

Human Emotion Recognition Using
Deep Learning Techniques

A Dissertation submitted towards the partial fulfilment of
the requirement for the award of degree of

Master of Technology

in

Signal Processing & Digital Design

Submitted by

Arun

2K15/SPD/05

 Under the supervision of

Sh. Rajesh Birok

(Associate Professor, Department of ECE)

Department of Electronics & Communication Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Delhi-110042

2015-2017

i

DELHI TECHNOLOGICAL UNIVERSITY

Established by Govt. Of Delhi vide Act 6 of 2009
(Formerly Delhi College of Engineering)

SHAHBAD DAULATPUR, BAWANA ROAD, DELHI-110042

CERTIFICATE

This is to certify that the dissertation title “Human Emotion Recognition

Using Deep Learning Technique” submitted by Mr. ARUN, Roll. No.

2K15/SPD/05, in partial fulfilment for the award of degree of Master of Technology

in “Signal Processing and Digital Design (SPDD)”, run by Department of

Electronics & Communication Engineering in Delhi Technological University

during the year 2015-2017, is a bonafide record of student’s own work carried out

by him under my supervision and guidance in the academic session 2016-17. To the

best of my belief and knowledge the matter embodied in dissertation has not been

submitted for the award of any other degree or certificate in this or any other

university or institute.

Dr. S. Indu Sh. RAJESH BIROK

Head of Department Supervisor

Electronics and Communication Dept. Associate Professor (ECE)

Delhi Technological University Delhi Technological University

Delhi-110042 Delhi-110042

ii

DECLARATION

I hereby declare that all the information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. This report is my own work to the best of my belief and knowledge.

I have fully cited all material by others which I have used in my work. It is

being submitted for the degree of Master of Technology in Signal Processing

& Digital Design at the Delhi Technological University. To the best of my

belief and knowledge it has not been submitted before for any degree or

examination in any other university.

Arun

M. Tech. (SPDD)

2K15/SPD/05

iii

ACKNOWLEDGEMENT

I owe my gratitude to all the people who have helped me in this

dissertation work and who have made my postgraduate college experience one

of the most special periods of my life.

Firstly, I would like to express my deepest gratitude to my supervisor

Sh. Rajesh Birok, Associate Professor (ECE) for his invaluable support,

guidance, motivation and encouragement throughout the period during which

this work was carried out.

I also wish to express my heart full thanks to my classmates as well as

staff at Department of Electronics & Communication Engineering of Delhi

Technological University for their goodwill and support that helped me a lot

in successful completion of this project.

Finally, I want to thank my parents, family and friends for always

believing in my abilities and showering their invaluable love and support.

ARUN

M. Tech. (SPDD)

2K15/SPD/05

iv

ABSTRACT

Human emotion recognition plays an important role in the interpersonal relationship.

The automatic recognition of emotions has been an active research topic from early

eras. Therefore, there are several advances made in this field. Emotions are reflected

from speech, hand and gestures of the body and through facial expressions. Hence

extracting and understanding of emotion has a high importance of the interaction

between human and machine communication.

The clinical, emotionless computer or robot is a staple of science fiction, but science

fact is starting to change: computers are getting much better at understanding

emotions. Automated customer service “bots” will be better able to know if a

customer is getting the help they need. Robot caregivers involved with telemedicine

may be able to detect pain or depression even if the patient doesn’t explicitly talk

about it. Insurance companies are even experimenting with call voice analytics that

can detect that someone is telling lies to their claims handers.

This project will use deep learning techniques to detect human emotions from faces,

since face is the prime source for recognizing human emotions. In particular, we

used convolutional neural network(CNN) as the deep learning technique. Network

was designed in Python language with the help of deep learning library by Google

called TensorFlow without the CUDA framework.

v

INDEX

Certificate i

Declaration ii

Acknowledgement iii

Abstract iv

Index v

List of figures viii

List of tables ix

1 Introduction 1

 1.1 Deep learning 5

 1.1.1 Perceptrons 5

 1.1.2 Training of perceptron 7

 1.1.3 Drawbacks of single perceptron 7

 1.1.4 Feedforward NN for deep learning 8

 1.1.5 Problems with linearity 9

 1.1.6 Hidden layer 10

 1.1.7 The problem with large network 10

 1.1.8 Autoencoders 11

 1.1.9 Restricted Boltzmann machine 13

 1.1.10 Deep Networks 14

 1.1.10.1 Stacked Autoencoders 15

vi

 1.1.10.2 Deep belief networks 17

 1.1.10.3 Convolutional neural network 18

 1.2 Applications of human emotion recognition 20

 1.3 Thesis outline 21

2 Literature review 23

3 Proposed methodology 37

 3.1 Basic concept of CNN 37

 3.2 Architecture of CNN 38

 3.2.1 Convolutional layer 39

 3.2.2 Pooling layer 39

 3.2.3 Fully connected layer 41

 3.3 Layer sizing pattern 42

 3.4 Proposed CNN architecture 44

 3.5 State of the art example 44

4 Results 46

 4.1 Dataset 46

 4.2 Software requirements 47

 4.3 Evaluation metrics 47

 4.3.1 Confusion matrix 47

vii

 4.3.2 Precision 49

 4.3.3 Recall 49

 4.3.4 F1-score 49

 4.3.5 Accuracy 49

 4.4 Results 50

 4.4.1 Confusion matrix 50

 4.4.2 Accuracy 50

 4.4.3 Precision, Recall, F1-score 51

 4.5 Comparison 52

5 Conclusion and future scope 54

Bibliography 56

viii

LIST OF FIGURES

1.1 Examples of AU from FACS 2

1.2 MPEG-4 facial feature points 3

1.3 Flowchart for emotion recognition system 4

1.4 Example of a linear classifier 6

1.5 Fail attempt of a single perceptron to classify nonlinear

problems

7

1.6 Feed forward neural network (Multi-layer perceptron) 9

1.7 Autoencoders 12

1.8 Restricted Boltzmann Machines 14

1.9 Stacked Autoencoders 15

1.10 Deep Belief Networks 17

1.11 CNN architecture 18

2.1 Bourel et al’s system performance 24

3.1 Architecture of CNN 38

3.2 Pooling operation 40

3.3 Example of max pooling 40

3.4 Proposed architecture of CNN 44

4.1 Sample images from FER2013 dataset 46

4.2 Confusion matrix 48

4.3 Confusion matrix of the result 50

ix

LIST OF TABLES

2.1 Cohen et al.’s system performance 25

2.2 Bartlett et al.’s system performance 26

2.3 Zheng et al.’s system performance 30

2.4 Wang and Yin’s system performance 34

4.1 Precision, recall and F1-score of result 51

4.2 Results of emotion recognition system using machine

learning techniques

52

1

Chapter 1

Introduction

Emotions play a key role in human life. Research on human emotion recognition

over past few decades has resulted in several important real-world applications.

Human emotion analysis has consistently been an active topic as the Physiognomy

has been waxing and waning over the time.

In the 19th century, Charles Darwin’s work related to automatic facial expression

recognition is the fundamental for today’s theories and applications. Darwin also

cataloged the facial deformations related to the different class of expressions. For

example: “the contraction of the muscles round the eyes when in grief”, “the firm

closure of the mouth when in reflection”, “the depression of the corners of the mouth

when in low spirits”.

Most of the current theory and applications related to emotion recognition are built

around the work of Ekman. According to Ekman human emotions can be broadly

classified into 6 categories: Anger, Happy, Sad, Surprise, Fear and Disgust. Ekman

developed a facial action coding system (FACS) in which he defined the various

movements of facial muscles as Action Units (AU). With the help of these action

units various class of emotion can be easily classified. For example, in the happy

state of any person, intensity of action units related to ‘cheeks raising’ and ‘lip corner

movement’ will increase.

There are mainly two models to encode the facial muscle movements:

1. Ekman’s Facial Action Coding System (FACS)

2. MPEG’s Facial Action Potential (FAP)

2

For images, FACS shows very robust performance but for videos it is a challenging

task. Emotional state of a person can be recognized by determining the facial

expressions using FACS. For real-time applications, AUs should be recognized from

profile views too.

FAPs defines the deformation of face from its neutral state. The value of FAP shows

the magnitude of the deformation with respect to neutral face. There is a total of 68

FAPs grouped into 10 categories.

Before the advent of deep learning techniques, these two models were used mostly

for emotion recognition. But for real world applications, the performance of the

systems built upon these models were not much robust. For example, in real world

applications, it is difficult to obtain the frontal view of the face thus the system

should be robust enough to classify emotion from profile view also. Another

common problem is of occlusion which can limit the performance of the system.

Example images of FACS and FAPs are shown below. A common workflow to

detect the emotion with the help of these two models will also be described briefly.

Figure 1.1: Examples of AU from FACS

3

AUs can be either additive or non-additive. Additive AUs are independent and do

not affect the appearance of other AUs while AUs are called non-additive if they

modify the appearance of each other’s. Facial Action Coding System greatly

simplified representation of facial expression. Now with the help of FACS, each

facial expression can be represented as a combination of one or more additive or

non-additive AUs.

 Figure 1.2: MPEG-4 facial feature points

The first step in the emotion recognition is to extract face from the input image. Most

commonly used method is the Haar cascade classifier. Now features can be extracted

from these face regions with the help of different methods like: Gabor transform,

Active appearance models, Hidden Markov models etc. FACS and FAPs also acts

like a feature set. There are different methods which can extract Action Units (for

FACS) and Facial Action Potentials (For MPEG-4 FAP). At last, machine learning

classifiers like support vector machine, multi-layer perceptron, k nearest neighbor

can be used to classify the features. Workflow of this process is shown in figure on

the next page.

4

Figure 1.3: Flowchart for emotion recognition system (Using machine learning techniques)

There are some limitations on the performance of the systems based on this approach

like:

1. Works well for posed expressions but gives poor results for spontaneous

expressions.

2. Occlusions are not handled much efficiently

3. Don’t give satisfactory results for real world applications

5

Deep learning techniques especially the CNN (convolutional neural networks) can

counter these issues very efficiently because of the fact that CNNs are very good at

the classification of images. Convolutional neural networks can find even the

complex patterns in images like the facial expressions. In the recent years, many

state of the art networks were presented by researchers for different image

classification problems like the famous IMAGENET challenge. A brief introduction

to the evolution of deep learning techniques is presented below.

1.1 Deep Learning
Deep learning is a branch of machine learning which deals with the deep neural

network architectures. Deep learning is used mainly to solve various problems in

computer vision, NLP, and bioinformatics, among other fields. With the

advancement in computational resources, deep learning has emerged as an efficient

solution to many real-world problems as mentioned above.

Deep learning is the implementation of deep neural networks. Deep neural networks

have more than a single hidden layer of neurons. However, this is not a general

definition for DNN rather it is a very simplistic view of deep learning. Architecture

of DNN varies considerably according to the different tasks and goals. Many state

of the art DNN models are implemented in recent years and is used as the core of

many giant tech companies like Google, Facebook, Amazon etc.

Below is presented a brief introduction of the evolution of deep learning models

from the very basic element i.e. perceptron.

1.1.1 Perceptrons

Perceptron, a basic neural network building block, is the earliest supervised learning

algorithm.

6

Consider the case of binary classification problem, where only two classes exist

denoted by 0 and 1. The task is to assign a class to the new input data point, either 0

or 1. In the simplest way, it can be done by calculating the distance of input data

point to some specific neighbors and assign the input to the class having majority of

nearest distance. A better approach is to first draw a line to separate the data and

then assign the class to input data according to the region in which it lies.

In this case, each data point is represented as a vector 𝑥 = (𝑥1, 𝑥2). And the

separating function will be like ‘0’ to the area below the line and ‘1’ to area above

the line. Mathematically it can be represented by defining the separating function as

a vector of weights w and a vertical offset (or bias) b. Then, the function will take

the weighted sum of the inputs and weights:

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏

Figure 1.4: Example of a linear classifier

7

An activation function is used to produce the labeling according to the input. For

example, a threshold cutoff activation function (e.g., 1 if greater than some value)

can be used as below:

ℎ(𝑥) = {
1 ∶ 𝑖𝑓 𝑓(𝑥) = 𝑤. 𝑥 + 𝑏 > 0
0 ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1.1.2 Training of Perceptron

Perceptron can be trained by feeding multiple training examples and calculating the

output for each of them. After each sample, error is calculated between the desired

output and actual output and the weights w are adjusted accordingly to minimize

the output error. Error functions may differ according to the need of application but

training of the perceptron will always be done in the same way as described above.

1.1.3 Drawbacks of single perceptron

Major drawback to use single perceptron for deep learning is, it can separate only

linearly separable data. Perceptron can’t handle the nonlinearity in the input data, it

can’t draw complex decision boundaries. This can be seen clearly with an example

below, in which perceptron is unable to draw a single classifier to separate even the

very simple non-linear XOR problem.

Figure 1.5: Fail attempt of a single perceptron to classify nonlinear problems

8

This problem can be resolved by using multi-layer perceptron also called feed-

forward neural network. MLP is a bunch of perceptrons arranged in some specific

manner.

1.1.4 Feedforward Neural Networks for Deep Learning

As mentioned above, MLP is just a collection of perceptrons, connected in some

specific way and operating on different activation functions.

Feedforward neural network has the following properties:

• Basic component of any MLP is an input, output, and one or more hidden layers.

In the example figure below, feed-forward network has a 3-unit input layer, 4-

unit hidden layer and an output layer with 2 units (the terms units and neurons

can be used interchangeably).

• The neuron of input layer serves as the input for hidden layer while the neurons

of the hidden layer serves as the input for output layer.

• Weights are defined for every interconnection of neurons.

• The neurons in each layer s is typically connected to every neuron of the

previous layer s - 1 (although they can be disconnected by setting their weight

to 0).

• The data is processed by clamping the input vector to the input layer and setting

the values of desired output to the output layer. Values of input layer are then

propagated forward to the hidden units after the weighted sum (hence the term

forward propagation), which in turn produces the output with the help of

activation function.

9

• The output of the network is calculated at hidden layer in the same way as hidden

layer.

Figure 1.6: Feed forward neural network (Multi-layer perceptron)

1.1.5 Problems with Linearity

If each of our perceptrons is allowed to use only linear activation function, then, the

final output of the network will still be some linear function of the inputs. Thus, if

neurons are restricted to use linear activation function, then the feed forward network

will be of no significant use, no matter how many number of layer it consists.

This is the reason why non-linear activation functions are used for most of the feed

forward networks. Most commonly used non-linear activation functions are:

• logistic

• tanh

• binary or rectifier

https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Tanh
https://en.wikipedia.org/wiki/Artificial_neuron#Step_function
https://en.wikipedia.org/wiki/Rectified_linear_unit

10

1.1.6 Hidden Layer

The hidden layer is of great importance in any neural network. According to

the universal approximation theorem, a neural network with a single hidden layer

having finite number of neurons can approximate an arbitrarily random function. In

other words, a single hidden layer is powerful enough to learn any function. Thus,

multiple hidden layers (i.e., deeper nets) performs much better than the perceptron.

Hidden layers store the internal abstract representation of the training data, same as

a human brain (greatly simplified analogy) has an internal representation of the real

world.

1.1.7 The Problem with Large Networks

In general, the performance of a neural network increases by increasing the number

of hidden layers. Higher layers build abstraction over previous layers thus generating

more complex features. These complex features help the neural network to

efficiently classify the input data.

However, the number of hidden layers can’t be increased arbitrarily. Increasing the

number of hidden layers causes two issues:

1. Vanishing gradients: as the more hidden layers are added, backpropagation

becomes less efficient in passing information to the lower layers. Error at the

output, according to which the weights have to be adjusted gets much diluted

farther from the output. In other words, as information (error in case of neural

network) is passed back, the gradients begin to vanish and become small relative

to the weights of the networks.

https://en.wikipedia.org/wiki/Universal_approximation_theorem
http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf

11

2. Overfitting: this is the central problem in machine learning. Overfitting tries to

fit the training data as efficiently as possible. This reduces the training error

greatly but it gives very poor results over test data. In other words, overfitting

can give very complex boundary to fit the training data very well but it can’t be

generalized for unseen data.

3. Complex Optimization: More number of layers intensify the problem as it

results in the increased number of parameters. As the number of hidden layers

increases, there will be more paths thus the optimization is complex.

To address these issues, below are introduced some deep learning algorithms.

1.1.8 Autoencoders

An autoencoder is a neural network that takes typically unlabeled data as input and

after encoding them, tries to reconstruct them as accurately as possible. As a result

of this the net must decide which of the data features are the most important

essentially acting as a feature extractor.

Autoencoder aims to learn a compressed, distributed representation (encoding) of a

dataset. Conceptually, here both the input and output data remains same, the network

is trained to “recreate” the input. In other words, the output is going to be same as

https://en.wikipedia.org/wiki/Overfitting

12

the input but compressed in some sense. This is a confusing approach, example

below will explain the concept.

.

Figure 1.7: Autoencoder

Concept of autoencoders

Consider the training data having input grayscale images of size 28x28. Each neuron

at the input layer takes the value of pixels in the image (i.e., the input layer will have

784 neurons). Then for autoencoders, the output layer will also have 784 neurons

and the target value for these neurons will be the pixel value of the images.

The main objective of autoencoders is to learn the internal structure and features of

the data. Autoencoders will not learn a “mapping” between the training data and its

labels. This is the reason why hidden layer is also called feature detector. Usually,

the number of neurons in hidden layer is smaller than that in the input/output layers.

This ensures that the autoencoders learn only the most important features and gives

13

the output data that is compressed. Dimensionality reduction is a functionality of the

autoencoders.

Autoencoders are trained with backpropagation algorithm using a metric called loss.

Thus, autoencoders gives a compact representation of input data.

1.1.9 Restricted Boltzmann Machines

 RBM is a shallow two-layer net. It is mathematical equivalent of two-way

translator. In the forward pass the RBM takes an input and translates them into a

number that encodes the input, in the backward pass it takes the set of number and

translates them back to reconstruct the inputs.

RBMs are composed of three layers:

1. hidden layer

2. visible layer

3. bias layer

In RBM, the connection between the hidden layer and visible layer is undirected

means the values can be propagated in both the direction i.e. from visible to hidden

and from hidden to visible. The connections are fully connected also means each

neuron in any layer is connected to each neuron in next layer. If the neurons in any

layer is allowed to connect with neurons in any other layer then the resulting network

will be Boltzmann machine rather than a restricted Boltzmann machine

14

The standard RBM consists of binary hidden and visible units: that is, the unit

activation is 0 or 1 under a Bernoulli distribution, but there are variants with

other non-linearities. RBM uses KL divergence to compare the actual to recreation.

RBM is a part of feature extractor neural network. They automatically find patterns

in a data by reconstructing the input. These nets are also called autoencoders in some

sense because in a way they encode their own structure. Restricted Boltzmann

machines are a special case of Boltzmann machines and Markov random fields.

Their graphical model corresponds to that of factor analysis

Figure 1.8: Restricted Boltzmann Machines

1.1.10 Deep Networks

As mentioned above, Autoencoders and RBMs can be used as a feature extractor.

But these features can’t be used directly for further processing. Thus, we need a

method by which these extracted features can be used indirectly.

Here Deep networks comes to the rescue. Deep networks can be formed by stacking

these structures. Most attractive feature of deep networks is: the layers of these

https://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
https://en.wikipedia.org/wiki/Boltzmann_machine
https://en.wikipedia.org/wiki/Markov_random_field
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Factor_analysis

15

networks can be trained greedily, one by one. They also overcome the problems

faced by classic backpropagation like vanishing gradients and overfitting.

In terms of network architecture, a deep network is identical to MLP but when it

comes to training, they are entirely different. In fact, the difference in training is the

key factor that enables deep network to outperform their shallow counterpart. Key

advantages of deep networks is:

• Less training time

• Increased accuracy

• Small labeled dataset

1.1.10.1 Stacked Autoencoders

This network is a stack of multiple encoders.

Figure 1.9: Stacked Autoencoders

16

Input is applied to the first layer of the first autoencoder. This input works as the

input for whole system. Input to any hidden layer is the output of the previous layer.

The procedure for layer-wise greedy training is as below:

1. With the help of backpropagation algorithm, the first autoencoder (t = 1 or the

red connections) is trained individually with an additional output layer by taking

all the available training data.

2. The second autoencoder t=2 (green connections) is trained by clamping input

sample to the input layer of t=1, which is propagated forward to the output layer

t=2. Since the hidden layer t=1 works as the input layer for t=2, the output layer

of t=1 is no longer required and can be removed from the network.

3. The above procedure is repeated for all the layers (i.e., replace the output layer

of previous encoder with another encoder, and train with back propagation).

4. Steps 1-3 initializes the weights properly and called as pre-training. However,

the input data is not associated in any way to the output labels. For example, in

case of a handwritten digit recognition system, we can’t get the digit type of the

input image from the hidden layer of the last autoencoder. In that case, one or

more fully connected layers can be added as a solution to get the final mapping

between the input image and output label. This network now can be viewed as a

MLP and can be trained with the help of backpropagation algorithm (this step is

also called fine-tuning).

17

Stacked auto encoders provides an effective pre-training method to initialize the

weights of a network. The result is a complex, multi-layer perceptron can be trained

(or fine-tune).

1.1.10.2 Deep Belief Networks

DBN can be viewed as a stack of Restricted Boltzmann machines (RBM).

Figure 1.10: Deep Belief Networks

Each RBM layer learns the entire input. Input to the first layer of first RBM works

as the input for whole system. Hidden layer of RBM t works as a visible layer for

RBM t+1. The procedure for layer-wise greedy training is as below:

1. First RBM t=1 is trained with all the training examples using contrastive

divergence.

2. Second RBM t=2 is trained by making the visible layer of t=1 as input, this data

is propagated forward to the hidden layer of t=1. Now, with the help of this data,

contrastive divergence can be initiated for the training of the RBM t=2.

3. Previous procedure is repeated for all the layers.

18

4. Same as in case of the stacked autoencoders, the network can be extended after

pre-training. This can be done by connecting fully connected layers to the final

hidden layer of RBM. Again, this forms a MLP which can then be fine-

tuned with the help of backpropagation.

This procedure is same as to that of stacked autoencoders, but here autoencoders are

replaced with RBMs and contrastive divergence algorithm is used instead of

backpropagation algorithm.

1.1.10.3 Convolutional Networks

Convolutional neural network is a type of feedforward network with some complex

structures as layers in between the structure. Convolutional neural networks are of

special interest for performing tasks related to images. CNNs are very good at

finding complex patterns in images.

Figure 1.11: CNN architecture

• Convolutional layers consist of a number of filters. These filters are applied to

input image the result of which is called feature map (FM). Each filter generates

a feature map. Thus, total number of FM will be equal to the number of filters

in convolutional layer. There may be multiple convolutional layers in a CNN. In

that case, filters of the second convolutional layer are applied to the feature maps

19

of the previous layer with different weights. This way each feature map in the

input is connected to the feature map in the output. The concept of weight

sharing allows to detect features in the input image regardless of the location.

Multiple number of filters helps to extract different types of patterns.

• In convolutional neural networks, there are many number of layers. Thus, the

processing time increases exponentiality as the size of the input data increases.

Size of the input data or image can be reduced with the help of subsampling

layers. For example, if the input image is of size 32x32 and the subsampling

layer consists the region of 2x2 then the output will be of size 16x16. Here

subsampling will replace the square of 4 pixels with 1 pixel. There are many

different methods for subsampling. Commonly used methods are:

• Max pooling

• Average Pooling

• Stochastic Pooling

 Most popular is Max pooling as it extracts the strongest features and also

prevents the diffusion

 of information, as in the case of average pooling.

• After the convolutional and subsampling layers, fully connected layers are there

to represent the labeled output. There may be multiple fully connected layers.

• CNN uses backpropagation algorithm for training. A very efficient technique is

used during the training of the CNNs which reduces the training time

considerably, is called dropout. It makes other features unreliable to break co-

adaption. Several dropped out architectures are trained in a single run to choose

the one with optimal performance.

20

1.2 Applications of Human Emotion Recognition
Emotion recognition is a trending topic among researchers. As emotions play an

important part in our lives, detecting emotions and taking actions accordingly can

improve the performance of many field of application. Some most common

application of emotion recognition system can be:

1. Healthcare and medicine

Emotion recognition can play an important role in medical treatments. For example,

physiatrists can use emotion recognition system to find how the patient is feeling

about the treatment and can use different techniques accordingly. Another example

where emotion recognition can play a significant role in healthcare is to deal with

persons suffering from autism. As these people struggles in social communication,

emotion recognition system can help significantly.

2. E - learning

In today’s digital world, internet plays a key role in learning new skills. Online

courses bridge the gap between users and distant universities. Now according to the

state of the user, the presentation style can be changed accordingly to make online

tutor more interactive and effective.

3. Monitoring and alerting systems

Driver monitoring system can be deployed in automobiles to warn drivers if they are

feeling angry or sad, to pull over for some time and either clam down or take some

rest.

Another example of monitoring system is in ATMs, where ATMs can be blocked to

dispense money if user is feeling scared (in case of forceful action).

21

4. Entertainment

Emotion recognition system can play a significant role in entertainment. For

example, YouTube recommender system will be more effective if it can also

recommend multimedia content according to the emotional state of the user.

5. Marketing

In supermarkets, by detecting the response of the user for any particular product will

help the consumer product company to change their products accordingly. In

consumer advertisements also, detecting the emotional response will help to make

them more effective.

1.3 Thesis Outline
The thesis work is totally divided into five chapters. Outline of each chapter is

presented below.

Chapter 1 is the introduction part of the work. This highlights the methods that can

be used to model the framework to detect the human emotion. FACS and FAP are

discussed in the chapter which decodes the human faces and can be used to detect

emotions. Different deep learning techniques are also introduced in the chapter.

Chapter 2 concludes some of the most popular and state of the art work related to

emotion recognition. Literature review is summarized in 19 research papers.

Chapter 3 elaborates our proposed method. Convolutional neural networks are

discussed in detail. Various techniques to improve the performance like pooling and

22

dropout are also discussed. In the end, some well-known convolutional networks are

referred like LeNet, AlexNet.

Chapter 4 shows the result of our proposed method. All the five evaluation metrics

are also discussed i.e. confusion matrix, precision, recall, F1-score and accuracy.

Results of our deep learning approach are compared also with classical machine

learning algorithms.

Chapter 5 concludes our work. It will be clear from the result section that deep

learning approach that is used here i.e. CNN outperforms the classical machine

learning algorithms like MLP, SVM and kNN. This chapter also highlights for the

scope of future work for improvement.

23

Chapter 2

Literature Review

The foundational studies on facial expressions that have formed the basis of today’s

research can be traced back to the 17th century. In the 19th century, Charles

Darwin’s work related to automatic facial expression recognition is the fundamental

for today’s theories and applications. In 1872, Darwin wrote a treatise that

established the general principles of expression and the means of expressions in both

humans and animals. Since the 1970s, psychologist Paul Ekman and his colleagues

has done magnificent work in the study of facial expressions and human emotions.

Since it is almost impossible to mention all of the research work related to emotion

recognition, here are presented 17 most important and state of the art work related

to this field.

1. Bourel et al., 2001 [1]

Feature Extraction

Local spatio-temporal vectors obtained from the Extended Kanade-Lucas-Tomasi

tracker

Classifier

Data fusion with modular classifiers. Local classifiers were ranked according to kNN

method.

Database

CK

Sample size

There was a total of 100 video sequences from 30 subjects (25 sequences for 4

expressions)

24

Performance

Figure 2.1: Bourel et al’s system performance

Important Points:

Fusion methods were used to get the final output from classifier. Effects of occlusion

was also considered.

2. Pardas and Bonafonte, 2002 [2]

Feature Extraction

Active Contour algorithm and motion estimation were used to extract MPEG-4

FAPs

Classifier

Hidden Markov Model

Database

CK

Sample Size

Whole database was used

Performance

Accuracy of 84% overall (with 6 prototypic expressions)

Important Points

25

A method was proposed to automatically extract MPEG-4 FAPs. They also proved

that FAPs can also be used efficiently to extract the emotions.

3. Cohen et al., 2003 [3]

Feature Extraction

Motion Units (MUs) vector tracking using piecewise Bezier volume deformation

tracker

Classifier

Hidden Markov Models, Multi-level HMM, Naive Bayes, Tree Augmented Naive

Bayes

Database

CK and self-made database

Sample Size

53 subjects from CK database

5 subjects from own database

Performance

Table 2.1: Cohen et al.’s system performance

26

Important Points

It was real-time system able to classify emotions from video. Use of Hidden Markov

Models were recommended for automatic segmentation of a video into different

expression segments.

4. Bartlett et al., 2003 [4]

Feature Extraction

Features were extracted using Gabor wavelet transform.

Classifier

Support Vector Machine with and without Adaptive boosting

Database

CK

Sample Size

313 sequences from 90 subjects. First and last frame were used as training images

Performance

SVM (Linear kernel) Automatic face detection 84.4%

Manual alignment 85.3%

SVM (RBF kernel) Automatic face detection 87.5%

Manual alignment 87.6%

Table 2.2: Bartlett et al.’s system performance

Important Points

It was a real-time and fully automatic system with high level of accuracy.

It was successfully deployed on Sony’s Aibo pet robot, ATR’s RoboVie and CU

Animator

5. Michel and Kaliouby, 2003 [5]

Feature Extraction

27

Feature displacement vector was used. It is the Euclidean distance between neutral

and peak emotion

Classifier

Support Vector Machine

Database

CK

Sample Size

10 examples for training and 15 examples were used for testing, for each class

emotion

Performance

With RBF Kernel: 87.9%.

Person independent: 71.8%

Person dependent (train and test data supplied by expert): 87.5%

Important Points

It was a real-time system and did not require preprocessing

6. Pantic and Rothkrantz, 2004 [6]

Feature Extraction

Profile and frontal face points were used as features.

Classifier

Rule based classifier

Database

MMI

Sample Size

25 subjects

Performance

Accuracy of 86% is achieved

28

Important Points

This was not a real-time system but it can recognize facial expressions in both the

profile and frontal views. A method was proposed for automatic action unit coding

in profile images

7. Buciu and Pitas, 2004 [7]

Feature Extraction

Non-Negative Matrix Factorization (NMF) and Local Non-Negative Matrix

factorization (LNMF) were used to represent the images

Classifier

Nearest neighbor classifier was used with Cosine Similarity Measure and Maximum

Correlation Classifier

Database

CK and JAFFE

Sample Size

164 samples from CK database

150 samples from JAFFE database

Performance

CK: the highest accuracy of 81.4% is achieved by LNMF with MCC

JAFFE: 55% to 68% (using all the methods)

Important Points

PCA was also used to compare with the LNMF and NMF. NMF showed worst

results while LNMF outperformed both the PCA and NMF.

Cosine similarity measure gives better performance than maximum correlation

classifier.

8. Pantic and Patras, 2005 [8]

29

Feature Extraction

20 facial fiducial points were tracked as feature

Classifier

Temporal Rules

Database

CK and MMI

Sample Size

90 images for CK database

45 images for MMI database

Performance

90% accuracy achieved as overall average

Important Points

Showed robust performance under occlusion. It was invariant to facial occlusions

like glasses and hairs

9. Zheng et al., 2006 [9]

Feature Extraction

A Labeled Graph (LG) is created using 34 landmark points with the help of Gabor

transform. A semantic expression vector is also built for each training face. The

correlation between LG vector and semantic vector is were found using KCCA.

Classifier

Correlation used to estimate semantic expression vector is used for classification.

Database

JAFFE and Ekman’s PA

Sample Size

JAFFE contains183 images

Ekman’s PA contains 96 images

30

Neutral expressions were excluded from both the databases

Performance

Table 2.3: Zheng et al.’s system performance

Important Points

Kernel Canonical Correlation Analysis method was used to detect facial expressions

and to tackle singularity problem in Gram matrix

10. Anderson and McOwen, 2006 [10]

Feature Extraction

Spatial ratio template tracker based motion signature and MCGM based optical flow

features of face

Classifier

Support Vector Machine and Multi-Layer Perceptron

Database

Carnegie Mellon University, Pittsburg Action Unit coded database and a non-

expressive database

Sample Size

CMU: 253 samples of 6 basic expressions

Non-expressive: 4800 frames of 10 subjects

Performance

Semantic Info JAFFE database LOIO 85.79%

LOSO 74.32%

Ekman’s database 81.25%

class label info JAFFE database LOIO 98.36%

LOSO 77.05%

Ekman’s database 78.13%

31

Motion averaging using: co-articulation regions: 63.64%, 7x7 blocks: 77.92%, ratio

template algorithms, with MLP: 81.82%, with SVM: 80.52%

Important Points

It was a fully automated real-time system. Gave robust performance for cluttered

scene also. Motion-averaging is also used to condense data

11. Aleksic and Katsaggelos, 2006 [11]

Feature Extraction

MPEG-4 facial action potentials, eyebrow and outer-lip. PCA was also used for

dimensionality reduction

Classifier

Hidden Markov Models and Multi Stream-Hidden Markov Models

Database

CK

Sample Size

284 recordings of 90 subjects

Performance

Using HMM: eye-brow FAPs only: 58.8%, outer lip FAPs only: 87.32%, Joint

FAPs: 88.73%

MS-HMM: 93.66% (weights of outer lip are greater than eyebrows).

Important Points

Showed that MS-HMM can improve the performance. They also suggested a method

to assign stream weights.

12. Pantic and Patras, 2006 [12]

Feature Extraction

15 facial points were tracked with particle filter to generate mid-level parameter

32

Classifier

Rule based classifier

Database

MMI

Sample Size

1500 samples of both static and profile views

Performance

96 test profiles: 86.6%

Important Points

Facial expressions were automatically segmented in input video

Temporal segments were also recognized for 27 AUs

Action units were recognized automatically from images

13. Sebe et al., 2007 [13]

Feature Extraction

Piecewise Bezier volume deformation tracker based MUs

Classifier

Bayesian nets, Support Vector Machine and Decision Trees. Results were improved

with the help of voting methods like bagging and boosting.

Database

CK. Created their own dataset also containing spontaneous emotions

Sample Size

Created DB: 28 subjects showing mostly neutral, joy, surprise and delight.

CK: 53 subjects

Performance

With different classifiers: CK: 72.46% to 93.06%, Created DB: 86.77% to 95.57%.

Using kNN with k = 3, best result of 93.57%

33

Important Points

Most attractive feature was to detect the spontaneous emotions.

14. Kotsia and Pitas, 2007 [14]

Feature Extraction

Candide method with Geometric displacement

Classifier

Multiclass SVM

Database

CK

Sample Size

Complete database is used for training

Performance

Facial expression recognition: 99.7%

Action unit detection based Facial expression recognition: 95.1%

Important Points

Detects either the six prototypic expressions or a set of chosen action units.

Recognition rate was very high

15. Wang and Yin, 2007 [15]

Feature Extraction

Topographic context (TC) expression descriptors

Classifier

Quadratic Discriminant Classifier, Linear Discriminant Analysis, Support Vector

Classifier and Naïve Bayes.

Database

CK and MMI

34

Sample Size

CK: 864 images (4 images per subject for each expression for 53 subjects)

MMI: 180 images (6 images per subject for each expression for 5 subjects)

Performance

Person dependent test MMI database QDC 92.78 %

LDA 93.33%

NB 85.56%

CK database QDC 82.52%

LDA 87.27%

NB 93.29%

Person independent test CK database QDC 81.96%

LDA 82.68%

NB 76.12%

SVC 77.68%

Table 2.4: Wang and Yin’s system performance

Important Points

Proposed a topographic model-ing approach in which the gray scale image is treated

as a 3D surface.

Analyzed the robustness against the distortion of detected face region and the

different intensities of facial expressions.

16. Dornaika and Davoine, 2008 [16]

Feature Extraction

Features were tracked with the help of candid face model.

Classifier

35

Online Appearance Models for head pose and then stochastic approaches for

emotions

Database

Used their own dataset

Sample Size

Video sequences were used instead of images.

Performance

Graphs are mentioned in the reference

Important Points

This was one of the first framework to simultaneous face tracking and emotion

recognition.

Posed expression were also there in the videos.

17. Kotsia et al., 2008 [17]

Feature Extraction

Feature were extracted with the help of these three approaches: Discriminant Non-

Negative Matrix factorization, Gabor transform, and Geometric displacement

vectors.

Classifier

Multiclass Support Vector Machine and Multi-Layer Perceptron

Database

CK and JAFFE

Sample Size

Complete database was used in training

Performance

For JAFFE dataset:

Using Gabor transform, the accuracy was 88.1% while with DNMF it was 85.2%

36

For CK dataset:

Using Gabor transform the accuracy was 91.6%, with DNMF 86.7% and with SVM:

91.4%

Important Points

Effect of occlusion on prototypic expressions was discussed and the system was

robust as it identified the emotions in spite of the occlusions.

37

Chapter 3

Proposed Methodology

In chapter 1, various deep learning techniques were discussed like autoencoders,

restricted Boltzmann machines, deep belief networks and convolutional neural

networks. We will use convolutional neural networks for the human emotion

recognition problem as CNNs are very efficient at recognizing patterns from images.

3.1 Basic concept of CNN

Before the advancement in computational resources deep learning was not much

popular among researchers. Till then, multi-layer perceptron (MLP) was the

backbone for automatic pattern recognition. But for more complex patterns MLP

have some limitations, like:

• More layers intensify the problem for complex patterns

• Error gets much diluted farther from the output

• Many different paths are available in MLP thus optimization is complex

• Fine control over architecture is needed

Now, a simplification over this architecture can be applied if the weights are shared

instead of making them independent. The structure of weights to a particular neuron

is exactly the same, their values are also exactly the same. In fact, these are not

separate neurons, but the same one applied at different locations. This structure

works as a filter which filters out a specific pattern from image. Applying many of

these filters over the image will extract the specified patterns. This process is called

convolution. In general, for convolution repeat the process below:

• Slide a weight matrix over a feature map

38

• Take element wise product

• Add the products

• Resulting value is put in one location in the next feature map

Convolution reduces weights. For example, in MLP the connected layer from a 6x6

layer to another 6x6 layer will require 64 fully connected weights. With a

convolutional architecture, we need only 3x3 weights. Each neuron (kernel)

processes patches, not entire image. Convolutional kernel is a matched filter. It looks

for a pixel pattern that matches its own structure. The pattern can appear in any place.

Thus, Convolutional networks also known as convolutional neural networks or

CNNs, are a specialized kind of neural network for processing data that has a known,

grid-like topology.

3.2 CNN architecture

CNN is a modification of the basic multilayer perceptron. It has mainly three types

of layers: convolutional layers, pooling layers and fully connected layers. Below is

an example figure for architecture of CNN.

Figure 3.1: Architecture of CNN

39

3.2.1 Convolutional layers

These are the first layers in any convolutional network. There may be multiple

number of convolutional layers. Input to these layers are the images itself. The pixel

values of images are feed directly to the convolutional layers. Functionality of these

layers can be viewed as a flashlight over an image searching for specific pattern.

Here filters are used as a flashlight. These filters slides over the whole image in

search of a specific pattern. Different types of filters can be applied in the

convolutional layer to find different patterns. The area of projection of filters over

the image is known as receptive field. Commonly used filter size is 3x3 and 5x5.

Filters produces feature map by sum of multiplication of their values with images.

These values are calculated over the whole image. This process is known as

convolution. This is the reason why these layers are called convolutional layers.

3.2.2 Pooling layers

Pooling is used to reduce the size of the feature map. As the CNNs consist of a lot

of layers to process data, the computation time of the process will also be reduced

then. Thus, it is not a good choice to process all the features generated by the

convolutional layers. We need only the most relevant features, for this purpose

pooling is used in most of the architectures to reduce the size of the feature map.

Most commonly used pooling method is max pooling.

General pooling. Besides the max pooling other pooling methods are also there such

as average pooling and L-2 norm pooling. Average pooling is important from

historical perspective only. Max pooling is the most commonly used method.

Average pooling has the main drawback that it dilutes the information while max

pooling extracts the strongest features.

40

Figure 3.2: Pooling operation

Figure 3.3: Example of Max pooling

Backpropagation. During the backward pass of the training, in max(x,y) step

backpropagation routes the gradient with the largest value in the forward pass to the

input. Hence, the index of the maximum gradient must be tracked in the forward

pass of pooling layer to efficiently route the gradient in backpropagation.

Getting rid of pooling. In the recent studies, it is suggested that pooling can be

discarded. In the CNN architecture, convolutional layers can be repeated instead of

pooling layers. Now to reduce the size of the input volume, strides of larger size can

41

be used in convolutional layers once in a while. For the training of generative models

like variationally encoders and generative adversarial networks, discarding pooling

layers has been found beneficial.

3.2.3 Fully Connected layer

Fully connected layers are similar to basic neural networks as each neuron in fully

connected layer is connected with each neuron in the previous layer. Activation of

these layers can be easily computed with a simple matrix multiplication after adding

the offset component.

Convolutional and fully connected layers are almost similar, the main difference

between these two layers is the connectivity of neurons. In fully connected layers,

each neuron is connected to each other in the previous layer while in the

convolutional layers, neurons are connected to only a small part of the input and that

much neurons only share weights. Both layer uses dot product to compute the output.

Thus, convolutional layers can be converted into fully connected layers.

• For convolutional layer in the network, same forward function is implemented

with a fully connected layer. Most of the entries in the weight matrix will be zero

in a block as neurons in the convolutional layers are connected only to a small

part of the input. Many of these blocks will be same as convolutional layers uses

the concept of weight sharing.

• Fully connected layer can also be converted into a convolutional layer. For

example, a fully connected layer having the value of the parameter K as

4096, with 7x7x512 size of input volume can be converted into a convolutional

layer having the value of the parameters F, P, S and K as 7, 0, 1 and 4096

42

respectively. Thus, we need to set the size of the filter same as the input volume

size. In this case, output will be of size 1×1×4096 because only a single depth

column has to fit across the input volume. This will give the same results as the

initial fully connected layer.

3.3 Layer Sizing Pattern

In any convolutional network, there are a number of hyperparameters, the value of

which must be taken carefully. Value of these can’t be selected arbitrarily. There are

certain rule of thumb for sizing the architecture. These are mentioned below:

The input layer (containing the image) needs to be divisible by 2 multiple times.

Common numbers are: 32, 64, 96 or 224, 384, and 512.

The convolutional layers should use filters of small size (e.g. 3x3 or at most 5x5).

If the value of stride S is 1 then zero padding should be used in such a way so that

the spatial structure of the input volume is not altered. Thus, for the value of F as 3

and for padding P is 1, we will get the original size of the input. For the value of F

as 5, the value of P should be 2. In general, for any value of F, 𝑃 = (𝐹 − 1)/2 the

original size of the input will be retained. If the bigger sizes of the filters can’t be

avoided then they should be restricted to the very first convolutional layer only i.e.

looking on the input image.

The pooling layers are mainly responsible for down sampling the spatial size of the

input. The most commonly used value for max-pooling is F =2 (2x2 receptive fields),

and for stride S the value is 2. Exactly 75% of the input volume is discarded by this

setting as we down sampled the space by 2 along both the height and the width.

Another slightly less commonly used value for F is 3 (receptive fields of size 3x3)

43

with the value of stride is 2. Receptive fields of size greater than 3 is not used because

the pooling becomes too lossy and aggressive then.

Reducing sizing headaches, in the above-mentioned scheme the size of the input

volume is not changed as we used zero padding for the input data. In many different

approaches if the zero padding is not used and the value of the stride also is not 1,

then the size of the input volume is changed and they should be tracked throughout

the CNN architecture.

Significance of stride with value 1: Smaller strides give better results. Having the

value of stride 1 only POOL layers are responsible for down sampling, where in

convolutional layers, the input volume is only transformed depth-wise.

Necessity of padding: Padding actually improves the performance. If the zero-

padding is not allowed to perform and only the convolution operation is allowed to

perform over input volume then the size of the input volume will be reduced by some

amount after each convolution, and the information at borders will be disappeared

rapidly.

Memory constraints based compromise: With the rule of thumb presented above,

sometimes memory can build up very quickly. Smaller filter sizes and strides results

in more number of activations thus will require a large amount of memory as

compared to the case where the filter size and the stride have larger values. As the

performance of the GPUs are totally dependent on the system memory. Thus, if there

is not enough memory available in the system the performance of the GPUs must be

compromised. In general, compromise is made only at the first convolutional layer.

44

3.4 Proposed CNN architecture

We used 2 convolutional, 2 pooling and 2 fully connected layers as arranged in the

figure shown below:

 32 2 64 2 1024 7

Figure 3.4: Proposed architecture of CNN

3.5 State of the art examples

There are several state of the art architectures of Convolutional Neural Networks.

The most common are:

• LeNet. It was first introduced by Yann LeCun for the application of OCR and

other character recognition from documents. The architecture of LeNet is simple

yet powerful enough to produce interesting results. Most attractive feature of

LeNet is that it can run even on CPU efficiently.

• AlexNet. AlexNet was developed by the winners of ILSVRC 2012 challenge.

AlexNet is the network which inspired researchers to use Convolutional Neural

Network in the field of Computer Vision at first. The architecture of AlexNet is

very similar to LeNet but it is deeper, bigger and have more number of

convolutional layers stacked upon one another.

IMAGE

C
O

N
V

P
O

O
L

C
O

N
V

P
O

O
L

FC FC

EMOTION
CLASS

45

• ZF Net. ZFNet was developed by the winners of ILSVRC 2013 challenge.

Hyperparameters of AlexNet model were tweaked to modify it and get the

resulting ZFNet model. In particular, the size of the convolutional layers were

increased in the middle and size of the stride and filter was made smaller on the

first layer.

• GoogLeNet. GoogLeNet was developed by the winners of ILSVRC 2014

challenge. The main attraction of this design was an inception module that

reduced the number of parameters greatly. Additionally, Average Pooling was

used instead of Fully Connected layers at the top of the Convolutional Network,

eliminating a large number of insignificant parameters.

46

Chapter 4

Results

4.1 Dataset

The dataset used here is known as FER2013 dataset. It was produced by Kaggle for

their facial expression recognition challenge in 2013. This is a labeled dataset

consists of 35585 pre-cropped grayscale face images having size of 48x48. Each

image is labeled with one of the emotion class: happy, anger, fear, surprise, disgust,

sad and neutral.

This dataset is divided into three parts as below:

• Training set consisting 28709 images

• Two hold-out sets for post training validation consisting 3589 images per set

Sample images from FER2013 dataset is shown below:

Figure 4.1: Sample images from FER2013 dataset

47

4.2 Software requirements

Deep learning algorithms requires a lot of computational resources. Use of GPUs for

the training of deep learning algorithms especially CNN is a trend now as it greatly

reduces the training time. Most commonly used framework for GPU enabled

computing is CUDA developed by NVIDIA.

We have not used GPU enabled computing. The system used for the training have

following specification:

• Processor: Intel(R) Core(TM) i5-2450M @ 2.50 GHz

• Cores: 2.50 GHz x 4

• RAM: 4 GB

• Operating System: Ubuntu 16.04 LTS (64-Bit)

• Programming Language: Python 2.7

• Deep Learning libraries: TensorFlow 0.12.1

It took us around 110 minutes to train the CNN on this system (for 10 epochs). Cross-

validation and testing was quick and took around 15 minutes (for 10 epochs).

4.3 Evaluation metrics

For machine learning and deep learning applications, accuracy is not an efficient

metric for evaluation of the performance. There are certain other metrics are used

which are described below:

4.3.1 Confusion matrix

It is a matrix that describes the performance of any classification system. For

confusion matrix C, any element Ci,j will represent the number of observations

known to be in group i but classified or predicted to be in class j. The confusion

48

matrix is a square matrix that show the count value of the true positive, false positive,

true negative and false negative.

Consider the case of simple binary classification where only two classes exist:

positive class denoted by P and negative class denoted by N. Confusion matrix for

this case can be shown as below:

Figure 4.2: Confusion matrix

Note:

For multiclass classification problem, as like the case here, the value of TP, TN, FP

and FN can be extracted from the confusion matrix as below:

• For any class, total number of examples will be the sum of the corresponding

row

(i.e. TP + FN)

• For any class, total number of FN will be the sum of values in the

corresponding row

(excluding TP) while FP will be the sum of values in the corresponding

column

(excluding TP)

• For any class, total number of TN will be the sum of rows and columns

(excluding the row and column corresponding to that class)

49

4.3.2 Precision

It denotes the fraction of prediction which actually have positive class out of the total

positive predicted classifications.

𝑃𝑅𝐸 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

4.3.3 Recall

It denotes that of all the samples having positive class, what fraction correctly

classified as positive class.

𝑅𝐸𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

4.3.4 F1-score

For any classifier, precision and recall should be high. But both the precision and

recall can’t be high at the same time. Thus, another parameter is used for the analysis

called F1-score.

𝐹1 = 2
𝑃𝑅𝐸 ×𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶

Value of F1-score lies in the range 0 to 1.

4.3.5 Accuracy

It is defined as the ratio of number of correct predictions to the total number of

predictions.

50

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

4.4 Results

4.4.1 Confusion Matrix

Figure 4.3: Confusion matrix of the result

4.4.2 Accuracy

As mentioned earlier, the accuracy is the ratio of the number of correct prediction to

the total number of predictions.

51

Number of correct predictions will be the sum of values of the diagonal (representing

TP) in the confusion matrix while the total number of predictions will be the sum of

all the elements of the confusion matrix.

Thus, from the above-mentioned formula and from resulted confusion matrix, the

value of the accuracy is 89.14%.

4.4.3 Precision, Recall and F1-score

Table 4.1: precision, recall and F1-score of result

Emotion Precision Recall F1-score

Anger 0.875 0.910 0.892

Disgust 0.821 0.780 0.799

Fear 0.861 0.870 0.865

Happy 0.970 0.970 0.970

Sad 0.875 0.840 0.857

Surprise 0.958 0.930 0.953

Neutral 0.878 0.940 0.907

Average 0.8911 0.8914

0.8912

(from averaged

precision and recall)

52

4.5 Comparison

For comparison of the performance of our proposed method, we used classical

machine learning techniques. Same problem (i.e. Human emotion recognition) is

solved with the help of three machine learning algorithms. These are:

• MLP

• SVM

• kNN

These classifiers can’t be feed directly with the pixel values of face images. They

need some kind of feature extractor at first to extract the features of the face images.

These features then act as the input for these classifiers. Feature extractors that we

used are:

• SIFT

• SURF

• BRISK

• Dense-SIFT

Accuracy is taken as the evaluation metric. The value of the cluster size is taken as

500 for all the methods. Accuracies (in %) for above mentioned methods is as shown

below:

Table 4.2: Results of emotion recognition system with machine learning techniques.

K = 500 MLP SVM kNN

SIFT 56.81 70.45 75

SURF 54.54 63.63 68.18

BRISK 36.36 59.09 52.27

Dense-SIFT 27.27 43.18 38.63

53

The maximum accuracy achieved with the classical machine learning methods is

75%. Accuracy achieved by deep learning technique i.e. CNN (Convolutional

Neural Network) is 89.14%. Thus, deep learning techniques outperform the classical

machine learning techniques in complex classification tasks such as Human Emotion

Recognition.

54

Chapter 5

Conclusion and Future Scope

The goal of this project was to classify the human emotions with the help of deep

learning techniques. In particular, we used convolutional neural networks as they are

known for their ability to find complex patterns in images very efficiently. With the

help of proposed architecture, we successfully classified the input image in one of

the 7 emotion classes i.e. anger, disgust, fear, surprise, sad, happy and neutral with

89.14% accuracy.

Emotion class ‘happy’ is classified most efficiently with F1-score of 0.970 while the

most badly affected class is ‘disgust’. The F1-score for the classification of ‘disgust’

class is 0.799. There is a key factor which affected the classification of ‘disgust’

class badly. There were very less number of samples for ‘disgust’ class as compared

to other classes. This issue can be addressed in future implementations. Another

viable solution for this issue is to merge the ‘disgust’ class with ‘anger’ as there is

not much difference in both the classes. It is also clear from the confusion matrix

that for ‘disgust’ class, most of the False Negatives lies in the ‘anger’ category.

Another factor that imposed the constraints over performance of our system was the

computational resources. As we all know deep learning techniques are

computationally very expensive especially CNN. Training of deep learning

algorithms with the help of GPUs is necessary to fine tune the hyperparameters of

the network. As we didn’t use the GPUs, the training time was large. It took us

55

around 110 minutes for training with 10 epochs only. So, use of GPUs is highly

recommended for future implementations.

Performance can be improved by taking much larger dataset. We used the FER2013

dataset by Kaggle which consists of only 35585 pre-cropped face images. CNNs

performs very well if trained with a large dataset as compared with the previous

counterpart. In the dataset we used, the face region was already cropped and

centralized so no preprocessing needed. But this may not be the case with real world

problems. If we want to deploy a system for real world application, preprocessing is

a must before feeding the face images into the CNNs.

56

BIBLIOGRAPHY

1. F. Bourel, C.C. Chibelushi and A. A. Low, “Recognition of Facial Expressions in the

Presence of Occlusion,” Proc. of the Twelfth British Machine Vision Conference,vol. 1,

pp. 213–222, 2001.

2. M. Pardas and A. Bonafonte, “Facial animation parameters extraction and expression

recognition using Hidden Markov Models,” Signal Processing: Image

Communication,vol. 17, pp.675–688, 2002.

3. Cohen, N. Sebe, A. Garg, L.S. Chen, and T.S. Huang, “Facial Expression Recognition

From Video Sequences: Temporal and Static Modeling”, Computer Vision and Image

Understanding,vol. 91, pp. 160-187, 2003.

4. M.S. Bartlett, G. Littlewort, I. Fasel, and R. Movellan, “Real Time Face Detection and

Facial Expression Recognition: Development and Application to Human Computer

Interaction,” Proc. CVPR Workshop on Computer Vision and Pattern Recognition for

Human-Computer Interaction,vol. 5, 2003.

5. P. Michel and R. Kaliouby, “Real Time Facial Expression Recognition in Video Using

Support Vector Machines,” Proc. 5th Int. Conf. Multimodal Interfaces,Vancouver, BC,

Canada, pp. 258–264, 2003.

6. M. Pantic and J.M. Rothkrantz, “Facial Action Recognition for Facial Expression

Analysis from Static Face Images,” IEEE Trans. Systems, Man arid Cybernetics Part

B,vol. 34, no. 3, pp. 1449-1461, 2004.

7. Buciu and I. Pitas, “Application of Non-Negative and Local Non Negative Matrix

Factorization to Facial Expression Recognition,” Proc. ICPR, pp. 288–291, Cambridge,

U.K., Aug. 23–26, 2004.

8. M. Pantic, I. Patras, “Detecting facial actions and their temporal segments in nearly

frontal-view face image sequences,” Proc. IEEE conf. Systems, Man and Cybernetics,vol.

4, pp. 3358-3363, Oct. 2005

9. W. Zheng, X. Zhou, C. Zou, and L. Zhao, “Facial Expression Recognition Using Kernel

Canonical Correlation Analysis (KCCA),” IEEE Trans. Neural Networks,vol. 17, no. 1,

pp. 233–238, Jan. 2006.

57

10. K. Anderson and P.W. McOwan, “A Real-Time Automated System for Recognition of

Human Facial Expressions,” IEEE Trans. Systems, Man, and Cybernetics Part B,vol. 36,

no. 1, pp. 96-105, 2006.

11. P.S. Aleksic, A.K. Katsaggelos, “Automatic Facial Expression Recognition Using Facial

Animation Parameters and MultiStream HMMs,” IEEE Trans. Information Forensics

and Security,vol. 1, no. 1, pp. 3-11, 2006.

12. M. Pantic and I. Patras, “Dynamics of Facial Expression: Recognition of Facial Actions

and Their Temporal Segments Form Face Profile Image Sequences,” IEEE Trans.

Systems, Man, and Cybernetics Part B,vol. 36, no. 2, pp. 433-449, 2006.

13. N. Sebe, M.S. Lew, Y. Sun, I. Cohen, T. Gevers, and T.S. Huang, “Authentic Facial

Expression Analysis,” Image and Vision Computing,vol. 25, pp. 1856-1863, 2007.

14. Kotsia and I. Pitas, “Facial Expression Recognition in Image Sequences UsingGeometric

Deformation Features and Support Vector Machines,” IEEE Trans. Image

Processing,vol. 16, no. 1, pp. 172-187, 2007.

15. J. Wang and L. Yin, “Static Topographic Modeling for Facial Expression Recognition

and Analysis,” Computer Vision and Image Understanding,vol. 108, pp. 19–34, 2007.

16. F. Dornaika and F. Davoine, “Simultaneous Facial Action Tracking and Expression

Recognition in the Presence of Head Motion,”Int. J. Computer Vision, vol. 76, no. 3, pp.

257–281, 2008.

17. Kotsia, I. Buciu and I. Pitas, “An Analysis of Facial Expression Recognition under Partial

Facial Image Occlusion,” Image and Vision Computing, vol. 26, no. 7, pp. 1052-1067,

July 2008.

