A

M.TECH.

MAJOR PROJECT

On

Wind Load Analysis Of High Rise Building With And Without Shear Wall And Its Comparisons

Submitted by:

RAJ KUMAR VARMA

(2K15/STE/16)

M.Tech

(Structural Engineering)

Under the guidance of

Dr. Ritu Raj

Assistant Professor

Department of Civil Engineering Delhi Technological University

CANDIDATE'S DECLARATION

I hereby declare that the project work entitled "Wind Load Analysis Of High Rise Building With And Without Shear Wall And Its Comparisons" submitted to Department of Civil Engineering, DTU is a record of an original work done by **Raj Kumar Varma** under the guidance of **Dr. Ritu Raj**, Assistant Professor, Department of Civil Engineering, DTU, and this project work has not performed the basis for the award of any Degree or diploma/fellowship and similar project, if any.

> Raj Kumar Varma (2K15/STE/16)

Department of Civil Engineering Delhi Technological University

CERTIFICATE

This is to certify that the project entitled "Wind Load Analysis Of High Rise Building With And Without Shear Wall And Its Comparisons" submitted by Raj Kumar Varma, in partial fulfillment of the requirements for award of the degree of MASTERS OF TECHNOLOGY (STRUCTURAL ENGINEERING) to Delhi Technical University is the record of student's own work and was carried out under my supervision.

Date:

(**Dr. Ritu Raj**) Assistant Professor, CED , D.T.U.

Department of Civil Engineering

Delhi Technological University

ACKNOWLEDGEMENT

I would like to express my deepest appreciations to **Dr. Ritu Raj**, Assistant Professor, Department of Civil Engineering, Delhi Technological University (DTU), India, for his stimulating guidance, continuous encouragement, insightful comments and constructive suggestions to improve the quality of this project work and supervision throughout the course of present work.

I also express my sincere gratitude to the faculty of Civil Engineering Department, Delhi Technological University (DTU), for their valuable suggestions for improving the project work and to all my well-wishers and friends for offering their helpful hands.

Last but not least, I would like to pay sincere thanks to my mother, Mrs. Usha Varma & my father, Mr. Kalyan Singh Varma, for their constant blessings in conducting this work, without their love, affection and moral support, it would have been impossible to accomplish the job.

•

(Raj Kumar Varma)

ABSTRACT

Indian standard code IS 875(part-3)-1987 gives the specifications for wind load analysis on the different structures. The analysis is based on various steps provided for wind pressure intensity, wind load calculation by wind coefficients. Behavior of building by the wind pressure is dependent on the angle on which the wind is striking the structure.

Wind load is dangerous for the high rise building ,hence various techniques are used to reduce its effects. Shear wall is a good option for this, which is effected up to approximate 70 stories. It is expected in this study that a shear walled structure will show the better result and stability against normal building without shear wall.

This study compares the performance of buildings with and without shear wall in terms of deflection of at the different stories and various parameters. As a case study, a 40 storey building designed for Gravity loads(dead load +live load) as well as lateral load (wind load) as per IS:875(part-3)-1987 for wind zone IV is considered. This paper also provides other important conclusions on wind load design provisions and shear wall specifications.

TABLE OF CONTENTS

CANDIDATE'S DECLARATION	i
CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
Table Of Contents	V
LIST OF FIGURES	vii
LIST OF TABLES	vii
1. INTRODUCTION	1
1.1 General	
1.2 Goal	
1.2.1 Specific objective	
1.2.2 Experimental Study Plan	
1.2.3 Layout	
2. LITERATURE REVIEW	3
2.1 General	
2.2 High Rise Building	
2.3 Wind	
2.3.1 Variation of wind velocity with height	
2.3.2 WIND ZONES IN INDIA	
2.3.3 Wind load on high rise building	
2.4 Shear Wall	
2.4.1 Types Of Shear Wall	
2.4.2 Functions of shear wall	
2.4.3 Advantages of shear wall	
2.4.4 Disadvantages of shear wall	
2.4.5 Deflection and its pattern with shear wall	
2.5 Tall Building With Shear Wall	
2.6 Wind load on high rise building with shear wall	
2.7 Codal Provision	
2.7.1 AS/NZS 1170.2:2011	
2.7.2 SEI/ASCE 7-02	
2.7.3 EN 1991-1-4:2005+A 1	
2.7.4 IS 875(Part-3)-1987	
2.7.5 IS 456-2000	
2.7.6 IS 1893(Part-1)-2002	
2.7.7 IS 13920-1993	
3. METHODOLOGY	14
3.1 Aim of the work	
3.2 Methodology Of The Work	
3.3 Building Details	10
4. MODELLING AND ANALYSIS	19
4.1 Pressure Intensity Value Calculation	
4.2ANALYSIS OF HIGH RISE BUILDING WITHOUT SHEAR WALL	
4.2.1 Modeling Using Staad-Pro	
4.2.3 Analysis	

	4.2.4 RESULTS FROM THE ANALYSIS	
	4.2.4.1 BEAM DESIGN RESULTS	
	4.2.4.2 COLUMN DESIGN RESULTS	
	4.2.4.3 QUANTITY OF CONCRETE	
	4.2.4.4 REACTION LOAD, DEFLECTION, SLOPE RESULTS	
	4.2.4.5 RESULTS (STAAD-PRO)	
	4.2.4.6REPORT FILE BY STAD PRO	
	4.2.5ANALYSIS OF HIGH RISE BUILDING WITH SHEAR WALL	
	4.2.5.1 Modeling Using Stad-Pro	
	4.2.5.2 Analysis	
	4.2.5.3 RESULTS	
	4.2.5.4 RESULTS (STAAD-PRO)	
	4.2.5.5 REPORT FILE BY STAD-PRO	
5.	COMPARISONS OF RESULTS AND DISCUSSIONS	43
	5.1 General	
	5.2 Shear Wall Effect On Deflection	
	5.3 DEFLECTION RESULTS IN BOTH ANALYSIS	
	5.4 Future Scope	
6.	CONCLUSIONS	46
RE	FERENCES	47

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
2.1	Wind (types, characteristics and cause)	4
2.2	Wind behaviour	5
2.3	Map of India showing the wind zones	6
2.4	Reinforced concrete shear wall with both horizontal and vertical reinforcement	7
2.5	Functions of shear wall	8
2.6	Location of shear wall	9
2.7	Shear wall–frame Interaction	10
2.8	Structure with frame and shear core under wind loading	11
4.1	Graph of Intensity vs Height of Building	20
4.2	Front view of the building	21
4.3	3D Model of building without shear wall	22
4.4	Deflected shape	26
4.5	Deflection Result of a node(224) in envelope1(DL+LL+WL)	27
4.6	Moment Diagram of the building	28
4.7	Beam Results Graph (Beam No. 238)	29
4.8	Front View Of The Building With Shear Wall	33
4.9	3D view of building	34
4.10	Deflected Shape	36
4.11	Deflection Result of a Node(224) In Envelop 1(DL+LL+WL)	37
4.12	Moment Diagram Of The Building	38
4.13	Reaction Force At Supports (Node 1)	39
4.14	Beam Result Graph (Beam No. 238)	40
5.1	Graph of Deflection At Different Stories	43

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
2.1	Wind zones and Basic wind speed	5
3.1	K ₁ Factor Value	15
3.2	K ₂ Factor Value	16
4.1	Intensity vs Height Table	19
5.1	Deflection Values comparison	44

This page intentionally left blank

CHAPTER 1

INTRODUCTION

1.1 General

The necessity of high rise building in urban areas is to minimize the land requirements. The wind force acts on high rise building structure very high compared to low rise building. Worldwide as it's necessity has increased hence the various code are adopted in different country to analyse and design of high rise structure.

According national building code 2005 of India, the building of height more than 15 m is called high rise building.

Many techniques are used to minimize the wind effect on high rise building like Rigid frames, braced hinge frame, Shear wall /hinged frame, Outrigger Structures.

Shear wall / Rigid frame of the concrete shear wall and concrete frame is effective up to 70 stories. It creates shear wall-frame interaction that resist the lateral load by wind or earthquake.

The main objective of every structural system is to transfer gravity load to the foundation of building. Dead load and live load are the primary load created from the gravity effect. The lateral loads like wind or earthquake also affects the building other than this dead and live load. High stresses are developed due to these lateral loads and also these create sway movement and cause vibration in the structure. Therefore, the building must have sufficient strength and stiffness to encounter the vertical loads and lateral loads respectively.

1.2 Goal

Analysis of two 40 stories building with and without shear wall by the STADD-PRO software and their comparison.

There are two 40-stories tall building, and as the policy of construction of building is toward the vertical accommodation, so building would be helpful to approach this goal. The building has two transverse main walls with the angle of 90°. It seems that this kind of architectural configuration is due to aesthetic considerations.

1.2.1 Specific Objectives

The primary objective of this study is to analyse the building with and without shear wall and compare the results of deflection and other parameters. In the analysis frame elements were used instead of plane stress elements in analysis and modelling of shear walls to reduce the time requirements and to increase the performance of the building.

1.2.2 Experimental Study Plan

Dead load and live load have been taken as per IS 875 (Part 1) (1987) and IS 875 (Part 2) (1987) respectively. Wind load calculation has been done based on the IS 875 (Part 3) (1987). Analysis is being done by STAD-PRO by providing adequate material properties and dimension as per the required building standard.

1.2.3 Layout

This study report is summarized in total 6 chapters, each chapter deals with specific objective and divided according to specific work area. Chapter 1 gives the general information and introduction about the work also about the objective and procedure. Chapter 2 is about the literature work, terms used in the study and work of the previous studies. Chapter 3 deals with the methodology adopted for analyzing the structure and also about the detailing of the problem. Chapter 4 gives the modelling done in STAAD-PRO software and analysis separately of both buildings and about the results obtained from the analysis. Chapter 5 is about the comparisons of the results obtained from chapter 4 and a discussion is also made to discuss the results. Chapter 6 is concluded the whole study work.

CHAPTER 2

LITERATURE REVIEW

2.1 General

The elevator and the introduction of structural steel, towers and skyscrapers have continued to soar skyward, where they are buffeted in the wind's complex environment. Unfortunately, these advances in height are often accompanied by increased flexibility and a lack of sufficient inherent damping, increasing their susceptibility to the actions of wind. While major innovations in structural systems have permitted the increased lateral loads to be efficiently carried, the dynamic nature of wind is still a factor, causing discomfort to building occupants and posing serious serviceability issues. The next generation of tall buildings research has been devoted in part to the mitigation of such wind-induced motions via global design modifications to the structural system.

2.2 High Rise Building

Emporis Standards defines a high-rise as "A multi-story structure between 35–100 meters tall, or a building of unknown height from 12–39 floors." According to the building code of Hyderabad, India, a high-rise building is one with four floors or more, or 15 to 18 meters or more in height.

Three Generations of High-Rise Buildings:

Since the first appearance of high-rise buildings, there has been a transformation in their design and construction. This has culminated in glass, steel, and concrete structures in the international and postmodernist styles of architecture prevalent today.

First Generation

The exterior walls of these buildings consisted of stone or brick, although sometimes cast iron was added for decorative purposes. The columns were constructed of cast iron, often unprotected; steel and wrought iron was used for the beams; and the floors were made of wood. "In a fire, the floors tend to collapse, and the iron frame loses strength and implodes." 38 Elevator shafts were often unenclosed. The only means of escape from a floor was through a single stairway usually protected at each level by a metal-plated wooden door. There were no standards for the protection of steel used in the construction of these high-rises.

Second Generation

The second generation of tall buildings, which includes the Metropolitan Life Building (1909), the Woolworth Building (1913), and the Empire State Building (1931), are frame structures, in which a skeleton of welded- or riveted-steel columns and beams, often encased in concrete, runs through the entire building. This type of construction makes for

an extremely strong structure, but not such attractive floor space. The interiors are full of heavy, load-bearing columns and walls.

Third Generation

Buildings constructed from after World War II until today make up the most recent generation of high-rise buildings. Within this generation there are those of steel-framed construction (core construction and tube construction), reinforced concrete construction, and steel-framed reinforced concrete construction.

Techniques to reduce the effects of wind/earthquake load on high rise building:

2.3 Wind

Wind is essentially the large scale Horizontal movement of free air. It plays an important role in design of tall structures because it exerts loads on Building. Wind means the horizontal motion of air in the atmosphere. The response of structure to wind depends on the characteristics of the wind.

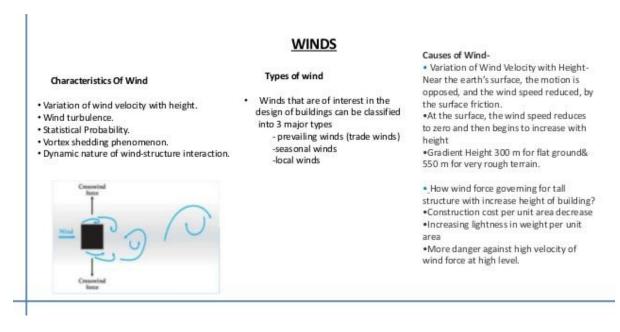


Fig 2.1- Wind (types, characteristics and cause)

2.3.1 Variation of wind velocity with height

Near the earth's surface, the motion is opposed and wind speed is reduced by the surface friction. At the surface wind speed reduces to zero and then begins to increase as the height increases and at some height (gradient height), the motion is to be considered to be free from earth's frictional influence and attains its gradient velocity.

Gradient Height- 300m for flat ground,

550m for very rough terrain.

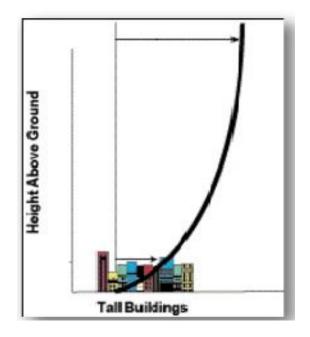


Fig 2.2-Wind behaviour

2.3.2 WIND ZONES IN INDIA

There are 6 wind zones in India as follows:

Table-2.1- Wind	zones and Basic	wind speed
-----------------	-----------------	------------

ZONE	BASIC WIND SPEED
1	33
11	39
111	44
IV	47
V	50
VI	55

These zones are defined by the meteorological department of india as shown in map of India:

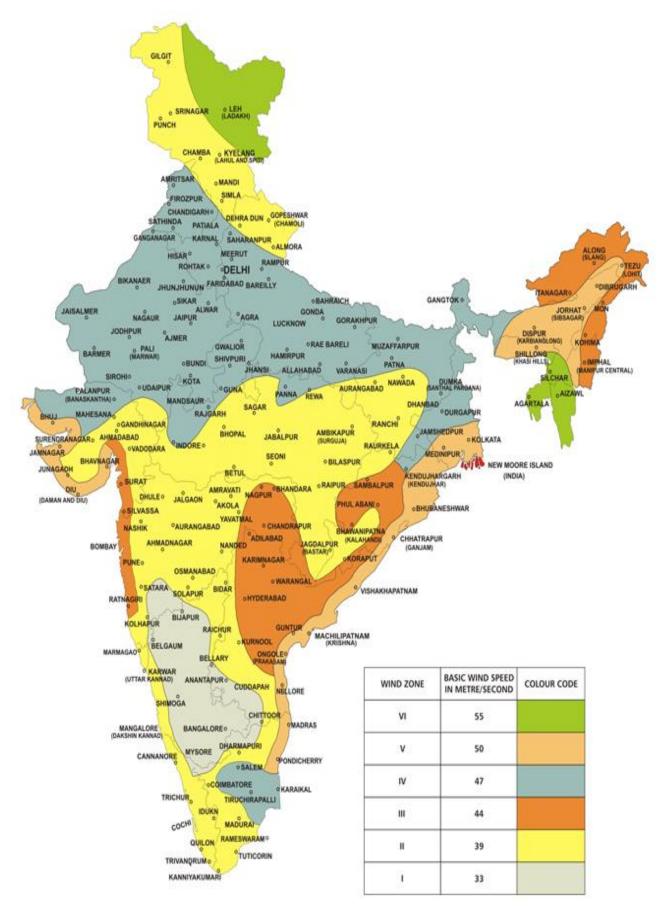


Fig 2.3- Map of India showing the wind zones

2.3.3 Wind load on high rise building

Wind forces are studied on four main groups of building structures:-

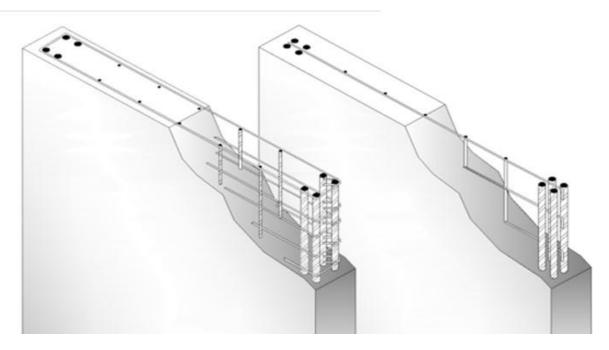
i. Tall Buildings
ii. Low Buildings
iii. Equal-Sided Block Buildings
iv. Roofs and Cladding

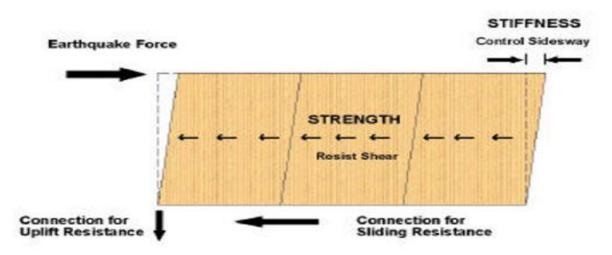
Almost no investigations are made in the first two categories as the structure failures are rare, even the roofing and the cladding designs are not carefully designed, and localized wind pressures and suctions are receiving more attention. But as Tall buildings are flexible and are susceptible to vibrate at high wind speeds in all the three directions(x, y, and z) and even the building codes do not incorporate the expected maximum wind speed for the life of the building and does not consider the high local suctions which cause the first damage. Due to all these facts the Wind Load estimation for Tall Buildings are very much important. (International Journal of Advances in Engineering & Technology, Sept. 2013).

2.4 Shear Wall

In structural engineering a shear wall is a structural system composed of braced panels (also known as shear panels) to counter the effects of lateral loads acting on a structure, these are vertically oriented wide walls of width varies from 150 to 400mm in high rise building.

The most common shear wall is the concrete wall structure reinforced with both horizontal and vertical reinforcement (Figure 4). A reinforcement ratio is defined as the ratio of the gross concrete area for a section taken orthogonal to the reinforcement.




Fig 2.4-Reinforced concrete shear wall with both horizontal and vertical reinforcement

2.4.1 Types Of Shear Wall

Shear walls are classified into different types. They are coupled shear wall, core type shear wall, column support shear wall, frame wall with infill frame, rigid frame shear wall etc.

2.4.2 Functions of shear wall

- Shear wall mainly resists two types of forces: shear forces and uplift forces. To resist the horizontal earthquake/wind forces, shear wall should provide the necessary lateral strength and to prevent the roof or floor above from excessive side-sway, shear walls also should provide lateral stiffness.
- Shear wall transfers the wind / earthquake load to the bottom of foundation.

TWO FUNCTIONS OF A SHEAR WALL

Fig 2.5- Functions of shear wall

2.4.3 Advantages of shear wall

- Effectively resists lateral loads by producing shear truss frame interacting system.
- It provides large stiffness and strength.
- Symmetric location of shear wall along the perimeter of building is desirable.

2.4.4 Disadvantages of shear wall

- Interior planning limitations due to shear trusses.
- Unsymmetrical location of shear wall along the perimeter of building is not desirable.
- The opening provided in shear wall should be symmetrical.
- Shear wall is effective only when it is located along the perimeter not interior.

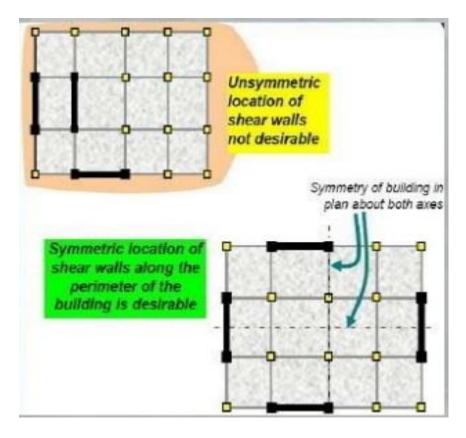
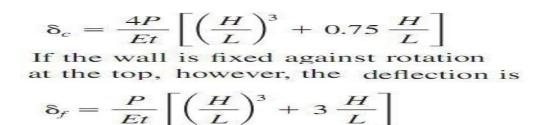


Fig 2.6- Location of shear wall


2.4.5 Deflection and its pattern with shear wall

Horizontal deflections in the planes of shear walls can be computed on the assumption that they act as cantilevers.

For a shear wall (Fig) the deflection in its plane induced by a load in its plane is the sum of the flexural deflection as a cantilever and the deflection due to shear. Thus, for a wall with solid rectangular cross section, the deflection at the top due to uniform load is

$$\delta = \frac{1.5wH}{Et} \left[\left(\frac{H}{L} \right)^3 + \frac{H}{L} \right]$$

where w=uniform lateral load H = height of the wall E = modulus of elasticity of the wall material t = wall thickness L = length of wall For a shear wall with a concentrated load P at the top, the deflection at the top is :

<u>Pattern</u> →

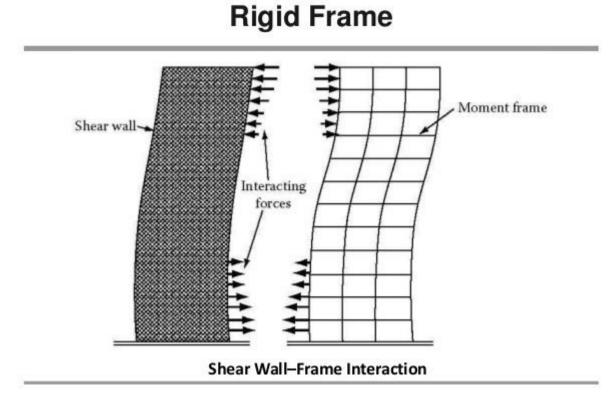
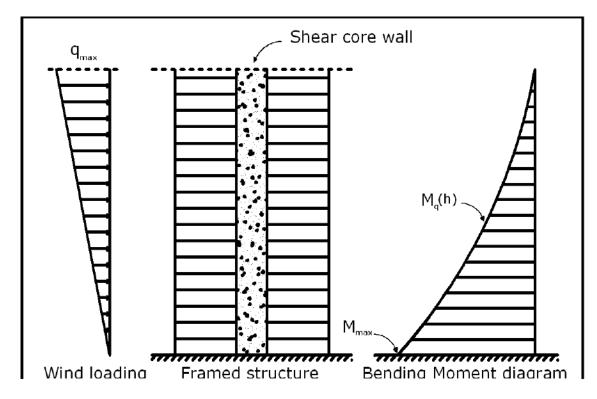


Fig 2.7- Shear wall-frame Interaction


2.5 Tall Building With Shear Wall

Shear walls are easy to construct, because reinforcement detailing of walls is relatively straight-forward and therefore easily implemented at site. Shear walls are efficient, both in terms of construction cost and effectiveness in minimizing earthquake damage in structural and nonstructural elements (like glass windows and building contents). Most RC buildings with shear walls also have columns; these columns primarily carry gravity loads (i.e., those due to self-weight and contents of building). Shear walls provide large strength and stiffness to buildings in the direction of their orientation, which significantly reduces lateral sway of the building and thereby reduces damage to structure and its contents.

Since shear walls carry large horizontal wind forces, the overturning effects on them are large. Thus, design of their foundations requires special attention. Shear walls should be provided along preferably both length and width. However, if they are provided only along one direction, a proper grid of beams and columns in the vertical plane (called a moment-resistant frame) must be provided along the other direction to resist strong wind actions.

Shear walls in buildings must be symmetrically located in plan to reduce illeffects of twist in buildings. They could be placed symmetrically along one or both directions in plan. Shear walls are more effective when located along exterior perimeter of the building –such a layout increases resistance of the building to twisting

Where shear walls are connected by a rigid diaphragm so that they must deflect equally under horizontal load, the proportion of total horizontal load at any story or level carried by a perpendicular shear wall is based on its relative rigidity or stiffness. The rigidity of a shear wall is inversely proportional to its deflection under unit horizontal load. The total deflection of the shear wall can be determined from the sum of the shear and moment deflections.

2.6 Wind load on high rise building with shear wall

Fig 2.8- Structure with frame and shear core under wind loading (left) and the bending moment diagram of the concrete core (right)

2.7 Codal Provision

In the different countries, different codes are adopted to design shear wall structure system and wind load consideration and its specification. Some important code details are included for the current study, these are as follows:

2.7.1 AS/NZS 1170.2:2011

This Standard was prepared by the Joint Standards Australia/Standards New Zealand Committee, BD-006, General Design Requirements and Loading on Structures, to supersede AS/NZS 1170.2:2002.

The objective of this Standard is to provide wind actions for use in the design of structures subject to wind action. It provides a detailed procedure for the determination of wind actions on structures, varying from those less sensitive to wind action to those for which dynamic response must be taken into consideration.

The objectives of this revision are to remove ambiguities, to incorporate recent research and experiences from recent severe wind events in Australia and New Zealand.

2.7.2 SEI/ASCE 7-02

This revision of the ASCE Standard Minimum Design Loads for Buildings and Other Structures is a replacement of ASCE 7 -98. This Standard provides requirements for dead, live, soil, flood, wind, snow, rain, ice, and earthquake loads, and their combinations that are suitable for inclusion in building codes and other documents.

Substantial changes were made to the wind, snow, earthquake, and ice provisions. In addition, substantial new material was added regarding the determination of flood loads. The structural loading requirements provided by this Standard are intended for use by architects, structural engineers, and those engaged in preparing and administering local building codes.

2.7.3 EN 1991-1-4:2005+A 1

EN 1991-1-4 gives guidance on the determination of natural wind actions for the structural design of building and civil engineering works for each of the loaded areas under consideration. This includes the whole structure or parts of the structure or elements attached to the structure, e. g. components, cladding units and their fixings, safety and noise barriers.

This part is intended to predict characteristic wind actions on land-based structures, their components and appendages.

Certain aspects necessary to determine wind actions on a structure are dependent on the location and on the availability and quality of meteorological data, the type of terrain, etc. These need to be provided in the National Annex and Annex A, through National choice by notes in the text as indicated.

Default values and methods are given in the main text, where the National Annex does not provide information.

2.7.4 IS 875(Part-3)-1987

This Part (Part 3) deals with wind load to be considered when designing buildings, structures and components thereof. In this revision, many important modifications have been made from those covered in the 1964 version of IS :875

This standard gives wind forces and their effects (static and dynamic) that should he taken into account when designing buildings, structures and components thereof.

2.7.5 IS 456-2000

This standard was first published in 1953 under the title 'Code of practice for plain and reinforced concrete for general building construction' and subsequently revised in 1957. The code was further revised in 1964 and published under modified title 'Code of practice for plain and reinforced concrete', thus enlarging the scope of use of this code to structures other than general building construction also. The third revision was published in 1978, and it included limit state approach to design. This is the fourth revision of the standard. This revision was taken up with a view to keeping abreast with the rapid development in the field of concrete technology and to bring in further modifications/improvements in the light of experience gained while using the earlier version of the standard.

2.7.6 IS 1893(Part-1)-2002

Part 1 contains provisions that are general in nature and applicable to all structures. Also, it contains provisions that are specific to buildings only. Unless stated otherwise, the provisions in Parts 2 to 5 shall be read necessarily in conjunction with the general provisions in Part 1.

2.7.7 IS 13920-1993

Whilst the common methods of design and construction have been covered in this code, special systems of design and construction of any plain or reinforced concrete structure not covered by this code may be permitted on production of satisfactory evidence regarding their adequacy for seismic performance by analysis or tests or both.

CHAPTER 3

METHODOLOGY

3.1 Aim of the work

Analysis is being done by STAD-PRO by providing adequate material properties and dimension as per the required building standard.

The aim of the project is to briefly know about the shear wall concepts and structural concepts through computer aid STAAD-PRO software and the previous study and theory. Briefly I have gone through following points through out of the project work-

- Understanding of design and detailing concept.
- Main objective i.e. using STAAD-Pro software for the analysis of wind load and shear wall.
- Learning of analysis and design methodology which can be very useful in the field.
- \circ $\;$ Understanding of wind load design concept on the building.
- Approach for professional practice in the field of structural engineering.

3.2 Methodology Of The Work

 The whole analysis is done by the STAAD-PRO.V8i software, in which pressure intensity at different height of the building is predefined for the American code ASCE-07, but not for any other code. This analysis is done on the basis of Indian standard code IS-875(part-3) for which the intensity values were calculated through the codal provisions as: 5.3 Design Wind Speed (V_z) — The basic wind speed (V_b) for any site shall be obtained from Fig. 1 and shall be modified to include the following effects to get design wind velocity at any height (V_z) for the chosen structure:

- a) Risk level;
- b) Terrain roughness, height and size of structure; and
- c) Local topography.
- It can be mathematically expressed as follows:

$$V_{z} = V_{b} k_{1} k_{2} k_{3}$$

where

- $V_z = \text{design wind speed at any height} z \text{ in m/s;}$
- $k_1 = \text{probability factor (risk coefficient)} (see 5.3.1);$
- $k_2 = \text{terrain}$, height and structure size factor (see 5.3.2); and
- $k_3 = \text{topography factor} (\text{ see 5.3.3}).$

clause 5.3.1

5.3.1 Risk Coefficient (k_1 Factor) — Figure 1 gives basic wind speeds for terrain Category 2 as applicable at 10 m above ground level based on 50 years mean return period. The suggested life period to be assumed in design and the corresponding k_1 factors for different class of structures for the purpose of design is given in Table 1. In the design of all buildings and structures, a regional basic wind speed having a mean return period of 50 years shall be used except as specified in the note of Table 1.

TABLE-3.1K1 Factor Value

TABLE 1 RISK COEFFICIENTS FOR DIFFERENT CLASSES OF STRUCTURES IN DIFFERENT WIND SPEED ZONES

{ Classer 5.3.1 }

CLASS OF STRUCTURE	MEAN PROPABLE Design Lipe of Structure in	k. FACTOR FOR BASIC WIND SPEED (m/s) OF					
	YEARS	\$3	39	44	47	50	55
All general buildings and structures	50	-1.0	1.0	1.0	1.0	1.0	1.0
Temporary sheds, structures such as those used during construction operations (for example, form- work and falsework), structures during construction stages and boundary walls	5	0-92	0-76	0.73	0-71	0-70	0-67
Buildings and structures presenting a low degree of hazard to life and property in the event of failure, such as isolated towers in wooded areas, farm buildings, other than residencial buildings.	25	0-94	0-92	0.91	0-90	0.90	0.89
Important buildings and structures such as hospitals communication buildings / towers, power plant structures	200	1.02	1-06	1.02	1-07	1.08	1-08

Clause 5.3.2 From IS-875(part-3),

TABLE- 3.2K2 Factor Value

EIGHT	TEBRAIN CATEGORY 1 CLASS			TERBAIN CATEGORY 2 CLASS		TERBAIN CATEGORY 3 Class			TERBAIN CATEGORY 4 CLASS			
m	A	B	C	A	В	C	A	B	c	A	В	C
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
10	1.02	1.03	0.99	1.00	0.98	0.93	0.91	0.88	0.85	0.80	0.76	0.67
15	1.03	1.07	1.03	1.02	1.02	0.97	0.97	0.94	0.87	0.80	0.76	0.67
20	1.12	1.10	1.06	1.07	1.02	1.00	1.01	0.98	0.91	0.80	0.76	0.67
30	1.12	1.13	1.09	1.15	1.10	1.04	1.06	1.03	0.96	0.97	0.93	0.83
50	1.50	1.18	1.14	1.12	1.12	1.10	1.12	1.09	1.05	1.10	1.02	0.95
100	1.26	1.24	1.50	1.24	1.22	1-17	1.50	1.17	1.10	1.50	1.12	1.02
150	1.30	1.58	1.24	1.58	1.25	1.21	1.54	1.21	1.12	1.24	1.20	1.10
200	1.35	1.30	1.56	1.30	1.58	1.24	1.27	1.24	1.18	1.27	1.22	1.13
250	1.34	1.35	1.58	1.35	1-31	1.26	1.53	1 26	1.50	1.58	1.24	1.16
300	1.32	1.34	1.30	1.34	1 32	1-28	1.31	1.58	1.55	1.30	1.26	1.17
350	1.37	1.32	1.31	1.36	1.34	1.29	1.35	1.30	1.24	1.31	1.27	1.19
400	1.38	1.36	1.32	1.37	1.32	1.30	1.34	1.31	1.25	1.32	1.28	1.20
459	1.39	1.32	1.33	1.38	1.36	1.31	1.35	1.32	1.26	1.33	1.29	1.21
500	1.40	1.38	1.34	1.39	1.37	1.35	1.36	1.33	1.28	1.34	1.30	1.22

TABLE 2 k, FACTORS TO OBTAIN DESIGN WIND SPEED VARIATION WITH HEIGHT IN DIFFERENT TERRAINS FOR DIFFERENT CLASSES OF BUILDINGS/STRUCTURES

NOTE 2 — Intermediate values may be obtained by linear interpolation, if desired. It is permissible to assume constant wind speed between 2 heights for simplicity.

Clause 5.3.3

5.3.3 Topography (k_0 Factor) — The basic wind speed F_b given in Fig. 1 takes account of the general level of site above sea level. This does not allow for local topographic features such as hills, valleys, cliffs, escarpments, or ridges which can significantly affect wind speed in their vicinity. The effect of topography is to accelerate wind near the summits of hills or crests of cliffs, escarpments or ridges and decelerate the wind in valleys or near the foot of cliffs, steep escarpments, or ridges,

Clause 5.3.3.1

5.3.3.1 The effect of topography will be significant at a site when the upwind slope (θ) is greater than about 3^{*}, and below that, the value of k_0 may be taken to be equal to 1-0. The value of k_0 may be taken to be equal to 1-0 to 1-36 for slopes greater than 3^{*}. A method of evaluating the value of k_0 for values greater than 1-0 is given in Appendix C. It may be noted that the value of k_0 varies with height above ground level, at a maximum near the ground, and reducing to 1-0 at higher levels.

Clause 5.4

5.4 Design Wind Pressure — The design wind pressure at any height above mean ground level shall be obtained by the following relationship between wind pressure and wind velocity:

 $p_{2} = 0.6 F_{2}^{2}$

Where, $p_{z_{-}}$ = wind pressure in N/m² V_z= design wind speed in m/s

3.3 Building Details

• In this work following building details are to be considered:

No. of stories=40

Length=24m, each bay @4m

Height=120m, each bay @3m

Width=24m, each bay @4m

Live Load; Area load= 2.5Kn/m^2

Location - Delhi

Wind zone -IV

wind speed =47 m/s

Wind Load; as per the IS-875(Part-3)

Concrete grade M30

Steel grade Fe415

- Risk coefficient $k_1=1.07$ (considered to be an important building with design life = 100 years)
- Terrain Coefficient, k₂= as per the table-2 [Building is to be considered in terrain type-3{surrounding structures are the height of between 10m to 25m} and class-B {glazing or roofing type of structural components having its maximum dimension(horizontal or vertical) between 20 to 50m]
- Topography Factor, k₃=1.0(upwind slope is assumed to be less than 3°)
- For the given structures ,wind pressure is calculated separately(manually) and these values were added in the analysis by staad-pro by providing 80% exposure to the wind.

- To see the effect of wind , a separate envelope of wind load in +X direction was added in the modeling.
- Concrete design as per the IS-800 ,was added in modeling to perform concrete design.
- A comparative analysis is also done after obtaining all results of both buildings ie; with shear wall and without shear wall.

CHAPTER-4

MODELLING AND ANALYSIS

4.1 Pressure Intensity Value Calculation

From the previous chapter of methodology from the IS-875(part-3), the intensity values were calculated for the analysis by STAAD-PRO.

TABLE- 4.1 Intensity vs Height Table

HEIGHT	k1	k2	k3	Vb(m/s)	k1*k2*k3	Vz=k1*k2*k3*Vb(m/s)	
3	1.07	0.84	1	47	0.8988	42.2436	1070.713045
6	1.07	0.85	1	47	0.9095	42.7465	1096.357957
9	1.07	0.87	1	47	0.9309	43.7523	1148.558253
12	1.07	0.9	1	47	0.963	45.261	1229.134873
15	1.07	0.94	1	47	1.0058	47.2726	1340.819226
18	1.07	0.96	1	47	1.0272	48.2784	1398.482344
21	1.07	0.99	1	47	1.0593	49.7871	1487.253196
24	1.07	1.01	1	47	1.0807	50.7929	1547.951214
27	1.07	1.02	1	47	1.0914	51.2958	1578.755459
30	1.07	1.03	1	47	1.1021	51.7987	1609.863193
33	1.07	1.04	1	47	1.1128	52.3016	1641.274418
36	1.07	1.05	1	47	1.1235	52.8045	1672.989132
39	1.07	1.06	1	47	1.1342	53.3074	1705.007337
42	1.07	1.07	1	47	1.1449	53.8103	1737.329032
45	1.07	1.07	1	47	1.1449	53.8103	1737.329032
48	1.07	1.08	1	47	1.1556	54.3132	1769.954217
51	1.07	1.09	1	47	1.1663	54.8161	1802.882892
54	1.07	1.09	1	47	1.1663	54.8161	1802.882892
57	1.07	1.1	1	47	1.177	55.319	1836.115057
60	1.07	1.1	1	47	1.177	55.319	1836.115057
63	1.07	1.11	1	47	1.1877	55.8219	1869.650712
66	1.07	1.12	1	47	1.1984	56.3248	1903.489857
69	1.07	1.12	1	47	1.1984	56.3248	1903.48985
72	1.07	1.13	1	47	1.2091	56.8277	1937.632492
75	1.07	1.14	1	47	1.2198	57.3306	1972.078618
78	1.07	1.14	1	47	1.2198	57.3306	1972.078618
81	1.07	1.14	1	47	1.2198		1972.078618
84	1.07	1.15	1	47	1.2305	57.8335	2006.828233
87	1.07	1.15	1	47	1.2305	57.8335	2006.828233
90	1.07	1.16	1	47	1.2412	58.3364	2041.881339
93	1.07	1.16	1	47	1.2412	58.3364	2041.88133
96	1.07	1.10	1	47	1.2519	58.8393	2077.23793
99	1.07	1.17	1	47	1.2519	58.8393	2077.23793
102	1.07	1.17	1	47	1.2519	58.8393	2077.23793
102	1.07	1.17	1	47	1.2626	59.3422	2112.898022
105	1.07	1.18	1	47	1.2626		2112.89802
100	1.07	1.18	1	47	1.2626	59.3422	2112.89802
111	1.07	1.13	1	47	1.2020	59.8451	2148.86159
114	1.07	1.19	1	47	1.2733	59.8451	2148.861596
117	1.07	1.19	1	47	1.2733	59.8451	2148.861596

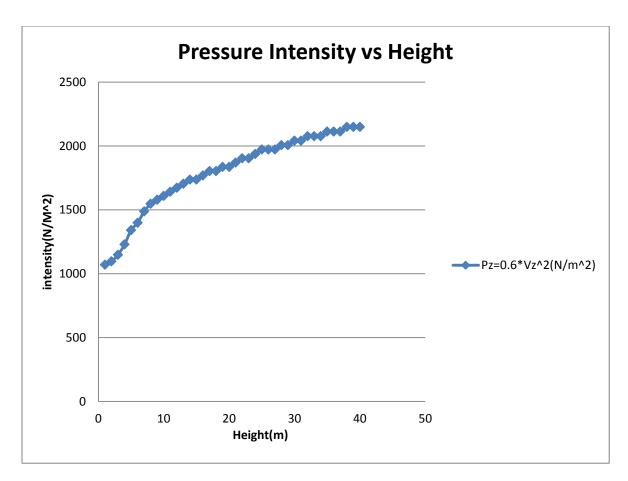


Fig4.1: Graph of Intensity vs Height of Building

- In staad-pro software ,indian standard code is not provided so the intensity values were calculated as per the specifications given in IS-875(Part-3).
- In the design, exposure factor is to be taken as 0.8(considering 80% face of building is exposed to wind).

4.2 ANALYSIS OF HIGH RISE BUILDING WITHOUT SHEAR WALL

4.2.1 Modeling Using Staad-Pro

In modeling following points were added:

- Preparation of the model by considering the given dimension.
- \circ $\;$ Defined property of section and thickness of the surface plate.
- Given the loading details of live load, dead load and wind load.
- Defined wind definition in load definitions as per IS-875(part-3).
- \circ For design of concrete, IS-456 is adopted, in this f_c =30000Kn/m² and f_y =415000Kn/m² is given for the concrete and steel respectively.

g Postprocessing Steel Design	Concrete Design RAM Connection	Bridge Deck Advanced Sla
Structurewosw - Whole Structure		- • •
	13 .00m	
	120.00m	
Y Z-X	24.00m	
		Load 1

Fig4.2 : Front view of the building

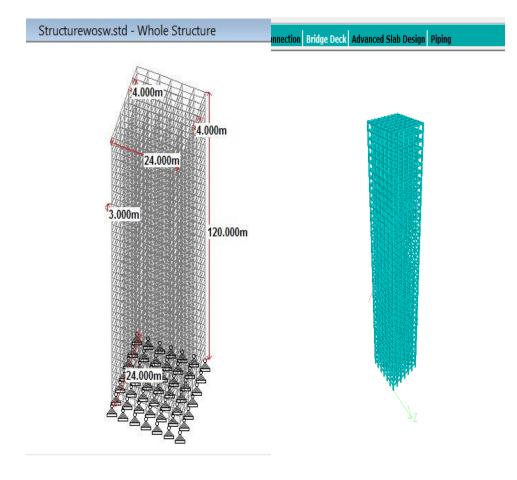


Fig4.3 : 3D Model of building without shear wall

4.2.3 Analysis

After completing the modeling , to analyze the building following points were added in staadpro analysis-

- o Added joint displacement to the analysis.
- Added member forces to analyse results.
- Added support reactions.
- Before running the analysis; print joint displacement, print member forces, print support reactions all were assigned to view.

4.2.4 Results From The Analysis

Following results were obtained from the analysis.

4.2.4.1 Beam Design Results

In the given structure there were 5320 beams to be designed , here I am showing one beam design result from the STAAD-PRO OUTPUT file.

DESIGN RESULTS OF BEAM (2)

CONCRETE GRADE- M30 STEEL GRADE- Fe415 (Main and secondary) LENGTH OF THE BEAM: 4m SIZE OF THE BEAM: 0.4m X 0.5m COVER PROVIDED: 25.0 mm

SUMMARY OF REINFORCEMENT AREA (mm²)

SECTION	0m	1m	2m	3m	4m
TOP	1324.81	610.32	385.06	611.61	1326.82
REINFORCEMENT	(mm ²)				
BOTTOM	1325.93	385.06	385.06	611.28	1325.93
REINFORCEMENT	(mm ²)				

SUMMARY OF PROVIDED REINFORCEMENT AREA

SECTION	0m	1m	2m	3m	4m
TOP	17-10í	8-10í	5-10í	8-10í	17-10í
REINFORCEMENT	2 layers	1 layer	1 layer	1 layer	2 layers
BOTTOM	17-10í	5-10í	5-10í	8-10í	17-10í
REINFORCEMENT	2 layers	1 layer	1 layer	1 layer	2 layers
SHEAR	2legged8í	00	2legged8í	2legged8í	2legged8í
REINFORCEMENT(@C/C)	200 mm		200 mm	200 mm	200 mm

SHEAR DESIGN RESULTS AT EFFECTIVE DEPTH , DISTANCE d FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 809.7 mm AWAY FROM START SUPPORT $V_{\rm Y} = -98.98$ $M_{\rm X} = -0.00$ LD=3Provide 2Legged8í at the spacing 200 mm center to center.

SHEAR DESIGN RESULTS AT 809.7 mm AWAY FROM END SUPPORT
VY = -98.98 MX = -0.00 LD=3Provide 2Legged8í at the spacing 200 mm center to center

4.2.4.2 Column Design Results

One column design is being shown here out of all from STAAD-PRO OUTPUT file.

DESIGN RESULTS OF COLUMN NO.241

- CONCRETE GRADE- M30
- STEEL GRADE- Fe415 (Main and secondary)
- LENGTH OF THE COLUMN: 4m
- C/S OF THE COLUMN: 0.4m X 0.5m
- COVER PROVIDED: 25.0 mm
- ➢ GUIDING LOAD CASE:5
- > END JOINT: 8
- > THE COLUMN IS A TENSION COLUMN.

MAIN REINFORCEMENT : Provide 36 - 16 dia. (2.07%, 7238.23 mm².) (distributed uniformly and equally)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties at the 255 mm center to center.

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET) $P_{uz} = 6756.27 \quad M_{uz} \ 1 = 357.21 \quad M_{uy} \ 1 = 243.79$

INTERACTION RATIO = 0.93 (as per Clause 39.6, IS-456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET) WORST LOAD CASE: 5 END JOINT: 8 P_{uz} = 6880.18 M_{uz} = 404.62 M_{uy} = 275.86 IR=0.83

4.2.4.3 Quantity Of Concrete

The quantity of concrete used in the structure is being shown here as calculated by the analysis by STAAD-PRO. These are from STAAD-PRO OUTPUT file.

<u>CONCRETE TAKE OFF</u> : (FOR BEAMS AND COLUMNS DESIGNED ABOVE) **NOTE:**

- Concrete quantity represents the volume of concrete used in design of beams, columns and other components.
- Reinforcing steel quantity represents the reinforcing steel required in design of beams and columns but reinforcement in plates are not included here.

TOTAL QUANTITY(VOLUME) OF CONCRETE USED IN STRUCTURE = 4745.9 M³

BAR DIA (in mm)	WEIGHT (in New)
8	653125
10	603074
12	1570773
16	158154
20	189321
25	46932
TOTAL	= 3221378

4.2.4.4 Reaction Load, Deflection, Slope Results By The Wind Load In Direction +X

As calculated by STAAD-PRO analysis and results are in STAAD-PRO OUTPUT.

CENTER OF THE FORCE BASED ON X FORCES ONLY (METERIAL).

 \rightarrow Non-Global directions forces will not validate the results.

$$\begin{split} X &= 0.00000000E{+}00 \\ Y &= 0.650918136E{+}02 \\ Z &= 0.119999999E{+}02 \end{split}$$

SUMMARY (LOADING 3) OF TOTAL APPLIED LOAD TOTAL FORCE IN -X = 4179.73KN TOTAL FORCE IN -Y = 0.00TOTAL FORCE IN -Z = 0.00

SUMMARY (LOADING 3) OF TOTAL REACTION LOADTOTAL FORCE IN -X= -4179.73TOTAL FORCE IN -Y= -0.00TOTAL FORCE IN -Z= 0.00

SUMMATION OF THE MOMENTS ACTING AROUND THE ORIGIN $M_X = 0.00$ $M_Y = -50156.81$ KN.M $M_Z = 272066.47$ KN.M

MAXIMUM DISPLACEMENTS (CM /RADIANS) FOR LOAD CASE 3 MAXIMUMS (VALUE) AT NODE

X = 1.42211E+01	1142
Y = -5.97659E-01	1967
Z = -4.42144E-04	1961

RX=-5.98014E-07	1723
RY= -2.97674E-05	1674
RZ= -2.91148E-03	865

4.2.4.5 Results (STAAD-PRO)

Structurewosw.std - Whol	le Structure		a state of the second s		Structurev	vosw.std -	Node Dis	placement	S:		•
			K) All/	(Summary /						
					Horizontal	Vertical	Horizontal	Resultant		Rotational	
			Node	L/C	X mm	Y mm	Z mm	mm	rX rad	rY rad	rZ rad
4.000m 4.0	000m	24.000	m 286	1 DL	-0.030	-17.790	0.036	17.790	0.000	-0.000	0
				2LL	-0.039	-8.630	0.060	8.630	0.000	0.000	0
				3 WL+X	141.886	-3.499	0.001	141.929	-0.000	0.000	-0
			287	1 DL	-0.037	-17.341	0.036	17.341	0.000	-0.000	0
				2LL	-0.047	-8.017	0.047	8.018	0.000	-0.000	(
				3 WL+X	141.892	-5.957	-0.004	142.017	-0.000	0.000	-0
			000	4.01	0.000	0.000	0.000	0.000	-0.000	-0.000	0
			288	1 DL	0.000	0.000	0.000	0.000	-0.000	-0.000	
			<	211	0.000	0.000	0.000	0.000	-0.000	-0.000	C
				2LL Struc		0.000 :d - Beam	0.000 Relative D	0.000 isplacemen	-0.000 nt Detail: ements /		0
			<	2LL Struc	0.000	0.000 id - Beam lacement _y	0.000 Relative D	0.000 İsplacemen ive Displac z	-0.000 nt Detail: ements / Resultant	-0.000	C
			<	2LL Struc De All F	0.000 turewosw.st Relative Disp Dist	0.000 :d - Beam lacement /	0.000 Relative D (Max Relat y	0.000 isplacementive Displac	-0.000 nt Detail: ements /	-0.000	C
			<	2LL Struc	turewosw.st Relative Disp Dist m	0.000 id - Beam lacement / x mm	0.000 Relative D (Max Relat y mm	0.000 isplacemen ive Displac z mm	-0.000 nt Detail: ements / Resultant mm	-0.000	0
			<	2LL Struc De All F	turewosw.st Relative Disp Dist m 0.000	0.000 Id - Beam lacement / x mm 0.000	0.000 Relative D (Max Relat y mm 0.000	0.000 isplacemel ive Displac z mm 0.000	-0.000 nt Detail: eements / Resultant mm	-0.000	0
			<	2LL Struc De All F	turewosw.st Relative Disp Dist m 0.000 1.000	0.000 Id - Beam lacement / x mm 0.000 -0.000	0.000 Relative D (Max Relat y mm 0.000 -0.050	0.000 isplacemen ive Displac z mm 0.000 -0.000	-0.000 nt Detail: rements / Resultant mm 0.000 0.050	-0.000	0
			<	2LL Struc De All F	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000	0.000 id - Beam lacement J x mm 0.000 -0.000 -0.000	0.000 Relative D (Max Relat y mm 0.000 -0.000 -0.030	0.000 isplacemen ive Displac z mm 0.000 -0.000 -0.000	-0.000 nt Detail: ements / Resultant mm 0.000 0.050 0.037	-0.000	0
			<	2LL Struc De All F	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000 3.000	0.000 id - Beam lacement / x mm 0.000 -0.000 -0.000	0.000 Relative D (Max Relat y mm 0.000 -0.050 -0.037 0.000	0.000 isplacemen z mm 0.000 -0.000 -0.000 0.000	-0.000 nt Detail: rements / Resultant 0.000 0.050 0.037 0.000	-0.000	0.
			<	2LL Struc	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000 3.000 4.000	0.000 id - Beam lacement y x mm 0.000 -0.000 -0.000 0.000	0.000 Relative D (Max Relat y mm 0.000 -0.050 -0.050 0.000 0.000	0.000 isplacement ive Displac z mm 0.000 -0.000 0.000 0.000	-0.000 nt Detail: ements / Resultant mm 0.000 0.050 0.037 0.000 0.000	-0.000	0.
			<	2LL Struc	0.000 turewosw.st Relative Disp 0.000 1.000 2.000 3.000 4.000	0.000 d - Beam lacement / x mm 0.000 -0.000 -0.000 0.000 0.000	0.000 Relative D (Max Relat 9 0.000 -0.050 -0.037 0.000 0.000 0.000	0.000 isplacemen z mm 0.000 -0.000 0.000 0.000 0.000	-0.000 ht Detail: ements / Resultant mm 0.000 0.050 0.037 0.000 0.000 0.000	-0.000	0.
		Load 3: Displacem	 ✓ /ul>	2LL Struc	0.000 turewosw.st Relative Disp Dist m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	0.000 id - Beam lacement y x mm 0.000 -0.000 -0.000 0.000 0.000 0.000	0.000 Relative D (Max Relat y mm 0.000 -0.050 -0.050 0.000 0.000 0.000 -0.065	0.000 isplacement ive Displac z mm 0.000 -0.000 0.000 0.000 0.000 0.000	-0.000 nt Detail: ements / Resultant mm 0.000 0.050 0.037 0.000 0.000 0.000 0.000	-0.000	0.

Fig4.4: Deflected shape

		-	ndonel S	Summary /	Vertical	Horizontal	Resultant		Rotational
4.000mm24.000m		Node	L/C	X mm	Y mm	Z mm	mm	rX rad	rY rad
		224	1 DL	0.000	-16.410	-0.000	16.410	0.000	-0.000
			2LL	0.000	-7.557	-0.000	7.557	0.000	0.000
			3 WL+X	123.327	-5.967	-0.004	123.472	-0.000	0.000
		225	1 DL	-0.000	-16.601	-0.000	<mark>16.6</mark> 01	0.000	-0.000
			2LL	-0.000	-7.650	-0.000	7.650	0.000	-0.000
3.000m			3 WL+X	125.894	5.973	0.004	126.036	0.000	0.000
		226	1 DL	-0.000	-17.036	-0.000	17.036	0.000	-0.000
			2LL	-0.000	-8.244	-0.000	8.244	0.000	0.000
120.000m-				turewosw.st					
120.000m				Relative Disp	lacement _/		tive Displac	ements/	
120.000m-									C
120.000m-		। जन	All F	Relative Disp Dist	lacement _/ x	(Max Relative) y	tive Displac z	ements / Resultant	
120.000m-		। जन	All F	Relative Disp Dist m	lacement / x mm	(Max Relat y mm	ive Displac z mm	ements / Resultant mm	
120.000m-		। जन	All F	Relative Disp Dist m 0.000	lacement / x mm 0.000	(Max Relat y mm 0.000	ive Displac z mm 0.000	ements / Resultant mm 0.000	
120.000m-		। जन	All F	Relative Disp Dist m 0.000 1.000	lacement / x mm 0.000 -0.000	(Max Relat y mm 0.000 -0.020	z mm 0.000 0.000	ements / Resultant mm 0.000 0.020	
		। जन	All F	Relative Disp Dist 0.000 1.000 2.000	lacement / x mm 0.000 -0.000 -0.000	(Max Relat y mm 0.000 -0.020 -0.037	ive Displac z mm 0.000 0.000 0.000	ements / Resultant mm 0.000 0.020 0.037	
		। जन	All F	Relative Disp <u>Dist</u> <u>0.000</u> <u>1.000</u> <u>2.000</u> <u>3.000</u>	lacement / x mm 0.000 -0.000 -0.000 -0.000	(Max Relat y mm 0.000 -0.020 -0.037 -0.023	ive Displac z mm 0.000 0.000 0.000 0.000	ements / Resultant mm 0.000 0.020 0.037 0.023	
		। जन	LIC LIC	Relative Disp Dist m 0.000 1.000 2.000 3.000 4.000	lacement / x mm 0.000 -0.000 -0.000 -0.000 0.000	(Max Relat y mm -0.000 -0.020 -0.023 0.000	ive Displac z mm 0.000 0.000 0.000 0.000 0.000	ements / Resultant mm 0.000 0.020 0.037 0.023 0.000	
		। जन	LIC LIC	Relative Disp Dist m 0.000 1.000 2.000 3.000 4.000 0.000	lacement / x mm 0.000 -0.000 -0.000 0.000 0.000 0.000	(Max Relat y mm 0.000 -0.020 -0.023 0.000 0.000 0.000	ive Displac z mm 0.000 0.000 0.000 0.000 0.000 0.000	ements / Resultant mm 0.000 0.020 0.023 0.023 0.000 0.000	
	Load 3 : Displacement	। जन	LIC LIC	Dist m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	lacement / x mm 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000	(Max Relat y mm -0.020 -0.023 -0.023 0.000 0.000 -0.008	ive Displac z mm 0.000 0.000 0.000 0.000 0.000 0.000 0.000	ements / Resultant mm 0.000 0.020 0.037 0.023 0.000 0.000 0.000 0.008	

Fig4.5: Deflection Result of a node(224) in envelope1(DL+LL+WL)

Structurewosw.std - Whole Structure 📃 💽 🔀				wosw.std	- Beam En	d Forces:			
4.000m	Beam	LIC	Summary) Node	Envelope / Fx kN	Fy kN	Fz kN	Mx klim	My klim	Mz ∧ klim
24.000m	238	1 DL	284	17.614	8.782	-0.000	-0.000	0.000	4.56
			285	-17.614	10.067	0.000	0.000	0.000	-7.13
		211	284	23.728	3.930	0.014	0.024	-0.026	0.52
			285	-23.728	6.070	-0.014	-0.024	-0.028	-4.80{
		3 WL+X	284	-2.538	-5.935	-0.478	-0.000	0.958	-11.44
			285	2.538	5.935	0.478	0.000	0.954	-12.29{
4.000m (10.5 K	239	1 DL	285	14.578	7.293	-0.000	0.000	0.000	1.532
			286	-14.578	11.556	0.000	-0.000	0.000	-10.05;
		2LL	285	18.752	1.610	0.040	0.109	-0.090	-4.10! v
	<				anna an		umunumunu ana ka		}
		NIA/	Max Axial Fo	Contraction of the local data	Bending N	loments)	and the second second second	Forces/	0 X
	Beam	LIC	Dist m	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz ∧ kNm
	238	1 DL	0.000	17.614	8.782	-0.000	-0.000	0.000	4,56
			1.000	17.614	4.070	-0.000	-0.000	0.000	-1.86
			2.000	17.614	-0.643	-0.000	-0.000	-0.000	-3.57
2400 AUC 23,000m			3.000	17.614	-5.355	-0.000	-0.000	-0.000	-0.58(
			4.000	17.614	-10.067	-0.000	-0.000	-0.000	7.13′
		2LL	0.000	23.728	3.930	0.014	0.024	-0.026	0.52
			1.000	23.728	1.430	0.014	0.024	-0.012	-2.15'
			2.000	23.728	-1.070	0.014	0.024	0.001	-2.33′
			3.000	23.728	-3.570	0.014	0.024	0.015	-0.01′ 🗸
Load 1: Bending Z	<		T						>
					Post Mod	de Load 1	; DL	Inpu	t Units: kN-r

Fig4.6 : Moment Diagram of the building

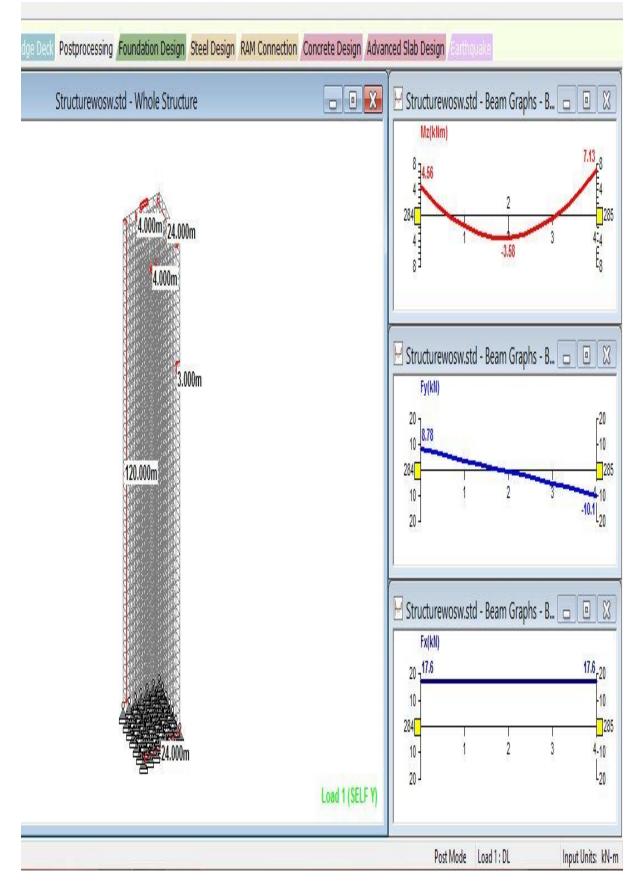


Fig4.7 : Beam Results Graph (Beam No. 238)

4.2.4.6 Report File By Stad Pro

2				Job No	Sheet No	1	Rev
Softw	ware licensed to			Part	_		2
itle				Ref			
				By	Date 1	2-Jun-17 ^{ch}	d
1				File Structure	wosw.std	Date/Time 12-j	un-2017 14
	Lingineer	CHECKEU	Approved				
	Engineer	Checked	Approved	-i			
	LIIGINGO	CHECKEU	Approved				
Name:	Lingineer	CHOUNDU	Approved	_			
Name: Date:	12-lun-2017		Approved				
Date: Structure Number o	12-lun-2017 e Type SPACE FRA of Nodes 2009	ME Highest Node	2009				
Date: Structure Number o	12-lun-2017 e Type SPACE FRA	ME Highest Node					
Date: Structure Number o Number o	12-lun-2017 e Type SPACE FRA of Nodes 2009	ME Highest Node	2009				

Primary Load Cases

Number	Name	Туре
1	DL	Dead
2	LL	Live
3	WL+X	Wind
4	WL-X	Wind
5	WL+Z	Wind
6	WL-Z	Wind

Mind	and De	finition - Tuno 1	
Intensity		efinition : Type 1	
(N/mm ²)	Height (m)		
0.001	3.000		
0.001	12.000		
0.001	21.000		
0.002	39.000		
0.002	48.000 57.000		
0.002	66.000		
0.002	75.000		
0.002	84.000 93.000		
0.002	102.000		
0.002	111.000		
			_
Exposure Factor	Range	Nodes / Height Range	2
100 C C C C C C C C C C C C C C C C C C	Nodes	(m) 1 - 2009	1
1 DL : 5	olfwoi	iaht	
Direction F		Assigned Geometry	
	- 19-C 19-C 19-C 19-C 19-C 19-C 19-C 19-		
Y	-1.000 AL	u.	
2 LL : A	rea Lo	bads	
2 LL : A	rea Lo	Dads Beams	
Loed (N/mm ²)			
Load			
Loed (N/mm ²)			
Load (N/mm ²) -0.003	1 - 5320	Beams	
Load (N/mm ²) -0.003	1-5320 : Wind		
Load (N/mm ²) -0.003	1 - 5320	Beams	
Load (N/mm ²) -0.003 4 WL-X Direction	1 - 5320 : Wind Туре	Beams I Loading Factor	
Loed (N/mm ²) -0.003	1-5320 : Wind	Beams I Loading	
Load (N/mm ²) -0.003 4 WL-X Direction	1 - 5320 : Wind Туре	Beams I Loading Factor	
Load (N/mm ²) -0.003 4 WL-X Direction X	1 - 5320 : Wind Type 1	Beams I Loading Factor -1.000	
Loed (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z	1-5320 : Wind Type 1 : Wind	Beams I Loading Factor -1.000 d Loading	
Load (N/mm ²) -0.003 4 WL-X Direction X	1 - 5320 : Wind Type 1	Beams I Loading Factor -1.000	
Loed (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z	1-5320 : Wind Type 1 : Wind	Beams I Loading Factor -1.000 d Loading	
Load (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction	1 - 5320 : Wind Type 1 : Wind Type	Beams I Loading Factor -1.000 Factor Factor	
Loed (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction Z	1 - 5320 : Wind Type 1 : Wind Type 1	Beams I Loading Factor -1.000 Factor 1.000	
Loed (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction Z	1 - 5320 : Wind Type 1 : Wind Type 1	Beams I Loading Factor -1.000 Factor Factor	
Loed (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction Z	1 - 5320 : Wind Type 1 : Wind Type 1	Beams I Loading Factor -1.000 Factor 1.000	
Load (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction Z 6 WL-Z Direction	1-5320 : Wind Type 1 : Wind Type 1 : Wind	Beams I Loading Factor 1.000 Loading Factor 1.000 Factor Factor Factor Factor	
Loed (Nimm ²) -0.003 4 WL-X Direction x 5 WL+Z Direction z 6 WL-Z	1-5320 : Wind Type 1 : Wind Type 1 : Wind	Beams I Loading Factor -1.000 I Loading I Loading I Loading	
Load (N/mm ²) -0.003 4 WL-X Direction X 5 WL+Z Direction Z 6 WL-Z Direction	1 - 5320 : Wind Type 1 : Wind Type 1 : Wind Type	Beams I Loading Factor 1.000 Loading Factor 1.000 Factor Factor Factor Factor	

Included in this printout are data for All The Whole Structure

Included in this printout are results for load cases:

Туре	L/C	Name
Primary	18	DL
Primary	2	u
Primary	3	WL+X
Primary	4	WL-X
Primary	5	WL+Z
Primary	6	WL-Z

Supports

Node	X (kN/mm)	Y (kN/m/m)	Z (kN/mm)	rX (kNim/deg)	rY (kN m/deg)	rZ (kNim/deg)
1	Fixed	Fked	Fixed			-
2	Fixed	Fked	Fixed	84		-
3	Fixed	Fked	Fixed	1 64		
4	Fixed	Fked	Fixed	84	- 63	-
5	Fixed	Fked	Fixed	S 64 - 3	- 23 - 3	- 23
6	Fixed	Fixed	Fixed	8 g.	- • · ·	
7	Fixed	Fked	Fixed	34		22
288	Fixed	Fked	Fixed	1 1		
289	Fixed	Fked	Fixed	84		-
290	Fixed	Fked	Fixed	1 22 3	는 24 등	- 22
291	Fixed	Fked	Fixed	84	- 53	*
292	Fixed	Fked	Fixed	S 64 - 3	- 23 - 3	- 23
293	Fixed	Fked	Fixed			
294	Fixed	Fked	Fixed	37		- 22
575	Fixed	Fked	Fixed		-	
576	Fixed	Fked	Fixed	192		-

int Time/Date: 14/07/2017 14:24

STAAD.Pro V8I (SELECTseries 6) 20.07.11.33

Print Run 1 of 4

4.2.5 Analysis Of High Rise Building With Shear Wall

4.2.5.1 Modeling Using Staad-Pro

In modeling following points were added:

- \circ $\;$ Preparation of the model by considering the given dimension.
- Added surfaces on all 4 side as shear wall.
- Defined property of section and thickness of the surface plate.
- Given the loading details of live load, dead load and wind load.
- Defined wind definition in load definitions as per IS-875(part-3).
- \circ $\,$ For design of concrete, IS-456 is adopted, in this f_c =30000Kn/m² and f_y =415000Kn/m² is given for the concrete and steel respectively.
- $\circ~$ For design of shear wall, IS-456 is adopted, in this also f_c=30000Kn/m² and f_y=415000Kn/m² is given for the concrete and steel respectively.

Postprocessing Steel Design Concrete Design	RAM Connection Bridge Deck Advanced Slab Design Piping
R Structuremp - Whole Structure	
Y	
2-x	

Fig4.8 : Front View Of The Building With Shear Wall

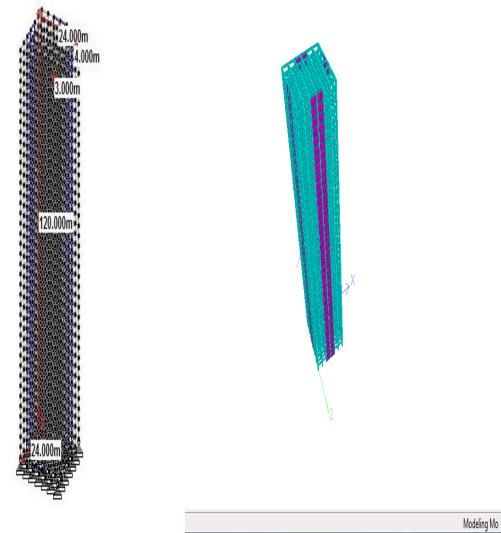


Fig4.9 : 3D view of building

4.2.5.2 Analysis

After completing the modeling , to analyze the building following points were added in staadpro analysis-

- Added joint displacement to the analysis.
- Added member forces to analyse results.
- Added support reactions.

Before running the analysis; print joint displacement, print member forces, print support reactions all were assigned to view.

4.2.5.3 Results

SUMMARY FOR LOAD CASE NO.3 FOR STATIC , REACTION , EQUILIBRIUM LOAD TYPE - WIND TITLE - WL+X

CENTER OF FORCE BASED ON X FORCES ONLY (METERIAL). →Non-Global directions forces will not validate the results.

 $\begin{array}{l} X = \ 0.00000000E{+}00 \\ Y = \ 0.650918136E{+}02 \\ Z = \ 0.119999999E{+}02 \end{array}$

SUMMARY (LOADING 3) OF TOTAL APPLIED LOAD TOTAL FORCE IN -X = 4179.73KN TOTAL FORCE IN -Y = 0.00TOTAL FORCE IN -Z = 0.00

SUMMATION OF THE MOMENTS ACTING AROUND THE ORIGIN -MX= 0.00 MY= 50156.81KN.M MZ= -272066.47KN.M

SUMMARY (LOADING 3) OF TOTAL REACTION LOADTOTAL FORCE IN -X = -4179.73KNTOTAL FORCE IN -Y = -0.00TOTAL FORCE IN -Z = -0.00

SUMMATION OF THE MOMENTS ACTING AROUND THE ORIGIN-MX= -0.00 MY=-50156.81KN.M MZ= 272066.46KN.M

MAXIMUM DISPLACEMENTS (CM/RADIANS) FOR LOAD CASE 3

MAXIMUMS AT NODE

X = 8.86777E + 00	32783
Y = -4.70191E-01	287
Z = -4.77485E-03	1751
RX=7.50930E-04	2354
RY=-2.66218E-04	1464
RZ= -2.94655E-03	2010

4.2.5.4 Results (STAAD-PRO)

Structuremp.std - Whole Structure			Tablac /		mp.std - M	Node Displ	acements:			0 X
	-		MIN AII (Summary /						_
				Horizontal	Vertical	Horizontal	Resultant		Rotational	
		Node	L/C	X	Y mm	Z mm	mm	rX rad	rY rad	rZ rad
		286	1 DL	0.021	-15.269	0.040	15.269	0.000	0.000	-0.000
			2LL	0.009	-6.274	0.063	6.274	0.000	0.000	-0.00(
			3 WL+X	88.616	-3.222	-0.039	88.675	-0.000	-0.000	-0.00(
		287	1 DL	0.016	-15.211	-0.011	15.211	0.000	-0.000	0.00(
			211	0.003	-6.018	0.001	6.018	0.000	-0.000	0.00(
			3 WL+X	88.608	-4.702	-0.029	88.732	-0.000	-0.000	-0.00(
			1 DL	0.000	0.000	0.000	0.000	-0.000	0.000	0.00(
		12/12/10	211	0.000	0.000	0.000	0.000	-0.000	0.000	0.00(
		<		• • • • • • • • • • • • • • • • • • •				mmummummed		>
				turemp.std						20
			D \ All F	cturemp.std lelative Disp Dist	acement / x	(Max Relat y	ive Displac z	ements / Resultant		
		Beam	All F	elative Disp Dist m	acement / x mm	Max Relat y mm	ive Displac z mm	ements / Resultant mm		
		Beam	D \ All F	elative Disp Dist m 0.000	acement / x mm 0.000	Max Relat y mm 0.000	ive Displac z mm 0.000	ements / Resultant mm 0.000		
		Beam	All F	Dist m 0.000 1.000	acement / x mm 0.000 -0.000	Max Relat y mm 0.000 -0.014	ive Displac z mm 0.000 -0.003	ements / Resultant mm 0.000 0.015		
		Beam	All F	telative Disp Dist m 0.000 1.000 2.000	x mm 0.000 -0.000 -0.000	Max Relat y mm 0.000 -0.014 -0.032	ve Displac z mm 0.000 -0.003 -0.001	ements / Resultant mm 0.000 0.015 0.032		
		Beam	All F	elative Disp Dist m 0.000 1.000 2.000 3.000	acement / x mm 0.000 -0.000 -0.000 -0.000	(Max Relat y mm -0.000 -0.014 -0.032 -0.020	ive Displac z mm 0.000 -0.003 -0.001 0.002	ements / Resultant mm 0.000 0.015 0.032 0.020		
		Beam	LIC LIC	Dist m 0.000 1.000 2.000 3.000 4.000	acement / x mm 0.000 -0.000 -0.000 -0.000 0.000	Max Relat y mm 0.000 -0.014 -0.032 -0.020 0.000	ive Displac z mm 0.000 -0.003 -0.001 0.002 0.000	ements / Resultant mm 0.000 0.015 0.032 0.020 0.000		20
		Beam	All F	Bist Dist 0.000 0.000 1.000 2.000 3.000 4.000 0.000 0.000	acement / x mm 0.000 -0.000 -0.000 0.000 0.000	Max Relat y mm 0.000 -0.014 -0.032 -0.020 0.000 0.000	ive Displac z mm 0.000 -0.001 0.002 0.000 0.000	ements / Resultant mm 0.000 0.005 0.032 0.020 0.000 0.000		
		Beam	LIC LIC	Bist Dist 0.000 1.000 2.000 3.000 4.000 0.000 1.000 1.000	acement / x mm 0.000 -0.000 -0.000 0.000 0.000 -0.000	Max Relat y mm 0.000 -0.014 -0.032 -0.020 0.000 0.000 -0.007	ve Displac z mm 0.000 -0.003 -0.001 0.002 0.000 -0.001	ements / Resultant mm 0.000 0.015 0.032 0.020 0.020 0.000 0.000 0.007		
		Beam	LIC LIC	Dist m 0.000 1.000 2.000 3.000 4.000 0.000 1.000	acement / x mm 0.000 -0.000 -0.000 0.000 0.000 -0.000 -0.000	Max Relat y mm 0.000 -0.014 -0.032 -0.020 0.000 0.000 -0.007 -0.018	ive Displac z mm 0.000 -0.003 -0.001 0.000 0.000 -0.001 -0.001 -0.000	ements / Resultant mm 0.000 0.015 0.032 0.020 0.000 0.000 0.000 0.007 0.018		
		Beam	LIC LIC	Bist Dist 0.000 1.000 2.000 3.000 4.000 0.000 1.000 1.000	acement / x mm 0.000 -0.000 -0.000 0.000 0.000 -0.000	Max Relat y mm 0.000 -0.014 -0.032 -0.020 0.000 0.000 -0.007	ve Displac z mm 0.000 -0.003 -0.001 0.002 0.000 -0.001	ements / Resultant mm 0.000 0.015 0.032 0.020 0.020 0.000 0.000 0.007		

Post Mode

Input Units: kN-m

Fig4.10 : Deflected Shape

td - Whole Structure		emp.std - N	Node Displa	acements:			
	All (Summary /						
	Vertical	Horizontal	Resultant		Rotational		
Node	L/C Y	Z mm	mm	rX rad	rY rad	rZ rad	
3 WL	VL+X -3.202	0.001	73.246	-0.000	0.000	-0.001	
224 1 DL)L -14,411	-0.023	14.412	0.000	0.000	0.000	
211	L -5.678	-0.009	5.678	0.000	0.000	0.000	
3WL	VL+X -4.648	-0.012	73.325	-0.000	0.000	-0.001	
225 1 DL)L -14.575	-0.020	14.575	0.000	-0.000	-0.000	
2LL	.L -5.746	-0.008	5.746	0.000	-0.000	-0.000	
	UL .V 4000	0.012	75.253	0.000	0.000	-0.001	
3 WL	VL+X 4.663	0.012	10.200	0.000	0.000		
226 1 DL <	Structuremp.std	-0.001 - Beam R	14.645 elative Disp	0.000 Iacement	-0.000 t Detail: rements /	0.000	
	Structuremp.std	-0.001 - Beam R lacement / x	14.645 elative Disp (Max Relativ y	0.000 Ilacement ve Displac z	-0.000 t Detail: ements / Resultant	0.000	
226 1DL <	Structuremp.std	-0.001 - Beam R lacement / x mm	14.645 elative Disp (Max Relativ y mm	0.000 Ilacement ve Displac z mm	-0.000 t Detail: cements / Resultant mm	0.000	
	DL -14.645 Structuremp.std All Relative Disp L/C Dist m DL 0.000	-0.001 - Beam R lacement / x mm	14.645 elative Disp (Max Relativ y mm	0.000 Ilacement ve Displac z mm	-0.000 t Detail: ements / Resultant mm 0.000	0.000	
226 1DL <	Structuremp.std	-0.001 - Beam R lacement / x mm	14.645 elative Disp (Max Relativ y mm	0.000 Ilacement ve Displac z mm	-0.000 t Detail: rements / Resultant mm 0.000 0.051	0.000	
226 1DL <	DL -14.645 Structuremp.std All Relative Disp L/C Dist m DL 0.000	-0.001 - Beam R lacement / x mm 10.000 -0.000	14.645 elative Disp (Max Relativ y mm 0.000 -0.051	0.000 vlacement ve Displac z mm 0.000 0.002	-0.000 t Detail: ements / Resultant mm 0.000	0.000	
226 1DL <	Structuremp.std	-0.001 - Beam R lacement / x mm 0.000 -0.000 0.001	14.645 elative Disp (Max Relativ y mm 0.000 -0.051 -0.059	0.000 Ilacement ve Displac z mm 0.000 0.002 0.000	-0.000 t Detail: ements / Resultant mm 0.000 0.051 0.059	0.000	
226 1DL <	Structuremp.std Structuremp.std []\All Relative Disp LIC Dist 01 0.000 1.000 2.000 3.000 4.000	-0.001 - Beam R lacement / x mm 0.000 -0.000 0.001 0.000	14.645 elative Disp (Max Relativ y mm 0.000 -0.051 -0.059 -0.029	0.000 lacement ve Displac z mm 0.000 0.002 0.000 -0.002	-0.000 t Detail: :ements / Resultant mm 0.000 0.051 0.059 0.029	0.000	
1 1 226 1 1 1 1 1 1 1 1 1 1 1	Structuremp.std Structuremp.std []\All Relative Disp LIC Dist 01 0.000 1.000 2.000 3.000 4.000	-0.001 - Beam R lacement / 0.000 -0.000 0.001 0.000 0.000	14.645 elative Disp (Max Relativ y mm 0.000 -0.051 -0.059 -0.029 0.000	0.000 ve Displac z mm 0.000 0.002 0.000 -0.002 0.000	-0.000 t Detail: rements / Resultant mm 0.000 0.051 0.059 0.029 0.029 0.000	0.000	
1 1 226 1 1 1 1 1 1 1 1 1 1 1	Structuremp.std Structuremp.std All Relative Disp LIC Dist 01 0.000 1.000 2.000 3.000 4.000 LL 0.000	-0.001 - Beam R lacement / x mm 0.000 -0.000 0.001 0.000 0.000 0.000	14.645 elative Disp (Max Relativ y mm 0.000 -0.051 -0.059 -0.029 0.000 0.000	0.000 lacement ve Displac z mm 0.000 0.002 0.000 -0.002 0.000 0.000	-0.000 t Detail: :ements / Resultant mm 0.000 0.051 0.059 0.029 0.000 0.000	0.000	
226 1 DL 226 1 DL	DL -14.645 Structuremp.std All Relative Disp LIC Dist n DL 0.000 2.000 3.000 4.000 L 0.000 1.000	-0.001 - Beam R lacement / 0.000 -0.000 0.001 0.000 0.000 0.000 -0.000	14.645 elative Disp (Max Relativ y mm 0.000 -0.051 -0.059 -0.029 0.000 0.000 -0.047	0.000 lacement ve Displac z mm 0.000 0.002 0.000 0.000 0.000 0.000 0.000	-0.000 t Detail: eements / Resultant mm 0.000 0.051 0.059 0.029 0.029 0.029 0.000 0.000 0.000	0.000	
226 1 DL 226 1 DL Beam 5284 1 DL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Structuremp.std Structuremp.std // All Relative Disp L/C Dist 01 0.000 1.000 2.000 3.000 4.000 L 0.000 1.000 2.000	-0.001 - Beam R lacement / 0.000 -0.000 0.001 0.000 0.000 0.000 -0.000 -0.000	14.645 elative Disp (Max Relativ 0.000 -0.051 -0.059 -0.029 0.000 0.000 -0.047 -0.037	0.000 lacement /e Displac z mm 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000	-0.000 t Detail: rements / Resultant mm 0.000 0.051 0.059 0.029 0.029 0.029 0.029 0.000 0.029 0.029	0.000	

Fig4.11 : Deflection Result of a Node(224) In Envelop 1(DL+LL+WL)

Building Plani	iner Piping Bridge Deck Postprocessing Foundation Desi	gn Steel Design RAM Con	nection	Concrete	Design Adva	anced Slab (Design /Eai	thquake			
	Structuremp.std - Whole Structure			<u></u>	Structur	remp.std -	Beam End	Forces:			0 🛛
				AII (Summary)	Envelope /					
			Beam	LIC	Node	Fx kN	Fy kN	Fz kN	Mx kNm	My klim	Mz ∧ kNm
			238	1 DL	284	-19.573	8.265	0.009	0.061	-0.078	5.07(
					285	19.573	10.584	-0.009	-0.061	0.041	-9.701
				211	284	<mark>-12.787</mark>	4.181	0.030	0.101	-0.119	2.51′
					285	12.787	5.819	-0.030	-0.101	0.001	-5.78
				3 WL+X	284	19.988	1.959	1.843	0.770	-3.583	2.52′
					285	-19.988	-1.959	-1.843	-0.770	-3.787	5.311
			239	1 DL	285	-3.216	20.798	0.411	1.162	-0.837	28.934
					286	3.216	-1.949	-0.411	-1.162	-0.807	16.558
				211	285	2.903	13.695	0.406	1.138	-0.827	20.35: 🗸
			<								}
					Structur	emp.std - E	Beam Forc	e Detail:			0 0
				MAI	Max Axial Fo	rces), Max	Bending M	oments).	Max Shear	Forces/	
			notesta Record	Marine Jonanda M	Dist	Fx	Fy	Fz	Mx	My	Mz A
			Beam	L/C	m	kN	kN	kN	<mark>kN</mark> m	klim	kNm
			238	1 DL	0.000	-19.573	8.265	0.009	0.061	-0.078	5.071
					1.000	-19.573	3.553	0.009	0.061	-0.068	-0.83(
					2.000	-19.573	-1.159	0.009	0.061	-0.059	-2.03(
					3.000	-19.573	-5.872	0.009	0.061	-0.050	1.47
					4.000	-19.573	-10.584	0.009	0.061	-0.041	9.701
				211	0.000	-12.787	4.181	0.030	0.101	-0.119	2.51′
				_	1.000	-12.787	1.681	0.030	0.101	-0.090	-0.42(
					2.000	-12.787	-0.819	0.030	0.101	-0.060	-0.85′
Y						10	0.040	0.000	0.404	A AA /	1.011
Y X		ord L Bondina 7			3.000	-12.787	-3.319	0.030	0.101	-0.031	1.218 v
Y X Z		Load 1 : Bending Z	(3.000	-12.787	-3.319	0.030	U.101	-0.031	1.218 v کار ا

Fig4.12 : Moment Diagram Of The Building

A	ner / Piping / Bridge Deck Postprocessing Foundation Design Steel Design Structuremp.std - Whole Structure			S	tructurem	ip.std - Sup	port Read	tions:			X
				AI/	Summary /	Envelope					
					Horizontal	Vertical	Horizontal		Moment		٨
	TERM	1	Node	LIC	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz klim	
				1 DL	<mark>1.07</mark> 3	1895.050	0.864	0.000	0.000	0.000	
			_	2LL	0.619	700.607	0.526	0.000	0.000	0.000	
				3 WL+X	-4.393	-803.296	-0.092	0.000	0.000	0.000	
			14	1 DL	<mark>1.414</mark>	1976.534	0.802	0.000	0.000	0.000	
			_	2LL	0.516	789.948	0.993	0.000	0.000	0.000	
			-	3 WL+X	-7.701	-584.596	0.381	0.000	0.000	0.000	
			3	1 DL	788.144	4202.358	-0.270	0.000	0.000	0.000	
				- 0.1 - 0.1							
				2LL	285.273	1528.087	0.789	0.000	0.000	0.000	
		-		3 WL+X	-736.435	-3468.230	0.789 2.290	0.000 0.000	0.000	0.000	
				3 WL+X	-736.435		0.789 2.290	0.000 0.000	0.000	0.000	¥
]	3 WL+X St Loads	-736.435 ructuremp Fx kN 0.000	-3468.230 D.std - Stat Fy KN -134.44250E	0.789 2.290 cs Check I Fz kN 0.000	0.000 0.000 Results Mx klim 1.6133166	0.000 0.000 My klim 0.000	0.000 D D D D D D D D D D D D D D D D D D	
]	3 WL+X St Loads Reactions	-736.435 ructuremp Fx kN 0.000 0.000	-3468.230 D.std - Stat Fy kil -134.44250E 134.44250E	0.789 2.290 cs Check I Fz kN 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6	0.000 0.000 My klim 0.000 -0.000	0.000 U Mz klim -1.61331E6 1.61331E6	
			l LIC 1	3 WL+X St Loads Reactions Difference	-736.435 ructuremţ Fx kN 0.000 0.000 0.000	-3468.230 D.std - Stat Fy kII -134.44250E 134.44250E 0.000	0.789 2.290 cs Check I Fz kll 0.000 0.000 0.000	0.000 0.000 Results Mx kllm 1.61331E6 -1.61331E6 -0.002	0.000 0.000 My klim 0.000 -0.000	0.000 Nz klim 1.61331E6 0.002	
]	3 WL+X St Loads Reactions Difference Loads	-736.435 ructuremţ Fx kN 0.000 0.000 0.000 0.000	-3468.230 p.std - Stati Fy kN -134.44250E 134.44250E 0.000 -57600.007	0.789 2.290 cs Check I Fz kll 0.000 0.000 0.000	0.000 0.000 Results Mx kllm 1.61331E6 -1.61331E6 -0.002 691.20007E	0.000 0.000 My klim 0.000 -0.000 0.000	0.000 Mz klim -1.61331E6 0.002 -691.20007E	
			l LIC 1	3 WL+X St Loads Reactions Difference Loads Reactions	-736.435 ructuremp Fx kN 0.000 0.000 0.000 0.000 0.000	-3468.230 D.std - Stat Fy kN -134.44250E 134.44250E 0.000 -57600.007 57600.007	0.789 2.290 cs Check I Fz kN 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E	0.000 0.000 My klim 0.000 -0.000 0.000 -0.000 -0.000	0.000 Mz klim -1.61331E6 1.61331E6 0.002 -691.20007E 691.20007E	
			1 2	3 WL+X St Loads Reactions Difference Loads Reactions Difference	-736.435 ructuremp Fx kN 0.000 0.000 0.000 0.000 0.000 0.000	-3468.230 D.std - Stat Fy kN -134.44250E 134.44250E 0.000 -57600.007 0.000	0.789 2.290 cs Check I Fz kN 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E -691.20007E	0.000 0.000 My klim 0.000 -0.000 -0.000 -0.000 -0.000	0.000 Mz klim -1.61331E6 1.61331E6 0.002 -691.20007E 691.20007E 0.003	
			l LIC 1	3 WL+X St Loads Reactions Difference Loads Difference Loads	-736.435 ructuremţ Fx kN 0.000 0.000 0.000 0.000 0.000 4179.734	-3468.230 D.std - Stat Fy kII -134.44250E 134.44250E 0.000 -57600.007 57600.007 0.000 0.000	0.789 2.290 cs Check I Fz kll 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx kllm 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E -691.20007E -0.003 0.000	0.000 0.000 My kllm 0.000 -0.000 0.000 0.000 -0.000 -0.000 50156.812	0.000 Mz klim -1.61331E6 0.002 -691.20007E 691.20007E 0.003 -272.06650E	
			1 2	3 WL+X St Loads Reactions Difference Loads Difference Loads Reactions Reactions	-736.435 ructuremp Fx kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4179.734	-3468.230 D.std - Stat Fy kN -134.44250E 134.44250E 0.000 -57600.007 57600.007 0.000 0.000 0.000 -0.000	0.789 2.290 cs Check I Fz kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E -691.20007E -0.003 0.000 -0.000	0.000 0.000 My klim 0.000 -0.000 -0.000 0.000 -0.000 -0.000 50156.812 -50156.813	0.000 Mz klim -1.61331E6 1.61331E6 0.002 -691.20007E 691.20007E 0.003 -272.06650E 272.06649E	
			1 1 2 3	3 WL+X St Loads Reactions Difference Loads Reactions Difference Loads Reactions Difference	-736.435 ructuremp Fx kN 0.000 0.000 0.000 0.000 0.000 0.000 4179.734 -4179.734 0.000	-3468.230 D.Std - Stat Fy kII -134.44250E 134.44250E 0.000 -57600.007 57600.007 0.000 0.000 0.000 -0.000	0.789 2.290 cs Check I Fz kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E -691.20007E -0.003 0.000 -0.000	0.000 0.000 0.000 klm 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 50156.812 -50156.813 -0.001	0.000 Mz klim -1.61331E6 1.61331E6 1.61331E6 0.002 -691.20007E 691.20007E 0.003 -272.06650E 272.06649E -0.009	
			1 2	3 WL+X St Loads Reactions Difference Loads Difference Loads Reactions Reactions	-736.435 ructuremp Fx kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4179.734	-3468.230 D.std - Stat Fy kN -134.44250E 134.44250E 0.000 -57600.007 57600.007 0.000 0.000 0.000 -0.000	0.789 2.290 cs Check I Fz kN 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 Results Mx klim 1.61331E6 -1.61331E6 -0.002 691.20007E -691.20007E -691.20007E -0.003 0.000 -0.000	0.000 0.000 My kllm 0.000 -0.000 0.000 0.000 -0.000 50156.812 -50156.812	0.000 Mz klim -1.61331E6 1.61331E6 0.002 -691.20007E 691.20007E 0.003 -272.06650E 272.06649E	

Fig4.13: Reaction Force At Supports (Node 1)

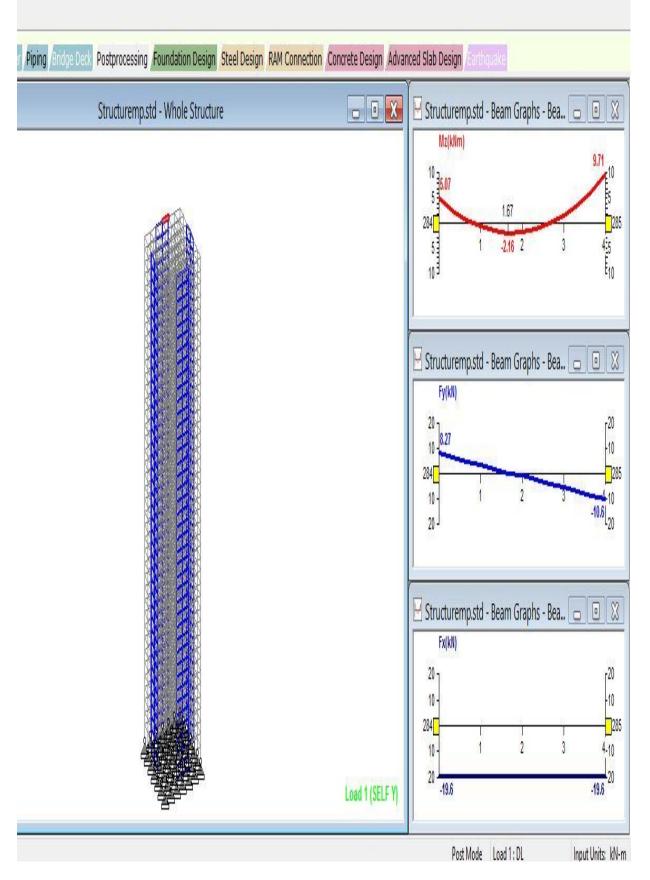


Fig4.14: Beam Result Graph (Beam No. 238)

4.2.5.4 Report File By Staad-Pro

2					Jab Na	Sheet	1	Rev
	0.000000				Part	-2		3
itie	are licensed to				Ref			
					2/	Data -	12-JUN-17 °	he
			862			JUN-2017 13:4		
					FIN Structure	np.aid		3014-2027 13,4
Job Inf	formatio	- 89	Chasled	Approved				
	Enginee	6 83	Checked	Approved				
Name:		_	3	0.				
Date:	14-Jul-1	7	8	8				
Date.	14 661 1		8					
Structure '	Type SRA	CE FRA	ME					
	10 N	.)						
Number of	Nodes	35201	Highest Node	2009				
Number of	Elements	5320	Highest Beam	5320				
		32000	Highest Plate	27200				
Number of i	Plates	32000	Filgheot Flave	37320				
10 10 10	Section and		10 - 20.02	37320				
Number of i	Basic Load Ca	1585	6	3/320				
Number of i	Section and	1585	6	3/320				
Number of I	Basic Load Ca Combination L	ises oad Cas	6 es 0	37320				
Number of I Number of	Basic Load Ca Combination L his printout are	ises oad Cas e data for	6 es 0	37320				
Number of I	Basic Load Ca Combination L	ises oad Cas e data for	6 es 0	37320				
Number of I Number of Included in the	Basic Load Ca Combination L his printout are The Whole	ises oad Cas e data for e Structu	6 es 0 re	37320				
Number of I Number of Included in the	Basic Load Ca Combination L his printout are The Whole	ises oad Cas e data for e Structu	6 es 0 r re for load cases:		٦			
Number of I Number of Included In th All Included In th	Basic Load Ca Combination L his printout are The Whole	ises oad Cas e data for e Structu e results	6 es 0 r re for load cases:		Ĵ			
Number of I Number of Included In th All Included In th	Basic Load Ca Combination L his printout are The Whole his printout are L/	ases coad Cas e data for e Structu e results IC	6 es 0 re for load cases: DL					
Number of I Number of Included In th All Included In th Type	Basic Load Ca Combination L his printout are The Whole his printout are	ases coad Cas e data for e Structu e results IC	6 es 0 r re for load cases: Na DL LL					
Number of I Number of Included in th All Included in th Type Primary	Basic Load Ca Combination L his printout are The Whole his printout are L/ 1 1 2 3	ases oad Cas e data for e Structu e results C 1 2 3	6 es 0 re for load cases: DL					
Number of I Number of I Included In th All Included In th Type Prime ry Prime ry	Basic Load Ca Combination L his printout are The Whole his printout are L/ 1 1 2 3	ases oad Cas e data for e Structu e results C 1 2 3	6 es 0 r re for load cases: Na DL LL					
Number of I Number of I Included In th All Included In th Type Primary Primary Primary	Basic Load Ca Combination L his printout are The Whole his printout are U 1 2 4 4 5	ises oad Cas e data for e Structu e results C 1 2 3 3	6 es 0 r re for load cases: Nai DL LL LL WL+X					

Primary Load Cases

Number	Name	Туре
1	DU	Dead
2	LL.	Live
3	WL+X	Wind
4	WL-X	Wind
5	WL+Z	Wind
6	WL-Z	Wind

Combination Load Cases

There is no data of this type.

Wind Load Definition : Type 1

(N/min ³)	Height (m)
0.001	3.000
0.001	12.000
0.001	21.000
0.002	30.000
0.002	39.000
0.002	48.000
0.002	57.000
0.002	66.000
0.002	75.000
0.002	84.000
0.002	93.000
0.002	102.000
0.002	111.000
0.002	120.000

Exposure	Range	Nodes / Height Range	
Factor	24 ¹⁹ 5-	(m)	
0.800	Nodes	1 - 2009	

2 LL : Area Loads

(N/mm ⁴)		Beams	
-0.003	1 - 5320		

3 WL+X : Wind Loading

Direction	Туре	Factor	
x	1	1.000	

4 WL -X : Wind Loading

Direction	Туре	Factor	
x	1	-1.000	

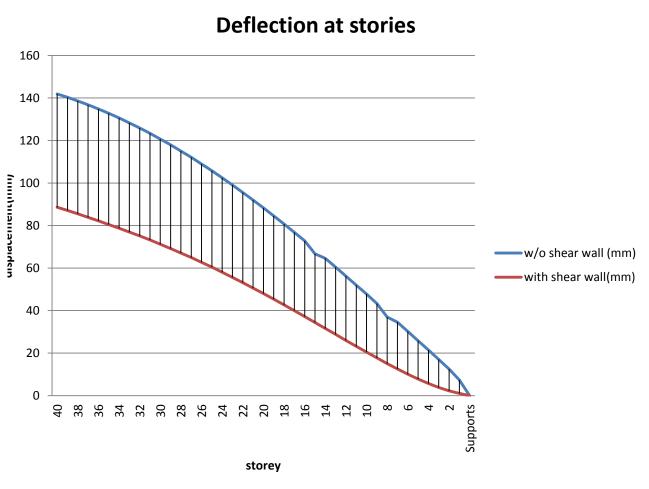
5 WL+Z : Wind Loading

Direction	Туре	Factor
z	-1-	1.000

6 WL -Z : Wind Loading

Direction	Туре	Factor
z	-1	-1.000

CHAPTER 5


COMPARISONS OF RESULTS AND DISCUSSIONS

5.1 General

It took time to run the analysis as the basic version of the software was used. Results of deflection, shear force, moment of the entire building and individual member were analyzed; also the graphical diagrams of deflection, shear force, moment of each member and of whole structure were analyzed.

5.2 Shear Wall Effect On Deflection

Storey drift also known as shear wall deflection is limited by two primary causes. The first is for limiting cracks in wall by plaster, gypsum, and paint in serviceability. The second is for limiting the shear wall's maximum inelastic response, which is important in the seismic or wind design of wood buildings. Furthermore, the relative flexibility and rigidity of shear wall and diaphragms is also calculated by storey drift.

Fig 5.1 : Graph of Deflection At Different Stories

5.3_Deflection Results In Both Analysis

TABLE- 5.1 Deflection Values comparison

storey	w/o shear wall (mm)	with shear wall(mm)	%Reduction
40	141.908	88.621	37.55038476
39	140.297	87.093	37.92240746
38	138.601	85.486	38.32223433
37	136.786	83.855	38.6962116
36	134.85	82.194	39.04783092
35	132.793	80.496	39.38234696
34	130.614	78.752	39.7063102
33	128.314	76.958	40.02369188
32	125.894	75.108	40.34028627
31	123.355	73.199	40.65988407
30	120.7	71.229	40.98674399
29	117.929	69.195	41.32486496
28	115.046	67.095	41.6798498
27	112.052	64.931	42.05279692
26	108.952	62.7	42.45172186
25	105.748	60.405	42.87835231
24	102.442	58.046	43.33769352
23	99.038	55.626	43.83368
22	95.538	53.145	44.37291968
21	91.947	50.608	44.95959629
20	88.267	48.017	45.60028097
19	84.503	45.375	46.30368153
18	80.659	42.689	47.07472198
17	76.739	39.964	47.92217777
16	72.746	37.204	48.85766915
15	66.692	34.418	48.39261081
14	64.575	31.614	51.04297329
13	60.403	28.801	52.31859345
12	56.181	25.981	53.75482814
11	51.916	23.196	55.32013252
10	47.812	20.432	57.26595834
9	43.278	17.715	59.06696243
8	36.921	15.066	59.19395466
7	34.547	12.51	63.7884621
6	30.164	10.073	66.60588781
5	25.781	7.789	69.78782825
4	21.397	5.696	73.37944572
3	16.997	3.835	77.4371948
2	12.483	2.263	81.87134503
1	7.363	1.034	85.95681108
	0	0	C

- Deflection values in the building with shear wall are significantly less than the building without shear wall, at the top of building deflection of the storey has been reduced upto 37.55%.
- Moment value for beam and nodes has also been reduced in shear wall building ,that shows its more reliability to the load as compared to without shear wall building.
- By this analysis and study in the urban areas to reduce the requirement of space for the building, high rise buildings are used; and to prevent danger against wind load on those buildings ,shear wall is a good and easy choice in the construction.

5.4 Future Scope

An experimental study also can be performed on the same structures by Wind Tunnel Experiment and their results can be compared by the experiment and STAAD-PRO analysis.

CHAPTER 6

CONCLUSIONS

- From the above study work, it is observed that in 40 story building, constructing building with shear wall in short span at middle is economical and effective as compared with the building without shear wall. From this it can be concluded that large dimension of shear wall is not effective in less number of stories of any building but it is effective in high number of stories.
- Software does not take direct values from IS-875(3) for the wind load; hence must be improved.
- Software does not support Indian codes like IS-456 for concrete design and IS -13920 for shear wall design, hence must be improved.
- Results are acceptable in both building and very significantly loss (37.55% in top story) in deflection in shear wall building has been shown compared to normal building without shear wall.

REFERENCES

- Text Book On Tall Building Structures –Analysis And Design By BRAYN STAFFORD SMITH & ALEX COULL
- Journal Study Of Seismic And Wind Effect On Multi Storey R.C.C., Steel And Composite Building(International Journal of Advances in Engineering & Technology, Sept. 2013.)
- Estimation of Wind Load on a Tall Building under Interference Effects: A Case Study, Pallab Kheyari 1) and Sujit Kumar Dalui 2)*
- Structural Developments in Tall Buildings: Current Trends and Future Prospects ,Mir M. Ali⁺ and Kyoung Sun Moon
- Alfa Rasikan, M G Rajendran / International Journal of Engineering Research and Applications (IJERA)
- http://www.engineeringcivil.com/deflections-of-bents-and-shearwalls.html
- https://en.wikipedia.org/wiki/Shear_wall
- CODES:- AS/NZS 1170.2:2011 SEI/ASCE 7-02 EN 1991-1-4:2005+A 1 IS 875(Part-3)-1987 IS 456-2000 IS 1893(Part-1)-2002 IS 13920-1993