
Major Project

Report

Software Effort Prediction

Using Machine Learning Techniques

Submitted in partial fulfillment of
the requirements for the award of the degree of

Master of Technology
in

Software Engineering

Submitted by
Chandan Kumar Yadav

2K15/SWE/06

Under the guidance of
Dr. Ruchika Malhotra

Associate Head & Assistant Professor
Department of CSE

Department of Computer Science & Engineering
Delhi Technological University

Delhi, India – 110042

June 2017

Certificate

Department of Computer Science &
Engineering

Delhi Technological University

This is to certify that report entitled “Chandan Kumar Yadav” has com-
pleted the project titled “Software Effort Prediction using Machine
Learning Techniques” under my supervision in partial fulfillment of the
Master of Technology degree in Software Engineering at Delhi Technological
University.

Dr. Ruchika Malhotra
Associate Head & Assistant Professor
Department of Computer Science & Engineering
Delhi Technological University
Delhi -110042
(Project Guide)

i

Declaration

We hereby declare that the thesis work entitled “Software Effort Predic-
tion using Machine Learning Techniques” which is being submitted to
Delhi Technological University , in partial fulfillment of requirements
for the award of degree of Master of Technology (Software Engineering) is a
bonafide report of thesis carried out by me. The material contained in the
report has not been submitted to any university or institution for the award
of any degree.

Chandan Kumar Yadav
2K15/SWE/06

ii

Acknowledgements

I am very thankful to Dr.Ruchika Malhotra (Associate Head & Assistant
Professor, Computer Science & Eng. Dept.) and all the faculty members
of the Computer Science Engineering Dept. of DTU. They all provided im-
mense support and guidance for the completion of the project undertaken by
me.

I would also like to express my gratitude to the university for providing
the laboratories, infrastructure, testing facilities and environment which al-
lowed me to work without any obstructions.

I would also like to appreciate the support provided by our lab assistants,
seniors and peer group who aided me with all the knowledge they had re-
garding various topics.

CHANDAN KUMAR YADAV
M. Tech. in Software Engineering

Roll No. 2K15/SWE/06

iii

Abbreviations

LSR Least Squares Regression

CFS Correlation Based Feature Sub selection

REP Reduces Error Pruning

RBF Radial Basis Function

CBR Case Based Reasoning

PCA Principal Component Analysis

MLP Multilayer Perceptron

ANN Artficial Neural Network

PNN Probabilistic Neural Networks

SVM Support Vector Machine

SLIM Software Lifecycle Management

PRED Prediction

CART Classification And Regression Tree

ASMA Australian Software Metrics Association

MART Multiple Additive Regression Tree

WEKA Waikato Environment for Knowledge Analysis

MMRE Mean Magnitude of Relative Error

KSTAR Korea Superconducting Tokamak Advanced Research

COCOMO Constructive Cost Model

iv

Abstract

Precise estimation of software effort is a crucial task in the software engineer-

ing domain. The effort is the most important factor which affects the budget

of a project. Therefore, software effort estimation is very crucial and there

is continuously a necessity to improve its accuracy as much as possible. For

a quality software effort, both over-estimation as well as under-estimation

may lead to very dangerous consequences. Therefore, it is very important

to determine the best technique which can give exact results for software

effort estimation. In this study, we analyze several machine learning (ML)

techniques like bagging, linear regression, KStar, M5Rules, RIP (Reduces

Error Pruning) Tree and Multilayer Perceptron (MLP) in order to develop

models to predict software effort. Two different datasets i.e. China dataset

and Albrecht dataset have been used in our research. Results of machine

learning algorithms can be different from dataset to dataset. Multilayer per-

ceptron has shown good performance for China dataset and REP Tree shown

for Albrecht dataset.

v

Contents

Certificate i

Declaration ii

Acknowledgement iii

Abstract v

1 Introduction 1

2 Related Work 5

3 Research Methodology 10

3.1 Outlier Analysis . 10

3.2 Machine Learning Techniques 11

3.2.1 Bagging . 11

3.2.2 Linear Regression (LR) 12

3.2.3 KStar (K*) . 14

3.2.4 REP(Reduces Error Pruning) Tree 14

3.2.5 Multilayer Perceptron 15

3.2.6 M5Rules . 15

4 Research Background 17

4.1 Feature Sub Selection Method 17

4.2 Independent and Dependent Variables 18

vi

4.3 Empirical Data Collection . 18

4.4 Data Set . 19

4.4.1 Dataset 1: China Dataset 19

4.4.2 Dataset 1: Albrecht Dataset 20

4.5 Estimation accuracy measures 20

4.6 Cross validation . 21

4.6.1 10-cross validation method 21

4.7 Tool used for result calculation 22

4.8 Analyzed Model in WEKA . 22

4.9 Classification of China dataset 24

4.9.1 Linear Regression . 24

4.9.2 Bagging . 25

4.9.3 KStar . 26

4.9.4 M5Rules . 27

4.9.5 Multilayer Perceptron 28

4.9.6 REP Tree . 29

4.10 Classification of Albrecht dataset 30

4.10.1 Linear Regression . 30

4.10.2 Bagging . 31

4.10.3 KStar . 32

4.10.4 M5Rules . 33

4.10.5 Multilayer Perceptron 34

4.10.6 REP Tree . 35

5 Results and discussion 36

5.1 Discussion of result with China dataset 36

5.2 Discussion of result with Albrecht dataset 39

5.3 Threats to validity . 42

5.3.1 Threats to internal validity 42

5.3.2 Threats to External validity 43

6 Conclusion and Future Work 44

vii

List of Figures

3.1 Linear Regression . 13

3.2 Multilayer Perceptron . 15

4.1 Analyzed model in WEKA . 23

4.2 Linear Regression result in WEKA 24

4.3 Bagging result in WEKA . 25

4.4 KStar result in WEKA . 26

4.5 M5Rules result in WEKA . 27

4.6 Multilayer Perceptron result in WEKA 28

4.7 REP Tree result in WEKA 29

4.8 Linear Regression result in WEKA 30

4.9 Bagging result in WEKA . 31

4.10 KStar result in WEKA . 32

4.11 M5Rules result in WEKA . 33

4.12 Multilayer Perceptron result in WEKA 34

4.13 REP Tree result in WEKA 35

5.1 MMRE values for China dataset 37

5.2 PRED(25) values for China dataset 37

5.3 PRED(50) values for China dataset 38

5.4 PRED(75) values for China dataset 38

5.5 MMRE values for Albrecht dataset 40

5.6 PRED(25) values for Albrecht dataset 40

5.7 PRED(50) values for Albrecht dataset 41

viii

5.8 PRED(75) values for Albrecht dataset 41

ix

List of Tables

4.1 China Dataset Statistics . 19

4.2 Albrecht Dataset Statistics . 19

5.1 Analysis of result with China dataset 36

5.2 Analysis of result with Albrecht dataset 39

x

Chapter 1

Introduction

In any software industry, for quality software project, estimating accurate

software effort is the most significant research area in the field of software de-

velopment. For software effort estimation, getting an estimate of the person-

months and the time expected to complete the project is crucial. Although

software effort estimation is playing most important role in the field of soft-

ware project development, there has been very minor improvement in the

last thirty or forty years. One of the most important factor for failure is in-

accurate estimate of required resources. Even though lots of software effort

estimation models are available, it is still required to research novel models

for improving the accuracy of such estimation because the problem for effort

estimation and accuracy remain same. So the construction of software effort

prediction models has motivated to estimate the accurate software effort as

much as possible.

For a development of software artefact, software effort prediction is required

to estimate the specified effort. Actually, ML technique considers an only

historical data set which hold the various historical software project. These

projects are expressed by features with their values to characterize those

project. The features with similar values may produce almost the similar

software project efforts. The main task of using ML techniques is to learn

the inherent patterns of feature value and their relations with project efforts

1

Chapter 1. Introduction 2

and predicting the effort for new projects. Regarding software effort predic-

tion, recent studies of effort provide a detailed review of several studies. The

prediction techniques are classified into 3 general categories [1] :

• Expert judgment: This type of technique has been used widely. This

technique estimates the software effort on the basis of expert experience

for similar projects. The accuracy of such estimates highly depends on

the ability of the expert and degree to what extent expert experience

involved in which new project concurs. Expert judgment is always

complicated to evaluate but it can be effective for effort estimation

when an adjustment factor for algorithm models involved [2].

• Algorithmic: The algorithmic models is the most popular in literature.

Generally, Software size, function point, source lines of code are used as

principal effort driver. Examples of this models are COCOMO model,

Function Points Analysis, and SLIM model. These models are also

known as parametric models because these models predict the software

effort by a fixed formulas from the historical dataset.

• Machine learning: The machine learning approaches have been used

as a compliment for both expert judgment and algorithmic models in

the last decade. These approaches include ANN, Fuzzy logic, CBR,

regression trees, SVM etc. The advantage of this approaches, it models

the complex set of relationship between effort and independent variable.

It is used for those difficult problems where a result must be learned

from historical project data.

There are a number of ML techniques recommended in the literature like

bagging, linear regression, KStar, M5Rules, RIP Tree and Multilayer Percep-

tron. But it is very difficult to find which one of the ML technique is superior

over the other techniques using multiple data sets. Hence, intense studies are

required to draw well-formed, generalized and widely acceptable conclusions

based on the experimental evidence. Thus, the following research questions

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 1. Introduction 3

are addressed in this work:

• RQ1: What is the performance of ML techniques for software effort pre-

diction? In this question, the performance of ML techniques is assessed

for developing software effort estimation models on two data sets. The

performance is evaluated using four performance metrics namely, Mean

Magnitude of Relative Error (MMRE) and Prediction (PRED) at level

0.25, 0.50 and 0.75 respectively.

• RQ2: Which is the best and the worst ML techniques for software effort

prediction? In this research question, we determine ML techniques

which give the best and the worst results corresponding to each data

set investigated in the study.

The objective of this thesis is to empirically evaluate the accuracy of dif-

ferent machine learning techniques in order to predict software development

effort. The results obtained from the empirical studies will help to improve

the results which obtained from past studies. In order to this, several ML

techniques being used in our research such as bagging, linear regression,

KStar, M5 rules, multilayer perceptron and REP Tree. These techniques are

the modern trends in the field of effort estimation. For results, ML tech-

niques are applied on China dataset and Albrecht dataset consisting of 499

and 24 projects respectably.

The rest of the thesis has been divided into various chapter. In chapter 2,

related work done for the research have been explained in brief. In chapter

3, the research methodology and various ML techniques for software effort

estimation have been discussed. In chapter 4, whole research background

has been explained. First of all the 2 data sets used in our research work

have been explained. After that, the method used for cross-validation has

been described. The tool which is used for calculation of results has been

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 1. Introduction 4

explained. In chapter 5, the results after application of different algorithms

on the dataset have been computed. The future work have been explained in

chapter 6. Finally, all the references used in the research have been mentioned

[3].

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 2

Related Work

Software effort estimation plays very crucial task in calculation of the devel-

opment cost of a software project. Various methods like Empirical tech-

niques, algorithmic effort estimation, regression techniques, theory based

techniques and machine learning have been presented and many models have

been discussed in previous study. The understanding and controlling of crit-

ical variables that affects software effort is very essential job in software

project management. According to Subramaniam et al. [4], inferred that

software effort is significantly affected by various adjustment variables like

complexity of software, platform used and type of program. The adjustment

variables like complexity of software and reliability are used by COCOMO I,

COCOMO II and Function Points for computation of adjusted estimate of

software cost and effort. Original model developers have stated most of these

adjustment variables and in subsequent studies they have been modified by

other researchers. The arguable point among researchers have been the us-

age of minimum set of adjustment variable and also subsequently making the

updates of adjustment variables so that differences in software projects could

be reflected. Other adjustment variables for task assignment patterns have

been suggested in intermediate COCOMO which is proposed to improve the

accuracy of software effort estimation.

5

Chapter 2. Related Work 6

According to Smith et al.[5], 4-task assignment factors i.e. intensity, con-

currency, fragmentation and team size have been taken into consideration for

their impact on software effort development. All these factors improved the

estimations of intermediate COCOMO I model. These factors along with un-

adjusted function points helps in achieving a better effort estimation model

which results in improved predictive ability as compared to COCOMO model.

Various analogy based estimations have been done for software effort

prediction. The analogy based estimation compares the project whose effort

estimation is needed with some historical project for similarity and similarity

is computed using distance metrics like Eucledian, Minkowiski, manhattan

distance etc. Chiu and Huang [6], have suggested an adjusted analogy based

effort estimation model which makes use of Genetic Algorithm to adjust the

software effort based on various distance metrics. In the conventional Eu-

clidean distance, the feature of the projects have the same weight or unweight

there by significance of every feature does not need into consideration. The

paper by Tosun et al.[7], has proposed another novel approach of improving

the estimation accuracy with the help of a new feature weight assignment

algorithm which gives better consequences as compared to previous research.

Here a statistical technique called Principal Component Analysis (PCA) has

used to implement the two weighted assignment heuristics.

The machine learning (ML) techniques have been widely used in effort

estimation. The research by Finnie and Witting [8] [9], have analysed the ca-

pability of 2 artificial intelligence (AI) methodologies i.e. “Artificial Neural

Networks” (ANN) and “Case Based Reasoning” (CBR) to make advance-

ment in application evaluation models, utilize the same data set which is

“Australian Software Metrics Association” (ASMA). Additionally, the capa-

bility of ANN and CBR, gives premise to improvement in application estima-

tion models rather than relapse models. AI models are prepared for giving

sufficient evaluation models. The performance of both models is largely de-

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 2. Related Work 7

pendent on training data, and the degree to which appropriate data of the

project is available. Other than ANN and CBR, various ML approaches like

“Classification and Regression Trees” (CART) and “Multiple Additive Re-

gression Tree” (MART) have been published [10]. The paper by Elish [11],

has performed a comparative analysis of MART as model of software effort

estimation with respect to recently existing models i.e. support vector re-

gression models with linear regression, RBF kernels, RBF neural networks

and linear regression. The resulting effort estimation with MART proves to

have better accuracy.

The Genetic Algorithm (GA) have been used a lot for accurately estimat-

ing the effort. According to Burgess and Lefley [12], the ability of “Genetic

Programming” has been used for estimation of effort evaluation and compar-

ison has also been ensured with the ANN, Linear LSR etc. Here Desharnais

dataset of 81 software project is used for comparison and obtained results

are totally dependent on the used fitness function.

The paper by Braga et al. [13], has proposed a method which provides

effort estimation as well as a confidence interval on the basis of machine

learning. The authors have suggested for using robust confidence intervals.

This confidence interval doesnt depend on a probability distribution of the

errors in the training set. Numerous experiments have been done with 2

datasets of software projects: “Desharnais and NAS”, which are expected to

analyse ML techniques to making accurate effort estimation. After simula-

tions, the suggested method was able for making confidence intervals which

are very important for a client of the effort estimation system. The paper by

Martin et al. [14] Lopez-Martin2006 introduced an improved Fuzzy Logic

Model for measurement of software development effort and suggested a new

methodology for effort estimation. The paper by Elish [11], the comparative

study has been carried out to make software effort prediction systems with

the help of ML methods such as ANNs, CBR and RI (Rule Induction). Ac-

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 2. Related Work 8

cording to this paper comparison of the software effort prediction systems

have been carried out with respect to configurability, accuracy and explana-

tory value.

The paper by Bibi and Stamelos [15], has proposed a number of estima-

tion rules for taking a decision to choose an appropriate machine learning

techniques in terms of causality, uncertainty, accuracy, dynamic updates,

handling of missing values, comprehensibility, sensitivity and applicability

for software development effort estimation. Hence the author proposed sev-

eral rules to select an appropriate estimation method according to his need

and for the research of the estimator. The paper by Gallego et al. [16],

the author has shown one of the biggest challenges in front of developers,

regarding prediction of development effort to the software system, in terms

of size of a project, complexity, developer abilities, and other metrics.

The paper by Pendharkar [17], made the suggestion of a “Probabilistic

Neural Networks” (PNN) methodology for simultaneous estimation of the

values of development parameters, i.e. effort or size and for the probability

that the estimated value of the parameter will be more than its actual value.

According to Radlinski and Hoffmann [18], the author has made a compar-

ison of the accuracy of predictions for software effort in taking into account

several ML techniques. Here the most important purpose is to explore the

stability of this prediction by studying if certain techniques, get a same level

of accuracy for dissimilar data sets. The results of the prediction accuracy

show variation to a dataset used for every ML technique.

The paper by Bisi and Goyal [19], stated that for highly reliable and

quality software, resource management is necessary. Indicative measures

of software quality and reliability help to predict the resource which is re-

quired for prediction of specified software effort. Inaccurate effort prediction

may lead to poor reliability and cost overruns. Due to overestimation of

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 2. Related Work 9

effort, software development resources may lead to wastage while due to un-

derestimation of effort, causes may be poor quality of software, associated

penalties and schedule delays. Hence ANN architecture has been proposed

with logarithmic activation function by adding some additional input layer.

PSO(particle swarm optimization) is used for software effort perdition. For

evaluation of effort prediction, genetics algorithm is applied which optimize

the no. of hidden neurons in the hidden layer.

Estimation of effort is considered as a key in cost evaluation of software.

There are various effort evaluation techniques that are available, for example

algorithmic, empirical, theory-based, ML and regression. Numerous research

work has been carried out using ML techniques. In recent years, for effort

estimation various ML techniques like ANN, Bayesian Network, Case based

reasoning, fuzzy logic, GA, SVM(support vector machine), regression tree

have been proposed. We have carried out comparative study of several ML

techniques like bagging, linear regression, KStar, M5Rules, RIP Tree and

Multilayer Perceptron for predicting the software effort on different datasets.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3

Research Methodology

3.1 Outlier Analysis

The extreme values that does not lie within the cluster of other observations

are known as outliers. The outlier analysis is an important step performed

before training of ML algorithms because if they are not removed the model

may take more training time, less accurate model and hence poorer results. In

our study, we have found two types of outlier known as Univariate and Mul-

tivariate. For identification of multivariate outlier, we can use Mahalanobis

Jack knife distance, which is computed on the basis of distance between a

data point in multidimensional space of every remark from the centre of mean

[20] [21]. Here we have tested the effect of univariate outliers and multivari-

ate outliers. If by eliminating one of the univariate outlier, the importance of

the metric gets altered, i.e. if the fault metric get affected by the outlier then

outlier has to be removed. Also, if the outlier presence or absence affects the

significance of the one or more independent variable then that outlier has

also to be eliminated. Further detailing of the outlier analysis are presented

in [22].

10

Chapter 3. Research Methodology 11

3.2 Machine Learning Techniques

In our research, we have used some modern machine learning techniques

available in WEKA tool. Here LR and various modern ML techniques like

bagging, KStar, M5Rules, RIP Tree and MLP methods that have been suc-

cessfully applied in various fields [23] [24].

3.2.1 Bagging

Bagging, a name comes from“bootstrap aggregation”. It was very effective

and simplest technique of ensemble learning. According to Breiman, meta-

algorithm is one of the special case for model averaging which was initially

proposed for classification and generally applies to decision tree models but

at recent time it is used for regression or classification. Bagging uses differ-

ent versions of a training data set in train a different model with the help of

bootstrapping, i.e. sampling with replacement. For single output, output of

all models is combined by voting (in case of classification) or averaging (in

case of regression). Bagging is very effective if we used unstable nonlinear

models because a minor change in the training data sets can cause an im-

portant change in the model.

So we can say that bagging just like a bootstrap aggregation which works

as a technique of cumulative accuracy that frequently samples from partic-

ular dataset along with a uniform probability distribution. A sample size of

each bootstrap is same as initial dataset since sampling is finished through

substitution.

Certain instances which may seem numerous times in the identical train-

ing dataset, whereas others may possibly eliminate from the given training

data set [20] [3]. Gathering of multiple predictors is the greatest significant

feature of bagging. Bagging advance the machine learning algorithms which

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3. Research Methodology 12

are used for statistical classification and regression by improving their sta-

bility and accuracy. It decreases variance and avoids over-fitting [25].

3.2.2 Linear Regression (LR)

Linear Regression is a methodology which analyse the relationship between

independent and dependent variables which is denoted as X and Y respec-

tively. LR is one of the statistical method which is used for data regression

with the help of dependent variables. Dependent variables have only con-

tinuous values while independent variables may have either categorical or

continuous values. We can say in a different way, LR is a technique, used for

prediction of the dependent variable on the basis of the values of independent

variables and it is also used in the case of prediction of some continuous quan-

tity. In the case of single independent variable, linear regression is known as

simple linear regression. For this, LR discovers a line which decreases the

summation of the squares of the vertical separations of the available points

from that line. Means, LR is a procedure of approximating the conditional

predictable value of single variable of Y which has given by the values of a

number of extra variable of X [25].

Fundamentals

To begin with Linear Regression (LR), we must be known about some essen-

tial ideas of measurements. Such that

• Correlation (r), which describes the relationship between 2 variables

and its values lies between [-1, +1].

• Variance (σ2), which measure the spread of dataset.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3. Research Methodology 13

• Standard deviation (σ), which measure the spread of dataset in the

form of (
√
variance)

• Normal distribution

• Residual (i.e. Error), which is calculated as {Actual value - Predicted

value}

Linear Regression Line

If we apply linear regression, our main objective is to fit a line which is clos-

est to the majority of the points by distribution in the sample space. Thus

we always try to decrease the separation (i.e. Error) between fitted line and

data points.

Figure 3.1: Linear Regression

In the left figure, the various data points are denoted by dots and line

shown in the right figure, is denoted an approximate line. These lines describe

the relationship between x and y axis. For finding this type of approximate

line, we always prefer to use linear regression. For a single value of the

dependent (Y) and independent (X) variable, the relation shown in between

X and Y is given in the form of following linear equation.i.e.

Y = B0 +B1X (3.1)

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3. Research Methodology 14

Where,

0 = Constant term which intercept y-axis.

1 = Coefficient of relationship between X and Y.

• B0 and B1 are two parameters, which specify the line and are to be

estimated with the help of data sets.

• For the known values of Y1, Y2, ...X1, X2, ..., the least squares criterion

is used.

Here B0 is used as intercept at y-axis through approximate line. In machine

learning, it denoted as bias which added to the offset of all predictions that

we make. B1 show the slope of a line or we can say, how the value of X is

translated into the value of Y before the addition of bias.

3.2.3 KStar (K*)

KStar (K*) algorithm is a case based type classifier i.e. the class of test

case depends on the class of those training case which is like it, which is

determined through certain similar function. KStar is different from other

case based learners since KStar measures distance function which is based

on entropy. KStar works based on related procedures will have associated

classification. This approach is slightly slower to other in evaluation but

suitable for prediction.

3.2.4 REP(Reduces Error Pruning) Tree

It is one of the fastest decision tree learners which depend on the principle of

calculating the “Information Gain” (IG) with Entropy (E) as well as reduc-

ing error arising due to variance. REP Tree generates multiple trees with the

help of logic of regression tree in different iterations. Afterward, it always

tries to pick the best one from available spawned trees. REP Tree makes a

regression tree or decision tree with the help of variance or information gain

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3. Research Methodology 15

and REP tree uses reduced error pruning with back-fitting to prune these

trees.

3.2.5 Multilayer Perceptron

Basically, a multilayer perceptron (MLP) is a feed-forward artificial neural

model. There is single hidden layer lies between input-output layers. Its func-

tionality is mapping the set of inputs to a particular set of outputs means

data flow in one direction from input to the output layer. Each join is a

neuron leaving the input joins and each join has an activation function (Y)

corresponding to it. MLP is applying a back propagation algorithm for train-

ing the neural network. MLP is a revision of the standard linear perceptron

and can solve the problem which is not linear-separable.

Figure 3.2: Multilayer Perceptron

3.2.6 M5Rules

M5Rules makes a decision list on behalf of regression problems via divide &

conquer. In every iteration, M5Rules constructs a model tree with the help

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 3. Research Methodology 16

of M5 and get to the “best” leaf into a rule. The approach of making rules

from model trees is called M5Rules. In its work flow, a learner for the tree

is operated to complete training set of data and after that, a pruned tree is

found then the best branch is prepared into the rule and after that tree is

thrown out. All instances which are covered by that rule are deleted from

the dataset. The procedure is applied to remaining instances recursively and

ends after covering every instance via one/more rules. This is a fundamental

divide & conquer approach to learning rules and it is “best” branch as a rule.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4

Research Background

4.1 Feature Sub Selection Method

We have used China dataset and Albrecht dataset which are taken from an

available repository known as promise data repository. The China data set

includes 19 feature in which it contains one dependent variable and eighteen

independent variable and Albrecht dataset includes 8 feature in which it

contain one dependent variable and seven independent variables. For making

simple and efficient model, some independent variables are removed, which

are playing less significant role in effort prediction from available independent

variables. For reduction of independent variables, recently, there are so many

techniques are available but we prefer to use a most significant technique

called Feature sub selection which available in WEKA [26]. In China dataset,

if we use Correlation Based Feature Sub selection (CFS), 19 independent

variables are reduced to 10 independent variables in which only one variable

is dependent variable and remaining 9 variables are independent variables and

in Albrecht dataset, the 8 independent variables are reduced to 3 independent

variables in which only one variable is dependent variable and remaining 2

variables are independent variables. Thus, CFS is used in dataset, to select

the best one predictors out of available independent variables [27] [20]. So we

always try to search for best combination of independent variable among all

17

Chapter 4. Research Background 18

possible combinations of independent variables. In available feature, effort is

only dependent variable. Software effort is described as the work done by the

software supplier from the starting point of specification to the last delivery

at customer side, measured in hours [20].

4.2 Independent and Dependent Variables

In our research, software development effort is considered as a dependent

variable. Actually, software effort is described as the work done by the soft-

ware supplier from the starting point of the specification of the last delivery

at customer side which measured in hours. Recently, most of the indepen-

dent variables are categories in the China dataset and the Albrecht dataset

[28]. The all independent variables are summarized in Table 1 and Table 2

for China dataset and Albrecht dataset respectively. In available data sets,

to incorporate the independent variables based on correlation, CFS is used to

select the best predictors among independent variables [11]. We always try

to search the best combination of independent variable among all possible

combinations of independent variables. CFS assesses the best of a subset of

independent variables by considering the predictive ability of each feature

accompanied by the degree of redundancy, present between them.

4.3 Empirical Data Collection

The dataset which we have used in our research, consists of 19 drivers for

China and 8 for Albrecht of effort for effort prediction model. Here for our

research, we used the descriptive statistics of six independent variables for

China and two for Albrecht, chosen by CFS method are shown in Table 1

and Table 2. The mean value of the effort is found to be 3921 for China and

14.43 for Albrecht dataset which put in Table 1 and Table 2.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 19

Table 4.1: China Dataset Statistics
Variables Minimum Maximum Mean Standard Deviation

ID 1 499 250 144.19
Output 0 2455 113.601 221.19

Interface 0 1572 24.23 85
Added 0 13580 360.35 829.84

Duration 1 84 8.71 7.34
N effort 31 54620 4277.64 7071.25
Effort 26 54620 3921 6480.85

Table 4.2: Albrecht Dataset Statistics
Variables Minimum Maximum Mean Standard Deviation
Output 12 112 40.270 26
AdjFP 199 1572 540.501 340.59
Effort 0.5 61.2 14.43 13.67

4.4 Data Set

For our research purpose we have used two datasets namely China dataset

and Albrecht dataset which has taken from promise dataset [28], are describes

as follows:

4.4.1 Dataset 1: China Dataset

It consists of 19 attributes and 499 instances. Here 70% set of data is used

for training and 30% set of data is used for validation. Correlation feature

selection (CFS) technique is employed to choose the finest predictors among

independent variables which are ID, Output, Interface, Added, Duration,

N effort in sets of data [20] [27] in the WEKA tool [26]. All the independent

variables correspond to function point method.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 20

4.4.2 Dataset 1: Albrecht Dataset

It consists of 8 attributes and 24 instances. Here 70% set of data is used

for training and 30% set of data is used for validation. Correlation feature

selection (CFS) technique is employed to choose the finest predictors among

independent variables which are Output and AdjFP in sets of data [20] [27]

in the WEKA tool [26]. The outlier is removed for finding the best result.

All the independent variables correspond to function point method.

4.5 Estimation accuracy measures

In this work, we have employed the most effective and standard measures

for estimation accuracy i.e. MMRE and PRED at intensity level 0.25, 0.50

and 0.75 respectively. Previous research carried out in this field have also

used these two for performance measures. MMRE and PRED(x) value for a

dataset consisting of N observations can be calculated in the following man-

ner.

• MMRE: It is an extremely common condition used to estimate soft-

ware cost estimation models. The MRE (magnitude of relative error)

for every outcome i can be achieved as follows:

MREi =
| Actual Efforti −Predicted Efforti |

Actual Efforti
(4.1)

MMRE can be obtained through the summation of MRE over N out-

come:

MMRE =
1

N

N∑
i=1

MREi (4.2)

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 21

• PRED (x): It can be expressed as the average fraction of the MREs off

by no more than x as:

MMRE =
1

N

N∑
i=1

1, if MREi ≤ x.

0, otherwise .
(4.3)

If

PRED(25) =
M

N
(4.4)

Here M is the no. of outcomes whose MRE is less than or equal to 0.25,

and N is the total number of outcomes for a particular dataset. In the same

way, MRE of PRED(50) and PRED(75) is less than or equal to 0.50 and 0.75

respectively. Finally, the estimated accuracy is proportionate to PRED(x)

and inversely proportionate to MMRE.

4.6 Cross validation

4.6.1 10-cross validation method

In this method, we obtained 10 equal size subsamples by partitioning the

original sample randomly. Here in 10 sub-samples, 9 are using as training

data and 1 is using for model testing. This method is repeated ten times

and each one of the ten subsamples are using once as per validation data for

testing. Result obtained from these 10 repetitions is averaged to get a single

value. The main advantage of this method is that all the sub-samples are

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 22

used for both training and validation.

4.7 Tool used for result calculation

We have used WEKA tool in our research work. WEKA tool has embedded

machine learning algorithms and it provides automatic pre-processing for our

data and makes them more suitable as an input to our machine learning algo-

rithms. Feature sub-selection technique has been used, given in WEKA [26]

to decrease some independent variables. Other prominent features provided

by WEKA tool are:

• Classification

• Clustering

• Association rule extraction

• Selection of attributes

• Visualization

4.8 Analyzed Model in WEKA

In existing study, we have found some limitations and from our study, we

analyzed that most of the researcher does not follow the preprocessing step

in their evaluation. Before preprocessing, researcher removes the missing and

noisy data from their data sets. Besides these limitations, attribute selection

is the another important limitation because the presence of unnecessary at-

tributes may have create a problem in memory and affect our output results.

So overcome from these limitations, we follow some basic steps. These are:

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 23

1. Input data in the form of data sets.

2. Preprocess the data

(i) By removing noisy and missing data.

(ii) By conversion.

(iii) By removing outlier.

3. Apply attribute selection.

4. Apply machine learning techniques.

5. Result evaluation.

Figure 4.1: Analyzed model in WEKA

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 24

4.9 Classification of China dataset

4.9.1 Linear Regression

Figure 4.2: Linear Regression result in WEKA

Here we classify 399 instances of the china dataset. We apply the one of the

machine learning technique known as linear regression for classification of

the china dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.9644 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.18 and 0.26 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 25

4.9.2 Bagging

Figure 4.3: Bagging result in WEKA

Here we classify 150 instances of the china dataset. We apply the one of the

machine learning technique known as bagging for classification of the china

dataset. After classification we find predicted value with respect to actual

value. Here we also apply Percentage split in which 70% set of data is used

for training and 30% set of data is used for validation. Also, after classifica-

tion we find the most value of correlation coefficient i.e. 0.9861 and the low

value of error in the form of relative absolute error and root relative squared

error i.e. 0.11 and 0.21 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 26

4.9.3 KStar

Figure 4.4: KStar result in WEKA

Here we classify 120 instances of the china dataset. We apply the one of the

machine learning technique known as KStar for classification of the china

dataset. After classification we find predicted value with respect to actual

value. Here we also apply Percentage split in which 70% set of data is used

for training and 30% set of data is used for validation. Also, after classifica-

tion we find the most value of correlation coefficient i.e. 0.9857 and the low

value of error in the form of relative absolute error and root relative squared

error i.e. 0.12 and 0.16 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 27

4.9.4 M5Rules

Figure 4.5: M5Rules result in WEKA

Here we classify 120 instances of the china dataset. We apply the one of

the machine learning technique known as M5 Rules for classification of the

china dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.9921 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.10 and 0.12 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 28

4.9.5 Multilayer Perceptron

Figure 4.6: Multilayer Perceptron result in WEKA

Here we classify 120 instances of the china dataset. We apply the one of the

machine learning technique known as Multilayer Perceptron for classification

of the china dataset. After classification we find predicted value with respect

to actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.991 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.10 and 0.13 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 29

4.9.6 REP Tree

Figure 4.7: REP Tree result in WEKA

Here we classify 120 instances of the china dataset. We apply the one of

the machine learning technique known as REP Tree for classification of the

china dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.9837 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.14 and 0.19 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 30

4.10 Classification of Albrecht dataset

4.10.1 Linear Regression

Figure 4.8: Linear Regression result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of the

machine learning technique known as linear regression for classification of the

Albrecht dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.9724 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.57 and 0.48 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 31

4.10.2 Bagging

Figure 4.9: Bagging result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of

the machine learning technique known as bagging for classification of the

Albrecht dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.7248 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.64 and 0.80 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 32

4.10.3 KStar

Figure 4.10: KStar result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of the

machine learning technique known as Kstar for classification of the Albrecht

dataset. After classification we find predicted value with respect to actual

value. Here we also apply Percentage split in which 70% set of data is used

for training and 30% set of data is used for validation. Also, after classifica-

tion we find the most value of correlation coefficient i.e. 0.7275 and the low

value of error in the form of relative absolute error and root relative squared

error i.e. 0.74 and 0.88 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 33

4.10.4 M5Rules

Figure 4.11: M5Rules result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of

the machine learning technique known as M5 Rules for classification of the

Albrecht dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.807 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.57 and 0.68 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 34

4.10.5 Multilayer Perceptron

Figure 4.12: Multilayer Perceptron result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of the

machine learning technique known as Multilayer Perceptron for classification

of the Albrecht dataset. After classification we find predicted value with

respect to actual value. Here we also apply Percentage split in which 70%

set of data is used for training and 30% set of data is used for validation.

Also, after classification we find the most value of correlation coefficient i.e.

0.8592 and the low value of error in the form of relative absolute error and

root relative squared error i.e. 0.56 and 0.67 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 4. Research Background 35

4.10.6 REP Tree

Figure 4.13: REP Tree result in WEKA

Here we classify 7 instances of the Albrecht dataset. We apply the one of

the machine learning technique known as REP Tree for classification of the

Albrecht dataset. After classification we find predicted value with respect to

actual value. Here we also apply Percentage split in which 70% set of data

is used for training and 30% set of data is used for validation. Also, after

classification we find the most value of correlation coefficient i.e. 0.4631 and

the low value of error in the form of relative absolute error and root relative

squared error i.e. 0.87 and 0.90 respectively.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5

Results and discussion

We were obtained result after the application of different machine learning

algorithms on the two selected datasets which explained below with the help

of tables and after that, we have explained the result in a detailed discussion

[29].

5.1 Discussion of result with China dataset

Table 5.1: Analysis of result with China dataset
ML Techniques MMRE PRED(25) PRED(50) PRED(75)

Linear Regression 0.225266 0.763527 1 1
Bagging 0.168925 0.866667 0.953333 0.973333
KStar 0.129468 0.908333 0.975 0.991667

M5 Rules 0.123708 0.91984 0.963928 0.97996
Multilayer Perceptron 0.094517 0.958333 1 1

REP Tree 0.205582 0.764706 0.958824 0.970588

36

Chapter 5. Results and discussion 37

Figure 5.1: MMRE values for China dataset

Figure 5.2: PRED(25) values for China dataset

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 38

Figure 5.3: PRED(50) values for China dataset

Figure 5.4: PRED(75) values for China dataset

Here we can see from above evaluation, mean magnitude of relative er-

ror is less for multilayer perceptron and M5 Rules which is 0.094517 and

0.123708 respectively. Also in terms of PRED(prediction) value, MLP and

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 39

M5 Rules give good result compared to other techniques having the maximum

PRED(25) Value of 0.958333 and 0.91984, and also PRED(50) & PRED(75)

value is 1 for MLP and PRED(50) & PRED(75) value are 0.963928 and

0.97996 for M5 Rule respectively. We know that for best accuracy, MMRE

should be minimum and PRED(x) should be maximum. Hence on the basis

of above result MMRE for multilayer perceptron is very low and Prediction

is maximum, compare to other ML technique for China dataset. So multi-

layer perceptron is best ML technique for software effort prediction on china

dataset. M5 Rules is also better ML technique which gives less MMRE and

more PRED but not better than multilayer perceptron.

5.2 Discussion of result with Albrecht dataset

Table 5.2: Analysis of result with Albrecht dataset
ML Techniques MMRE PRED(25) PRED(50) PRED(75)

Linear Regression 0.544157 0.428571 0.428571 0.571429
Bagging 0.314408 0.571429 0.714286 0.857143
KStar 0.344807 0.428571 0.714286 1

M5 Rules 0.349732 0.571429 0.714286 0.857143
Multilayer Perceptron 0.378093 0.285714 0.714286 1

REP Tree 0.31212 0.428571 0.714286 0.857143

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 40

Figure 5.5: MMRE values for Albrecht dataset

Figure 5.6: PRED(25) values for Albrecht dataset

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 41

Figure 5.7: PRED(50) values for Albrecht dataset

Figure 5.8: PRED(75) values for Albrecht dataset

Here we can see from above evaluation, mean magnitude of relative error

is less for REP Tree and Bagging which is 0.31212and 0.314408 respectively.

Also in terms of PRED(prediction) value, REP Tree and Bagging give good

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 42

result compared to other techniques having the maximum PRED(25) Value of

0.428571 and 0.571429, and also PRED(50) & PRED(75) value are 0.714286

and 0.857143 for REP Tree and PRED(50) & PRED(75) value are 0.714286

and 0.857143 for Bagging respectively. We know that for best accuracy,

MMRE should be minimum and PRED(x) should be maximum. Hence on

the basis of above result MMRE for REP Tree is very low and Prediction

is maximum, compare to other ML technique for Albrecht dataset. So REP

Tree is best ML technique for software effort prediction on Albrecht dataset.

Bagging is also better ML technique which gives less MMRE and more PRED

but not better than REP Tree.

5.3 Threats to validity

If we perform empirical analysis, it is very essential to consider the various

threats to validity of the obtained results and conclusion [30]. So it can be,

the possible source of bias to the results of the study is threats. This section

express the various threats to validity of the study.

5.3.1 Threats to internal validity

The threats to internal validity comes with the causal effect of the indepen-

dent variable on effort proneness attribute. In order to determine this effect,

it is necessary to perform experiment where the independent variable are

controlled to examine the causal effect on effort attribute. But it is very

difficult to perform this experiment. Hence, our study was not to find the

cause effect. So this threat exists in this study.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 5. Results and discussion 43

5.3.2 Threats to External validity

External validity takes into account the degree to which the outcome of the

study are generalizable. As our study deals with the in-built machine learn-

ing algorithms of WEKA, the results would be easily acceptable. Also, the

data-set is from open source repository which would help the replication of

the study. However the result should be verified on other data mining tool

like WEKA so that generalizability of the outcomes could be improved.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

Chapter 6

Conclusion and Future Work

After examining the results with different datasets with the help of table

and bar graph and using different machine learning techniques on original

datasets, it can be inferred that the different datasets shown changed out-

comes with altered techniques. The outcome that comes out depends on the

data type to a great extent. Also, we can deduce that multilayer perceptron

has shown good performance for China dataset and REP Tree shown for

Albrecht dataset. So, as per our research Multilayer perceptron and REP

Tree is good for estimating the software effort. The MMRE value of multi-

layer perceptron for China dataset and REP Tree for Albrecht dataset are

0.094517 and 0.31212 respectively.

In the future, we can perform this entire study for some software used

in industry. Also, we can use evolutionary algorithms or techniques like a

genetic algorithm, particle swarm optimization and bacterial foraging on the

same data and check out whether there is any improvement shown in per-

formance or not. We can also check out whether our project is economically

feasible or not by estimating the cost based on predicted effort.

44

References

[1] I. F. de Barcelos Tronto, J. D. S. da Silva, and N. SantAnna, “An inves-

tigation of artificial neural networks based prediction systems in soft-

ware project management,” Journal of Systems and Software, vol. 81,

no. 3, 2008.

[2] A. R. Gray, S. G. MacDonell, and M. J. Shepperd, “Factors systemat-

ically associated with errors in subjective estimates of software devel-

opment effort: The stability of expert judgment,” in Proceedings Sixth

International Software Metrics Symposium (Cat. No.PR00403), 1999.

[3] R. Malhotra and A. Jain, “Software Effort Prediction using Statistical

and Machine Learning Methods,” International Journal of Advanced

Computer Science and Applications(IJACSA), vol. 2, no. 1, 2011.

[4] G. H. Subramanian, P. C. Pendharkar, and M. Wallace, “An empirical

study of the effect of complexity, platform, and program type on soft-

ware development effort of business applications,” Empirical Software

Engineering, vol. 11, no. 4, 2006.

[5] R. K. Smith, J. E. Hale, and A. S. Parrish, “An empirical study using

task assignment patterns to improve the accuracy of software effort es-

timation,” IEEE Transactions on Software Engineering, vol. 27, no. 3,

2001.

[6] N.-H. Chiu and S.-J. Huang, “The adjusted analogy-based software

effort estimation based on similarity distances,” Journal of Systems

and Software, vol. 80, no. 4, 2007.

45

References 46

[7] A. Tosun, B. Turhan, and A. B. Bener, “Feature weighting heuristics

for analogy-based effort estimation models,” Expert Systems with Ap-

plications, vol. 36, no. 7, 2009.

[8] G. Finnie, G. Wittig, and J.-M. Desharnais, “A comparison of soft-

ware effort estimation techniques: Using function points with neural

networks, case-based reasoning and regression models,” Journal of Sys-

tems and Software, vol. 39, no. 3, 1997.

[9] G. R. Finnie and G. E. Wittig, “Ai tools for software development effort

estimation,” in Proceedings of the 1996 International Conference on

Software Engineering: Education and Practice (SE:EP ’96), ser. SEEP

’96, Washington, DC, USA: IEEE Computer Society, 1996.

[10] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, “An empirical study

of predicting software faults with case-based reasoning,” Software Qual-

ity Journal, vol. 14, no. 2, 2006.

[11] M. O. Elish, “Improved estimation of software project effort using mul-

tiple additive regression trees,” Expert Syst. Appl., vol. 36, no. 7, Sep.

2009.

[12] C. J. Burgess and M. Lefley, “Can genetic programming improve soft-

ware effort estimation? a comparative evaluation,” Information and

Software Technology, vol. 43, no. 14, 2001.

[13] P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, “Software effort

estimation using machine learning techniques with robust confidence

intervals,” in 19th IEEE International Conference on Tools with Arti-

ficial Intelligence(ICTAI 2007), vol. 1, 2007.

[14] C. L. Martin, J. L. Pasquier, C. M. Yanez, and A. G. Tornes, “Software

development effort estimation using fuzzy logic: A case study,” in Sixth

Mexican International Conference on Computer Science (ENC’05), 2005.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

References 47

[15] S. Bibi and I. Stamelos, “Selecting the appropriate machine learning

techniques for the prediction of software development costs,” in Arti-

ficial Intelligence Applications and Innovations: 3rd IFIP Conference

on Artificial Intelligence Applications and Innovations (AIAI) 2006,

June 7–9, 2006, Athens, Greece, I. Maglogiannis, K. Karpouzis, and

M. Bramer, Eds. Boston, MA: Springer US, 2006.

[16] J. J. C. Gallego, D. Rodŕıguez, M. Á. Sicilia, M. G. Rubio, and A. G.

Crespo, “Software project effort estimation based on multiple paramet-

ric models generated through data clustering,” Journal of Computer

Science and Technology, vol. 22, no. 3, 2007.

[17] P. C. Pendharkar, “Probabilistic estimation of software size and effort,”

Expert Syst. Appl., vol. 37, no. 6, Jun. 2010.

[18] L. Radlinski and W. Hoffmann, “On predicting software development

effort using machine learning techniques and local data on predicting

software development effort using machine learning techniques and lo-

cal data,” Jul. 2017.

[19] M. Bisi and N. K. Goyal, “Software development efforts prediction

using artificial neural network,” IET Software, vol. 10, no. 3, 2016.

[20] R. Malhotra, A. Kaur, and Y. Singh, “Application of machine learning

methods for software effort prediction,” SIGSOFT Softw. Eng. Notes,

vol. 35, no. 3, May 2010.

[21] J. F. Hair Jr., R. E. Anderson, R. L. Tatham, and W. C. Black, Multi-

variate Data Analysis (4th Ed.): With Readings. Upper Saddle River,

NJ, USA: Prentice-Hall, Inc., 1995.

[22] R. Pincus, “Barnett, v., and lewis t.: Outliers in statistical data. 3rd

edition. j. wiley & sons 1994, xvii. 582 pp., 49.95,” Biometrical Journal,

vol. 37, no. 2, 1995.

[23] K. Srinivasan and D. Fisher, “Machine learning approaches to esti-

mating software development effort,” IEEE Transactions on Software

Engineering, vol. 21, no. 2, 1995.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

References 48

[24] E. N. Regolin, G. A. de Souza, A. R. T. Pozo, and S. R. Vergilio, “Ex-

ploring machine learning techniques for software size estimation,” in

23rd International Conference of the Chilean Computer Science Soci-

ety, 2003. SCCC 2003. Proceedings., 2003.

[25] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,

1996.

[26] Weka 3 - data mining with open source machine learning software in

java, http : / / www . cs . waikato . ac . nz / ml / weka/, (Accessed on

07/20/2017).

[27] M. A. Hall, “Correlation-based feature selection for discrete and nu-

meric class machine learning,” in Proceedings of the Seventeenth Inter-

national Conference on Machine Learning, ser. ICML ’00, San Fran-

cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000.

[28] G. BOETTICHER, “The promise repository of empirical software en-

gineering data,” http://promisedata.org/repository, 2007.

[29] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-

oriented metrics for predicting fault proneness models,” Software qual-

ity journal, vol. 18, no. 1, 2010.

[30] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.

Wesslén, Experimentation in Software Engineering: An Introduction.

Norwell, MA, USA: Kluwer Academic Publishers, 2000.

Chandan Yadav “Software Effort Prediction using Machine Learning Techniques”, 2017

