

Comparative Analysis of

Test Case Prioritization Techniques

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS

FOR THE AWARD OF THE DEGREE OF

Master of Technology

in

Computer Science and Engineering

Under the esteemed guidance of

Dr. Ruchika Malhotra

(Associate Head and Assistant Professor

– Computer Science and Engineering)

Delhi Technological University

Submitted By-

Swati Madaan

(Roll No. - 2K14/CSE/501)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

SESSION: 2014-2017

2

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

CERTIFICATE

This is to certify that the report entitled "Comparative Analysis of Test Case Prioritization

Techniques" being submitted to DELHI TECHNOLOGICAL UNIVERSITY (D.T.U) by Swati

Madaan (R.No. 2K14/CSE/501, M.tech(CSE) - VIth Sem part time) , in partial fulfillment of

requirements for the award of degree of MASTER OF TECHNOLOGY (Computer Science and

Engineering) is a record of work carried by her under my supervision and guidance.

 Dr. Ruchika Malhotra

 Project Mentor/Guide

 Associate Head and

 Assistant Professor

 (Department of Computer

 Science & Engineering)

 D.T.U

3

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

DECLARATION

I hereby declare that the thesis work entitled “Comparative Analysis of Test Case Prioritization

Techniques” which is being submitted to Delhi Technological University, in partial fulfillment of

requirements for the award of degree of MASTER OF TECHNOLOGY (Computer Science

Engineering) is a bonafide report of thesis carried out by me. The material contained in the report

has not been submitted to any university or institution for the award of any degree.

 Swati Madaan

 2K14/CSE/501

4

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of this project would be in complete

without mentioning the people who made it possible. I consider myself privileged to express

gratitude and respect towards all those who guided me throughout the completion of this project.

I am very thankful to Dr. Ruchika Malhotra for guiding me and supervising my work as well as

for giving required information related to the project & also, for providing her constant support in

completion of this project.

I would also like to thank the university for providing the laboratories, infrastructure, testing

facilities and environment which allowed me to work without any obstructions.

Swati Madaan

M.Tech in Computer Science Engineering (part-time)

R.No. 2K14/CSE/501

5

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

ABSTRACT

Software Testing is one of the phases of software development lifecycle that consumes a lot of

time and effort. Once the software is delivered, it moves to the maintenance phase. In maintenance

phase, it becomes very expensive to run all test cases available in the regression test suite to

confirm the correct working of the software application or program in terms of budget and time.

Also, even if a minor change is made to the program, it becomes very expensive if we have to run

all available test cases to verify that no new errors have been introduced due to the change made.

So, prioritization of the test cases becomes mandatory. Test Case Prioritization strategies help in

overcoming these problems by prioritizing the test cases so that several parameters like statement

coverage, fault detection rate etc are maximized.

In this research work, a comparative analysis has been done amongst various strategies of test case

prioritization by implementing them to prioritize the test cases for a software application. Based

on the analysis done, a new strategy has been proposed in this thesis which uses map reduce

algorithm and cuckoo search algorithm to cover all parameters for prioritizing test cases. Three

strategies i.e. version-specific test case prioritization, genetic algorithm and cuckoo search were

compared and based on the comparison of the results , the new strategy has been proposed. The

proposed strategy covers all the possible parameters on the basis of which test cases can be

prioritized and also, maximizes the code coverage of the application so that maximum number of

defects can be identified from the software in mimimum amount of time. The proposed stategy is

also suitable for test case prioritization of large software systems where the regression test suite

contains hundreds and thousands of test cases.

6

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

TABLE OF CONTENTS

CERTIFICATE i

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

FIGURES AND TABLES vi

CHAPTER 1 Introduction…….. …………………………………………………………....9-12

1.1 Motivation of study …..…………………………………………………………............9-10

1.2 Goals Of Study..………………………………………………………………………....10-11

1.3 Thesis Organization ……………………………………………………………..............11-12

CHAPTER 2 Literature Review………. …………………………………………….......….13-16

2.1 Evolutionary Algorithms………………………………………………………………...15-16

2.2 Cuckoo Search…………………………………………………………………………...16

CHAPTER 3 Regression Testing…………….. ………………………………......……........17-20

3.1 Regression Testing…..……………………….…………………………………….….....18-19

3.2 Prioritization of Test Cases……………………………………………………………....19-20

CHAPTER 4 Research Background………….……………………………………...…........21-31

4.1 Modification based (Version-specific) Prioritization Strategy…………………………..21-24

 4.1.1 Limitations of the Strategy…………………………………………………………23-24

4.2 Genetic Algorithm………………………………………………………………………..24-29

 4.2.1 Version of the algorithm used for prioritizing test cases…..……………………....28-29

 4.2.2 Limitations of the Strategy………………………………………………………...29

4.3 Cuckoo Search……………………………………………………………………………29-31

 4.3.1 Version of the algorithm used for prioritizing test cases ..………………………..30-31

 4.3.2 Limitations of the strategy………………………………………………………...31

7

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

CHAPTER 5 Research Methodology…..…….……………………………………...….........32-35

5.1 Map Reduce Algorithm………………………………………..………………………….33-35

CHAPTER 6 Proposed Methodology..……….……………………………………...….........36-38

CHAPTER 7 Experimental Results and Analysis…………………………………………….39-41

7.1 Modification Based(version-specific) Prioritization Strategy……………………………39-40

7.2 Genetic Algorithm Based, Cuckoo Search Based and Proposed Prioritization Strategies..40-41

CHAPTER 8 Conclusion and Future Scope…..……………………………………………....42-43

References……………………………………………………………………………………44-48

8

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

FIGURES AND TABLES

Figure 3.1 Process of Software Testing……………………………………………………...18

Figure 4.1 Modification Based (Version-Specific) Prioritization Strategy…………………..23

Figure 4.2 Steps of Genetic Algorithm……………………………………………………….25

Figure 4.3 Representation of crossing-over part 1…………………………………………....26

Figure 4.4 Representation of crossing-over part 2…………………………………………....26

Figure 4.5 Pictorial Representation of Mutation……………………………………………...27

Figure 4.6 Implementation of Genetic Algorithm for Test Case Prioritization….…………...28

Figure 5.1 Representation of map reduce Algorithm………………………………………....34

Figure 6.1 Flowchart depicting the algorithm………………………………………………...37

Figure 7.1 Results of Modification Based Approach……………………………..…………..39

Figure 7.2 Graphical representation of the results…………………………………………….41

Table 7.1 Comparison of the results from the three strategies………………………………..40

9

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 1

 Introduction

Whenever a regression test suite is maintained, it contains all the test cases, generally thousands

of test cases, which cover all the features of the application. Whenever, a change is made to the

program, all test cases should be run to ensure the correct working of the application and that there

is no impact of the change on any feature of the application. But, in real time, execution of all the

test cases is not possible due to timelines of project delivery and thus, prioritization of test cases

comes into picture.

Test Case Prioritization helps in selecting a number of test cases and provides an order of execution

for them such that it increases the probability that if the selected test cases from the regression test

suite are executed in the given order, most of the probable defects from a change in the software

application would get revealed or be identified. The process of prioritization increases the

probability that if the test cases are used in a given order, they would more closely be able to meet

an objective (here, revealing as many defects as possible in the application due to the change made)

than they would have met if they were executed in some different order. This process of

minimizing and scheduling the test cases in order to run test cases of higher priority first minimizes

time, cost and effort during the software testing phase.

Through this study, various strategies of test case prioritization have been analyzed for their

performance and based on the results, a new test case prioritization strategy has been proposed

which helps in resolving the problems that have been there with respect to test case prioritization

strategies.

10

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

1.1 Motivation of the Work

In recent years, various researchers and scholars have been showing keen interest in the methods

of test case prioritization and have selected this topic as a topic of their research. They have

developed new techniques, modified the existing ones and explored them for their effectiveness

and performance under various scenarios. But, there have been various short comings with the

previous research works done in this subject and that has been the motivation of this work.

First, only a limited number of prioritization strategies have been proposed. Also, the ones that

have been proposed mostly cover the software systems from the coverage perspective or from

requirement perspective but no strategies have been developed which cover both the parameters

and various others extensively. So, more extensive research is required on this combined approach.

Further, most of the test case prioritization strategies developed so far assume that all the test cases

are equally expensive, all blocks of code are equally weighted or reachable, severity of all the

faults is equal and complexity or usage of all features is equal. Strategies that consider these

parameters and provide trade-off between multiple decisive parameters need to be designed and

further studied.

All test case prioritization strategies have been developed independently or separately. No work

has been done to explore their commonalities and come up with a generalized framework whose

instantiation should produce different varieties of prioritization strategies.

There are several factors which have different effects on prioritization effectiveness. No work has

been done which guides what factors affect the strategies and how. Also, no work has been done

which helps to or provides a criterion to select an effective technique for prioritizing test cases that

covers all the possible parameters.

All the reasons mentioned above collectively have been the motivation for this work.

1.2 Goals of Study

Test Case Prioritization is a technique which aims at or helps in ordering the test cases so that the

ones having the highest priority as according to some fitness function are evaluated earlier so as

11

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

to identify maximum number of defects in minimum amount of time. Prioritizing test cases of an

application does not eliminate any test case.

Prioritization of test cases is done in order to increase their efficiency to meet a performance goal

like:

• Rate of fault detection.

• Rate at which code is being covered.

• Rate at which confidence in the reliability of the software is increased.

• Rate of high-risk fault detection by a test suite.

All the factors mentioned above have been a motivating force to carry out this research work. The

goals of this study include coming up with a test case prioritization strategy, based on the results

from comparative analysis of various available strategies, which helps in resolving the problems

that have been there for test case prioritization.

1.3 Thesis Organization

This thesis has been organized into 8 chapters

In Chapter 1, motivation and goals of carrying out this work on prioritizing test cases have been

explained. Motivation of the work includes the problems that have been prevalent in the previous

research works that have been carried out for the given topic. Goals of the study include the

expectations from this research work and what output actually are we going to get as part of this

research work.

In Chapter 2, literature survey that has been done for coming up with this work and its references

have been given. Various research papers and websites were referred before coming up with a

different idea and for comparing several strategies of test case prioritization. All those references

have been given in references section.

12

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

In Chapter 3, concepts of regression testing and prioritization of test cases have been explained.

Also, advantages of prioritizing test cases have been explained.

In Chapter 4, the research background of this thesis has been explained. Three test case

prioritization strategies and their implementations for prioritizing test cases have been discussed

and their comparative analysis has been done. The algorithms or strategies explained in this section

include modification based (version-specific) prioritization method, genetic Algorithm and cuckoo

search.

In Chapter 5, the research methodology i.e. the techniques which are being used in the proposed

prioritization strategy have been discussed.

In Chapter 6, the proposed prioritization strategy has been explained in detail.

In Chapter 7, experimental results and analysis for the strategies of test case prioritization have

been discussed. Also, the resulting performance of the proposed strategy has been depicted in this

chapter.

In Chapter 8, the thesis has been concluded and future scope of this work has been discussed for

further studies to be carried on by upcoming researchers.

Then, at the end, there are references of the research material used and being worked on in the

same field of research.

13

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 2

 Literature Survey

In this chapter, previous research works that have been carried out in this area and were referred

to have been documented. Several related works were surveyed for different types of strategies

that have been used in the area of test case prioritization and they have been documented here after

segregating and mapping them to the required sub-headings.

The process of prioritization provides a way to schedule the test cases of the application in an order

so that maximum number of faults can be detected earlier. This work enumerates various strategies

of prioritizing test cases that have been developed in the past or are available which can improve

the rate of fault detection for an application or a software system.

Malhotra et al. [1] had proposed a test selection technique based on the code coverage aspect of

prioritization. This technique focuses on the number of modified lines that are covered by the test

cases and prioritizing test cases based on that criterion. Li et al. [2] have discussed various search

algorithms like Greedy Algorithms, Hill Climbing etc. for the process of prioritizing test cases and

the comparison of their results in their work. Similar work has been carried on and published by

Khandelwal and Bhadauria [3] and Sánchez et al. [4].

Earliest of techniques that were developed in this area of prioritizing test cases used to revolve

around several coverage metrics like statement-additional coverage, statement-total coverage,

additional branch coverage, fault-exposing potential & total branch coverage[5-11]. Then, moving

on, the focus of the research work got shifted to several other aspects of the process of

prioritization. Balakrishnan and Sapna [12] proposed an approach of prioritizing test cases by

generating minimal test cases using steiner trees and activity diagrams. Basically, in this technique,

an activity diagram is generated for each use case of the system. The activity diagram is then

14

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

converted into a weighted control flow graph using which a steiner tree is generated which contains

the set of minimal test cases for regression testing of that particular use case.

Rothermal et al. [13] came up with their work where they compared various prioritization

techniques in terms of certain questions like “Are techniques of prioritization effective when they

are targeted at specified software releases”, “Trade-off between Prioritization techniques” and so

on. Kumar and Kavitha [14] tried prioritizing test cases based on the severity of fault instead of

prioritizing them using code coverage only which is a very efficient way of prioritizing test cases.

In this, a value TCW (Test Case Weightage) for each test case is calculated and test cases are

arranged in descending order of that value. Thus, prioritizing the test cases.

Similarly, various techniques have been proposed which prioritize test cases of a regression test

suite in various ways. Ma and Zhao [15] proposed a prioritization techniques where test cases are

segregated, analyzed and thus, prioritized on the basis of progam structure. Indumathi and

Selvamani [16] proposed a technique for prioritizing test cases based on open dependency

structure. The assumption considered here is that by testing tightly-coupled or mode dependent

systems first, rate of detecting faults in a system might increase. .So, this technique has been

designed based on the dependency structure of various parts of the program depicting the

interactions between them. Arafeen and Hyunsook [17] and Hashini [18] prioritized test cases

using clustering on the basis of requirements. Test cases are clustered using text similarity in the

requirements which is generally determined using 3 tasks namely term extraction, term-document

matrix construction and k-means clustering.

Various research works have been carried which compare and analyze the existing algorithms used

or proposed in terms of parameters like performance, fault-detection rate, accuracy etc. Sánchez

et al. [4] have come up with such a comparative analysis. Similarly, Seetharaman and Muthusamy

[19], Jatain and Sharma [20] have evaluated various prevalent strategies of prioritizing test cases

using different factors as the basis of their comparisons.

Ant Colony Optimization Algorithm

Singh et al. [21] had proposed a technique of prioritizing test cases using ant colony optimization.

This algorithm is based on the behavior exhibited by the ants in real world. An ant when looking

for food, lays some amount of pheromone trail as it traverses its path. The pheromone trail is used

15

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

by the ant to come back along the same path. Also, it is used by other randomly moving ants to

move to the food source. If the path the ant moved on actually leads to a good food source, the ant

will come back along the same path to its original source after having the food. Thus, intensifying

the pheromone trail and providing a positive signal or feedback for other ants for following the

same path. More the number of ants traversing the path, more will be the deposition of pheromone

trail. More is the pheromone trail deposited on a path, more is the probability that it will be chosen

by other randomly moving ants.

This concept can also be used and has been used for prioritizing test cases where a problem can be

converted into an undirected graph and the path in the graph having the maximum amount of

pheromone deposition will be taken or selected as the prioritized test suite for the given problem.

2.1 Evolutionary Algorithms

A lot of work has been done in the field of test case prioritization using evolutionary algorithms.

These algorithms make use of evolutionary patterns to improvise the results over several

generations or iterations. These are the algorithms that use the Darwin’s theory of natural evolution

to create new generations from the given generation of solutions and select the fittest out of those.

Genetic algorithms is the most prominent example of such algorithms. Evolutionary algorithms

are the metaheuristic optimization algorithms which use the natural genetic processes of biological

evolution like reproduction, mutation, recombination and selection to create new solutions and

selects the fittest of all. These algorithms start with a random generation of individuals. Candidate

solutions to a problem here act as individuals. All the individuals of the population are evaluated

according to a fitness function. The best fit individuals are selected for reproduction and they are

cross-bred using various mechanisms like crossover and mutation to produce new off springs or

solutions. The fitness of new individuals thus produced is evaluated and the least fit individuals of

the population are replaced with the new individuals produced. This iteration of selecting the best

individuals, cross-breeding them, evaluating the off springs produced and replacing least fit

individuals with the new off springs is repeated until a termination condition is reached which may

be maximum number of iteration reached or a specified fitness value for the population has been

reached.

16

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Huang et al. [22] proposed a cost-cognizant strategy using genetic algorithms for prioritizing the

test cases. Similarly, genetic algorithms have been used in many research works for prioritizing

the test cases in various forms like by Konsaard and Ramingwong [23], Moshizi and Bardsiri [24],

Seetharaman and Muthusamy [19], Goldberg et al. [25], Mohapatra and Prasad [26], Malhotra and

Tiwari [27], Blum and Roli [28] and Nagar et al. [29].

2.2 Cuckoo Search

This algorithm is based on the reproduction behavior exhibited by cuckoos wherein they lay their

eggs in nests of other birds so that they are nurtured there. This behavior of cuckoos is also known

as obligate brood parasitism. This algorithm is also enhanced by the levy flights. Cuckoo birds are

some of the most fascinating species of birds not only because of the sounds they make but also,

because of the strategy of their reproduction.

The literature or research works on cuckoo search have been increasing very rapidly and it has

been used in a lot of recent studies in a wide range of applications. Nagar et al. [30] proposed a

strategy of prioritization using cuckoo search wherein initial population is randomly generated

considering all the test cases present in the test suite. Fitness function was taken to be the number

of faults detected. On the basis of the fitness function, least-fit solutions or test cases are abandoned

and new ones are created using levy flights. The cycle repeats till a termination condition as in

genetic algorithm is reached and the best solution identified is displayed as the result i.e. prioritized

test case sequence. Similarly, cuckoo search has been used in various research works like by

Gandomi et al. [31] , Bacanin [32] , Walton et al. [33], Yang and Deb [34][35], Yildiz [36],

Pavlyukevich et al. [37] and Walton et al. [38].

17

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 3

 Regression Testing

This chapter discusses the concepts of software testing, regression testing and test case

prioritization. Software testing is an investigation that is carried out to give stakeholders of the

product information about the product’s quality [41]. It is an important phase of the lifecycle of

software development. It is actually the process of testing a software with an intention of finding

errors so as to ensure that maximum number of errors are identified in the initial phases of

development of a software and thus, can be corrected then and there i.e. before its actual usage

begins. Fig. 3.1 depicts the actual process of testing a software. Following this procedure, quality

of the software being delivered can be assured to a great extent. Software Testing Process may

take following definitions:-

Testing can be considered as a process of demonstrating that errors are not present in a software

[1] [40].

It is basically a process of establishing confidence that a program does what it is supposed to do.

Testing demonstrates that a program does its intended functions correctly.

Testing a software provides an independent & objective view of the program to allow the

stakeholders to appreciate its quality and get to know the risks involved in the implementation. It

includes executing a system for evaluating it for various properties like

• Does it meets its requirements that were used to guide its design

• Does it respond correctly to all kinds of inputs

• Does it perform the expected functions within an acceptable duration of time

• Is its user interface acceptable and easy to use

• Does it achieves the general results it is supposed to achieve.

18

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

• Can it be installed on required environments

As a part of software testing process, the software application/program is executed with given

input(s) and the corresponding output(s) is/are evaluated.

The outcome(s) of the program/software application is/are compared with expected output(s). If

both the outputs are same, then the application is considered to be working correctly as per the

functional specifications, else it is considered that there is something wrong with the program.

Fig.3.1 Process of Software Testing

3.1 Regression Testing

Regression Testing is a software maintenance process accounting for a huge amount of cost and

resources in the software development lifecycle. It is the software maintenance activity in which

the altered parts of the application/software are retested so as to ensure that new defects have not

been introduced into already existing tested code due to the modifications made.

Basically, regression testing is a process where in any changes made to the computer program are

tested to ensure that old functionalities still work correctly with the new changes that have been

made. It is one of the phases of the development process and in large organizations, it is done by

testing specialists. Testers in test department of an organization develop or write test cases that test

19

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

all the functionalities of a newly written unit. These test cases then, become part of a test bucket.

Whenever a new version of the program is released, existing test cases are run against the modified

version of the software application or the program so as to ensure that the old functionalities or

features of the program still work. In contrast, non-regression testing mechanisms are used to

verify that after the changes have been made to a program or a software, the modifications made

have had the required effect.

Common regression testing methods include re-running of previously written test cases, checking

if the bugs fixed previously have re-emerged and so on. This process of regression testing increases

confidence of the customer regarding the correct working of the changed program by identifying

defects in the altered software and ensures reliable and continued working of the software. During

regression testing, an already constructed test suite is available with the team to be reused. All of

the test cases cannot be run after the changes have been made in a software application due to

constrained resources and time. Thus, minimization or prioritization of test cases becomes

essential so as to detect maximum number of errors due to the alterations done in minimum time.

3.2 Prioritization of Test Cases

Test Case Prioritization is a technique which aims at or helps in ordering the test cases so that the

test cases with the highest priority as per some fitness function are evaluated earlier so as to identify

maximum number of defects in minimum amount of time. Prioritizing test cases of an application

does not eliminate any test case. More efficient the selection criteria in the test case prioritization

technique is, more effective the results would be. It basically sequences the already designed test

cases, during the actual process of testing, considering two fundamental issues like

What features of the program should be tested

What would be the results if some functionalities are not tested

20

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

There are 2 types of test case prioritization techniques [1] [44]

• General Test Case Prioritization

According to this scheme, test cases are sequenced in an order such that they can be used

for a number of subsequent changed versions of the original software with no knowledge

of the changes made to the software.

• Version-Specific Test Case Prioritization

Under this scheme of prioritizing test cases, test cases are prioritized taking into account

the alterations that have been made to the original application.

Advantages of Test Case Prioritization

• Faster Defect Fixing

If an error can be identified at an earlier stage of software development, then, it can be

mitigated from the system faster and at a very initial stage which would result in less cost

incurred for defect fixing.

• Minimization of Costs

With faults being identified in advance in the system, the overall cost of software

maintenance and testing activities reduces to a great extent.

• Increase in Confidence

Test Case prioritization activity which helps in coming up with the best test cases to be

executed first and those which have a higher defect identification capability increase

confidence of the stakeholders in the system as then, they are almost sure about the correct

working of the software even with any alterations made to it and that too in minimum time

and using minimum cost.

• Increase in reliability of the software

With every new version released, there is no impact on the reliability of the software due

to prioritization of test cases. Since the prioritized test cases having capability of

identifying maximum faults in the system or its modified features have already been run,

there is an assurance that the old features of the program have not been hit and are working

correctly. Infact, reliability of the software increases in many cases.

21

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 4

 Research Background

This chapter discusses the background of this research work. Prioritization of test cases is an

important part of the software development lifecycle as it provides the set of test cases that cover

most part of the application and would be able to identify maximum number of errors in the

software application. But, the strategies that have been developed so far have some limitations that

have been explained in the “Motivation of Work” section of this thesis. Therefore, this research

work was carried out. Three of the prevalent prioritization strategies were analyzed for their results

and based on the analysis, a new strategy for prioritizing test cases has been introduced. The

proposed strategy would be able to cover all the features of the program with maximum code

coverage of those features so that maximum number of defects can be detected just by running the

resultant prioritized test suite. The assumption behind the proposed strategy is that if a prioritized

test suite covers more number of features along with maximum number of lines of code of those

features, more will be the probability of identifying maximum number of defects from all the

features of the application. A huge number of possible parameters can also be included as a

criterion for prioritizing test cases using the proposed algorithm. Thus, it can prove to be the best

strategy for prioritizing test cases of the regression test suite which considers maximum number

of parameters possible. The metric that has been used to compare the performance of the strategies

of test case prioritization is APCC (Average Percentage of Condition Covered).

APCC (Average Percentage of Condition Covered)

This metric provides the rate at which the prioritized test suite covers various conditions in the

program. This metric is used to measure the average percentage of test suite executed with respect

to average number of conditions covered.

Calculation of the APCC metric:-

22

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Let T be the test suite that consists of n test cases that covers m blocks of code. Let TBi be the

first test case in ordering T’, a subset of T, which covers condition i. The APCC for test suite T’ is

given by the equation

APCC = (1 − (��1 + ��2 +⋯… . . +����� ÷ �� + 1 ÷ 2�

Where

T = test suite being executed

 n= number of test cases

 m= number of conditions to be covered

 TCi= first test case covering ith condition

Three of the strategies that were analyzed are as follows

4.1 Modification Based (Version-Specific) Prioritization Strategy

This technique is a type of version-specific strategies of prioritizing test cases [1] [40]. Using this

strategy, test cases are prioritized based on the code coverage of the modified part of the

program. The assumption underlying this algorithm is that more is the code coverage of the

modified part of the program by a test case, more will be its fault revealing ability.

For using this technique, two versions of the program were considered. First was the original

version of the program having pre-defined set of test cases T having run on it for identification of

defects, if any. Second version was the modified version of the program for which test cases are

to be selected for carrying out the regression testing. The problem was that a subset of T, T’ was

to be designed that contained selected test cases that would be able to execute all the modifications

in the program. Also, the test cases in T’ were to be prioritized in an order such that test cases with

more fault detection potential are always run earlier than the others so that more number of defects

are identified in minimum time and using minimum resources.

Algorithm has been explained in fig 4.1:-

23

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Fig: 4.1 Modification Based (Version – Specific) Prioritization Strategy

The algorithm covers most of the modified lines of code but has several limitations. So, using it

for large software systems didn’t prove to be appropriate.

4.1.1 Limitations of the Strategy

• Prioritizes from code coverage perspective

It prioritizes test cases from code coverage perspective only. All other prioritization criteria

are not taken into consideration.

24

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

• Suitable for Small programs

This algorithm is suitable for small programs having around 5.-100 lines of code and its

performance would not be optimal for real-time software programs and their huge test case

data sets.

• Results might be inaccurate

Results may not be accurate and search space is not random using this algorithm. So, for

programs with large sets of test cases, this algorithm is inappropriate.

• Slower data processing

It requires a lot of computation and thus, processing of data is slower using this algorithm.

Also, it consumes more memory than other algorithms.

• Complexity of Requirement is not considered

This algorithm prioritizes test cases on the basis of lines of code modified only and other

aspects like complexity of the feature and others are not considered while prioritizing test

cases.

• Can’t be run on distributed environments.

It can’t be run on distributed systems or distributed test case data sets.

4.2 Genetic Algorithms

Charles Darwin invented the “Theory of Natural Selection” stating it as the reason behind human

evolution. As per this theory, humans have been evolving over several years with the principle of

“survival of the fittest”. In 1975, Holland used this principle/theory and proposed an

implementation based on this theory to resolve optimization problems and thus, Genetic

Algorithms were built and are being used in large number of problems.

It is a meta-heuristic stochastic algorithm based on Darwin’s theory of natural selection and

belongs to the class of evolutionary algorithms. These algorithms are generally used to produce

25

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

high-quality solutions to scheduling , optimization and other such problems by using bio-inspired

genetic changes as mutation, cross-over etc. The algorithm has been explained pictorially in fig.

4.2.

Fig. 4.2 Steps of Genetic Algorithm

In a genetic algorithm, an initial population of random candidate solutions to a problem is evolved

towards a better solution. Each candidate solution has certain characteristics which can be mutated

or altered.

The algorithm begins from an initial population of randomly generated individuals which undergo

the influence of various generic operators in each iteration or generation. In each iteration of the

strategy, fitness of every solution in the population is calculated and based on that more fit

individuals are selected to form a new generation by modifying their genomes.

The new generation is then again evaluated and used in the next generation and so on. The

algorithm may end when the required number of iterations are complete or the required fitness

level has been achieved as applicable in the scenario.

It involves the following steps:-

1. Population Initialization

An initial population is generated along the range of possible solutions.

26

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

2. Selection

Fitter solutions are selected from the generation based on a fitness function which then, would

be modified in the next generation.

3. Genetic Operators

Two types of genetic operators are applied

3.1. -Cross-Over

3.2. -Mutation

• Cross-Over

It is the process of getting newer combination of genes by exchanging segments between

pairs of chromosomes. It is applied to a chromosome by swapping one of its genes with

one of the genes of other chromosome. The individuals resulting from cross-over are quite

different. The process of crossing over has been depicted in fig. 4.3 and fig. 4.4.

 Fig. 4.3 Representation of Crossing-Over part1

Fig. 4.4 Pictorial Representation of cross-over part2

27

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

• Mutation

It is a process in which one gene is replaced by another o give a new structure to the

chromosome.

Fig. 4.5 Pictorial Representation of Mutation

4. Termination

The algorithm is terminated when one of the following conditions has been reached. It may be

one of the following:-

• A solution that satisfies minimum criteria has been found.

• A fixed number of iterations has been reached.

• Budget allocated has been reached.

• Manual inspection.

• Highest value of fitness has been achieved and solution is not improving after that.

• Combinations of above.

28

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Fig. 4.6 Implementation of Genetic Algorithm for Test Case Prioritization

4.2.1 Version of the algorithm used for prioritizing test cases

A program consisting of five features was considered. The functionalities provided were “Day

Feature”, “Class Feature”, “Largest Feature”, “Min Feature” and “Division Feature”. A regression

test suite for the same program consisting of seven hundred twenty five test cases was considered.

As per the implementation, an initial population of six test suites containing five test cases each is

randomly generated. Genetic operators like mutation and cross over are applied to the pair of test

suites. The resultant test suites are evaluated using a fitness function and the worst two test suites

from the generation are dropped. The test suite with highest fitness value is selected.

Fitness function used in this case is code coverage of the test case. A new generation is again

developed using the test suites from previous generation and the ones generated randomly again.

The test suites are crossed-over and mutated. The worst two from the new population are dropped

again. This process is repeated till ten iterations and then, the test suite with the maximum fitness

29

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

value is selected. The resultant test suite is then analyzed and the value of APCC metric is

calculated for the prioritized test suite.

This strategy works well for large sets of test suite data but has several limitations as discussed

below.

4.2.2 Limitations of the Strategy

• Feature Parameters are not considered

 In this approach, feature parameters are not considered while prioritizing the test cases.

 So, one may end up executing a test case first for the requirement which might have

 been impacted by the modification but is not very important.

• Holistic Approach

 It doesn’t provide a holistic view to the program verification. The prioritized test suite

 doesn’t verify the program as a whole i.e. all the requirements. There is very high

 probability that test cases selected may verify only one functionality or feature and the

 other ones are not even verified for impact on them, if any.

• Test Suite Level

 This can be applied efficiently at test suite level only as the operations involved here can

 be run efficiently on test suites only. There is no point performing the operations on the

 steps of a test case as it might lead to wrong results.

4.3 Cuckoo Search

Cuckoo search is an algorithm that uses the behavior cuckoos exhibit while laying their eggs i.e.

obligate brood parasitism. Cuckoo birds have a tendency of laying their eggs in the nests of other

host birds which are of same color as of the eggs of cuckoo and so, host birds mistakenly take

30

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

care of the eggs till they hatch thinking that they are their own eggs. Some host birds confront the

clever cuckoos when they know that they are not their own eggs. For example, if a host bird finds

that the eggs are not their own, they throw away the eggs and build a new nest for themselves.

Cuckoo search uses this behavior of cuckoos for various optimization problems [30] [31]. It can

be better explained with the help of 3 basic rules:-

• Each cuckoo would lay 1 egg at one time and would lay it in some randomly chosen nest.

• The best nests with high quality of eggs would be carried to the next generation

• The number of host nests available is fixed and probability of host bird getting to know

that it’s not its own egg is [0,1]. When the truth is discovered or known by the host bird,

the corresponding eggs are thrown and nests destroyed.

Considering these three rules, a large domain of problem is optimized using cuckoo search which

randomly generates solutions considered as cuckoo eggs and they are selected or rejected for a

generation based on a fitness function. If the result from fitness function for a solution or cuckoo

egg is good, it is carried over to the next generation else it is discarded. This continues until a

specified number of generations have been reached or a specific value of fitness function has been

achieved. Covering a solution space randomly provides randomness to the solutions and increases

the probability of finding the most optimized solution. This algorithm can also be applied to the

problem of test case prioritization. It was implemented in this work as explained below.

4.3.1 Version of algorithm used for prioritizing test cases

A program consisting of five features was considered. The functionalities provided were “Day

Feature”, “Class Feature”, “Largest Feature”, “Min Feature” and “Division Feature”. A regression

test suite for the same program consisting of seven hundred twenty five test cases was considered.

An initial population of six test cases is randomly generated. Using levy flights concept, a test case

or cuckoo is randomly generated. The fitness value is calculated for all the test cases of the

population. Then, the worst test cases are dropped from the population and good ones are passed

onto the next generation with the probability pa. Thus, giving rise to a new population. Fitness

function used in this case is sum of code coverage and complexity of the test case. A new

generation is again developed using the test cases from previous generation and the ones generated

randomly again. The fitness value of each test case from new generation is again calculated and

31

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

the worst ones are dropped. This process repeats till ten or pre-defined number of iterations and

then, the final population is considered to be as the prioritized test suite. The resultant test suite is

then analyzed and the value of APCC metric is calculated for the prioritized test suite.

This strategy works well for large sets of test suite data but has several limitations as discussed

below.

4.3.2 Limitations of the Strategy

Following are the limitations of using this strategy.

• Feature Parameters are not considered

In this approach, feature parameters are not considered while prioritizing the test

cases. So, one may end up executing a test case first for the requirement which

might have been impacted by the modification but is not very important.

• Higher Probability of a test case left untouched

Test cases are randomly selected from whole of the regression test suite using this

Strategy. It works in a random search space. There is a very high probability that

for a given number of iterations, a test case that covers a modified requirement and

traverses maximum number of lines of code in it may be left unprocessed where it

could have revealed a lot of defects as it could be covering a lot of modified lines

of code.

• Level of Application

This can be applied efficiently at test case level as well. But since it works in a

random search space, all test cases may not be processed efficiently.

32

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 5

 Research Methodology

Considering the limitations of test case prioritization techniques discussed previously in the thesis,

a new technique has been proposed in this thesis that takes into account the huge volume of test

cases that generally real-time software applications have as they include millions of lines of code.

This chapter discusses the techniques used in the proposed approach. A test case prioritization

strategy has been proposed that uses fuzzy logic aspect, map reduce programming paradigm and

cuckoo search to prioritize test cases based on all possible parameters like modifications made to

the program, complexity of the features involved, error-proneness of the features of the

application, weighted methods/classes, cost-effectiveness of a test case, frequent usage of a feature

in the algorithm, history of faults detected from a feature and other such measures.

Training the data

It is a process of maintaining the history of data, separating it into random sets, analyzing it and

developing a rule set out of them for classification. According to the proposed algorithm, test

case execution data and requirements of the application from multiple test cycles of the application

should be analyzed so that the requirements or features of the application can be classified as per

their complexity, error-proneness, history of error detection, history of modification, and various

other features and thus, test cases can also be classified based on the requirements data and other

aspects. This step involves training and refining the data as is done in fuzzy logic. Various rule

sets or inference data can also be formed in this process which depict as to which feature gets more

affected with a change in a specific feature of the application. This work uses this concept manually

but it can be automated as well using other artificial intelligence techniques. Such data would help

in prioritizing test cases more efficiently.

33

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

5. 1 Map Reduce Programming Paradigm

It is a programing paradigm and an associated implementation for parallel and distributed

processing huge volume of data, converting them to sets of tuples, and then combining and

reducing those tuples into smaller sets of tuples [42]. In simple terms, map reduce algorithm had

been designed to take huge volume of data and use parallel distributed computing to convert large

sets of data into less amount of useful data.

Proposed Usage

In the proposed algorithm, a version of map reduce algorithm has been implemented for

prioritizing large number of test cases that real-time applications involving millions of lines of

code today have. Map reduce algorithm in the proposed technique processes all the test cases

available for an application, combines them based on the functional requirement they belong to

and reduce them to a set of sorted key, list pair where key is the feature test case belongs to and

list is the list of test cases belonging to a particular requirement and the key value pairs are thus

sorted based on complexity of the feature they belong to and other such aspects. The sorting criteria

of the algorithm here includes:-

• Number of modifications made to the feature

• Complexity of the feature

• Error-proneness of the feature

• Frequent usage of the feature

• History of faults that have been detected from the feature (number of faults detected and

their complexity)

The cumulative data regarding the feature complexity and such can be derived from the Fuzzy-

trained dataset that has been maintained for all the features of the application. In the proposed

work, the data set from a single node has been used and parallel processing has been provided

using multiple threads in the application but this algorithm can also be run on distributed test case

data sets and thus, can be implemented for parallel processing of the distributed test case data sets.

34

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Essence of Map Reduce Paradigm

Map Reduce is a programing paradigm which comes from functional programming. A Map reduce

program involves a map() function that is used to filter the data, map it to a particular key and sort

it based on a criterion and also, a reduce() function is involved which is used to reduce or

summarize it as key value pairs of relevance to a smaller amount of data containing. A key may

contain a single value or a list of related data corresponding to it and this way, large amount of

data is summarized into a small amount of systematic and relevant data. Redundant data is also

removed through this algorithm.

This model is a special type of split-apply-combine strategy used for data analytics. It has been

derived from map and reduce functions that are used in functional programming although their

purpose in the map reduce framework is not the same as in their original forms. The most important

aspect of the map reduce paradigm is not the actual map() and reduce() functions but the scalability

and the fault-tolerance that is achieved by the optimization of the execution of the program. Fig.

5.1 depicts the Map Reduce paradigm pictorially.

Fig.5.1 Representation of MapReduce Algorithm

35

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

I. Data Flow in Map Reduce Paradigm

 It consists of the following components through which data in the application flows

II. Input Reader

 This component splits the data into sets of known size and generates key value pairs

 based on that.

III. Map Function

 It considers key value pairs as its input, processes them to generate output having

 summarized set of key value pairs.

IV. Comparison Function

 The input at reduce level is sorted using the comparison function of the program.

V. Reduce Function

 This component is called for each key identified and produces zero or more outputs

 associated with that key.

VI. Output Writer

 This component writes the output to the required storage medium.

Cuckoo Search Algorithm

This algorithm has been explained in the previous sections. It has been used to prioritize test

cases in each set identified and a test suite is identified using the best test cases from each set.

36

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 6

 Proposed Methodology

The proposed algorithm has been described below. Fig.6.1 describes the algorithm pictorially.

Algorithm:-

1. A requirement database is maintained and trained based on the multiple test cycles run

throughout the software development lifecycle.

2. Feature related data like complexity, error-proneness etc. is collected from the data set

that has been created using fuzzy logic aspect.

3. Map Reduce Algorithm iterates over the test case data set and thus, maps and reduces it

to a smaller and systematic test case data set corresponding to each functionality and sorts

them based on the feature parameters as maintained in the feature database.

4. The parameters used for sorting are :-

• Number of modifications made to the feature

• Complexity of the feature

• Error-proneness of the feature

• Frequent usage of the feature

• History of faults that have been detected from the feature (number of faults

detected and their complexity)

5. Then the cuckoo search is applied on test cases corresponding to each feature and the best

ones are identified for each requirement to generate a test suite that covers most of the

code available and modifications available. The filtering criteria uses the data available or

collected in the feature database.

6. The parameters used for filtering are :-

o Number of modified lines covered.

o Weightage of the classes/methods being covered

37

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

o Total code coverage

o Weightage of the blocks being covered

o Number of modifications made to a class or method

o History of error detection in a particular class, function or block

o History of modifications made and those that produce errors

Fig.6.1 Flow Chart depicting the algorithm

38

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Advantages of the Algorithm

Following are the advantages of using the proposed algorithm

• Handling Large Amount of Data is easier

 Prioritizing test cases become easier even in case of large amount of data as data is

 systematically segregated and then, prioritized.

• Test Cases are analyzed against all aspects

 Prioritization is more accurate as it analyzes all the test case data against all aspects

 and not just code coverage.

• Faster Processing

 Processing of large amount of test case data sets becomes faster with this algorithm as it

 processes in parallel.

• Less Chances of not processing test case with better coverage

 In cuckoo search or other evolutionary techniques, even after twenty iterations, there

 might be chances of test case with higher coverage being left. But using this technique,

 there are less chances as test cases are systematically handled.

• Can be used on distributed systems as well

 It can also be used in case of presence of test case data on distributed systems.

39

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 7

 Experimental Results and Analysis

7.1 Modification Based (Version-Specific) Prioritization Technique

A Triangle Classification program was considered which classifies the triangle as “Acute –

Angled”, “Obtuse-Angled” and “Right-Angled” triangle. A regression test suite for the same was

developed containing 10 test cases.

Some lines of code were modified in it and then, based on the modified lines of code covered by

the test case, test cases were prioritized. As per the implementation of the strategy, first of all

execution history of all test cases is determined. Then, lines of code which have been deleted are

updated or removed from the execution history of each of the test case of the regression test suite.

Then, all test cases are processed with respect to their execution history and the ones covering the

maximum number of lines of code modified are selected and prioritized.

Fig. 7.1 Results of Modification Based Approach

40

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Fig. 7.1 depicts the results of the strategy. Thus, 5 test cases were selected out of 10 which would

 cover all modified lines of code in the program but there were several limitations of the approach

for being used in real-time systems as depicted in section 4.1.1 . Thus, this approach was rejected.

7.2 Genetic Algorithm Based, Cuckoo Search Based and the Proposed prioritization

strategies

A program providing 5 functionalities namely Class Feature, Day Feature, Division Feature,

Largest and Min Feature was considered. The regression test suite of the program included 725

test cases. The three algorithms were applied to those and the resultant prioritized test suites were

obtained and their results were compared in different terms. Table 7.1 and fig. 7.2 depict the result

comparison of the prioritization strategies.

Result Comparison

 Genetic Algorithm Cuckoo Search Proposed Approach

Processing Time 120ms 100ms 63ms

Requirements

Covered

2 out of 5 3 out of 5 5 out of 5

APCC value

(Chapter 4)

58 62 89

Rate of fault

detection

Low Higher Highest

 Table 7.1 Comparison of the results from the three strategies

41

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Fig. 7.2 Graphical representation of the results

The fitness function that was taken for implementing the strategy involving genetic algorithm was

code coverage. The fitness function that was considered to prioritize test cases using cuckoo search

is the sum of code coverage and complexity of the test case. The optimization parameter used in

the proposed algorithm to select one test case over the other is a combination of requirements data

from the requirement database and the code coverage. The results showed the proposed strategy

to be a better one for prioritizing test cases. Also, other functional disadvantages of using genetic

and cuckoo algorithms are given in sections 4.2.2 and 4.3.2 respectively which make them less

suitable for prioritizing test cases on large software systems.

The proposed strategy first of all provides the capability to handle large amount of data set in very

less time. Also, using this approach, test cases can be segregated on the basis of requirements and

then searched for the best test case for each requirement. This strategy helps in finding test cases

that cover all the features of the application with maximum code coverage in each of them and

thus, the prioritized test suite can cover whole of the application at once.

0

10

20

30

40

50

60

70

80

90

100

Genetic Algorithm Cuckoo Search Proposed Approach

APCC Value

42

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

 CHAPTER 8

 Conclusion and Future Scope

8.1 Conclusion

The study evaluates various strategies of test case prioritization. Based on the analysis of the same,

a new methodology has been proposed in this thesis using which test cases can be prioritized using

the maximum possible parameters. The main objective is to maximize the code coverage of the

application covering all the requirements so that maximum number of faults can be detected using

minimum number of test cases.

The thesis work has been summarized as follows :-

As part of this study, modification-based (version-specific) strategy [1] was implemented to

prioritize the test cases in the regression test suite. This strategy was found to have several

disadvantages as explained in section 4.1.1.

Then, genetic algorithm was implemented to prioritize available test suites and cuckoo search

algorithm was customized and implemented to get the best possible test suite. The two algorithms

gave better results but still, we were not able to get test cases which could cover maximum number

of lines of code from all requirements so that complete application could be analyzed for any

impact due to the changes made to the application. The limitations of the two algorithms have been

explained in section 4.2.2 & 4.3.2 respectively.

Thus, a new strategy was proposed and it was run to prioritize the test cases on the same program.

The APCC metric was used to calculate the effectiveness of the strategies. APCC value was higher

for the proposed strategy. The resultant prioritized test suite from this strategy covered all the

features of the application and the maximum code coverage from the code base corresponding to

all the functionalities could be identified. Also, this strategy provided faster processing time and

43

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

since it uses map reduce algorithm, it can also be used on large distributed data seta of test cases

very efficiently with a very high performance.

Thus, considering the advantages of the new strategy, it is being proposed that this strategy can be

used for prioritizing test cases efficiently or if requirement be, it can also be refined and customized

in future works to prioritize the software applications and suit their custom needs in a better way.

8.2 Future Work

This research work has been carried out extensively but as they say “there is always a room for

improvement” and so, there is for this work as well. Future scope of this work would include

1. Validation on Large Sets Of Data

The proposed algorithm can be applied and validated to more number of larger programs

so as to validate its applicability fully.

2. Use Of Automated AI Techniques

Automated AI (Artificial Intelligence) techniques could be used for training the database

of requirements involved. The fuzzy reasoning aspect assumed can be automated instead

of manually maintaining a database of the requirements and their parameters.

3. Development of a full-fledged Prioritization Tool

This algorithm can also be used to develop a full-fledged tool that can be used industry-

wide to prioritize regression test suites. The tool can be integrated with tools like git, svn

etc. for getting the lines of code modified and using them to get better information on code

coverage part of the test case. The code coverage calculation part can also be automated

with integration of frameworks like junit etc.

Mentioned above are some of the ways, future contributions can be made to this work

which might help in the evolution of test case prioritization practices being followed in the

industry today.

44

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

References

[1] Malhotra, R., Kaur, A., & Singh, Y. (2010). A regression test selection and prioritization

technique. Journal of Information Processing Systems, 6(2), 235-252.

[2] Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test case

prioritization. IEEE Transactions on software engineering, 33(4), 225-237.

[3] Khandelwal, E., & Bhadauria, M. (2013). Various Techniques Used For Prioritization of Test

Cases. International Journal of Scientific and Research Publications, 3(6), 1879-1883.

[4] Sánchez, Ana B., Sergio Segura, and Antonio Ruiz-Cortés. "A comparison of test case

prioritization criteria for software product lines." In Software Testing, Verification and Validation

(ICST), 2014 IEEE Seventh International Conference on, pp. 41-50. IEEE, 2014.

[5] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for

regression testing. IEEE Transactions on software engineering, 27(10), 929-948.

[6] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999). Test case prioritization: An

empirical study. In Software Maintenance, 1999.(ICSM'99) Proceedings. IEEE International

Conference on (pp. 179-188). IEEE.

[7] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2000). Prioritizing test cases for regression

testing (Vol. 25, No. 5, pp. 102-112). ACM.

[8] Elbaum, S., Gable, D., & Rothermel, G. (2001). Understanding and measuring the sources of

variation in the prioritization of regression test suites. In Software Metrics Symposium, 2001.

METRICS 2001. Proceedings. Seventh International (pp. 169-179). IEEE.

[9] Elbaum, S., Malishevsky, A., & Rothermel, G. (2001, July). Incorporating varying test costs

and fault severities into test case prioritization. In Proceedings of the 23rd International Conference

on Software Engineering (pp. 329-338). IEEE Computer Society.

45

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

[10] Malishevsky, A. G., Rothermel, G., & Elbaum, S. (2002). Modeling the cost-benefits tradeoffs

for regression testing techniques. In Software Maintenance, 2002. Proceedings. International

Conference on (pp. 204-213). IEEE.

[11] Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., & Davia, B. (2002, May). The

impact of test suite granularity on the cost-effectiveness of regression testing. In Proceedings of

the 24th International Conference on Software Engineering (pp. 130-140). ACM.

[12] Sapna, P. G., & Balakrishnan, A. (2015). An Approach for Generating Minimal Test Cases

for Regression Testing. Procedia computer science, 47, 188-196.

[13] Elbaum, S., Malishevsky, A. G., & Rothermel, G. (2002). Test case prioritization: A family

of empirical studies. IEEE transactions on software engineering, 28(2), 159-182.

[14] Kavitha, R., & Sureshkumar, N. (2010). Test case prioritization for regression testing based

on severity of fault. International Journal on Computer Science and Engineering, 2(5), 1462-1466.

[15] Ma, Z., & Zhao, J. (2008, December). Test case prioritization based on analysis of program

structure. In Software Engineering Conference, 2008. APSEC'08. 15th Asia-Pacific (pp. 471-478).

IEEE.

[16] Indumathi, C. P., & Selvamani, K. (2015). Test Cases Prioritization Using Open Dependency

Structure Algorithm. Procedia Computer Science, 48, 250-255.

[17] Arafeen, M. J., & Do, H. (2013, March). Test case prioritization using requirements-based

clustering. In Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International

Conference on (pp. 312-321). IEEE.

[18] Medhun Hashini, D. R., & Varun, B. (2014). Clustering approach to test case prioritization

using code coverage metric. In the fourth National Conference on Advanced Computing,

Applications & Technologies and Easwari College of Engineering, Chennai on May.

[19] Muthusamy, T., & Seetharaman, K. (2014). Effectiveness of test case prioritization techniques

based on regression testing. International Journal of Software Engineering & Applications, 5(6),

113.

46

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

[20] Jatain, A., & Sharma, G. (2013). A systematic review of techniques for test case

prioritization. International Journal of Computer Applications, 68(2), 38-42.

[21] Singh, Y., Kaur, A., & Suri, B. (2010). Test case prioritization using ant colony

optimization. ACM SIGSOFT Software Engineering Notes, 35(4), 1-7.

[22] Huang, Y. C., Huang, C. Y., Chang, J. R., & Chen, T. Y. (2010, July). Design and analysis of

cost-cognizant test case prioritization using genetic algorithm with test history. In Computer

Software and Applications Conference (COMPSAC), 2010 IEEE 34th Annual (pp. 413-418).

IEEE.

[23] Konsaard, P., & Ramingwong, L. (2015, June). Total coverage based regression test case

prioritization using genetic algorithm. In Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON), 2015 12th International

Conference on (pp. 1-6). IEEE.

[24] Moshizi, M. M., & Bardsiri, A. K. (2015). The Application of Meta-Heuristic Algorithms in

Automatic Software Test Case Generation. IJMSC-International Journal of Mathematical

Sciences and Computing (IJMSC), 1(3), 1-8.

[25] Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning,

1989. Reading: Addison-Wesley.

[26] Mohapatra, S. K., & Prasad, S. (2013, December). Evolutionary search algorithms for test

case prioritization. In Machine Intelligence and Research Advancement (ICMIRA), 2013

International Conference on (pp. 115-119). IEEE.

[27] Malhotra, R., & Tiwari, D. (2013). Development of a framework for test case prioritization

using genetic algorithm. ACM SIGSOFT Software Engineering Notes, 38(3), 1-6.

[28] Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.

[29] Nagar, R., Kumar, A., Kumar, S., & Baghel, A. S. (2014, September). Implementing test case

selection and reduction techniques using meta-heuristics. In Confluence The Next Generation

47

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

Information Technology Summit (Confluence), 2014 5th International Conference- (pp. 837-842).

IEEE.

[30] Nagar, R., Kumar, A., Singh, G. P., & Kumar, S. (2015, February). Test case selection and

prioritization using cuckoos search algorithm. In Futuristic Trends on Computational Analysis and

Knowledge Management (ABLAZE), 2015 International Conference on (pp. 283-288). IEEE.

[31] Gandomi, A. H., Yang, X. S., & Alavi, A. H. (2013). Cuckoo search algorithm: a

metaheuristic approach to solve structural optimization problems. Engineering with

computers, 29(1), 17-35.

[32] Bacanin, N. (2011, April). An object-oriented software implementation of a novel cuckoo

search algorithm. In Proc. of the 5th European Conference on European Computing Conference

(ECC'11) (pp. 245-250).

[33] Walton, S., Hassan, O., Morgan, K., & Brown, M. R. (2011). Modified cuckoo search: a new

gradient free optimisation algorithm. Chaos, Solitons & Fractals, 44(9), 710-718.

[34] Yang, X. S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International

Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330-343.

[35] Yang, X. S., & Deb, S. (2013). Multiobjective cuckoo search for design

optimization. Computers & Operations Research, 40(6), 1616-1624.

[36] Yildiz, A. R. (2013). Cuckoo search algorithm for the selection of optimal machining

parameters in milling operations. The International Journal of Advanced Manufacturing

Technology, 1-7.

[37] Pavlyukevich, I. (2007). Lévy flights, non-local search and simulated annealing. Journal of

Computational Physics, 226(2), 1830-1844.

[38] Walton, S., Hassan, O., Morgan, K., & Brown, M. R. (2011). Modified cuckoo search: a new

gradient free optimisation algorithm. Chaos, Solitons & Fractals, 44(9), 710-718.

[39] Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave

Macmillan.

48

Comparative Analysis of Test Case

Prioritization Techniques 2017 Swati Madaan

[40] Singh, Y. (2012). Software testing. Cambridge: Cambridge University Press.

[41] https://en.wikipedia.org/wiki/Software_testing

[42] https://en.wikipedia.org/wiki/MapReduce

[43] http://sir.unl.edu/portal/index.php

[44] http://openscience.us/repo/

[45] https://www.journals.elsevier.com/procedia-computer-science/special-issues

