6 Hidden Layer 

The hidden layer is of great importance in any neural network. According to 

the universal approximation theorem, a neural network with a single hidden layer 

having finite number of neurons can approximate an arbitrarily random function. In 

other words, a single hidden layer is powerful enough to learn any function. Thus, 

multiple hidden layers (i.e., deeper nets) performs much better than the perceptron. 

Hidden layers store the internal abstract representation of the training data, same as 

a human brain (greatly simplified analogy) has an internal representation of the real 

world.  

1.1.7 The Problem with Large Networks 

In general, the performance of a neural network increases by increasing the number 

of hidden layers. Higher layers build abstraction over previous layers thus generating 

more complex features. These complex features help the neural network to 

efficiently classify the input data.  

However, the number of hidden layers can’t be increased arbitrarily. Increasing the 

number of hidden layers causes two issues: 

1. Vanishing gradients: as the more hidden layers are added, backpropagation 

becomes less efficient in passing information to the lower layers. Error at the 

output, according to which the weights have to be adjusted gets much diluted 

farther from the output. In other words, as information (error in case of neural 

network) is passed back, the gradients begin to vanish and become small relative 

to the weights of the networks. 

 

https://en.wikipedia.org/wiki/Universal_approximation_theorem
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
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2. Overfitting: this is the central problem in machine learning. Overfitting tries to 

fit the training data as efficiently as possible. This reduces the training error 

greatly but it gives very poor results over test data. In other words, overfitting 

can give very complex boundary to fit the training data very well but it can’t be 

generalized for unseen data.  

 

3. Complex Optimization: More number of layers intensify the problem as it 

results in the increased number of parameters. As the number of hidden layers 

increases, there will be more paths thus the optimization is complex. 

 

To address these issues, below are introduced some deep learning algorithms. 

1.1.8 Autoencoders 

An autoencoder is a neural network that takes typically unlabeled data as input and 

after encoding them, tries to reconstruct them as accurately as possible. As a result 

of this the net must decide which of the data features are the most important 

essentially acting as a feature extractor. 

 

Autoencoder aims to learn a compressed, distributed representation (encoding) of a 

dataset. Conceptually, here both the input and output data remains same, the network 

is trained to “recreate” the input. In other words, the output is going to be same as 

https://en.wikipedia.org/wiki/Overfitting
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the input but compressed in some sense. This is a confusing approach, example 

below will explain the concept. 

. 

Figure 1.7: Autoencoder 

Concept of autoencoders 

Consider the training data having input grayscale images of size 28x28. Each neuron 

at the input layer takes the value of pixels in the image (i.e., the input layer will have 

784 neurons). Then for autoencoders, the output layer will also have 784 neurons 

and the target value for these neurons will be the pixel value of the images. 

The main objective of autoencoders is to learn the internal structure and features of 

the data. Autoencoders will not learn a “mapping” between the training data and its 

labels. This is the reason why hidden layer is also called feature detector. Usually, 

the number of neurons in hidden layer is smaller than that in the input/output layers. 

This ensures that the autoencoders learn only the most important features and gives 
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the output data that is compressed. Dimensionality reduction is a functionality of the 

autoencoders. 

 

Autoencoders are trained with backpropagation algorithm using a metric called loss. 

Thus, autoencoders gives a compact representation of input data. 

 

1.1.9 Restricted Boltzmann Machines 

 RBM is a shallow two-layer net. It is mathematical equivalent of two-way 

translator. In the forward pass the RBM takes an input and translates them into a 

number that encodes the input, in the backward pass it takes the set of number and 

translates them back to reconstruct the inputs.  

 

RBMs are composed of three layers:  

1. hidden layer 

2. visible layer 

3. bias layer  

 

In RBM, the connection between the hidden layer and visible layer is undirected 

means the values can be propagated in both the direction i.e. from visible to hidden 

and from hidden to visible. The connections are fully connected also means each 

neuron in any layer is connected to each neuron in next layer. If the neurons in any 

layer is allowed to connect with neurons in any other layer then the resulting network 

will be Boltzmann machine rather than a restricted Boltzmann machine 
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The standard RBM consists of  binary hidden and visible units: that is, the unit 

activation is 0 or 1 under a Bernoulli distribution, but there are variants with 

other non-linearities. RBM uses KL divergence to compare the actual to recreation. 

 

RBM is a part of feature extractor neural network. They automatically find patterns 

in a data by reconstructing the input. These nets are also called autoencoders in some 

sense because in a way they encode their own structure. Restricted Boltzmann 

machines are a special case of Boltzmann machines and Markov random fields. 

Their graphical model corresponds to that of factor analysis 

 
Figure 1.8: Restricted Boltzmann Machines 

 

1.1.10 Deep Networks 

As mentioned above, Autoencoders and RBMs can be used as a feature extractor. 

But these features can’t be used directly for further processing. Thus, we need a 

method by which these extracted features can be used indirectly. 

 

Here Deep networks comes to the rescue. Deep networks can be formed by stacking 

these structures. Most attractive feature of deep networks is: the layers of these 

https://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://en.wikipedia.org/wiki/Boltzmann_machine
https://en.wikipedia.org/wiki/Markov_random_field
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Factor_analysis
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networks can be trained greedily, one by one. They also overcome the problems 

faced by classic backpropagation like vanishing gradients and overfitting. 

  

In terms of network architecture, a deep network is identical to MLP but when it 

comes to training, they are entirely different. In fact, the difference in training is the 

key factor that enables deep network to outperform their shallow counterpart. Key 

advantages of deep networks is: 

• Less training time 

• Increased accuracy 

• Small labeled dataset 

1.1.10.1 Stacked Autoencoders 

This network is a stack of multiple encoders. 

Figure 1.9: Stacked Autoencoders 
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Input is applied to the first layer of the first autoencoder. This input works as the 

input for whole system. Input to any hidden layer is the output of the previous layer. 

The procedure for layer-wise greedy training is as below: 

 

1. With the help of backpropagation algorithm, the first autoencoder (t = 1 or the 

red connections) is trained individually with an additional output layer by taking 

all the available training data. 

  

2. The second autoencoder t=2 (green connections) is trained by clamping input 

sample to the input layer of t=1, which is propagated forward to the output layer 

t=2. Since the hidden layer t=1 works as the input layer for t=2, the output layer 

of t=1 is no longer required and can be removed from the network. 

 

3. The above procedure is repeated for all the layers (i.e., replace the output layer 

of previous encoder with another encoder, and train with back propagation). 

4. Steps 1-3 initializes the weights properly and called as pre-training. However, 

the input data is not associated in any way to the output labels. For example, in 

case of a handwritten digit recognition system, we can’t get the digit type of the 

input image from the hidden layer of the last autoencoder. In that case, one or 

more fully connected layers can be added as a solution to get the final mapping 

between the input image and output label. This network now can be viewed as a 

MLP and can be trained with the help of backpropagation algorithm (this step is 

also called fine-tuning). 
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Stacked auto encoders provides an effective pre-training method to initialize the 

weights of a network. The result is a complex, multi-layer perceptron can be trained 

(or fine-tune). 

 

1.1.10.2 Deep Belief Networks 

DBN can be viewed as a stack of Restricted Boltzmann machines (RBM). 

Figure 1.10: Deep Belief Networks 

 

Each RBM layer learns the entire input. Input to the first layer of first RBM works 

as the input for whole system. Hidden layer of RBM t works as a visible layer for 

RBM t+1. The procedure for layer-wise greedy training is as below: 

 

1. First RBM t=1 is trained with all the training examples using contrastive 

divergence. 

 

2. Second RBM t=2 is trained by making the visible layer of t=1 as input, this data 

is propagated forward to the hidden layer of t=1. Now, with the help of this data, 

contrastive divergence can be initiated for the training of the RBM t=2.  

 

3. Previous procedure is repeated for all the layers. 
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4. Same as in case of the stacked autoencoders, the network can be extended after 

pre-training.  This can be done by connecting fully connected layers to the final 

hidden layer of RBM. Again, this forms a MLP which can then be fine-

tuned with the help of backpropagation. 

 

This procedure is same as to that of stacked autoencoders, but here autoencoders are 

replaced with RBMs and contrastive divergence algorithm is used instead of 

backpropagation algorithm. 

1.1.10.3 Convolutional Networks 

Convolutional neural network is a type of feedforward network with some complex 

structures as layers in between the structure. Convolutional neural networks are of 

special interest for performing tasks related to images. CNNs are very good at 

finding complex patterns in images.  

 

Figure 1.11: CNN architecture 

 

• Convolutional layers consist of a number of filters. These filters are applied to 

input image the result of which is called feature map (FM). Each filter generates 

a feature map. Thus, total number of FM will be equal to the number of filters 

in convolutional layer. There may be multiple convolutional layers in a CNN. In 

that case, filters of the second convolutional layer are applied to the feature maps 
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of the previous layer with different weights. This way each feature map in the 

input is connected to the feature map in the output. The concept of weight 

sharing allows to detect features in the input image regardless of the location. 

Multiple number of filters helps to extract different types of patterns. 

 

• In convolutional neural networks, there are many number of layers. Thus, the 

processing time increases exponentiality as the size of the input data increases. 

Size of the input data or image can be reduced with the help of subsampling 

layers. For example, if the input image is of size 32x32 and the subsampling 

layer consists the region of 2x2 then the output will be of size 16x16. Here 

subsampling will replace the square of 4 pixels with 1 pixel. There are many 

different methods for subsampling. Commonly used methods are: 

• Max pooling 

• Average Pooling 

• Stochastic Pooling 

       Most popular is Max pooling as it extracts the strongest features and also 

prevents the diffusion  

       of information, as in the case of average pooling. 

 

• After the convolutional and subsampling layers, fully connected layers are there 

to represent the labeled output. There may be multiple fully connected layers. 

• CNN uses backpropagation algorithm for training. A very efficient technique is 

used during the training of the CNNs which reduces the training time 

considerably, is called dropout. It makes other features unreliable to break co-

adaption. Several dropped out architectures are trained in a single run to choose 

the one with optimal performance. 
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1.2 Applications of Human Emotion Recognition 
Emotion recognition is a trending topic among researchers. As emotions play an 

important part in our lives, detecting emotions and taking actions accordingly can 

improve the performance of many field of application. Some most common 

application of emotion recognition system can be: 

 

1. Healthcare and medicine  

Emotion recognition can play an important role in medical treatments. For example, 

physiatrists can use emotion recognition system to find how the patient is feeling 

about the treatment and can use different techniques accordingly. Another example 

where emotion recognition can play a significant role in healthcare is to deal with 

persons suffering from autism. As these people struggles in social communication, 

emotion recognition system can help significantly.  

 

2. E - learning 

In today’s digital world, internet plays a key role in learning new skills. Online 

courses bridge the gap between users and distant universities. Now according to the 

state of the user, the presentation style can be changed accordingly to make online 

tutor more interactive and effective.  

 

3. Monitoring and alerting systems 

Driver monitoring system can be deployed in automobiles to warn drivers if they are 

feeling angry or sad, to pull over for some time and either clam down or take some 

rest. 

Another example of monitoring system is in ATMs, where ATMs can be blocked to 

dispense money if user is feeling scared (in case of forceful action). 
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4. Entertainment  

Emotion recognition system can play a significant role in entertainment. For 

example, YouTube recommender system will be more effective if it can also 

recommend multimedia content according to the emotional state of the user.  

 

5. Marketing 

In supermarkets, by detecting the response of the user for any particular product will 

help the consumer product company to change their products accordingly. In 

consumer advertisements also, detecting the emotional response will help to make 

them more effective. 

 

 

1.3 Thesis Outline 
The thesis work is totally divided into five chapters. Outline of each chapter is 

presented below. 

  

Chapter 1 is the introduction part of the work. This highlights the methods that can 

be used to model the framework to detect the human emotion. FACS and FAP are 

discussed in the chapter which decodes the human faces and can be used to detect 

emotions. Different deep learning techniques are also introduced in the chapter. 

 

Chapter 2 concludes some of the most popular and state of the art work related to 

emotion recognition. Literature review is summarized in 19 research papers. 

 

Chapter 3 elaborates our proposed method. Convolutional neural networks are 

discussed in detail. Various techniques to improve the performance like pooling and 
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dropout are also discussed. In the end, some well-known convolutional networks are 

referred like LeNet, AlexNet. 

 

Chapter 4 shows the result of our proposed method. All the five evaluation metrics 

are also discussed i.e. confusion matrix, precision, recall, F1-score and accuracy. 

Results of our deep learning approach are compared also with classical machine 

learning algorithms. 

Chapter 5 concludes our work. It will be clear from the result section that deep 

learning approach that is used here i.e. CNN outperforms the classical machine 

learning algorithms like MLP, SVM and kNN. This chapter also highlights for the 

scope of future work for improvement. 
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Chapter 2 

 

Literature Review 

 
The foundational studies on facial expressions that have formed the basis of today’s 

research can be traced back to the 17th century. In the 19th century, Charles 

Darwin’s work related to automatic facial expression recognition is the fundamental 

for today’s theories and applications. In 1872, Darwin wrote a treatise that 

established the general principles of expression and the means of expressions in both 

humans and animals. Since the 1970s, psychologist Paul Ekman and his colleagues 

has done magnificent work in the study of facial expressions and human emotions. 

Since it is almost impossible to mention all of the research work related to emotion 

recognition, here are presented 17 most important and state of the art work related 

to this field. 

 

1. Bourel et al., 2001 [1] 

Feature Extraction 

Local spatio-temporal vectors obtained from the Extended Kanade-Lucas-Tomasi 

tracker  

Classifier 

Data fusion with modular classifiers. Local classifiers were ranked according to kNN 

method. 

Database 

CK 

Sample size 

There was a total of 100 video sequences from 30 subjects (25 sequences for 4 

expressions)  
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Performance 

Figure 2.1: Bourel et al’s system performance 

Important Points: 

Fusion methods were used to get the final output from classifier. Effects of occlusion 

was also considered.  

 

2. Pardas and Bonafonte, 2002 [2] 

Feature Extraction 

Active Contour algorithm and motion estimation were used to extract MPEG-4 

FAPs 

Classifier 

Hidden Markov Model  

Database 

CK  

Sample Size 

Whole database was used 

Performance 

Accuracy of 84% overall (with 6 prototypic expressions) 

Important Points 
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A method was proposed to automatically extract MPEG-4 FAPs. They also proved 

that FAPs can also be used efficiently to extract the emotions.  

 

3. Cohen et al., 2003 [3] 

Feature Extraction 

Motion Units (MUs) vector tracking using piecewise Bezier volume deformation 

tracker  

Classifier 

Hidden Markov Models, Multi-level HMM, Naive Bayes, Tree Augmented Naive 

Bayes  

Database 

CK and self-made database  

Sample Size 

53 subjects from CK database 

5 subjects from own database 

Performance 

 

Table 2.1: Cohen et al.’s system performance 
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Important Points 

It was real-time system able to classify emotions from video. Use of Hidden Markov 

Models were recommended for automatic segmentation of a video into different 

expression segments. 

 

4. Bartlett et al., 2003 [4] 

Feature Extraction 

Features were extracted using Gabor wavelet transform.  

Classifier 

Support Vector Machine with and without Adaptive boosting 

Database 

CK  

Sample Size 

313 sequences from 90 subjects. First and last frame were used as training images  

Performance 

SVM (Linear kernel) Automatic face detection 84.4% 

Manual alignment 85.3% 

SVM (RBF kernel) Automatic face detection 87.5% 

Manual alignment 87.6% 

Table 2.2: Bartlett et al.’s system performance 

Important Points 

It was a real-time and fully automatic system with high level of accuracy.  

It was successfully deployed on Sony’s Aibo pet robot, ATR’s RoboVie and CU 

Animator  

 

5. Michel and Kaliouby, 2003 [5] 

Feature Extraction 
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Feature displacement vector was used. It is the Euclidean distance between neutral 

and peak emotion  

Classifier 

Support Vector Machine 

Database 

CK  

Sample Size 

10 examples for training and 15 examples were used for testing, for each class 

emotion   

Performance 

With RBF Kernel: 87.9%.  

Person independent: 71.8%  

Person dependent (train and test data supplied by expert): 87.5%  

Important Points 

It was a real-time system and did not require preprocessing 

  

6. Pantic and Rothkrantz, 2004 [6] 

Feature Extraction 

Profile and frontal face points were used as features.  

Classifier 

Rule based classifier  

Database 

MMI  

Sample Size 

25 subjects  

Performance 

Accuracy of 86% is achieved  
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Important Points 

This was not a real-time system but it can recognize facial expressions in both the 

profile and frontal views. A method was proposed for automatic action unit coding 

in profile images 

 

7. Buciu and Pitas, 2004 [7] 

Feature Extraction 

Non-Negative Matrix Factorization (NMF) and Local Non-Negative Matrix 

factorization (LNMF) were used to represent the images  

Classifier 

Nearest neighbor classifier was used with Cosine Similarity Measure and Maximum 

Correlation Classifier  

Database 

CK and JAFFE  

Sample Size 

164 samples from CK database 

150 samples from JAFFE database 

Performance 

CK: the highest accuracy of 81.4% is achieved by LNMF with MCC 

JAFFE: 55% to 68% (using all the methods)  

Important Points 

PCA was also used to compare with the LNMF and NMF. NMF showed worst 

results while LNMF outperformed both the PCA and NMF. 

Cosine similarity measure gives better performance than maximum correlation 

classifier. 

 

8. Pantic and Patras, 2005 [8] 
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Feature Extraction 

20 facial fiducial points were tracked as feature 

Classifier 

Temporal Rules  

Database 

CK and MMI  

Sample Size 

90 images for CK database  

45 images for MMI database 

Performance 

90% accuracy achieved as overall average 

Important Points 

Showed robust performance under occlusion. It was invariant to facial occlusions 

like glasses and hairs  

 

9. Zheng et al., 2006 [9] 

Feature Extraction 

A Labeled Graph (LG) is created using 34 landmark points with the help of Gabor 

transform. A semantic expression vector is also built for each training face. The 

correlation between LG vector and semantic vector is were found using KCCA. 

Classifier 

Correlation used to estimate semantic expression vector is used for classification.  

Database 

JAFFE and Ekman’s PA  

Sample Size 

JAFFE contains183 images  

Ekman’s PA contains 96 images  
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Neutral expressions were excluded from both the databases  

Performance 

Table 2.3: Zheng et al.’s system performance 

Important Points 

Kernel Canonical Correlation Analysis method was used to detect facial expressions 

and to tackle singularity problem in Gram matrix 

 

10. Anderson and McOwen, 2006 [10] 

Feature Extraction 

Spatial ratio template tracker based motion signature and MCGM based optical flow 

features of face  

Classifier 

Support Vector Machine and Multi-Layer Perceptron  

Database 

Carnegie Mellon University, Pittsburg Action Unit coded database and a non-

expressive database  

Sample Size 

CMU: 253 samples of 6 basic expressions 

Non-expressive: 4800 frames of 10 subjects   

Performance 

Semantic Info JAFFE database LOIO 85.79% 

LOSO 74.32% 

Ekman’s database  81.25% 

class label info JAFFE database LOIO 98.36% 

LOSO 77.05% 

Ekman’s database  78.13% 
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Motion averaging using: co-articulation regions: 63.64%, 7x7 blocks: 77.92%, ratio 

template algorithms, with MLP: 81.82%, with SVM: 80.52%  

Important Points 

It was a fully automated real-time system. Gave robust performance for cluttered 

scene also. Motion-averaging is also used to condense data 

 

11. Aleksic and Katsaggelos, 2006 [11] 

Feature Extraction 

MPEG-4 facial action potentials, eyebrow and outer-lip. PCA was also used for 

dimensionality reduction 

Classifier 

Hidden Markov Models and Multi Stream-Hidden Markov Models  

Database 

CK 

Sample Size 

284 recordings of 90 subjects  

Performance 

Using HMM: eye-brow FAPs only: 58.8%, outer lip FAPs only: 87.32%, Joint 

FAPs: 88.73%  

MS-HMM: 93.66% (weights of outer lip are greater than eyebrows).  

Important Points 

Showed that MS-HMM can improve the performance. They also suggested a method 

to assign stream weights. 

 

12. Pantic and Patras, 2006 [12] 

Feature Extraction 

15 facial points were tracked with particle filter to generate mid-level parameter 
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Classifier 

Rule based classifier  

Database 

MMI  

Sample Size 

1500 samples of both static and profile views  

Performance 

96 test profiles: 86.6% 

Important Points 

Facial expressions were automatically segmented in input video  

Temporal segments were also recognized for 27 AUs 

Action units were recognized automatically from images  

 

13. Sebe et al., 2007 [13] 

Feature Extraction 

Piecewise Bezier volume deformation tracker based MUs 

Classifier 

Bayesian nets, Support Vector Machine and Decision Trees. Results were improved 

with the help of voting methods like bagging and boosting. 

Database 

CK. Created their own dataset also containing spontaneous emotions   

Sample Size 

Created DB: 28 subjects showing mostly neutral, joy, surprise and delight.  

CK: 53 subjects  

Performance 

With different classifiers: CK: 72.46% to 93.06%, Created DB: 86.77% to 95.57%.  

Using kNN with k = 3, best result of 93.57%  
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Important Points 

Most attractive feature was to detect the spontaneous emotions.  

 

14. Kotsia and Pitas, 2007 [14] 

Feature Extraction 

Candide method with Geometric displacement  

Classifier 

Multiclass SVM  

Database 

CK 

Sample Size 

Complete database is used for training  

Performance 

Facial expression recognition: 99.7% 

Action unit detection based Facial expression recognition: 95.1%  

Important Points 

Detects either the six prototypic expressions or a set of chosen action units.  

Recognition rate was very high  

 

15. Wang and Yin, 2007 [15] 

Feature Extraction 

Topographic context (TC) expression descriptors  

Classifier 

Quadratic Discriminant Classifier, Linear Discriminant Analysis, Support Vector 

Classifier and Naïve Bayes.  

Database 

CK and MMI  
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Sample Size 

CK: 864 images (4 images per subject for each expression for 53 subjects)  

MMI: 180 images (6 images per subject for each expression for 5 subjects)  

Performance 

Person dependent test MMI database QDC 92.78 % 

LDA 93.33% 

NB 85.56% 

CK database QDC 82.52% 

LDA 87.27% 

NB 93.29% 

Person independent test CK database QDC 81.96% 

LDA 82.68% 

NB 76.12% 

SVC 77.68% 

Table 2.4: Wang and Yin’s system performance 

 

Important Points 

Proposed a topographic model-ing approach in which the gray scale image is treated 

as a 3D surface.  

Analyzed the robustness against the distortion of detected face region and the 

different intensities of facial expressions.  

 

16. Dornaika and Davoine, 2008 [16]  

Feature Extraction 

Features were tracked with the help of candid face model.  

Classifier 
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Online Appearance Models for head pose and then stochastic approaches for 

emotions  

Database 

Used their own dataset 

Sample Size 

Video sequences were used instead of images. 

Performance 

Graphs are mentioned in the reference 

Important Points 

This was one of the first framework to simultaneous face tracking and emotion 

recognition.  

Posed expression were also there in the videos. 

 

17. Kotsia et al., 2008 [17] 

Feature Extraction 

Feature were extracted with the help of these three approaches: Discriminant Non-

Negative Matrix factorization, Gabor transform, and Geometric displacement 

vectors.  

Classifier 

Multiclass Support Vector Machine and Multi-Layer Perceptron   

Database 

CK and JAFFE  

Sample Size 

Complete database was used in training 

Performance 

For JAFFE dataset:  

Using Gabor transform, the accuracy was 88.1% while with DNMF it was 85.2%  
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For CK dataset:  

Using Gabor transform the accuracy was 91.6%, with DNMF 86.7% and with SVM: 

91.4%  

Important Points 

Effect of occlusion on prototypic expressions was discussed and the system was 

robust as it identified the emotions in spite of the occlusions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

Chapter 3  

 

Proposed Methodology 

 
In chapter 1, various deep learning techniques were discussed like autoencoders, 

restricted Boltzmann machines, deep belief networks and convolutional neural 

networks. We will use convolutional neural networks for the human emotion 

recognition problem as CNNs are very efficient at recognizing patterns from images. 

 

3.1 Basic concept of CNN 

Before the advancement in computational resources deep learning was not much 

popular among researchers. Till then, multi-layer perceptron (MLP) was the 

backbone for automatic pattern recognition. But for more complex patterns MLP 

have some limitations, like: 

• More layers intensify the problem for complex patterns 

• Error gets much diluted farther from the output 

• Many different paths are available in MLP thus optimization is complex 

• Fine control over architecture is needed 

 

Now, a simplification over this architecture can be applied if the weights are shared 

instead of making them independent. The structure of weights to a particular neuron 

is exactly the same, their values are also exactly the same. In fact, these are not 

separate neurons, but the same one applied at different locations. This structure 

works as a filter which filters out a specific pattern from image. Applying many of 

these filters over the image will extract the specified patterns. This process is called 

convolution. In general, for convolution repeat the process below: 

• Slide a weight matrix over a feature map 
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• Take element wise product 

• Add the products 

• Resulting value is put in one location in the next feature map 

 

Convolution reduces weights. For example, in MLP the connected layer from a 6x6 

layer to another 6x6 layer will require 64 fully connected weights. With a 

convolutional architecture, we need only 3x3 weights. Each neuron (kernel) 

processes patches, not entire image. Convolutional kernel is a matched filter. It looks 

for a pixel pattern that matches its own structure. The pattern can appear in any place.  

 

Thus, Convolutional networks also known as convolutional neural networks or 

CNNs, are a specialized kind of neural network for processing data that has a known, 

grid-like topology. 

 

3.2 CNN architecture 

CNN is a modification of the basic multilayer perceptron. It has mainly three types 

of layers: convolutional layers, pooling layers and fully connected layers. Below is 

an example figure for architecture of CNN. 

 

Figure 3.1: Architecture of CNN 
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3.2.1 Convolutional layers 

These are the first layers in any convolutional network. There may be multiple 

number of convolutional layers. Input to these layers are the images itself. The pixel 

values of images are feed directly to the convolutional layers. Functionality of these 

layers can be viewed as a flashlight over an image searching for specific pattern. 

Here filters are used as a flashlight. These filters slides over the whole image in 

search of a specific pattern. Different types of filters can be applied in the 

convolutional layer to find different patterns. The area of projection of filters over 

the image is known as receptive field. Commonly used filter size is 3x3 and 5x5. 

Filters produces feature map by sum of multiplication of their values with images. 

These values are calculated over the whole image. This process is known as 

convolution. This is the reason why these layers are called convolutional layers. 

 

3.2.2 Pooling layers 

Pooling is used to reduce the size of the feature map. As the CNNs consist of a lot 

of layers to process data, the computation time of the process will also be reduced 

then. Thus, it is not a good choice to process all the features generated by the 

convolutional layers. We need only the most relevant features, for this purpose 

pooling is used in most of the architectures to reduce the size of the feature map. 

Most commonly used pooling method is max pooling. 

   

General pooling. Besides the max pooling other pooling methods are also there such 

as average pooling and L-2 norm pooling. Average pooling is important from 

historical perspective only. Max pooling is the most commonly used method. 

Average pooling has the main drawback that it dilutes the information while max 

pooling extracts the strongest features. 
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Figure 3.2: Pooling operation 

 

Figure 3.3: Example of Max pooling 

 

Backpropagation. During the backward pass of the training, in max(x,y) step 

backpropagation routes the gradient with the largest value in the forward pass to the 

input. Hence, the index of the maximum gradient must be tracked in the forward 

pass of pooling layer to efficiently route the gradient in backpropagation.  

 

Getting rid of pooling. In the recent studies, it is suggested that pooling can be 

discarded. In the CNN architecture, convolutional layers can be repeated instead of 

pooling layers. Now to reduce the size of the input volume, strides of larger size can 
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be used in convolutional layers once in a while. For the training of generative models 

like variationally encoders and generative adversarial networks, discarding pooling 

layers has been found beneficial.  

 

 

3.2.3 Fully Connected layer 

Fully connected layers are similar to basic neural networks as each neuron in fully 

connected layer is connected with each neuron in the previous layer. Activation of 

these layers can be easily computed with a simple matrix multiplication after adding 

the offset component. 

Convolutional and fully connected layers are almost similar, the main difference 

between these two layers is the connectivity of neurons. In fully connected layers, 

each neuron is connected to each other in the previous layer while in the 

convolutional layers, neurons are connected to only a small part of the input and that 

much neurons only share weights. Both layer uses dot product to compute the output. 

Thus, convolutional layers can be converted into fully connected layers. 

• For convolutional layer in the network, same forward function is implemented 

with a fully connected layer. Most of the entries in the weight matrix will be zero 

in a block as neurons in the convolutional layers are connected only to a small 

part of the input. Many of these blocks will be same as convolutional layers uses 

the concept of weight sharing. 

 

• Fully connected layer can also be converted into a convolutional layer. For 

example, a fully connected layer having the value of the parameter K as 

4096, with 7x7x512 size of input volume can be converted into a convolutional 

layer having the value of the parameters F, P, S and K as 7, 0, 1 and 4096 
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respectively. Thus, we need to set the size of the filter same as the input volume 

size. In this case, output will be of size 1×1×4096 because only a single depth 

column has to fit across the input volume. This will give the same results as the 

initial fully connected layer. 

 

3.3 Layer Sizing Pattern 

In any convolutional network, there are a number of hyperparameters, the value of 

which must be taken carefully. Value of these can’t be selected arbitrarily. There are 

certain rule of thumb for sizing the architecture. These are mentioned below:  

 

The input layer (containing the image) needs to be divisible by 2 multiple times. 

Common numbers are: 32, 64, 96 or 224, 384, and 512. 

 

The convolutional layers should use filters of small size (e.g. 3x3 or at most 5x5). 

If the value of stride S is 1 then zero padding should be used in such a way so that 

the spatial structure of the input volume is not altered. Thus, for the value of F as 3 

and for padding P is 1, we will get the original size of the input. For the value of F 

as 5, the value of P should be 2. In general, for any value of F, 𝑃 = (𝐹 − 1)/2 the 

original size of the input will be retained. If the bigger sizes of the filters can’t be 

avoided then they should be restricted to the very first convolutional layer only i.e. 

looking on the input image. 

 

The pooling layers are mainly responsible for down sampling the spatial size of the 

input. The most commonly used value for max-pooling is F =2 (2x2 receptive fields), 

and for stride S the value is 2. Exactly 75% of the input volume is discarded by this 

setting as we down sampled the space by 2 along both the height and the width. 

Another slightly less commonly used value for F is 3 (receptive fields of size 3x3) 
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with the value of stride is 2. Receptive fields of size greater than 3 is not used because 

the pooling becomes too lossy and aggressive then.  

 

Reducing sizing headaches, in the above-mentioned scheme the size of the input 

volume is not changed as we used zero padding for the input data. In many different 

approaches if the zero padding is not used and the value of the stride also is not 1, 

then the size of the input volume is changed and they should be tracked throughout 

the CNN architecture. 

 

Significance of stride with value 1: Smaller strides give better results. Having the 

value of stride 1 only POOL layers are responsible for down sampling, where in 

convolutional layers, the input volume is only transformed depth-wise. 

 

Necessity of padding: Padding actually improves the performance. If the zero-

padding is not allowed to perform and only the convolution operation is allowed to 

perform over input volume then the size of the input volume will be reduced by some 

amount after each convolution, and the information at borders will be disappeared 

rapidly. 

 

Memory constraints based compromise: With the rule of thumb presented above, 

sometimes memory can build up very quickly. Smaller filter sizes and strides results 

in more number of activations thus will require a large amount of memory as 

compared to the case where the filter size and the stride have larger values. As the 

performance of the GPUs are totally dependent on the system memory. Thus, if there 

is not enough memory available in the system the performance of the GPUs must be 

compromised. In general, compromise is made only at the first convolutional layer. 
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3.4 Proposed CNN architecture 

We used 2 convolutional, 2 pooling and 2 fully connected layers as arranged in the 

figure shown below: 

 

 

 
     32                 2                64                 2              1024             7      

Figure 3.4: Proposed architecture of CNN 

 

 

3.5 State of the art examples 

There are several state of the art architectures of Convolutional Neural Networks. 

The most common are: 

• LeNet. It was first introduced by Yann LeCun for the application of OCR and 

other character recognition from documents. The architecture of LeNet is simple 

yet powerful enough to produce interesting results. Most attractive feature of 

LeNet is that it can run even on CPU efficiently. 

 

• AlexNet. AlexNet was developed by the winners of ILSVRC 2012 challenge. 

AlexNet is the network which inspired researchers to use Convolutional Neural 

Network in the field of Computer Vision at first. The architecture of AlexNet is 

very similar to LeNet but it is deeper, bigger and have more number of 

convolutional layers stacked upon one another. 
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• ZF Net. ZFNet was developed by the winners of ILSVRC 2013 challenge. 

Hyperparameters of AlexNet model were tweaked to modify it and get the 

resulting ZFNet model. In particular, the size of the convolutional layers were 

increased in the middle and size of  the stride and filter was made smaller on the 

first layer. 

 

• GoogLeNet. GoogLeNet was developed by the winners of ILSVRC 2014 

challenge. The main attraction of this design was an inception module that 

reduced the number of parameters greatly. Additionally, Average Pooling was 

used instead of Fully Connected layers at the top of the Convolutional Network, 

eliminating a large number of insignificant parameters.  
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Chapter 4 

 

Results 

 
4.1 Dataset 

The dataset used here is known as FER2013 dataset. It was produced by Kaggle for 

their facial expression recognition challenge in 2013. This is a labeled dataset 

consists of 35585 pre-cropped grayscale face images having size of 48x48. Each 

image is labeled with one of the emotion class: happy, anger, fear, surprise, disgust, 

sad and neutral. 

 

This dataset is divided into three parts as below: 

• Training set consisting 28709 images 

• Two hold-out sets for post training validation consisting 3589 images per set 

 

Sample images from FER2013 dataset is shown below: 

Figure 4.1: Sample images from FER2013 dataset 
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4.2 Software requirements  

Deep learning algorithms requires a lot of computational resources. Use of GPUs for 

the training of deep learning algorithms especially CNN is a trend now as it greatly 

reduces the training time. Most commonly used framework for GPU enabled 

computing is CUDA developed by NVIDIA.  

We have not used GPU enabled computing. The system used for the training have 

following specification: 

• Processor: Intel(R) Core(TM) i5-2450M @ 2.50 GHz 

• Cores: 2.50 GHz x 4 

• RAM: 4 GB 

• Operating System: Ubuntu 16.04 LTS (64-Bit) 

• Programming Language: Python 2.7 

• Deep Learning libraries: TensorFlow 0.12.1 

 

It took us around 110 minutes to train the CNN on this system (for 10 epochs). Cross-

validation and testing was quick and took around 15 minutes (for 10 epochs).  

 

4.3 Evaluation metrics 

For machine learning and deep learning applications, accuracy is not an efficient 

metric for evaluation of the performance. There are certain other metrics are used 

which are described below: 

 

4.3.1 Confusion matrix  

It is a matrix that describes the performance of any classification system. For 

confusion matrix C, any element Ci,j  will represent the number of observations 

known to be in group i but classified or predicted to be in class j. The confusion 
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matrix is a square matrix that show the count value of the true positive, false positive, 

true negative and false negative. 

  

Consider the case of simple binary classification where only two classes exist: 

positive class denoted by P and negative class denoted by N. Confusion matrix for 

this case can be shown as below: 

Figure 4.2: Confusion matrix 

 

Note: 

For multiclass classification problem, as like the case here, the value of TP, TN, FP 

and FN can be extracted from the confusion matrix as below: 

• For any class, total number of examples will be the sum of the corresponding 

row  

(i.e. TP + FN) 

• For any class, total number of FN will be the sum of values in the 

corresponding row  

(excluding TP) while FP will be the sum of values in the corresponding 

column  

(excluding TP) 

• For any class, total number of TN will be the sum of rows and columns 

(excluding the row and column corresponding to that class) 
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4.3.2 Precision 

It denotes the fraction of prediction which actually have positive class out of the total 

positive predicted classifications. 

 

𝑃𝑅𝐸 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

4.3.3 Recall 

It denotes that of all the samples having positive class, what fraction correctly 

classified as positive class. 

 

𝑅𝐸𝐶 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

4.3.4 F1-score 

For any classifier, precision and recall should be high. But both the precision and 

recall can’t be high at the same time. Thus, another parameter is used for the analysis 

called F1-score. 

 

𝐹1 = 2
𝑃𝑅𝐸 ×𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

 

Value of F1-score lies in the range 0 to 1. 

 

4.3.5 Accuracy 

It is defined as the ratio of number of correct predictions to the total number of 

predictions. 



50 
 

 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

4.4 Results 

4.4.1 Confusion Matrix 

Figure 4.3: Confusion matrix of the result 

 

4.4.2 Accuracy 

As mentioned earlier, the accuracy is the ratio of the number of correct prediction to 

the total number of predictions. 
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Number of correct predictions will be the sum of values of the diagonal (representing 

TP) in the confusion matrix while the total number of predictions will be the sum of 

all the elements of the confusion matrix. 

 

Thus, from the above-mentioned formula and from resulted confusion matrix, the 

value of the accuracy is 89.14%. 

 

4.4.3 Precision, Recall and F1-score 

Table 4.1: precision, recall and F1-score of result 

 

 

Emotion Precision Recall F1-score 

Anger 0.875 0.910 0.892 

Disgust 0.821 0.780 0.799 

Fear 0.861 0.870 0.865 

Happy 0.970 0.970 0.970 

Sad 0.875 0.840 0.857 

Surprise 0.958 0.930 0.953 

Neutral 0.878 0.940 0.907 

Average 0.8911 0.8914 

 

0.8912 

(from averaged 

precision and recall) 
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4.5 Comparison 

For comparison of the performance of our proposed method, we used classical 

machine learning techniques. Same problem (i.e. Human emotion recognition) is 

solved with the help of three machine learning algorithms. These are: 

• MLP 

• SVM 

• kNN 

These classifiers can’t be feed directly with the pixel values of face images. They 

need some kind of feature extractor at first to extract the features of the face images. 

These features then act as the input for these classifiers. Feature extractors that we 

used are: 

• SIFT 

• SURF 

• BRISK 

• Dense-SIFT 

 

Accuracy is taken as the evaluation metric. The value of the cluster size is taken as 

500 for all the methods. Accuracies (in %) for above mentioned methods is as shown 

below: 

Table 4.2: Results of emotion recognition system with machine learning techniques. 

K = 500 MLP SVM kNN 

SIFT 56.81 70.45 75 

SURF 54.54 63.63 68.18 

BRISK 36.36 59.09 52.27 

Dense-SIFT 27.27 43.18 38.63 
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The maximum accuracy achieved with the classical machine learning methods is 

75%. Accuracy achieved by deep learning technique i.e. CNN (Convolutional 

Neural Network) is 89.14%. Thus, deep learning techniques outperform the classical 

machine learning techniques in complex classification tasks such as Human Emotion 

Recognition. 
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Chapter 5 

 

Conclusion and Future Scope 

 
The goal of this project was to classify the human emotions with the help of deep 

learning techniques. In particular, we used convolutional neural networks as they are 

known for their ability to find complex patterns in images very efficiently. With the 

help of proposed architecture, we successfully classified the input image in one of 

the 7 emotion classes i.e. anger, disgust, fear, surprise, sad, happy and neutral with 

89.14% accuracy.  

 

Emotion class ‘happy’ is classified most efficiently with F1-score of 0.970 while the 

most badly affected class is ‘disgust’. The F1-score for the classification of ‘disgust’ 

class is 0.799.  There is a key factor which affected the classification of ‘disgust’ 

class badly. There were very less number of samples for ‘disgust’ class as compared 

to other classes. This issue can be addressed in future implementations. Another 

viable solution for this issue is to merge the ‘disgust’ class with ‘anger’ as there is 

not much difference in both the classes. It is also clear from the confusion matrix 

that for ‘disgust’ class, most of the False Negatives lies in the ‘anger’ category. 

 

Another factor that imposed the constraints over performance of our system was the 

computational resources. As we all know deep learning techniques are 

computationally very expensive especially CNN. Training of deep learning 

algorithms with the help of GPUs is necessary to fine tune the hyperparameters of 

the network. As we didn’t use the GPUs, the training time was large. It took us 
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around 110 minutes for training with 10 epochs only. So, use of GPUs is highly 

recommended for future implementations. 

 

Performance can be improved by taking much larger dataset. We used the FER2013 

dataset by Kaggle which consists of only 35585 pre-cropped face images. CNNs 

performs very well if trained with a large dataset as compared with the previous 

counterpart. In the dataset we used, the face region was already cropped and 

centralized so no preprocessing needed. But this may not be the case with real world 

problems. If we want to deploy a system for real world application, preprocessing is 

a must before feeding the face images into the CNNs.  
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