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                      Abstract 
Object detection in videos has always been a challenging problem to work with. 

Detection of a particular class object plays an important role in many real-world 

applications. Since the domain of source and target video vary significantly, 

classifier being trained on source video does not give expected results on the 

target video. Thus, domain adaptation techniques are used, one of which is 

Subspace Based Adaptation. In this technique, first, we compute both source 

and target subspace from the features collected. Since we do not have target 

data directly, we use different ways to get data from the target video. Compute 

subspace after collecting the data from both source and target videos. This 

generated source and target subspaces are described by eigenvectors. These 

d-dimensional subspaces are independently created by PCA for both source 

and target video. With the help of these subspaces, a transformation function is 

generated. Using this function source coordinate system is transformed into the 

target aligned source coordinate system. Now using this new coordinate system 

we map the source data to target aligned source subspace. The other thing we 

use is, learning from online samples. Sliding Window Method is used to 

categorize online data into TP and FP, this weakly labeled data is used to 

modify the model iteratively. We run our method of domain adaptation in 

different ways out of which some perform fairly well. 
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Chapter 1 

 

Introduction 

1.1   Overview  

In this thesis, we present a novel and efficient method of object detection for a 

particular class in videos. It operates on both color and grayscale video. Both 

source and target videos should be captured from stationary cameras. 

In detection the object of the particular class, it is typically presumed that source 

and target data have the same distribution. However, it is not true in real world 

applications. We are training our simple detector model from the source video 

with the help of its annotation file. Initially, the problem is to collect the 

negatively labeled data from video. We have used Hard Negative Mining to 

collect this negatively labeled data. Next, we extract the features of these data 

using Histogram of Oriented Gradients. With the help of Background 

Subtraction using MoG, data samples were collected from the target video for 

subspace calculation. PCA  is used to find the best eigenvectors for both source 

and target dataset. These eigenvectors represents our subspaces. Once we 

have calculated the subspaces using PCA, transforms the source subspace 

coordinate system into the target aligned source subspace coordinate system 

by aligning the source basis vectors with the target ones. Generate training data 

by mapping source data into this target aligned source subspace. Now, we train 

our linear SVM model using this new labeled data. Iteratively use online 

samples or bounding boxes detected on target video to generate new detector 

model. We also tested other methods where redundancy in training samples is 

reduced using tracking method. For that, we collected every object of a 

particular class with a difference of K frames. But results were not as expected 
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due to occlusion in the video. We used adaptation technique based on 

subspace alignment to adapt the feature subspaces between source and target 

subspace for localized object detection. Our main aim is learning iteratively from 

target video to train the model with good subspace by using online samples. 

 

1.2   Motivation  

Video surveillance cameras are installed and used everywhere around us and 

have become part of our everyday life. Lots of data is generated by this in 

today's life and it is very difficult to collect the useful data from this. Many 

security tasks such as analyzing and monitoring traffic or banks airports, 

security of objects like important buildings. Crowd surveillance cameras 

installed in public areas such as shopping malls and public transports. We want 

smart video data mining like measuring the speed of vehicles or counting 

people in some crowded areas. These are some of the common applications of 

stationary video cameras today. Widely used method for such applications is 

Automated Object Detection. An automated object detection and tracking was 

developed in order to build a reliable visual surveillance system. Object 

detection is performed by means of a background subtraction technique. It has 

become an important research area in computer vision field. It is still an open 

and challenging problem in this area due to image and video complexities. 

Many advances have also been applied by the computer vision community with 

promising results in object detection field, detector models are still being trained 

and tested on images consisting of only one object zoomed and cropped at the 

center of a relatively uniform background. As a result, in such experimental 

settings, a problem of object detection is reduced to that of image classification. 

While domain adaptation is a challenging problem for image classification, it 

becomes even more challenging for object detection when target domain labels 

are unavailable and the majority of the frame in the video is occupied by the 

background class (random sampling of the window will not be sufficient for 

effective domain adaptation in videos). A lot of work has been done in this field 

with several different approaches. 

 



3 

 

1.3   Challenges in Object Detection  

Following are some of the challenges incurred while detecting objects of a 

particular class in a video or image: 

• Illumination variations: In real time videos illumination condition varies a 

lot, ranging from direct sunlight and shadows during the day to artificial or 

dim lighting on any object(or inside any building). Although some solutions 

for illumination variation have been provided, they are still ineffective 

compared to the human visual system.  

• Object deformation or Object pose: Object changes from what it looks like 

and therefore template approaches for object recognition tend to suffer low 

performance in high changing objects.  

• Occlusion: As some parts can’t be seen, it makes hard to recognize 

shapes and hence objects.  

• Intra-class variation: In-class variation makes di cult to group dissimilar 

objects (i.e. car types, colors, shapes widely vary but they all represent 

cars).  

• Viewpoint: Aerial point of view, frontal viewpoint, makes an appearance to 

vary widely.  

• Miscellaneous backgrounds: This is the main problem of object detection 

in the videos. Since, training, and testing video have different domains, the 

false positive rate may increase, if we do not learn from the test video.  

• Cluttered scenes: Sometimes scale change or in-plane rotation of object 

in the frames may not give the expected results. 

In this thesis, we mainly focus on background variation for source and target 

videos.   

 

1.4   Organization of Thesis 

The remaining part of this thesis is organized as follows. Chapter 2 presents 

work related to our thesis and a brief knowledge of feature extraction, support 
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vector machine, and PCA. Our novel algorithm is explained in chapter 3. It 

contains all about hard negative mining, background subtraction using MoG, 

sliding window method which we used to categorize true positive and false 

positive and subspace-based adaptation with online samples. Chapter 4 

contains information related to datasets, experiment setup and results with 

different methods. Finally, Chapter 5 concludes the whole work we have done. 
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Chapter 2 

 

Related Work  

2.1   Related Work in Adaptation  

Over the past several years, many different approaches [14,12,10,6] have been 

proposed to detect objects of a particular class in videos and images. The main 

problem in object detection is varying domains of source and target data. So the 

main issue is to find out the relationship between these two domains. Domain 

adaptation is a widely used technique in computer vision  [18] and language 

processing  [9]. In this thesis, we work on object detection methods, with as well 

as without the use of domain adaption. Our main focus is on the adaptation 

technique with learning from online samples, as it does not require any labeled 

data from the target domain. A common approach is to assume the existence of 

a domain invariant feature space and the objective of domain adaptation is to 

approximate this space. 

A classical strategy related to our work consists of learning a new domain-

invariant feature representation by a new projection space. PCA based DA 

methods have then been naturally investigated [6,12,13] in order to find a 

common latent space where the difference between the marginal distributions of 

the two domains is minimized with respect to the Maximum Mean Discrepancy 

(MMD) divergence. J. Blitzer and R. McDonald [9] says that discriminative 

learning methods work best when their training and test data are drawn from the 

same distribution. They adapt existing models from a resource rich source 

domain to a resource poor target domain and introduce structural 

correspondence learning to automatically induce correspondences among 

features from different domains. Frameworks like discourse recognizers and 

http://www.bmva.org/bmvc/2009/Papers/Paper302/Paper302.pdf
https://pdfs.semanticscholar.org/8dca/6bc1632df619a305a9fa1da44c6350260718.pdf
refbase.cvc.uab.es/files/xrv2014c.pdf
https://www.cse.iitk.ac.in/users/vinaypn/papers/bmvc2015rnt.pdf
https://people.csail.mit.edu/khosla/papers/eccv2012_khosla.pdf
john.blitzer.com/papers/emnlp06.pdf
https://www.cse.iitk.ac.in/users/vinaypn/papers/bmvc2015rnt.pdf
https://pdfs.semanticscholar.org/8dca/6bc1632df619a305a9fa1da44c6350260718.pdf
http://www.bmva.org/bmvc/2009/Papers/Paper302/Paper302.pdf
john.blitzer.com/papers/emnlp06.pdf
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programmed interpreters utilize progressively complex discriminative models, 

which sum up well to new information that is drawn from an indistinguishable 

conveyance from the preparation information. Be that as it may, as a rule we 

may have a source area with ample marked preparing information, however we 

have to process material from an objective space with an alternate circulation 

from the source space and no named information. In such cases, we should find 

a way to adjust a model prepared on the source area for use in the objective 

space. This work concentrates on utilizing unlabeled information from both the 

source and target spaces to take in a typical element portrayal that is significant 

crosswise over the two areas. We theorize that a discriminative model prepared 

in the source space utilizing this regular element portrayal will sum up better to 

the objective area. This portrayal is found out utilizing a technique we call 

auxiliary correspondence learning (SCL). The key thought of SCL is to 

distinguish correspondences among highlights from various areas by displaying 

their relationships with turn highlights. Rotate highlights are highlights which 

carry on similarly for discriminative learning in the two spaces. Non-turn 

highlights from various areas which are related with a large number of a similar 

rotate highlights are expected to compare, and we treat them also in a 

discriminative student. SCL is a general method, which one can apply to 

highlight based classifiers for any assignment. An imperative yet once in a while 

investigated setting in space adjustment is the point at which we have no 

named preparing information for the objective area. We first exhibit that in this 

circumstance SCL significantly enhances execution over both regulated and 

semi-administered taggers. For the situation when some in-area marked 

preparing information is accessible, we demonstrate to utilize SCL together with 

the classifier blend systems more prominent execution. Other strategies have 

been explored on image datasets as well, such as using metric learning  

approaches [3, 11] or canonical correlation analysis  method [8] over different 

views of the data to find a coupled source-target subspace where one assumes 

the existence of a performing linear classifier on the two domains. The main aim 

of our thesis is to first generate common subspace for different domains and 

then use the online samples to make the model more accurate. There are 

several  methods [19, 4] which use manifold alignment to generate the common 

subspace. The essential thought of customary high dimensional 

http://www.icsi.berkeley.edu/pubs/vision/whatyousaw.pdf
http://vision.cs.uml.edu/adaptation.html
proceedings.mlr.press/v15/blitzer11a/blitzer11a.pdf
https://pdfs.semanticscholar.org/7466/13edca86533a3ef0304fc9fa46e4d80d7381.pdf
159.226.42.3/doc/2011/20127217272619068_cvpr12-z.cui-print.pdf
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correspondence learning strategies, we can partition its strategy into two 

principle parts. The first one is to take in the regular installing of two data sets, 

with the requirement that low-dimensional portrayals of ever-known balanced 

relating perceptions are the same. The other stride is to assign correspondence 

in view of their low dimensional embedding, as the substitution of the comparing 

relationship in high-dimensional space. Domain adaptation of deformable part-

based models  (DPMs) [10] for object detection was also an application of this 

which uses the incremental domain adaptation for object detection assuming 

weak-labeling. The DPM can likewise represent diverse parts which, for 

example, can be utilized to all the more precisely display an object under 

various perspectives. In this way, the capacity to adjust such a rich model 

between various spaces is fundamental. We can see a DPM as a specific 

instance of an structural model, where the components and parts define the 

structure. The DPM is defined by one root filter and a pre-set number of part 

filters. Part filters work at double the resolution of the root filter. The root goes 

about as reference and every single other part are associated with this 

reference (star model). To better catch intra-class varieties, star models can be 

additionally consolidated into a blend of components. Boosting- based [14] 

approaches are used for detection of objects in image or video. During object 

detection process, the two classifiers work together to determine the location of 

real object. The online dual-boundary Boosting fern classifier was first used to 

detect object based on sliding window strategy, and the detection regions with 

fern classifier score located between positive and negative boundaries will be 

further recognized by the SVM model. Except that, the detection regions, with 

fern classifier score above positive boundary will be considered as real objects 

and the rest are backgrounds. First, they train the initial model on some small 

labeled datasets and then use this model to collect a larger labeled dataset then 

train the new model iteratively by using this new dataset. 

 

2.2   Related Work in Adaptation for Videos  

Complex occasion recovery from databases of recordings is difficult on the 

grounds that notwithstanding the difficulties in displaying the presence of static 

visual concepts–e.g., objects, scenes– demonstrating occasions additionally 

http://www.bmva.org/bmvc/2009/Papers/Paper302/Paper302.pdf


8 

 

includes displaying worldly varieties. Notwithstanding the difficulties of speaking 

to movement components and time, one especially noxious test is that the 

quantity of potential occasions is substantially more prominent than the quantity 

of static visual ideas, opening up the notable long-tail issue related with 

question classes. Recognizing and gathering preparing information for a far 

reaching set of items is difficult. For complex occasions, notwithstanding, the 

assignment of specifying a complete arrangement of occasions is 

overwhelming, and gathering curated preparing video datasets for them is 

altogether unfeasible. Subsequently, a current pattern in the occasion recovery 

group is to define an arrangement of more straightforward visual ideas that are 

viable to model and after that consolidate these ideas to define and identify 

complex occasions. This is regularly done when no cases of the perplexing 

occasion of intrigue are accessible for preparing. In this setting, preparing 

information is as yet required, however just for the more constrained and less 

complex ideas. There are some methods, which works on videos like self-paced 

domain adaptation from images to video by shifting weights [12]. They used 

domain adaptations which iteratively adapt the detector by re-training it with 

discovered target domain examples by choosing easiest target video first. First, 

they train their detector on some image dataset and then test it on video 

datasets. At every iteration, their algorithm adjusts by considering an expanded 

number of target domain cases, and a diminished number of source domain 

examples. To find target domain cases from a lot of videos, they used score 

trajectory tracks instead of bounding boxes. They trained the detector on car, 

boat, bicycle, dog and Keyboard and get highest average precision for a bicycle 

which is 20 percent. In our algorithm, we trained detector for a car only from the 

source video and test it on target video using iterative subspace based 

adaptation with online samples and we get 56 percent of average precision for 

that. The method proposed in Domain Adaptive Object Detection [6] in the 

video using transfer component analysis (TCA) which transform source and 

target data to latent space that minimizes the distance between their 

distributions. They used unsupervised and semi-supervised settings to test their 

method. They get the average precision of 17 percent for a detector with 

unsupervised adaptation and 38 percent for the detector with semi-supervised 

adaptation. The domain adaptation has been achieved by using approach 

https://pdfs.semanticscholar.org/8dca/6bc1632df619a305a9fa1da44c6350260718.pdf
https://www.cse.iitk.ac.in/users/vinaypn/papers/bmvc2015rnt.pdf
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based on subspace alignment that efficiently projects the source subspace to 

the target subspace. The proposed method used results in improved object 

detection. We used principal component analysis to create subspace and 

background subtraction method to collect target data from video. Even if we do 

not use the online samples to learn detector, we get 42 percent of average 

precision which is better than what have been achieved through TCA. 
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Chapter 3 
 

Background Theory  
Object detection and classification is the area which has received much 

attention in the research of computer vision and pattern recognition recently. It 

is a challenging yet promising task, which has many important applications as 

we have shown in chapter 1. This section captures some of the background 

theories like feature extraction, object detection model, and PCA, which are 

related to our work. 

 

3.1   Feature Detection and Extraction  

Every object in an image has some features or key points which have enough 

information to be used for its detection. In order to make the approach feasible, 

these features need to be computed easily for a large collection of images and 

rapid extraction. Image features provide the information about intensity variation 

and background invariance. Features can be based on blob, intensities, 

gradients, points, color or their combinations. 

A standout amongst the best object detection depends on the learning of a 

deformable part-based model (DPM) utilizing HOG-style features and a latent 

SVM learning method [44]. The DPM can likewise represent distinctive parts 

which, for example, can be utilized to all the more precisely show a object under 

various perspectives. Along these lines, the capacity to adjust such a rich model 

between various areas is fundamental. The proposed work in [10] give 

strategies to performing domain adaptations of DPMs, relating adjustment of the 

DPM structure. They see a DPM as a specific instance of an structural model, 

where the segments and parts define the structure. In like manner, and 
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formulate the learning of a DPM as a general latent basic SVM.  

There are various kind of approaches to determine the image features. In our 

work, we mainly focus on Histogram of Oriented Gradients [5]. 

Histogram of Oriented Gradients descriptor uses the way that an object's 

appearance and shape inside an image can be very much portrayed by the 

conveyance of its intensity gradients as the votes in favor of prevailing edge 

directions. HOG can be utilized as highlight descriptor where the nearness of 

gradient orientation in confined parts of an image assumes critical parts. The 

use of orientation histograms has various precursors [26,22,27], be that as it 

may it just accomplished improvement when joined with local spatial 

histogramming and standardization in Lowe's Scale Invariant Feature 

Transformation (SIFT) approach to manage wide baseline image coordinating 

[21], in which it gives the central image patch descriptor for coordinating scale 

invariant key points. SIFT style approaches perform astoundingly well in this 

application [21,25]. The Shape Context work [1] inspected alternative cell and 

block shapes, yet at first using simply edge pixel counts without the orientation 

histogramming that makes the portrayal so fruitful. The accomplishment of 

these sparse component based representations has decently eclipsed the 

power and ease of HOG's as dense image descriptors. We assume that our 

examination will change this. In particular, our easygoing examinations 

prescribe that even the best current key point based philosophies are likely 

going to have false positive rates no under 1–2 requests of extent higher than 

our thick system approach for human disclosure, mainly because none of the 

key point identifiers that we think about recognize human body structures 

reliably. The HOG/SIFT depiction has a couple of focal points. It gets edge or 

slant structure that is particularly typical for adjacent shape, and it does all 

things considered in an area depiction with a successfully controllable level of 

invariance to neighborhood geometric and photometric changes: 

understandings or upsets have little impact if they are considerably humbler that 

the area spatial or introduction holder estimate. For human area, rather coarse 

spatial looking at, fine presentation testing and strong adjacent photometric 

institutionalization winds up being the best methodology, presumably in light of 

the way that it licenses limbs and body pieces to change appearance and move 

from side to side a significant sum surrendered that they keep a by and large 

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
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upright presentation. HOG varies from scale-invariant feature transformation 

(SIFT) (include extraction strategy) in a way that the previous works on a thick 

network of consistently separated cells and utilizations neighborhood 

differentiate standardization on covering hinders for enhanced exactness.  

HOG feature descriptor can be gotten by first partitioning the picture into little 

bordering areas of equivalent size, called cells, at that point gathering a 

histogram of gradient directions for the pixels inside every cell, and finally 

joining every one of these histograms. A gathering of cells is known as a block. 

Following are the means to object using HOG:  

 

• Gradient Computation  

Detector performance is delicate to the path in which gradients are processed, 

however the least complex plan ends up being the best. We tried gradients 

computing utilizing Gaussian smoothing took after by one of a few discrete 

derivatives. Simple 1-D [−1,0,1] masks at σ=0 work best. Utilizing bigger masks 

dependably appears to diminish execution and smoothing harms it significantly. 

For extraction of HOG feature, image gradients are computed after converting the 

image into gray color. The most widely recognized technique is to apply the 1-D 

focused, point discrete derivative masks in either of the horizontal and vertical 

directions. This technique requires sifting the color or intensity information of the 

picture with the following filter kernels: 

 [ -1, 0,1]  and  [ -1, 0, 1]T 

 This is the mask which is used in computing the gradient of image. 

 For color images, we calculate separate gradients for each color, channel,   

 and take the one with the largest norm as the pixel’s gradient vector.        

 

• Orientation binning  

The next step in HOG is to create histograms for each cell of the image. Cells 

are pixel regions that are either rectangular or radial in shape, and the 

histogram bins are evenly expanded from 0o to 180o or from 0o to 360o. 0o to 

360o used in the case of signed orientation only. Every pixel in the cell has a 

weighted voting into one of the 9 histogram bins to which its orientation belongs. 

Weights can either be the gradient magnitude itself, or some function of the 

magnitude, for example, the square root or square of the gradient magnitude, or 
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some clipped version of the magnitude. Magnitude itself gives the best 

outcomes. Taking the square root diminishes execution marginally, while 

utilizing binary edge nearness voting diminishes it significantly. Along these 

lines, when all is said in done, the gradient magnitude is specifically utilized. 

Expanding the quantity of introduction bins enhances execution significantly up 

to around 9 bins, however has little effect before this. This is for bins spaced 

more than 0◦–180◦, i.e. the "sign" of the gradient is ignored. Counting marked 

gradients(orientation go 0◦–360◦, as in the first SIFT descriptor) diminishes the 

execution, notwithstanding when the quantity of bins is additionally multiplied to 

protect the first introduction determination. For people, the extensive variety of 

attire and foundation hues probably makes the indications of complexities 

uninformative. However take note of that including sign data helps considerably 

in some other question acknowledgment undertakings, e.g. autos, motorbikes. 

 

• Descriptor blocks 

Now, group the cells into blocks to normalize the gradient strengths. These 

blocks overlap with neighboring blocks so every cell can contribute its 

orientation distribution more than once. For the most part, there exists two types 

of blocks : R-HOG and C-HOG. R-HOG blocks are generally square grids which 

are represented to by three parameters: the quantity of cells per block, the 

quantity of pixels per cell and the quantity of channels per cell histogram. C-

HOG blocks are especially of circular grid which can be depicted with four 

parameters: the quantity of angular bins, the quantity of radial; bins the radius of 

the center bin and the extension factor for the radius of additional radial bins.. 

 R-HOG block: R-HOG block have numerous similarities to SIFT 

descriptors [21] yet they are utilized in an unexpected way. They are 

computed on dense grids at a single scale without prevailing orientation 

arrangement and utilized as a feature of a bigger code vector that implicitly 

encodes spatial position in respect to the detection window, while SIFT's 

are figured at an inadequate arrangement of scale-invariant key points, 

turned to adjust their dominant orientations, and utilized separately. SIFT's 
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are upgraded for sparse wide baseline matching, R-HOG's for dense robust 

coding of spatial form. Different precursors incorporate the edge orientation 

histogram of freeman and Roth [22]. 

C-HOG block: Our circular Contexts [23] aside from that, vitally, each 

spatial cell contains a pile of inclination weighted introduction cells rather 

than a solitary introduction autonomous edge nearness number. The log-

polar matrix was initially recommended by the possibility that it would permit 

fine coding of close-by structure to be consolidated with coarser coding of 

more extensive setting, and the way that the change from the visual field to 

the V1cortex in primates is logarithmic [24]. However little descriptors with 

not very many spiral containers end up giving the best execution, so by and 

by there is little in homogeneity or setting. It is most likely better to consider 

C-HOG's basically as a propelled type of Center-encompass coding. We 

assessed two invariants of the C-HOG geometry, ones with a solitary round 

focal cell (like the GLOH highlight of [25]), and ones whose focal cell is 

isolated into precise segments as fit as a fiddle settings. We exhibit comes 

about just for the roundabout focus variations, as these have less spatial 

cells than the isolated focus ones and give a similar execution by and by. A 

specialized report will give additionally points of interest. The C-HOG format 

has four parameters: the quantities of rakish and spiral canisters; the sweep 

of the focal receptacle in pixels; and the extension factor for ensuing radii. 

No less than two outspread containers (a middle and an encompass) and 

four precise receptacles (quartering)are required for good execution. 

Counting extra outspread receptacles does not change the execution much, 

while expanding the quantity of precise canisters diminishes execution (by 

1.3% at 10−4 FPPW while going from 4 to 12 rakish containers). 4 pixels is 

the best range for the focal container, yet 3 and 5 give comparative 

outcomes. Expanding the development reality or from 2 to 3 leaves the 

execution basically unaltered. With these parameters, neither Gaussian 

spatial weighting nor backwards weighting of cell votes by cell territory 
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changes the execution, however joining yet consolidating these two lessens 

somewhat. These qualities accept fine introduction testing. Shape settings 

(1orientationbin) require much finer spatial subdivision to function 

admirably. 

 

• Block Normalization  

There are four different ways to normalize the blocks. Let v be the non-

normalized feature vector that collects all cell histograms from a given block,  be 

its k-norm for k = 1,2 and eps is some constant. Then the normalization 

schemes have the following forms:  

                              L1-norm :   =                                                    (3.1) 

                              L2-norm :  =                                                  (3.2) 

                             L1-sqrt :  =                                                      (3.3) 

L2-Hys is computed by re-normalizing the clipped L2-norm. All these 

normalization schemes provide much better performance than the non-

normalized case. At last, the final HOG feature descriptor is then the vector 

containing elements of normalized cell histograms from all of the block regions. 

 

3.2   Detection Method  

In our work we use Linear SVM as a detection model. SVMs are set of related 

supervised learning strategies utilized for classification and regression [2]. They 

have a place with a group of generalized linear classification. An uncommon 

property of SVM will be, SVM all the while limit the empirical classification error 

and maximize the geometric margin. So SVM called Maximum Margin 

Classifiers. SVM depends on the Structural risk Minimization (SRM). Support 

Vector Machines (SVM) recently became one of the most popular methods for 
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detection and classification. They have been used in a wide variety of 

applications such as facial expression recognition [13], gene analysis [7] and 

many others. A few late investigations have revealed that the SVM (support 

vector machines) by and large are fit for conveying higher execution as far as 

characterization precision than the other information arrangement calculations. 

A SVM model is a representation of points in a space with the goal that the new 

purposes of various classifications are separated by a line or gap. New points 

are then mapped into that space and their classification is anticipated based on 

the side of the gap they fall on. An uncommon and similarly essential property of 

SVMs is that they at the same time minimize the empirical classification and 

expand the geometric margin. Such SVMs are called Maximum Margin 

Classifiers. In SVM, two parallel hyperplanes are built on each side of the 

separating hyperplane. The separating hyperplane is the one that maximizes 

the margin i.e. the separation between the two parallel hyperplanes. Bigger the 

margin, better will be the generalization error of the classifier or detector. 

 

Consider training set of n samples in the form of: 

 

                                (x1,y1),(x2,y2),(x3,y3),…..,(xn,yn).                                      (3.4) 

               

 

where yi is the label of class to which xi belongs, where xi is a d-dimensional 

vector and yi ϵ {+1,-1}. We aim at identifying a hyperplane which can separate xi 

with label yi = +1 with those having labels -1. Any hyperplane can be written as 

the set of points x satisfying. 

 

w.x + b = 0                         (3.5) 

 

Where b is scalar and w is d-dimensional vector. Including the offset parameter 

b enables us to expand the margin. Missing of b, the hyperplane is compelled to 

go through the starting point, limiting the solution. As we are interested in the 

maximum margin, we are interested in SVM and the parallel hyperplanes. 

Parallel hyperplanes can be depicted by equation 

                                                  w.x + b = 1                                                 (3.6)   

http://www.bmva.org/bmvc/2009/Papers/Paper302/Paper302.pdf
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                                                  w.x + b = -1                                                (3.7) 

In the event that the training data are linearly separable, we can choose these 

hyperplanes so that there are no points between them and afterward try to 

expand their distance. By geometry, we discover the separation between the 

hyperplane is 2/|w|. So we need to limit |w|. To excite data points focuses, we 

have to guarantee that for all I either 

                                    w. – b ≥ 1   or   w. – b ≤ -1                                    (3.8)  

   

This can be written as                      

  

                                     yi ( w. – b) ≥1     ,  1 ≤ i ≤ n                                      (3.9) 

 

                          

Figure 3.1 Maximum margin hyperplanes for a SVM trained with samples from                                 

two classes 

Samples along the hyperplanes are called Support Vectors (SVs). A separating 

hyperplane with the biggest margin characterized by M = 2/│w│ that determines 

support vectors implies training data points closets to it. 

SVM-based methods, including supervised, semi-supervised and unsupervised 

approaches. 

 

3.2.1   Kernal Selection of SVM 

Training vectors xi are mapped into a higher (might be limitless) dimensional 

space by the capacity Ф. At that point SVM finds a straight isolating hyperplane 
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with the maximal edge in this higher measurement space .C > 0 is the 

punishment parameter of the blunder term. Besides, K( , ) ≡ Ф( , Ф( ) is 

known as the part work [2]. There are numerous portion capacities in SVM, so 

how to choose a decent part work is additionally an examination issue. Be that 

as it may, for general purposes, there are some well-known part works [2] and 

[3]. 

 

• Linear kernel: K (  , ) =  .  

  

• Polynomial kernel:  K (  , ) = (   + r)d   , γ > 0  

  

• RBF kernel :  K (  , ) = exp(-γ ║  - )  ,  γ > 0  

  

• Sigmoid kernel:  K (  , ) = tanh(γ  + r) 

 

Here, γ, r and d are kernel parameters. In these popular kernel functions, RBF 

is the main kernel function because of following reasons:  

1.The RBF part nonlinearly maps tests into a higher dimensional space not  

     at all like the genuine bits.  

2. The RBF part has less hyper parameters than the polynomial portion.  

3.  The RBF part has less numerical challenges. 

 

3.2.2   Model selection of SVM 

Model selection is likewise a critical issue in SVM. As of late, SVM have 

indicated great execution in information grouping. Its prosperity relies upon the 

tuning of a few parameters which influence the speculation mistake. We 

regularly call this parameter tuning methodology as the model determination. In 

the event that you utilize the straight SVM, you just need to tune the cost 

parameter C. Tragically, direct SVM are frequently connected to straightly 

distinct issues. Numerous issues are non-directly detachable. For instance, 

Satellite information and Shuttle information are not directly divisible. In this 

manner, we regularly apply nonlinear bit to take care of grouping issues, so we 

have to choose the cost parameter (C) and piece parameters (γ, d). We for the 

https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
%5b3%5d%09K.%20Saenko%20B.%20Kulis%20and%20T.%20Darrell.%20What%20you%20saw%20is%20not%20what%20you%20get:%20Domain%20adaptation%20using%20asymmetric%20kernel%20transforms.%20In%20CVPR,%20pages%201785%7b1792,%202011
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most part utilize the framework seek strategy in cross approval to choose the 

best parameter set. At that point apply this parameter set to the preparation 

dataset and afterward get the classifier. From that point forward, utilize the 

classifier to characterize the testing dataset to get the speculation exactness. 

SVM-based methods, including supervised, semi-supervised and unsupervised 

approaches: 

Supervised Methods:  

The most well-known approach comprises of a weighted mix of SVMs learned in 

the source domain and SVMs learned in the target domain [35], [36], [37], [38]. 

The vital downside of these strategies is that they require both source and 

target domain training data for the adjustment, which makes it computationally 

costly. It might even outcome in negative transfer (i.e., the exactness diminishes 

for the target domain) as revealed in [38]. Then again, an feature replication 

approach is proposed in [40], which together learns classifiers in the both 

domains with augmented features, i.e., source-area data is additionally 

required. Another approach, the cross-area SVM (CD-SVM) [39], chooses the 

source domain support vectors that are near the target space and furthermore 

includes new support vectors from the target domain to take in another 

classifier. In any case, for the situation that the target domain data are rare, the 

educated classifier may at source domain oriented. 

 

Semi-supervised / Unsupervised Methods:  

The domain transform SVM (DT-SVM) of [41] limits the appropriation mismatch 

of labeled and unlabeled examples between various domains. The transductive 

SVM (TSVM) is utilized in [37] for enhancing the exactness of classifiers 

prepared with weakly labeled web images. The transform based techniques 

[42], [43] utilize labeled source and unlabeled target data to build a complex and 

take in a classifier from an projected space. 

 

3.3   PCA  

Principal component analysis (PCA) is probably the most prominent multivariate 

statistical procedure and it is utilized by all scientific disciplines. It is likewise 
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liable to be the most established multivariate technique.  

The principle thought behind utilizing Principal Component Analysis is to outline 

the basic fluctuation covariance structure of a substantial arrangement of factors 

through a couple of straight mixes of these factors. Key Component Analysis is 

a prevalent system for information pressure and has been effectively utilized as 

an underlying stride in numerous PC vision assignments like face or protest 

acknowledgment. Since designs in high dimensional information can be elusive, 

PCA is an effective apparatus for investigating information and lessen the 

dimensionality.  

Since it is a variable lessening technique, primary part investigation is 

comparative in many regards to exploratory factor examination. Indeed, the 

means took after when directing a foremost part investigation are for all intents 

and purposes indistinguishable to those took after when leading an exploratory 

factor examination. Be that as it may, there are critical theoretical contrasts 

between the two systems.  

There are some critical calculated contrasts between primary segment 

examination and factor investigation that ought to be comprehended at the start. 

Maybe the most critical manages the supposition of a basic causal structure: 

factor investigation expect that the variety in the watched factors is because of 

the nearness of at least one inert (factors) that apply causal impact on these 

watched factors.  

When all is said in done terms, PCA utilizes a vector space change to lessen 

the dimensionality of substantial informational indexes. Utilizing numerical 

projection, the first informational index, which may have included numerous 

factors, can frequently be deciphered in only a couple of factors (the foremost 

segments). It is in this way regularly the case that an examination of the 

diminished measurement informational index will enable the client to spot 

patterns, examples and exceptions in the information, much more effortlessly 

than would have been conceivable without playing out the important part 

investigation.   

Utilizing the Regression display with numerous factors that are very 

corresponded each other won't restore the best estimators [28]. In such 

situations when we endeavor to investigate an extensive arrangement of p 

factors that are typically abundantly connected and produce the multicollinearity 

https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
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wonder, the PCA is prescribed. 

Objectives OF PCA  

The objectives of PCA are to  

(1) remove the most essential data from the information table;  

(2) compress the size of the informational index by keeping just this essential 

     data       

(3) improve the depiction of the informational collection; and  

(4) investigate the structure of the  observations and the variables. 

Keeping in mind the end goal to accomplish these objectives, PCA registers 

new factors called main segments which are acquired as direct mixes of the first 

factors. The first key segment is required to have the biggest conceivable 

difference (i.e., dormancy and thusly this segment will "clarify" or "separate" the 

biggest piece of the idleness of the information table). The second segment is 

processed under the requirement of being orthogonal to the first segment and to 

have the biggest conceivable inactivity. Alternate segments are processed 

moreover. The estimations of these new factors for the perceptions are called 

factor scores, and these variables scores can be translated geometrically as the 

projections of the perceptions onto the essential parts.  

Attributes of vital segments: The main part separated in a central segment 

investigation represents a maximal measure of aggregate fluctuation in the 

watched factors. Under run of the mill conditions, this implies the primary 

segment will be related with at any rate a portion of the watched factors. It might 

be related with numerous.  

The second segment extricated will have two critical qualities. In the first place, 

this part will represent a maximal measure of fluctuation in the informational 

index that was not represented by the primary segment. Again under 

commonplace conditions, this implies the second part will be connected with a 

portion of the watched factors that did not show solid relationships with segment 

1. The second normal for the second part is that it will be uncorrelated with the 

primary segment. Truly, if you somehow happened to register the relationship 

between segments 1 and 2, that connection would be zero.  

For PCA to work appropriately, standardize the information over mean esteem 

and create an informational index whose mean is zero.Consider a set of N, d-
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dimensional data images. Each image Ii is represented by a d-dimensional 

vector vi. The mean and covariance matrix is defined by: 

 

 

                                      µ =                                                      (3.10) 

 

                             C =                                     (3.11) 

Now calculate the eigenvectors and eigenvalues of the covariance matrix C. 

The principal components are basically eigenvectors of C. 

We have a d × d covariance matrix C. Solve for, 

                                           |C – λ |=0                                          (3.12) 

to get d eigenvalues, λ1, λ2 ….. λd. 

Since the eigenvectors corresponding to the lowest eigenvalues have the least 

information about the distribution of data. These are the eigenvectors which can 

be dropped without losing much information for the construction of lower-

dimensional subspace. Eigenvectors corresponding to top K eigen values form 

the new lower dimensional space.
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Chapter 4 
 

Methodology 

Here in this chapter, we presents novel algorithm for detection which we have 

done. The very first step is to collect all the labeled data from source video and 

unlabeled data from target video[Algorithm 1]. Next calculate subspace using 

PCA by selecting the top d eigenvectors, to train the detector[Algorithm 2]. We 

learn transformation matrix by minimizing the Bregman matrix divergence [1]. 

This matrix is used to transforms the source subspace coordinate system into 

the target based source subspace coordinate system by aligning the source 

basis vectors with the tar-get ones. Now map the source data to the new 

subspace to get training data. Learn the SVM using this training data in d-

space. At the time of testing, iteratively learn new detector by the help of 

detected bounding boxes[Algorithm 3]. 

 

4.1   Generating Training Samples Using Hard 

             Negative Mining 

Generate a detector model which have enough samples to detect the object in 

the test video. We need training samples from source video to generate the 

initial detector model. As an input, we have train and test video along with their 

annotation files. We need test video annotation file only to calculate the 

accuracy( precision and recall ) of the model. Competitive sliding window 

detectors require vast training sets. 

 

Algorithm 1 Data Collection 

 

1: Given: Source Video VS, Target Video VT , Source Annotation File AS, 

https://hal.inria.fr/hal-00869417/document
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Object Class C  

2: Init: Positive labeled data P = {}, Negative labeled data N = {}, Number of 

random samples R = 100, δ= 100  

3: for each frame i ∈ VS  do  

4: Hn ← 0  

5: P ← Extract & Compute features of object ∈ C from i using AS  

6: N ← Extract & Compute features of object ∉ C from i using AS  

7: N ← Extract & Compute features of δ random samples from i  

8: simpleSVM ← trainSVM(P,N)  

9: boundingBoxes ← runsimpleSVM(i)  

10: N  ← FP(boundingBoxes) using AS  

11: δ ← R - CountofFP(boundingBoxes)  

12: end for  

13: S ← merge(P ,N) . S is Source Data 

14: for each frame i ∈ VT  do  

15: matrixM ← ForegroundMaskUsingMoG(i) 

16: matrixM ← Filters(matrixM)  

17: AllContours ← detectContours(matrixM)  

18: for each contour k  ∈ AllContours do  

19: T  ← Extract & Compute features of  k . T is Target Data 

20: end for  

21: end for  

 

Since a set of all the possible window sized images as patches at various 

scales and location from a frame gives an about unending support of negative 

samples. Preparing with all the accessible data is viewed as impractical. A 

staple of current methodologies is Hard Negative Mining, a strategy for 

choosing hard and relevant samples, which is nevertheless costly. Given that 

samples at marginally unique areas have overlapping support, disparity 

between the resolution of prediction and learning has been handled by mining 

for hard negative examples. In this iterative procedure, an underlying model is 

prepared utilizing every positive case and an arbitrarily chose subset of negative 

examples, and this initial training set is progressively augmented with false 

positive cases created while examining the images with the model learned so 
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far. Hard negative mining is considered expensive as it trains the model 

repeatedly. 

 

Algorithm 2 Generate Subspace & Train Detector 

 

1: Given: Source data S, Target data T , Subspace dimension d  

  2: XS  ← runPCA(S,d)  

  3: XT  ← runPCA(T ,d)  

4: M  ← XS´XT . XS´ is transpose of XS & M is Tranformation Matrix 

5: Xa  ← XSM . Xa is New Coordinate System 

6: trainData ← SXa  

7: detectorModel ← LinearSVM(trainData, Labels)  

 

Algorithm 3 Use of Online samples to Generate Detector 

 

1: Given: Source data S, Target data T , Subspace dimension d, Initial 

detector-Model, Positive data P , Negative data N, Target Video VT  

2: for each frame i ∈  VT do  

3: boundingBoxes ← rundetectorModel(i)  

4: for each bounding box B ∈ boundingBoxes do  

5: Use Sliding Window Method for B in i to Categorize into TP & FP  

6: Add B into S with Label  

7: end for  

8: Generate subspace and Calculate trainData using Algorithm 2  

9: detectorModel ← trainSvm(newtrainData)  

10: end for  

 

4.2   Background Subtraction Using MOG  

Background  subtraction is fundamentally detecting moving objects in videos 

utilizing static cameras. The fundamental thought in this approach is to identify 

the moving items by taking the contrast between current frame and a reference 

frame, which is called "background image". The background  image must be 

adequate to represent the scene with no moving items. Get the foreground 
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mask using MIXTURE OF GAUSSIANS. This model is initialized using an 

EM(expectation maximization) algorithm. The Gaussians are manually labeled 

in a heuristic manner as follows: the one with the largest variance or variance 

higher than some threshold is labeled as foreground else background. Each 

pixel is compared with each Gaussian and is classified according to its 

corresponding Gaussian to find foreground. The maintenance is made using an 

incremental EM algorithm for real-time  consideration [20, 16]. 

We know that pixels are characterized by its intensity in the RGB color space. 

So each pixel in the image is modeled by a mixture of K Gaussian distributions. 

The probability of observing current pixel value is given by the following formula: 

 

                                  P( =                     (4.1) 

 

Where   is the estimate of the weight of the i
th

 Gaussian at time t,  is the 

mean value of the i
th

 Gaussian at time t,  is the covariance matrix of the i
th

 

Gaussian probability density function and g is a Gaussian probability density 

function:  

 

                  =             (4.2) 

Where covariance matrix is represented as: 

 

                                                                                                               (4.3) 

 

Along these lines, every pixel is described by mixture of K Gaussians. The K 

distribution depend on wellness value wt/ .  Every new pixel value Xt is checked 

against the current K Gaussian distribution until the point that a match is found. 

K chose the multimodality of the foundation and by the accessible memory and 

computational power. Once the parameters instatement is made, a first frontal 

area identification can be made and after that the parameters are refreshed. 

This requesting assumes that a foundation pixel relates to a high weight with a 
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frail fluctuation because of the way that the foundation is more present than 

moving articles and that its esteem is for all intents and purposes consistent. A 

match is characterized as a pixel esteem inside 2.5 standard deviations of 

distribution. The Gaussian model will be updated by the following update 

equations, 

                                       

                                                                               (4.4) 

                                 =                                 (4.5) 

where, 

 

                                                    

                                                                                                      (4.6) 

 

Then, two cases can occur:   

Case 1: A match is found with one of the K Gaussians. For this circumstance, if 

the Gaussian conveyance is recognized as a background one, the pixel is 

classified as background else the pixel is named foreground. 

Case 2: No match is found with any of the K Gaussians. For this circumstance, 

the pixel is classified foreground. 

At this progression, a binary mask is gotten. By then, to make the following 

foreground detection, the parameters must be revive. 

 

4.2.1   Relevance and approximations made:  

Demonstrating the foundation utilizing the MOG suggests the supposition that 

the foundation conveyances and the foreground ones are Gaussians however it 

isn't generally the case. For instance, Kitahara et al. [29] demonstrate that the 

appropriation in indoor scene is considerably more like a Laplace show than a 

Gaussian one. In another way, Wang et al. [30] comment that the power doesn't 

fit in with the Gaussian disseminations when the force differs unexpectedly like 

on account of glinting trees (MB) in open air scene. For the introduction, the 

MOG needs that the quantity of Gaussians K is settled and is the same for all 

pixels. It isn't ideal in light of the fact that the multimodality is variable spatially 

https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
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and transiently. For the instatement of the mean, the change and the weight, a 

progression of preparing outlines missing of moving articles is required however 

in some condition, it isn't conceivable to get outlines without moving items. 

Moreover, this stockpiling causes a measure of memory required in this 

progression. For the support stage, Greiffenhagen et al. [31] portrays it factual 

conduct making diverse parameters introduction utilizing genuine information 

and recreated information. The examination demonstrates that lone the 

methods are evaluated and followed accurately. The fluctuation and the weights 

are unsteady and questionable however Greiffenhagen et al. [31] comment this 

is not by any means an issue in light of the fact that the weights and the 

changes are not utilized as a part of a resulting handling step. For the frontal 

area identification, the primary disadvantage is fundamentally because of the 

coordinating test as clarified in [32]. In reality, the upkeep is made by the 

grouping utilizing this coordinating test which is a guess of the MAP. The 

outcome is that the tail of the circulation is not refreshed when the support is 

just made when the new esteem is between this interim given by the mean and 

standard deviation. At the point when just the piece of the appropriation 

characterized by this interim is utilized, another Gaussian part is evaluated 

which are a lower standard deviation. Along these lines, the standard deviation 

moves toward becoming belittled and qualities in the tail are wrongly classified 

foreground. This reason issue when the foundation is not refreshed because of 

the mistake in the grouping. This gives more pixels classified closer view 

causing foreground location. This issue expanded after some time. For the 

element size, Stauffer and Grimson [34] have choosen the pixel however this 

pixel-wise angle has the fundamental disservice that the worldly and spatial 

requirements aren't handled. For the element sort, Stauffer and Grimson [34] 

utilized the RGB space however these shading segments aren't autonomous 

thus the improvement made in Equation (3.3) for the covariance network isn't 

right. This simplification conducts to false positive and false negative detections. 

 

4.2.2   Dealing with the challenges:  

The MOG display manages the development out of background (MB) because 

of the multimodality in the portrayal step. The support step licenses to adapt up 

to the steady enlightenment changes (TD) and the learning rate a decides the 

https://pdfs.semanticscholar.org/0a59/337568cbf74e7371fb543f7ca34bbc2153ac.pdf
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speed of adjustment to light changes (TD) yet additionally the speed of the 

consolidation of background objects moved or embedded (MBO, IBO) and the 

speed of fuse of a moving item which halted (SFO) [33]. This is one of the 

disservices of the MOG and for the most part in the writing the writers make a 

trade-off between the two procedures. Another disservice is that the pixel-wise 

angle anticipates to deal with some basic circumstances (LS, B) which can be 

just distinguished spatially and transiently. Besides, some basic circumstances 

require pre-preparing or post-handling (NI, CJ, CA). For these two sorts of basic 

circumstances, Stauffer and Grimson [34] proposed nothing to manage it. 

Another burden is the utilization of the RGB which can allow to make well 

shadows recognition (S). In continue, the first pixel-wise MOG display is 

configuration well for (TD, MB), is medium for the (MBO, IBO, SFO), and isn't 

outline for the (NI, CJ, CA, LS, B, C, FA, WFO, S).  

To understand these diverse restrictions, numerous upgrades can be 

discovered that can be named natural and extraneous model changes. 

 Intrinsic demonstrate enhancements  

Intrinsic model upgrades concern specifically the MOG show like the 

initialization and the support of the parameters, the foreground detection and by 

expansion the elements utilized.  

 Extrinsic demonstrate upgrades  

The efficacy and strength can be enhanced by utilizing the learning of temporal 

and spatial data in the external strategies. The diverse methodologies can be 

found by utilizing:  

 Markov Random Fields 

 Hierarchical approaches 

 Multi-level methodologies 

 Multiple backgrounds 

 Multi-layer approach 

 

4.3   Sliding Window Method  

After running the model on the test frame, we get some detected bounding 

boxes. We use these bounding boxes as training samples to train the model 
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again. In experiments we have shown that accuracy of initial model is not well. 

So it may be possible that some bounding boxes generated by the model are 

false positive. To categories the bounding boxes in True positive and false 

positive, we use Sliding Window Method. We use the frame again to show 

whether the box is true positive or false positive. Extract the new window by 

sliding the bounding box for some threshold in the frame and find the score by 

running the detector for that extracted window. Choose some δ value which 

indicates the number of times, we slide original window in the frame. 

 

 

                         Figure 4.1: Slide Window by 2Px for δ=4. 

 

 

After choosing the δ value, iterate the method for δ times. Here first choose the 

test window by sliding the original window by some i th pixels. Then check it 

whether it is in the frame or not. If it is in the frame then extract the portion of the 

frame for the corresponding window. Normalize this RGB image into grayscale 

image. Then find the score by running the detector model over this matrix. If the 

score is above some threshold, we mark this sliding window as positive, else 

negative. Take the average of positives and negatives found by this procedure. 

If the average taken is above zero or some threshold, call the original window 

as true positive otherwise false positive. 
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4.4   Subspace Based Adaptation with Online 

               Samples 

Even though source and target data lie in same D-dimensional space, they 

have been placed according to different marginal distributions. Adaptation 

technique shifts the space between these two domains. To do this, generate 

subspace for both source and target subspace. Now normalize the every D-

dimensional source and target data by shifting it to zero mean and unit standard 

deviation. We select d eigenvectors corresponding to the d best eigenvalues by 

using PCA. These eigenvectors are used as bases of the source and target 

subspaces. These bases denoted by XS and XT where XS and XT is in RDxd.  

This XS and XT are used to learn the shift between the source and target 

domains.  

Project each of source and target data into their respective subspace XS and 
 
XT. Next align the source subspace coordinate system into target one, using 

linear transformation function. In this new generated subspace we can directly 

compare our both subspaces, without any projections. Use a subspace 

alignment approach to do this. We learn transformation matrix by minimizing the 

Bregman matrix  divergence [1] : 

                                           F (M) =ǁ                                                 (4.7) 

Where  …  is the Frobenium norm. Our optimal transformation matrix M is 

given as: 

                                          = argminM (F(M))                                              (4.8) 

 

Optimal M is obtained as =   [1]. Matrix 𝑀 changes the source subspace 

coordinate system into the target subspace coordinate system by adjusting the 

source basis vectors with the target ones. In the event that a source basis 

vector is orthogonal to all target basis vectors, it is ignored. On the other hand, a 

high weight is given to a source basis vector that is well aligned with the target 

basis vectors. So, the new coordinate system is same as  called 

as target aligned source coordinate system. Now we need to project the source 

data via  into target aligned source subspace to train the detector model. 

https://hal.inria.fr/hal-00869417/document
https://hal.inria.fr/hal-00869417/document
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Then learn a detector from this d-dimensional space. To test an image whether 

it is true or false, we need to project the target data into the target subspace(by 

the help of XT ). One more problem comes here, that is we can't project out 

target data into target subspace(using XT ) as it, not a classification task but an 

object detection. We have a frame of the target data and to detect the class 

object we used sliding window protocol. To run the detector on target data, we 

need to project each of the windows into the target subspace. It is very complex 

and costlier to do so. We can always project our Support vectors from lower 

dimension to higher dimension. So instead of doing the projection for each of 

window, we project support vectors into the target subspace. Consider SV as the 

original support vectors then we get new support vectors SNV by projecting SV 

on target subspace( using XT ): 

S
NV 

=
 

S
V 

X
T                                                                       (4.9) 

Now we test our target video on this new detector. 
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Chapter 5 

 

Experiments and Results 
Here in this section, we explain about experimental setup, the dataset used for 

experiments and produced results. 

 

 5.1   Experimental Setup and Dataset  

The proposed algorithm was implemented in C++11 with OpenCV 3.0. We used 

VIRAT video dataset to train and test our detector models. These videos are 

captured by stationary HD cameras and each video has its own annotation file 

which carry information about bounding box of objects in each frame of the 

video. These annotation files help us to collect the training dataset for a 

particular class of object from the video. Annotation files of VIRAT dataset 

contain information about 5 different classes of objects. Train and test video 

have different domains in our experiments. The virat_s_050000_03 sequence is 

used as training video and VIRAT_S_040103_02 sequence as test video. 

These sequences have 1607 and 2392 frames respectively, each of size 1920 

X 1080. All extracted objects from source and target video, are scaled to the 

size of 64x64. Features are extracted and computed using HOG, and thus, 

descriptor vectors are 1764-dimensional. As a detector model, we used Linear 

SVM with C=0.01. 

 

5.2   Results  

Experiments are conducted extensively for different methods using adaptation 

and online samples on videos. Inferences obtained from results are analyzed in 



34 

 

detail. For each method, average precision over all the frames is plotted against 

the number of top k bounding boxes in precision@K. 

 

5.2.1   Test using HOG and SVM  

         

           

                      Figure 5.1: Method1 (Object detection using HOG+SVM) 

                            

Here in this method, we train the model on HOG features, extracted from source 

or target video. Some of the parameters are to be set in HOG for the best 

results. The padding switch controls a number of pixels the ROI is padded with 

prior to HOG feature vector extraction and SVM classification.  cellSize and 

blockSize set to be [8 x 8] and [16 x 16] respectively. Our SVM detector was 

trained on ―car‖ object class. Difference in domains of videos accounts for the 

low accuracy. Figure 5.1 shows the relation between precision value and K 

where K indicates the top bounding boxes. The mean precision and recall over 

target video using this method are 51 and 19 percent respectively. 
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5.2.2    Test using Adaptation with Target Random Samples 

 

      Figure 5.2: Method2 (Object detection using HOG + DA (Random Samples)  
                                                             +SVM)                  

 

 
Adaptation is based on the subspaces generated from source and target video. 

Here in this section, we take 100 (it may vary) samples from each of the frame 

target video and then generate target subspace using this random sample. 

Overall accuracy is not affected much, since it may happen that no target class 

object appears in the subspace due to randomness. The mean precision graph 

for this method is shown in Figure  5.2. 

 

5.2.3   Test using Online Samples  

In this section, we use bounding boxes generated by the weak detectors. Iterate 

the method over δ times to get a good detector model using online samples. To 

get the best δ value, we experimented with a range of values and for δ = 20, we 

get best detector model. Given Figure  5.3 shows that nearly all top bounding 

boxes belong to true positives. This method shows a slight improvement in 

accuracy (Figure 5.3) but still not as expected. The mean precision and recall 

for this method is 28 and 53 percent   respectively. 
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    Figure 5.3: Method3 (Object detection using HOG + SVM + Online Samples) 

 

5.2.4   Test using Adaptation with foreground mask  

As from the previous experiments, we know that random samples from target 

video will not work well to generate subspace. Here we go with the Mixture of 

Gaussians (MoG), for subtracting background from a frame to get foreground 

mask. It extracts all the moving objects in the target video. This data generates 

a good target subspace, resulting in higher accuracy. The mean precision and 

recall in this method are 42 and 41 respectively which are greater than the 

values achieved in all the previous methods. For this method, the plot of 

precision is shown in Figure  5.4. 
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Figure 5.4: Method4 (Object detection using HOG + DA (Foreground Mask) + 

                                                          SVM) 

 

5.2.5   Test using Adaptation with foreground mask and On-line             

Samples  

As we notice in earlier experiments, domain adaptation and learning from online 

samples work well in object detection. We brought both of them together to get 

good results. The initial model is trained on source and target subspace, 

generated by foreground mask of target video. Run this model on the first frame 

of target video and get all the detected bounding boxes. Since all these 

detected bounding boxes may not be true positive, we use another method 

called sliding window, to categorize these detected bounding boxes into true 

positive and false positive. After getting these weakly labeled data, we train the 

detector model again. We have done this for first 20 frames and results were 

extremely well. A number of iteration may vary as it depends on target video. 

The mean precision and recall for this method is 56 and 60 percent 

respectively, which is extremely well as compared to all the previous methods. 

Precision@K graph for this method is shown in Figure  5.5. 
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Figure 5.5: Method5 (Object detection using HOG + DA (Foreground Mask) + 

SVM +Online Samples)     

                

5.2.6   Comparison of all Methods  

The very first method we used is based on simply HOG and SVM (Method1). 

Here we extract the features of training data (From source video) without any 

use of target data and train the Linear SVM model on these features. Now use 

this model directly to detect objects in target video. So, this is the simplest 

method which we used in detection and as we see in the graph (Figure 5.6 ), 

results obtained are not so good. As video dataset has different domains, we 

align source subspace to target subspace. Choosing the random samples to 

calculate subspace of target video does not affect much in accuracy (Method2). 

So, we used background subtraction on target video, using MoG, to get 

foreground mask (Method4). This foreground mask is further used to calculate 

target subspace for adaptation. Now here we saw an improvement in accuracy. 

Iterative training using weakly labeled online samples gives fairly well results, as 

we see in Figure 5.6 
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                               Figure 5.6: Precision@K graph of all methods                             

 

The graphs represents that use of adaptation in videos, using background 

subtraction to collect target data and learning from online samples, improves the 

accuracy of object detection. So we merge both of the method (Method3 and 

Method4) which gives extremely well results. The bar graph (Figure  5.7) shows 

mean precision and recall value for all the methods and both looks fairly well in 

the Method5. 
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                         Figure 5.7: Mean Precision and Recall Value
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Chapter 6 
 

Conclusion 

We introduced a novel method which uses online samples with subspace based 

adaptation in videos. Here in this method, first we created subspaces for both 

source and target video domains and then learned a linear mapping that aligns 

the source subspace with the target subspace. This allows us to build a detector 

model on source data in target based space which can be applied to the target 

video. We have collected data from target video using several different methods 

from each of the target video frames: extracting 100 random windows of 64x64, 

extracting 64x64 window using sliding window and background subtraction 

method which extracts all the foreground contours and resizes them to 64x64. 

Learning in this way from online samples gave fairly good results. Different 

methods to generate detectors with different parameters like block Size, cell 

Size, n bins(Number of bins) in HOG , C-value, ϵ in SVM and d-value to 

generate subspace using PCA, were compared simultaneously for VIRAT video 

datasets having different domains. Experimental results show that the 

introduced adaptation with learning from online samples method outperforms 

subspace based adaptation methods without learning which use HOG features 

and SVM classifier model. 
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Chapter 7 
 

Future Scope 
We have collected data from target video using several different methods from 

each of the target video frame and detected objects, as future work, we intend 

to improve performance of object detection in videos by using some other 

methods. 

The novel method introduced by us by creating subspaces for both source and 

target video domains and builds a detector model on source data in target 

based space can be improved by using some other improved training methods. 

.  
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