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Abstract	

 

Graph based data representations are getting popular in areas like bioinformatics, social networks, 

web data mining, etc. Over the years many algorithms have been created for analysis on graph 

data. One such challenging task in this field is Frequent Subgraph Mining (FSM). Extracting 

frequent subgraphs from a huge set of graphs is a fundamental task in numerous information 

mining applications. 

There are existing frequent subgraph mining algorithms for unweighted graphs but they do not 

take into consideration the strength of relationships within the graph. In weighted graphs, some 

edges/vertices have more importance than others. In areas such as mobile communication 

networks, social networks, etc. weighted graphs are more useful. More relevant and specific 

subgraphs are generated through weighted frequent subgraph mining.  

There has been only some little work done in the field of frequent subgraph mining on weighted 

graphs. Also most of the current techniques are memory-based and are not scalable. This work 

uses an existing distributed approach for Frequent Subgraph Mining using iterative MapReduce 

based framework and applies different weighing schemes over the current approach. This work 

uses two different weighing schemes, Average Total Weighing (ATW) scheme and Affinity 

Weighing (AW) scheme, and compares both approaches. 
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Chapter	1:	Introduction	

 

This chapter provides the overview of frequent subgraph mining, motivation and problem 

statement of the thesis. The chapter explains some basic concepts of the domain and describes the 

scope of the work. The organization of this thesis is described at the end of this chapter. 

 

1.1. Overview	

Graph representation is expressive in nature and thus can be used to represent complex data 

and relationships in numerous real world scenarios. Over the years, many techniques have 

been designed to extract and discover useful knowledge from the complex data represented 

as graphs. Techniques like clustering, classification, searching, indexing, pattern finding, 

etc are used across different domains.  

Graph mining techniques are used in a variety of domains such as chemoinformatics, 

bioinformatics, and social networks. Research on association rule mining has motivated 

many researchers in the field of frequent pattern mining [1].  

Graph mining deals with pattern identification from data in graph form. Frequent subgraph 

mining is a form of graph mining used to find patterns (subgraphs) that occur frequently in 

a single large graph or a set of small graphs. 

Due to its wide range of applications in the above mentioned domains, frequent subgraph 

mining has been studied by a lot of researchers [2] [3]. Different functions and relations 

can be understood through frequent patterns. Frequent patterns can show a close friend 

circle in the field of social networks. Similarly, frequent patterns can help discover 

unknown functions of a protein in a protein-protein interaction network (PPI). 

In the case of weighted graphs, weighted support function is used to identify weighted 

frequent subgraph mining. The main issue with weighted subgraph mining is that the anti-

monotone property would not be applicable if the weights are assigned in normal manner. 

Anti-monotone property states that if a subgraph of size K is not frequent, then all of its 
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supergraphs of size K+1 would not be frequent. This is important for restricting search 

space size while matching patterns. Thus, the weighting strategy should be created in such 

a way that anti-monotone property holds true. [4] 

	

1.2. Basic	Concepts	

 

1.2.1. Graph	

A graph is defined as G = (V, E), where V is a set of vertices and E ⊆ V × V is a set of 

edges. We denote the label for vertex v ∈ V, by L(v) and the label for the edge (v1, v2) ∈ E 

by L(v1, v2). In our context, we will we use P = (VP, EP) for a pattern graph and G represents 

the input graph. 

 

1.2.2. Graph	Isomorphism	

We say that the pattern P is subgraph isomorphic to G = (V, E), denoted as P ⊆ G, if there 

exists an injective function, φ : VP → V such that: 1) ∀v ∈ VP, L(v) = L(φ(v)), and 2) ∀(vi, 

vj ) ∈ EP, (φ(vi ), φ(v j )) ∈ E and L(vi, vj ) = L(φ(vi ), φ(v j )). In this case, the isomorphic 

subgraph in G comprising the vertices φ(v1), φ(v2), . . . , φ(vp) (where p = |VP|) is also called 

an embedding of the pattern P in the input graph G. An example of graph isomorphism is 

showed in figure 1.1. 

 

Figure 1.1: Graph Isomorphism [5] 
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1.2.3. Support	

Let Σ(P) = {φ1, φ2, . . .} denote the set of all isomorphic graphs of pattern graph, P in input 

graph, G. Some function Σ(P) can be used to define the support of pattern, P, such as 

cardinality. However, in this case cardinality will not satisfy the anti-monotonic property 

as the support of subgraph cannot be less than the support of pattern. In order to tackle this 

problem, Kuramochi and Karypis (2005) proposed a technique using maximum 

independent set of overlapping in subgraphs [6]. But this technique is a NP-Hard problem. 

[7]. Figure 1.2 shows an example of support counting for the isomorphic graphs shown in 

figure 1.1. 

 

Figure 1.2: Support Counting [5] 

 

1.2.4. Frequent	Subgraph	Mining	

A graph database consisting of labeled, connected, simple and undirected graphs is given 

by G = {G1, G2, . . ., Gn}. The size of a graph, g is the number of edges it has. The support-

set of the graph g is given by t(g) = {Gi : g ⊆ Gi ∈ Gg}, ∀i = {1 . . . n. The support-set 

consists of all isomorphic subgraphs of g in the input graph database G. The support of g 

is given by the cardinality of the support-set. If support ≥ 𝜋min then g is called frequent. 
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𝜋min is the minimum support threshold which can be user defined or predefined. F 

represents the set of frequent patterns. 

 

Example. A graph database is showed in Fig. 1.3(a) with graphs (G1, G2 and G3). In Fig. 

1.3(b), the frequent subgraphs of the database with minimum support threshold of 2,	𝜋min=2 

are shown.  

  

Figure 1.3 : (a) A sample Graph database (b) Frequent subgraphs with support as 2. 

 

1.2.5. MapReduce	

MapReduce [8] is a programming model initially created by Google for parallel and 

distributed execution of code across multiple clusters. It is composed of Map() and 

Reduce() methods. A worker node in a cluster can be either a mapper or a reducer, as per 

its role in the computation. The mapper nodes filter and sort the data and output key-value 

pairs. The reducer nodes summarizes the output of mapper nodes by aggregating the values 
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with same key and writes the output to a file. A distributed file system manages all the files 

of MapReduce. 

 

 

Figure 1.4: MapReduce pipeline [9] 

 

Figure 1.4 shows the high-level pipeline of MapReduce. The input comes from files loaded 

in the HDFS. The mapper task runs on each node. Each mapper loads and processes the 

files local to it. After mapping, the intermediate values are shuffled and distributed among 

all the reducer nodes. This is the only communication step in MapReduce. Individual 

mappers do not communicate with each other. [9]  
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The detailed data flow of Hadoop MapReduce pipeline is given below in figure 1.5. Only 

two nodes are shown in the figure but the same pipeline can be replicated for a large number 

of nodes. 

 

Figure 1.5: MapReduce data flow [9] 

 

1.2.6. Iterative	MapReduce	

In iterative MapReduce [10] the mapper and reducer are run multiple times with some 

minor changes every time. The mapper in each iteration uses the output of the reducer from 

previous iteration as input. The termination of the loop is governed by an external 

condition. The pseudo code of the method is shown in the algorithm given below. 
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Algorithm: Iterative MapReduce Algorithm 

 
MapReduce_Itr():	
	

1.	 As long as condition is true: 
2.  Perform MapReduce 
3.  Record output on DFS 
4.  Update counters and the condition	
	

	

1.3. Motivation	

Frequent pattern mining is a fundamental task in many areas of chemistry, biology and 

networks. For example, social scientists can find closely related communities through 

frequent subgraph mining. Similarly, bioinformatics researchers can use it to find common 

subgraphs in protein structures. Graph indexing, clustering and classification are some 

other graph applications. 

Frequent subgraph mining has been implemented by many researchers [11] [12] using 

MapReduce framework [13], as well as in grid environments [14]. Most of the popular 

subgraph mining algorithms assume that the memory size is enough to fit the whole graph. 

This approach works on graphs of small size but proves inefficient as the graph size 

increases. To solve this issue, some database based implementations [15] [16] [17] were 

proposed. However, it is not scalable and computation time increases as the dataset size 

increases. 

There are many frequent subgraph mining algorithms for unweighted graphs but very less 

work has been done in the field of weighted graphs. There are numerous fields where the 

relationship between entities is important such as social networks, transportation networks, 

etc. For example, the users of a social network are all connected to each other but still some 

relationships are stronger than others. In such situations, weighted graphs prove to be more 

useful than unweighted graphs. The use of weighted frequent subgraph mining in weighted-

graph classification, logistics and software defect localization has been showed in [18]. 

However, in the field of weighted graphs, there are still very few implementations of 

frequent subgraph mining [4]. 
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1.4. Related	Work	

In [19], the authors have proposed an iterative MapReduce based method for extracting 

significant patterns in labeled graphs. The method worked for both directed and undirected 

graphs. Using the work in [19], Bhuiyan and Al Hasan created a framework for frequent 

subgraph mining using iterative MapReduce called FSM-H [5]. This framework is ten 

times more efficient than the work done in [19]. 

Babu and John in 2016 [20] applied FSM-H on weighted graphs. The authors used Average 

Total Weighting method for mining frequent patterns in the PubChem database [21]. 

 

1.5. Problem	Statement	

Frequent subgraph mining over MapReduce framework is a challenging problem. The 

support of the subgraph needs to be calculated over the complete graph database. Also, in 

a distributed environment, the input graphs would be distributed across various machines. 

In such a case, the node storing the graph can only compute its local support which is not 

enough to determine if the subgraph is frequent.  

In MapReduce framework, there is not built-in method for accessing global data structures. 

Thus, the local support computed cannot be stored in global variables. It is also not feasible 

to delay the support computation. According to Apriori principle [22], only frequent 

patterns can generate future candidate patterns. 

Most of the existing FSM algorithms are for unweighted graphs. They assume that all the 

frequent subgraphs are equally important. However, the work done in this thesis assumes 

that some subgraphs have higher importance due to the weight associated with the edges.  

In this thesis, weighting techniques are applied in an unweighted frequent subgraph mining 

approach. Non-negative real values are assigned to the edges of the input graphs. By doing 

this, a subset of more significant subgraphs can be identified. 

The research question posed in this thesis is thus:  

“Proposing a weighted frequent subgraph mining method using Affinity Weighting 

technique in a distributed environment.” 
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1.6. Scope	of	Work	

In this thesis, a MapReduce based approach is presented for weighted-frequent subgraph 

mining. The presented method is efficient than current methods as both data and 

computation are distributed. The method takes a weighted graph dataset as input and finds 

the significant weighted frequent subgraphs. 

The system runs in an iterative way. The output of the previous iteration is the input for the 

next iteration. The input of the mapper of the current step comes from the output of the 

reducer of the previous step.  

At each nth iteration, the mapper creates subgraphs of size n. The local support of the 

subgraph is also calculated by the mapper during each iteration.  

At each nth iteration, the globally frequent subgraphs of size n are identified by the reducer 

using their local supports. 

The performance is evaluated using a Facebook-like Social Network [65] database. The 

performance of different weighting techniques is compared. 

The scope of work can be summarized as: 

• Proposing a distributed method for mining weighted frequent subgraphs  

• Designing mapper and reducer functions for affinity based weighting techniques 

• Performance evaluation on a real biological dataset 

• Performance comparison of different weighting techniques 

 

1.7. Thesis	Organization	

Further thesis is organized as follows:  

Chapter 2 presents the literature review of existing frequent subgraph mining methods. 

Chapter 3 explains different graph weighting techniques used in this thesis.  

Chapter 4 provides the detailed description of proposed method for Frequent Subgraph 

Mining using iterative MapReduce method.  
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Chapter 5 describes the implementation details of this research work.  

Chapter 6 lists the results and evaluates the proposed system. It also compares the 

performance of the proposed system with other weighting techniques.  

Chapter 7 concludes the thesis and discusses the possible improvements in this research 

work in future. 
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Chapter	2:	Literature	Review	

 

In this section, first we discuss the work in the field of frequent subgraph mining and distributed 

frequent subgraph mining followed by work related to frequent subgraph mining in weighted 

graphs. 

 

2.1. Frequent	Subgraph	Mining	

gSpan [12], AGM [23] , FSG [24], Gaston [25], and DMTL [26] are some notable frequent 

subgraph mining algorithms. These algorithms are in-memory based. They work on small 

datasets. The time taken to complete the mining task is also not too much.  

 

There are mainly two types of FSM algorithms: (a) Pattern Growth based approach, or (b) 

Apriori based approach. 

 

Frequent subgraph mining algorithms based on pattern growth approach are discussed 

below: 

 

Subdue was introduced by Nikhil S Ketkar et al in 2005 [27]. It takes a single large graph 

as input represented by adjacency matrix. It searches level-wise and generates subgraphs. 

It uses minimum description code length string for frequency counting and generates 

complete set of frequent subgraphs. The only limitation to this approach is that the number 

of patterns is extremely small. 

 

gSpan [12] takes a graph dataset as input which are represented by adjacency list. It uses 

DFS order for frequency counting and generates the frequent graphs. The limitation to this 

approach is that it is not scalable. 

 

In the year 2003, Yan proposed Close Graph [28] method. It takes a graph dataset as input 

which are represented by adjacency list. It uses DFS order for frequency counting and 
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generates close connected frequent graphs. The limitation to this approach is that failure 

detection takes a lot of time overhead. 

 

Gaston is a popular subgraph mining tool created by Nijssen in 2004 [25]. It takes a graph 

dataset as input which are represented by hash table. It uses embedding lists for frequency 

counting and generates maximal frequent subgraphs. The limitation to this approach is that 

some interesting patterns may be lost. 

 

TSP takes a graph dataset as input which are represented by adjacency list. It uses TSP tree 

for frequency counting and generates closed temporal frequent subgraphs. But there is an 

extra overhead to check whether temporal patterns are closed [29]. 

 

MOFA [30] was proposed by Berthold for mining molecular fragments. It takes a graph 

dataset as input which are represented by adjacency list. It uses DFS order for frequency 

counting and generates all frequent subgraphs. There is always a possibility of error in this 

method. The frequent subgraphs generated may not be exactly frequent. 

 

RP-FP method proposed by Li [31] takes a graph dataset as input which are represented by 

adjacency list. It uses DFS order for frequency counting and generates representative 

graphs. The limitation to this approach is that the time summarizing the patterns is more 

than that for mining. 

 

RP-GD is just like RP-FP. It takes a graph dataset as input which are represented by 

adjacency list. It uses DFS order for frequency counting and generates representative 

graphs. The limitation to this approach is that the time summarizing the patterns is more 

than that for mining [31]. 

 

JPMiner takes a graph dataset as input which are represented by adjacency list [32]. It uses 

DFS order for frequency counting and generates frequent jump patterns. Sometimes the set 

of jump patterns is too small. 
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MSpan takes a graph dataset as input which are represented by adjacency list. It uses DFS 

order for frequency counting and generates frequent subgraphs. [33] 

 

Frequent subgraph mining algorithms based on apriori based approach are discussed 

below: 

Table 2.1: Pattern growth based frequent subgraph mining algorithms 

Name	 Input	 Graph	
Representation	

Frequency	
Counting	
Technique	

Output	 Limitation	

Subdue	 Single	
large	
graph	

Adjacency	
matrix	

Minimum	
description	
code	
length	
string	

Set	of	frequent	
subgraphs	

Extremely	
small	
number	of	
patterns	

gSpan	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	
subgraphs	

Not	scalable	

CloseGraph	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Close	
connected	
frequent	
graphs	

Overhead	
time	

Gaston	 Set	of	
graphs	

Hash	Table	 Embedding	
lists	

Maximal	
frequent	
subgraphs	

Some	
interesting	
patterns	
may	be	lost	

TSP	 Set	of	
graphs	

Adjacency	list	 TSP	tree	 Closed	
temporal	
frequent	
subgraphs	

Extra	
overhead	to	
check	if	
temporal	
patterns	are	
closed	

MOFA	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	
subgraphs	

Frequent	
subgraphs	
generated	
may	not	be	
exactly	
frequent	
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RP-FP	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Representative	
graphs	

Time	spent	
summarizing	
the	patterns	
is	more	than	
that	for	
mining	

RP-GD	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Representative	
graphs	

Time	spent	
summarizing	
the	patterns	
is	more	than	
that	for	
mining	

JPMiner	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	jump	
patterns	

Sometimes	
the	set	of	
jump	
patterns	is	
too	small	

	

 

In 2001, Nijssen proposed another subgraph mining method called Farmer [34]. It takes a 

graph dataset as input which are represented by a trie structure. Potential candidates are 

generated through level-wise search. It uses the trie data structure for frequency counting 

and generates frequent subgraphs. But this method is not efficient. 

 

At the same time in 2001, Karypis [24] proposed another method called FSG. It takes a 

graph dataset as input which are represented by adjacency list. Potential candidates are 

generated through one edge extension. It uses transaction identifier (TID) lists for 

frequency counting and generates frequent connected subgraphs. This is a NP-complete 

algorithm. 

 

HSIGRAM [35] takes a single large graph as input which is represented by adjacency 

matrix. Potential candidates are generated through iterative merging. It uses maximal 

independent sets for frequency counting and generates frequent subgraphs. But this 

approach is not much efficient. 
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Again in 2004, Karypis proposed another apriori based subgraph mining method, GREW 

[36]. It takes a single large graph as input which is represented by sparse graph 

representation. Potential candidates are generated through iterative merging. It uses 

maximal independent sets for frequency counting and generates maximal frequent 

subgraphs. The limitation to this approach is that it misses many interesting patterns. 

 

FFSM, proposed by Huan in 2003 [37] is a very popular subgraph mining algorithm. It 

takes a graph dataset as input which are represented by adjacency matrix. Potential 

candidates are generated through merging and extension. It uses sub-optimal canonical 

adjacency matrix tree for frequency counting and generates frequent subgraphs. This is a 

NP-complete algorithm. 

 

ISG is itemset based subgraph mining [38]. It takes a graph dataset as input which are 

represented by edge triplets. Potential candidates are generated through edge triplet 

extension. It uses transaction identifier (TID) lists for frequency counting and generates 

maximal frequent subgraphs. The set of graphs generated is incomplete. 

 

Spin, also proposed by Huan [39], takes a graph dataset as input which are represented by 

adjacency matrix. Potential candidates are generated through join operations. It uses 

canonical spanning tree for frequency counting and generates maximal frequent subgraphs. 

Non-maximal graphs can also be found but needs an entire database scan. 

 

Dynamic GREW [36] is a modification of GREW. It takes dynamic graphs as input which 

are represented by sparse graph representation. Potential candidates are generated through 

iterative merging. It uses suffix trees for frequency counting and generates dynamic 

patterns in frequent subgraphs. The limitation to this approach is that there is an extra 

overhead for identifying dynamic patterns. 

 

AGM [23] is an apriori based graph mining method. It takes a graph database as input 

which is represented by adjacency matrix. Potential candidates are generated through 
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vertex extension. It uses canonical labelling for frequency counting and generates frequent 

subgraphs. 

 

MUSE was proposed in 2010 by Zou [40]. It takes an uncertain set of graphs as input which 

are represented by adjacency matrix. Potential candidates are generated through disjunctive 

normal forms (DNF). It uses DFS order for frequency counting and generates frequent 

subgraphs. The limitation to this approach is that the frequent subgraphs are not exact. 

 

DB-FSG [16], OOFSG [17], and DB-Subdue [41] have also been proposed for mining 

large datasets. These algorithms are traditional database based. 

 

Table 2.2: Apriori based frequent subgraph mining algorithms 

Name Input Graph 
Representatio
n 

Candidate 
Generatio
n 

Frequency 
Counting 
Technique 

Output Limitatio
n 

Farmer Set of 
graphs 

Trie structure Level-wise 
search 

Trie data 
structure 

Frequent 
subgraph
s 

Not 
efficient 

FSG Set of 
graphs 

Adjacency list One edge 
extension 

Transactio
n identifier 
(TID) lists 

Frequent 
connecte
d 
subgraph
s 

NP-
complete 
algorithm 

HSIGRA
M 

Single 
large 
graph 

Adjacency 
matrix 

Iterative 
merging 

Maximal 
independe
nt sets 

Frequent 
subgraph
s 

Not 
efficient 

GREW Single 
large 
graph 

Sparse graph 
representation 

Iterative 
merging 

Maximal 
frequent 
subgraphs 

Maximal 
frequent 
subgraph
s 

Misses 
many 
interesting 
patterns 

FFSM Set of 
graphs 

Adjacency 
matrix 

Merging 
and 
extension 

Sub-
optimal 
canonical 
adjacency 
matrix tree 

Frequent 
subgraph
s 

NP-
complete 
algorithm 

ISG Set of 
graphs 

Edge triplets Edge 
triplet 
extension 

Transactio
n identifier 
(TID) lists 

Maximal 
frequent 
subgraph
s 

Incomplet
e set of 
graphs 
generated 
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Spin Set of 
graphs 

Adjacency 
matrix 

Join 
operations 

Canonical 
spanning 
tree 

Maximal 
frequent 
subgraph
s 

Entire 
database 
scan 
needed for 
not 
maximal 
graphs 

Dynamic 
GREW 

Dynamic 
graphs 

Sparse graph 
representation 

Iterative 
merging 

Suffix trees Dynamic 
patterns 
in 
frequent 
subgraph
s 

Extra 
overhead 
for 
identifyin
g dynamic 
patterns 

MUSE Uncertai
n set of 
graphs 

Adjacency 
matrix 

Disjunctiv
e normal 
forms 
(DNF) 

DFS order Frequent 
subgraph
s 

Frequent 
subgraphs 
are not 
exact 

 

 

Shared memory parallel algorithms have also been designed by researchers for large-scale 

graph mining. A parallel version of the frequent subgraph mining algorithm, Subdue [42] 

was presented by Cook et al. A parallel toolkit [43] for Motif-Miner [44] algorithm was 

also developed by Wang et al. 

 

Parmol [45] is a parallel implementation of Mofa [30], gSpan [12], FFSG [37] and Gaston 

[25]. gSpan also has a parallel implementation called ParSeMis [46]. 

 

PartMiner [47] and PartGraphMining [48] partition the graph dataset in order to scale up 

the size of input dataset. For CMP Architectures, there is a work [49] on adaptive parallel 

graph mining. 

 

2.2. Distributed	Frequent	Subgraph	Mining	

Frequent patterns can be mined through MapReduce framework. It has been used for input 

datasets of sets [50], [51], [52], [53], and sequences [54].  
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In [19], the approach used by the author for mining using MapReduce is not efficient. It 

has various shortcomings. There is no way to generate unique patterns in their method. 

There may be duplicate patterns. Thus, leading to an increase in the size of search space. 

Also, there will be duplicates in output. Such output is hard to unify. A separate subgraph 

isomorphism method would be required for this. This method does not determine the 

number of MapReduce iterations by itself. The number of iterations are fed by the user. 

 

Induced occurrences of subgraphs in a single large graph is also used to mine subgraphs in 

some existing works [55], [56]. 

 

	

2.3. Frequent	Subgraph	Mining	in	Weighted	Graphs	

 

In the area of weighted frequent subgraph mining, very little work has been done yet. 

However, a lot of work has been done in the field of weighted sequence mining (WSM) 

and weighted association rule mining (WARM) [57].  

 

The concept of “support confidence” and “weight confidence” was introduced by Yun and 

Leggett [57] in 2005. In their work, they integrated weight and support confidences in the 

mining method. They identified patterns with similar weight and support levels through 

this approach. 

 

A study done by Eichinger et al [18] showed that frequent subgraph mining with weights 

can provide more accurate results. They have explained the constraints of weight based 

work. Integration of weights in mining algorithms has also been demonstrated in this paper.  

 

Real-world problems like weighted-graph classification, logistics and software defect 

localization are discussed in this study. The precision increased and the runtime decreased 

in this study. The results displayed better explorative logistics. 
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Jiang et al [4] proposed another work on weighted frequent subgraph mining. They 

introduced weighting mechanisms namely: Average Total Weighting (ATW), Affinity 

Weighting (AW) and Utility Based Weighting (UBW). By identifying the most significant 

subgraphs, these weighting schemes led to a reduction in the overall search space and 

improved efficiency and accuracy.  

 

In order to verify the relevance of the results, the weighting techniques were applied to 

classification problems. The experiment was conducted on two data sets. A text mining 

data set [58] and an MRI scan data set [59] were used in the experiments. The results proved 

that the classification precision improved by using the weighting techniques. 

 

Conclusion: A lot of work has been done in the field of Frequent Subgraph Mining. 

Weighting techniques have been explored to mine weighted graphs. MapReduce based 

techniques have been implemented which have made mining scalable and more efficient. 

However distributed mining of weighted graphs is still an unexplored territory. Thus, this 

work proposes a MapReduce based technique for mining patterns in weighted graphs. 
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Chapter	3:	Frequent	Subgraph	Mining	

Frequent subgraph mining has been a hot topic of interest for many years. Different researchers 

have proposed different algorithms and approaches for frequent subgraph mining. In this chapter, 

some basic frequent subgraph mining approaches are discussed. 

3.1. Simple	in-memory	frequent	subgraph	mining	:	gSpan	

gSpan is one of the most popular frequent subgraph mining algorithm. It runs on a single 

machine and uses a sparse adjacency list representation to store graphs. It uses DFS 

lexicographical ordering for frequency counting. The algorithm is discussed below: 

	
Algorithm:	gSpan	algorithm	–	single	node,	in-memory	approach	

 
gSpan(DataSet, ResultSet): 
 

1. Sort DataSet by frequency 
2. Eliminate non-frequent edges/vertices from DataSet 
3. ResultSet1 = all frequent single edge graphs in DataSet 
4. Sort ResultSet1 in DFS order 
5. ResultSet = ResultSet1 
6. For each edge in ResultSet1 
7.  sol = all graphs that contain edge 
8.  MineSubgraph(DataSet, ResultSet, sol) 
9.  DataSet = DataSet - edge 
10.  If |DataSet| < minimumSupport 
11.   break 
	
	
Algorithm:	Subprocedure	for	mining	in	gSpan	algorithm	

 
MineSubgraph(DataSet, ResultSet, sol): 
 

1. if sol ≠ min(sol) 
2.  return 
3. ResultSet = ResultSet U {sol} 
4. Find sol in each graph in DataSet and count its children 
6. For each child of sol 
7.  If support(child) > minimumSupport 
8.   sol = child 
9.   MineSubgraph(DataSet, ResultSet, sol) 
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Consider a graph with edges {A, B, C, ....}. Lines 6-11 will discover all the frequent 

subgraphs containing an edge A---A in the first iteration. All frequent subgraphs 

containing edge A---B, but not A---A will be identified in second iteration. The loop 

continues until all frequent subgraphs are identified. As the loop continues the size of the 

DataSet decreases (line 9). MineSubgraph is called recursively. It expands the graph and 

finds its children. It ends when the support of graph is less than minimum Support or the 

DFS code is not minimum. [12] 

	

3.2. Basic	Weighted	Frequent	Subgraph	Mining	Algorithm	

There are two main steps in unweighted frequent subgraph mining. First is to construction 

of candidate subgraphs. Second is the frequency counting of candidate subgraphs. But in 

weighted graphs, the candidates generated also have weights which tell their relevance. In 

weighted frequent subgraph mining, the importance of subgraphs is identified by a 

weighting function. It means that even though a subgraph may have higher frequency, it 

might not be that much relevant for the results. Similarly, a subgraph having lower 

frequency may be more relevant.  

 

A generic weighted frequent subgraph mining algorithm is described below: 

Algorithm: Basic weighted frequent subgraph mining algorithm 

 
Weighted_FSM(WG, support_threshold): 
 

0. //n = 1 
1. Populate WFP1 
2. While WFPn has elements 
3.  Cn+1 = Generate_Candidate_Set (WFPn, WG) 
4.  Forall candidate, c in candidate set Cn+1 
5.   If Isomorphism_Check(c) = true 
6.    Weighted_Support_Counting(c, WG) 
7.    If support ≥ support_threshold 
8.     Add candidate, c to WFPn+1 
9.  Increment n by 1 
10. Return WFP 
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The algorithm uses breadth-first candidate enumeration. It is a candidate-generation-and-

test based algorithm. The algorithm starts with single edge patterns (frequent patterns of 

size 1) denoted as WFP1 (Line 1). Using a while loop (Line 3-9), the algorithm finds WFP2, 

WFP3 and so on. The loop continues till the complete weighted frequent pattern set (WFP) 

is created. The loop repeats if at the end of iteration WFPn is non-empty. It generates 

candidate subgraphs of size n+1 from each of the frequent patterns in WFPn (Line 3). The 

candidate patterns are denoted by C. The algorithm calculates the candidate’s support 

against the dataset WG (Line 6). The generated pattern is frequent if its support is greater 

than support_threshold and is stored in the set WFPn+1 (Line 8). The algorithm makes sure 

that it only processes unique candidate patterns (Line 5). The while loop (line 2 to 9) 

continues till all frequent patterns of size n+1 are obtained. During ith iteration, frequent 

patterns of size i+1 are obtained, and it repeats until all the frequent subgraphs are 

generated. 

 

The algorithm has three main steps: 

1. Generation of Candidate Set 

Suppose c is a frequent pattern of size n. During candidate generation, a frequent 

edge (from WFP1) is added to c and a new candidate d of size n+1 is created. If a 

new vertex is present in the new candidate, then the new edge is a forward edge, 

otherwise a backward edge. Backward edge connects existing vertices of the 

candidate subgraph. In case of a forward edge, the new vertex is assigned an integer 

id. This id is larger than ids of any other vertices. Thus the vertex id represents the 

order of their addition to the candidate subgraph. 

 

2. Isomorphism Check 

There can exist multiple paths by which a candidate is generated. But only one path 

should be processed during the mining process to avoid duplicity. Thus, 

isomorphism check is required during subgraph mining so that the duplicate copies 

of the candidate subgraphs can be ignored. Canonical coding scheme is a popular 
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way of checking graph isomorphism. In this method, the edges of the graph are 

serialized in a specific order and a string is generated. All isomorphic graphs 

generate same strings. min-dfscode is one such canonical coding scheme [12]. min-

dfscode checks the generation path of pattern. If the edge ordering and insertion 

ordering in the generation path are same, then it is considered to be correct. 

Otherwise it is a duplicate and is ignored. 

 

3. Support Counting 

Support counting is a fundamental task in frequent subgraph mining. It determines 

whether the generated subgraph is frequent. We need to count the occurrence of the 

subgraph in all the input graphs for finding its support. This a NP-complete 

problem. Support functions differ for different weighting schemes. 

	
	

3.3. Distributed	Frequent	Subgraph	Mining	

Distributed weighted FSM algorithm [5] has four phases: 

1. Input Refining 

During the refining stage, the pre-processing is done. Firstly, the graph weights are 

computed. Then weight frequent edges are determined. As per the anti-monotone 

property, non-frequent edges are discarded, as non-frequent subgraphs cannot be used 

to generate frequent subgraphs. For further processing, only frequent edges are kept. 

 

2. Input Splitting 

During the splitting phase, the input data is split into chunks and distributed across 

Hadoop Distributed File System (HDFS). The input file is split in such a way that 

almost equal number of edges are present across all the chunks. This helps in load 

balancing. 
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3. Initialization 

The data structures are initialized during initialization step. Data structures required for 

support computation and map and reduce jobs for candidate generation are initialized. 

A data structure is needed to maintain the list of all the vertices and all the possible 

extensions from those vertices for candidate generation. 

 

4. Mining 

This is the actual mining phase. Iterative process is used to find weighted frequent 

subgraphs. The first iteration starts with the single length weighted frequent subgraphs 

(size=1).  

 

 
Figure 3.1: Workflow of complete mining process 
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Figure 4.1 presents the complete workflow of all the steps. Input data is first refined. The 

weighted frequent edges are identified. Then the input goes through the splitting phase and 

is filtered and split across various chunks. 

Then during the preparation phase, the data structures are initialized. Finally, the mining 

starts. At each ith iteration, subgraphs of size i+1 are generated. The mining process repeats 

until all frequent subgraphs of size i+1 are identified.	

	

3.4. Graph	Weighting	Mechanisms	

In this section, the graph weighing mechanisms used in this thesis are described.  

In the context of weighted FSM, the weights associated with a subgraph pattern, g can be 

defined in a number of ways. 

 

3.4.1. Average	Total	Weighting	(ATW)	Scheme	

Inspired by the work in Tao et al. [60] , in the Average Total Weighting (ATW) scheme, 

given a graph data set GD = {G1, G2, . . . , Gn}, the weight for a subgraph g is calculated 

by dividing the sum of the avg weights in the graphs that contain g with the sum of the 

average weights across the entire graph dataset GD. It can be used for both edge and vertex 

weighted graphs. 

 

Given a graph data set GD = {G1, G2, . . . , Gn}, if Gi is edge weighted by {w1, w2, . . . , 

wk}, then the average weight of Gi is defined as:  

   𝑤()* 𝐺, =
./

0

/12

3
     (1) 

Where wj is either defined by the user or calculated by some weighting methods. 

The total weight of GD is defined as: 

   𝑤456 𝐺𝐷 = 𝑤()* 𝐺,
8

,9:
    (2) 
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Given a graph data set GD = {G1, G2, . . . , Gn},  and an arbitrary subgraph g, let the set of 

graphs where g occurs equal GD(g). Then, the weight of g with respect to δGD is: 

   𝑊<= * =
>?@∈A?B C DEFC <,

GHIJ ?B
    (3) 

 

 

The actual importance of subgraph g is told by WGD(g). The weighted support of a subgraph 

g is given by the product of the support of g and the importance factor of g: 

wsupGD(g) = WGD(g) x supGD(g) 

 

A subgraph g is weighted frequent with respect to GD, if wsupGD(g) ≥ 𝜏 , where 0 < τ ≤ 1 

is a weighted support threshold. 

 

In equation 3, the anti-monotone property is satisfied by the function	𝑊<= * . This means 

that if a subgraph of size k is not frequent, then all the supergraphs of size k+1 containing 

k won’t be frequent too and they can be pruned during candidate generation. This approach 

is best suited when the graphs in the dataset are of similar size. The reason behind this is 

that this approach will tend to be more favored towards larger graphs as compared to 

smaller graphs. 

 

3.4.2. Affinity	Weighting	(AW)	Scheme	

In Affinity Weighting (AW) scheme, the search space growth is restricted by two factors: 

(a) graph distance measure, and (b) weighting ratio measure. For a subgraph g to be 

weighted frequent, both must be greater than specified user thresholds. Let g be a candidate 

pattern for a graph dataset GD = {G1, G2, . . ., Gn}. We define graph distance as: 

   𝑊<= * =
:?@∈A?B C L M C

M ?@
N *

    (4) 

Where V(Gi) is the set of vertices in transaction graph Gi and V(g) is the set of vertices in 

the sub-graph g. 
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The value of (4) will only decrease on adding vertexes to g because 𝛿<= *  cannot be 

increased. 

 

The graph distance measure is based on the number of vertices in a graph. The weighting 

ratio is concerned with the edge weights. r(g) is the weighting ratio of an edge-weighted 

subgraph g. It returns a value between zero and one which is non-increasing in the number 

of edges of g. Given an edge weighted subgraph g with weights S = {w1, w2, …, wn}, the 

weighting ratio function r(g) which is similar to [61], is defined as: 

   𝑟 𝑔 =
RSTU@∈V W@
RXYU/∈V ./

     (5) 

 

Given an edge-weighted graph data set GD = {G1, G2, . . . , Gn}, a weighted support 

threshold τ ∈ (0, 1], and a weighting ratio threshold 𝜆 ∈ [0, 1], a subgraph g is weighted 

frequent only if the following two conditions (C1 and C2) are satisfied: 

(C1) wsupGD(g) = supGD(g) x WGD(g) ≥ τ; 

(C2) r(g) ≥ 𝜆 

 

Thus, we get another pruning method. This method may be used in any frequent subgraph 

mining algorithm. The weighted support and weighting ratio are tracked during mining. 

While selecting candidates, the candidates which do not satisfy at least one of the 

conditions will be discarded. 
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Chapter	4:	Proposed	Method	

The proposed system for weighted frequent subgraph mining works on weighted graph dataset. 

The input dataset contains graphs of medium size. The graphs have undirected weighted edges. 

The goal of weighted frequent subgraph mining is to find weighted-frequent subgraphs in the input 

database occurring more than the provided weighted-support threshold value. 

The proposed system uses two different weighting mechanisms for frequent subgraph mining, 

namely Average Total Weighting (ATW) and Affinity Weighting (AW). The mining algorithm 

for both ATW and AW weighting schemes are presented below: 

 

4.1. Distributed	weighted	subgraph	mining	using	ATW	weighing	scheme	

 

Algorithm: Mapper for ATW scheme based frequent subgraph mining 

 
ATW_Map(key, value): 
 

1. Subgraph = getSubGraph(value) 
2. Reconstruct_DataStructures(value) 
3. C = Generate_Candidate_Set(Subgraph) 
4. For each graph, c in C 
5.  If Isomorphism_Check(c) = true 
6.   If any graph of this division contains c 
7.    outkey = min_dfs_code(c) 
8.    out1 = ATW_weighted_support_factor(c) 
9.    out2 = serialized value of c 
10.    outval = out1 + out2 
11.    Output the values outkey, outval 
 

 

A key-value pair is provided as input to the AWT_Map function. In order to uniquely 

identify subgraphs, min-dfscode is used for key. The serialized value of the subgraph is 

used as the value. Initially, the data structures are initialized. The candidate is generated in 

line 3. Only one isomorphic subgraph will be used for each candidate generated. If at least 

one graph contains a subgraph, then it should be sent for processing to reducer function. 
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outkey is set as min_dfs_code of this new candidate subgraph. Along with min_dfs_code, 

weighted_support_factor is also calculated and appended to the serialized value of the 

subgraph. The weighted_suppot_factor and serialized value of subgraph are set as outval. 

The function emits the (outkey, outval) pair. This pair is then shuffled and sorted with other 

pairs before sending to the reducer. 

 

Algorithm: Algorithm for weighted support factor for ATW scheme 

 
ATW_weighted_support_factor(c): 
 

1. for each edge in c 
2.  Total += weight(c) 
3.  Counter = counter + 1 
4. Return total/counter 
 

 

The ATW_weighted_support_factor method takes a candidate graph as input and returns 

the average weight of the candidate graph. It traverses all edges and adds their weights. It 

then divides the total weight by the number of edges. This gives us the average weight of 

the candidate graph. 

 

Algorithm: Reducer for ATW scheme based frequent subgraph mining 

 
ATW_Reduce(key, values): 
 

1. For each value in values 
2.  total_support += getATWWeightedSupport(value) 
3. If total_support / total_weight ≥ support_threshold 
4.  For each value in values 
5.   write_ouput(key, value) 
 

 

The intermediate outputs are shuffled and sorted before going to the reducer. One reducer 

function will receive the outputs from mapper functions with same outkey. In 
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ATW_Reduce, the weighted-support factor from all mapper functions are aggregated and 

total support is calculated. Total support is then divided by total weight of input dataset. 

This result is the total weighted support of that subgraph pattern. Then, it checks if the 

subgraph is weight frequent or not by verifying the support threshold. If it is frequent then 

it is written to the HDFS. The number of output files will be equal to the number of reducer 

nodes. 

 

The flowchart of the algorithm is shown below in figure 4.1 
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Figure 4.1: Flowchart of distributed FSM using ATW scheme 
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4.2. Distributed	weighted	subgraph	mining	using	AW	weighing	scheme	

 

Algorithm: Mapper for AW scheme based frequent subgraph mining 

 
AW_Map(key, value): 
 

1. Subgraph = getSubGraph(value) 
2. Reconstruct_DataStructures(value) 
3. C = Generate_Candidate_Set(Subgraph) 
4. For Each graph, c in C 
5.  If Isomorphism_Check(c) = true 
6.    If any graph of this division contains c 
7.   outkey = min_dfs_code(c) 
8.   out1 = AW_weighted_support_factor(Subgraph,c) 
9.   out2 = serialized value of c 
10.   outval = out1 + out2 
11.   Output the values outkey, outval 
 

 

A key-value pair is provided as input to the AW_Map function. In order to uniquely 

identify subgraphs, min-dfscode is used for key. The serialized value of the subgraph is 

used as the value. Initially, the data structures are initialized. The candidate is generated in 

line 3. Only one isomorphic subgraph will be used for each candidate generated. If at least 

one graph contains a subgraph, then it should be sent for processing to reducer function. 

outkey is set as min_dfs_code of this new candidate subgraph. Along with min_dfs_code, 

weighted_support_factor is also calculated and appended to the serialized value of the 

subgraph. The weighted_suppot_factor and serialized value of subgraph are set as outval. 

The function emits the (outkey, outval) pair. This pair is then shuffled and sorted with other 

pairs before sending to the reducer. 
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Algorithm: Algorithm for weighted support factor for AW scheme 

 
AW_weighted_support_factor(Graph, Candidate): 
 

1. For Each vertex in Graph 
2.  g++ 
3.  For Each vertex in Candidate 
4.   c++ 
5. Return 1 – g/c 
 

 

The AW_weighted_support_factor method takes as input, the transaction graph and the 

candidate graph. It returns the ratio of number of vertices (of the transaction graph) not 

present in the subgraph to the total number of vertices in the candidate graph. It counts the 

number of vertices in the graph as well as the potential candidate solution. It returns the 

ratio of difference in number of vertices in transaction graph and candidate graph to the 

total number of vertices in the candidate subgraph. 

 

Algorithm: Reducer for AW scheme based frequent subgraph mining 

 
AW_Reduce(key, values): 
 

1. For each value in values 
2.  total_support += getAWWeightedSupport(value) 
3.  Vg = getVerticeSet(key) 
3. If total_support / Vg ≥ support_threshold  
4.   For each edge in getEdges(key) 
5.    If max < getEdgeWeight(edge) 
6.    max = getEdgeWeight(edge) 
7.   If min > getEdgeWeight(edge) 
8.    min = getEdgeWeight(edge) 
9.   ratio = max / min 
10.  If ratio ≥ weighting_ratio 
11.    For each value in values 
12.    write_ouput(key, value) 
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The intermediate outputs are shuffled and sorted before going to the reducer. One reducer 

function will receive the outputs from mapper functions with same outkey. In AW_Reduce, 

the weighted-support factor from all mapper functions are aggregated and total support is 

calculated. Total support is then divided by total number of vertices in the subgraph. This 

result is the total weighted support of that subgraph pattern. The AW_Reduce function 

checks the support_threshold and also computes the ratio of the maximum and minimum 

edge weights and checks if it is greater than the weight ratio required. If it is frequent then 

it is written to the HDFS. The number of output files will be equal to the number of reducer 

nodes. 

 

The flowchart of the algorithm is shown below in figure 4.2 
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Figure 4.2: Flowchart of distributed FSM using AW scheme 

 

 



 

36 
 

Chapter	5:	Implementation	and	Results	

 

This chapter discusses the implementation details of the method proposed in the previous chapter. 

The objective of implementation is to check whether the if fewer patterns are generated using the 

weighted frequent subgraph mining as compared to standard unweighted subgraph mining. 

Another goal is to compare and analyze both weighting schemes in the context of frequent 

subgraph mining and check weighting scheme is faster and which weighting scheme produces 

fewer patterns. 

 

5.1. Hardware	Details	

The experiment was performed on Linux-based machines. A Hadoop cluster with 4 nodes 

was created. In the cluster one node was set as the master node which also worked as a data 

node. The rest of the three nodes were data nodes. Each node had a 3.2 GHz Intel Core i5 

processor and 2GB of memory. 

 

5.2. Software	Details	

The Hadoop version used was 2.7.3. The code for preparation and mining phase was 

written in Java. A 32-bit version of Java 7 was used for the experiments. The data was 

compressed while writing to HDFS. This saved execution time of the MapReduce job. 

 

5.3. Dataset		

For the purpose of evaluation, a real-life social network dataset was used. A dataset 

containing Facebook-like Social Network was acquired from an online source [65]. 

The Facebook-like Social Network was created using the data of students in University of 

California. The users that sent or received any message were included in the database. The 

message sent by a user to another message is represented as a list of edges. 

Three types of datasets were used in this work. 
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Table 5.1: Description of Data 

Dataset Name Description 

DS1 Weighted longitudinal one-mode network (weighted by number of 
characters) 

DS2 Weighted static one-mode network (weighted by number of 
characters) 

DS3 Weighted static one-mode network (weighted by number of 
messages) 

 

Out of the complete dataset, the dataset for three types were used. The description of the 

data used is presented in table 5.1 

 

Table 5.2: Description of Graph Dataset 

Name # of graphs # of edges Avg # of edges Total graph 
weight 

Avg. graph 
weight 

DS1 9567 247684 28.9 18331 1.9160 

DS2 2024 75487 37.3 8213 4.0578 

DS3 1954 71971 36.8 7610 3. 8945 
 

Table 5.2 describes the complete description of the graph dataset. It specifies the number 

of graphs, the number of edges and the average number of edges in each dataset. It also 

states the total weight of the complete graph as well as the average weight of the graph. 
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5.4. Results	

The performance of the system proposed in chapter 4 is discussed in this section. The performance 

of both ATW and AW weighting techniques are compared. The number of patterns for varying 

support functions is depicted. 

 

 

Figure 6.1: Number of frequent patterns for Unweighted, ATW and AW schemes 

 

Figure 6.1 shows the comparison of unweighted and weighted frequent subgraph mining in terms 

of number of frequent patterns identified. There is a significant decrease in number of patterns in 

case of weighted frequent subgraph mining. Less number of pattern means that only the relevant 

and significant patterns are identified. Further within weighted mining, ATW scheme has more 

patterns than AW scheme. This clearly shows that AW scheme gives fewer and more relevant 

results as compared to ATW scheme. 
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Figure 6.2: Number of patterns in ATW and AW for different r(g) 

 

Figure 6.2 shows the comparison of ATW and AW schemes for different weighting ratios, r(g). It 

can be observed from the figure that the number of patterns decrease drastically on increasing the 

r(g) threshold for same support threshold. AW weighting scheme gives further advantage over 

ATW scheme by adding an additional constraint of weighting ratio. And thus provides only the 

specific and significant patterns. 

However, on increasing the weighting ratio to a higher value, the number of patterns decrease 

drastically and on further increasing, there may be no results at all. One has to carefully choose 

the value of the weighting ratio in order to get the best and most accurate results. 
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Figure 6.3: Running time of ATW and AW for different different support values with r(g) = 0.2 

 

The running time of both ATW and AW schemes for different datasets is depicted in figure 6.3 

shown above. It is clear that AW scheme has a slightly higher running time than AW scheme. This 

is because more computation is required in case of AW. However, the running times become 

comparable on increasing the support threshold. 

From the results shown in this chapter, it can be deduced that there is a tradeoff between ATW and 

AW weighting schemes. AW has a slightly higher running time as compared to AW. But the 

number of patterns generated by AW is significantly less than ATW for same dataset, which leads 

to more significant and specific results. One can choose any of the schemes on the basis of the 

requirement. ATW should be used in the scenarios where running time is a crucial factor. 

Otherwise AW can be used when more filtered and relevant patterns are required. 
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Chapter	7:	Conclusions	and	Future	Work	

 

A distributed approach for weighted frequent subgraph mining is proposed in this work. The work 

uses ATW and AW schemes for finding more important subgraphs from weighted frequency 

subgraph dataset. In this work, edge weightings are assumed, but the same approach may be 

applied for vertices. The proposed method finds weighted frequent subgraphs that satisfy the 

weight threshold. The method 

The comparison of results of weighted and unweighted frequent subgraph mining revealed that 

fewer and more significant patters are extracted. A MapReduce based distributed system was 

created to manage large graph databases. The performance of the system was evaluated for four 

datasets using different parameters. The proposed method is efficient and scalable. It can handle 

huge graph datasets, which cannot be handled on a single machine. 

It is found that the AW scheme consumes more time than ATW scheme. It is due to slightly extra 

complexity in calculations. However, AW scheme gives the least number of patters. The patterns 

found are more significant, relevant and specific.  In the case of ATW scheme, the number of 

patterns found is more than AW scheme but lower than the number of patterns in the case of 

unweighted frequent subgraph mining. 

Thus, it can be concluded that ATW scheme has a better runtime than AW scheme, but the patterns 

produced in the case of AW scheme are more significant and relevant. 

In the future, the algorithm can be optimized to use some sort of caching or intermediate values. 

Apache Spark framework [63] can be used to optimize the algorithm. Apache Spark will reduce 

the serialization and disk I/O overhead of writing results of each iteration to disk. It has been found 

that iterative algorithms are faster than MapReduce [64] based algorithms. Thus, Spark is an ideal 

platform for distributed graph algorithms. 

 



 

 

References	

	

[1]  R. A. a. R. Srikant, "Fast algorithms for mining association rules," in 20th International 

Conference on Very Large Data Bases (VLDB), September 1994.  

[2]  H. T. a. R. D. K. L. Dehaspe, "Finding frequent substructures in chemical compounds," in 

4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 

August 1998.  

[3]  D. J. C. a. S. D. L. B. Holder, "Substucture discovery in the subdue system," in Workshop 

on Knowledge Discovery in Databases (KDD) Proceedings, July 1994.  

[4]  F. C. M. Z. Chuntao Jiang, "Frequent Sub-graph Mining on Edge Weighted Graphs," in 

International Conference on Data Warehousing and Knowledge Discovery, September 

2010.  

[5]  M. A. H. Mansurul A. Bhuiyan, "An Iterative MapReduce Based Frequent Subgraph Mining 

Algorithm," IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp. 

608-620, March 2015.  

[6]  G. K. Michihiro Kuramochi, "Finding Frequent Patterns in a Large Sparse Graph," Data 

Mining and Knowledge Discovery, vol. 11, no. 3, pp. 243-271, 2005.  

[7]  M. J. Z. N. Talukder, "A distributed approach for graph mining in massive networks," Data 

Mining and Knowledge Discovery, vol. 30, no. 5, p. 1024–1052, September 2016.  

[8]  S. G. Jeffrey Dean, "MapReduce: simplified data processing on large clusters," 

Communications of the ACM, vol. 51, no. 1, pp. 107-113 , 2008.  

[9]  "Hadoop Tutorial - YDN," Yahoo Developer Network, [Online]. Available: 

https://developer.yahoo.com/hadoop/tutorial/module4.html. 



 

 

[10]  J. L. a. C. Dyer, Data-Intensive Text Processing with MapReduce, Morgan and Claypool 

Publishers, 2010.  

[11]  X. J. H. C. J. M. X. Z. Yang Liu, "MapReduce-Based Pattern Finding Algorithm Applied in 

Motif Detection for Prescription Compatibility Network," in 8th International Symposium 

on Advanced Parallel Processing Technologies, 2009.  

[12]  J. H. Xifeng Yan, "gSpan: Graph-Based Substructure Pattern Mining," in IEEE International 

Conference on Data Mining, Maebashi City, Japan, 2002.  

[13]  S. G. Jeffrey Dean, "MapReduce: simplified data processing on large clusters," 

Communications of the ACM, vol. 51, no. 1, pp. 107-113 , January 2008.  

[14]  G. D. F. a. M. Berthold, "Dynamic load balancing for the distributed mining of molecular 

structures," IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 8, pp. 773 

- 785, August 2006.  

[15]  R. B. a. R. B. S. Chakravarthy, "DB-Subdue: Database Approach to Graph Mining," in 8th 

Pacific-Asia Conference in Knowledge Discovery and Data Mining (PAKDD) Proceedings, 

May 2004.  

[16]  S. C. a. S. Pradhan, "Db-fsg: An sql-based approach for frequent subgraph mining," in 19th 

international conference on Database and Expert Systems Applications (DEXA) 

Proceedings, 2008.  

[17]  B. S. a. R. Sunderraman, "Oo-fsg: An object-oriented approach to mine frequent subgraphs," 

in Australasian Data Mining Conference (AusDM) Proceedings, December 2011.  

[18]  F. M. H. a. K. B. Eichinger, "On the usefulness of weight-based constraints in frequent 

subgraph mining," in Research and Development in Intelligent Systems XXVII, October 

2010.  

[19]  B. S. a. R. S. S. Hill, "An iterative Mapreduce approach to frequent subgraph mining in 

biological datasets," in Proc. ACM Conf. Bioinformat., Comput. Biol. Biomed, 2012.  



 

 

[20]  A. J. Nisha Babu, "A distributed approach to weighted frequent Subgraph mining," in 

International Conference on Emerging Technological Trends (ICETT), 2016.  

[21]  "The PubChem Project," NCBI - National Center for Biotechnology Information, 2004. 

[Online]. Available: https://pubchem.ncbi.nlm.nih.gov/. 

[22]  R. S. Rakesh Agrawal, "Fast Algorithms for Mining Association Rules in Large Databases," 

in 20th International Conference on Very Large Data Bases, 1994.  

[23]  T. W. H. M. Akihiro Inokuchi, "An Apriori-Based Algorithm for Mining Frequent 

Substructures from Graph Data," in 4th European Conference on Principles of Data Mining 

and Knowledge Discovery, 2000.  

[24]  M. K. a. G. Karypis, "Frequent subgraph discovery," in Proc. Int. Conf. Data Mining, 2001.  

[25]  a. J. K. S. Nijssen, "A quickstart in frequent structure mining can make a difference," in Proc. 

10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2004.  

[26]  M. H. S. S. a. M. Z. V. Chaoji, "An integrated, generic approach to pattern mining: Data 

mining template library," Data Mining and Knowledge Discovery, vol. 17, no. 3, p. 457–

495, 2008.  

[27]  L. B. H. D. J. C. Nikhil S. Ketkar, "Subdue: compression-based frequent pattern discovery 

in graph data," in Proceedings of the 1st international workshop on open source data mining: 

frequent pattern mining implementations, 2005.  

[28]  X. a. J. H. Yan, "CloseGraph: mining closed frequent graph patterns," in Proceedings of the 

ninth ACM SIGKDD international conference on Knowledge discovery and data mining, 

2003.  

[29]  C.-T. L. Hsun-Ping Hsieh, "Mining Temporal Subgraph Patterns in Heterogeneous 

Information Networks," in IEEE Second International Conference on Social Computing, 

2010.  



 

 

[30]  C. B. a. M. Berthold, "Mining molecular fragments: finding relevant substructures of 

molecules," in Proc. IEEE Int. Conf. Data Mining, 2002.  

[31]  Y. L. a. H. G. Jianzhong Li, "Efficient Algorithms for Summarizing Graph Patterns," IEEE 

Transactions On Knowledge And Data Engineering, vol. 23, no. 9, September 2011.  

[32]  J. L. H. G. Yong Liu, "JPMiner: Mining Frequent Jump Patterns From Graph Databases," in 

Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009.  

[33]  Q. L. G. Z. D. D. Y. J. W. B. Yuhua Li, "A Directed Labeled Graph Frequent Pattern Mining 

Algorithm Based on Minimum Code," in Third International Conference on Multimedia and 

Ubiquitous Engineering, 2009.  

[34]  S. a. K. J. Nijssen, "Faster association rules for multiple relations," in IJCAI’01: Seventeenth 

International Joint Conference on Artificial Intelligence, 2001.  

[35]  F. a. M. Z. Chuntao Jiang, "A Survey of Frequent Subgraph Mining Algorithms," The 

Knowledge Engineering Review, vol. 28, no. 1, pp. 1-31, 2004.  

[36]  M. K. a. G. Karypis, "GREW A Scalable frequent subgraphdiscovery algorithm," in Fourth 

IEEE International Conference on Data Mining, 2004.  

[37]  W. W. a. J. P. J. Huan, "Efficient mining of frequent subgraphs in the presence of 

isomorphism," in Proc. 3rd IEEE Int. Conf. Data Mining, 2003.  

[38]  L. V. S. a. K. K. Thomas, "Isg: Itemset based subgraph mining," IIIT, Hyderabad, December 

2009. 

[39]  J. W. W. J. P. a. J. Y. Huan, "Spin: mining maximal frequent subgraphs from graph 

databases," in Proceedings of the tenth ACM SIGKDD international conference on 

Knowledge discovery and data mining, 2004.  

[40]  J. L. H. G. a. S. Z. Zhaonian Zou, "Mining Frequent Subgraph Patterns from Uncertain Graph 

Data," IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 9, pp. 1203-

1218, September 2010.  



 

 

[41]  R. B. a. R. B. S. Chakravarthy, "Db-subdue: Database approach to graph mining," in Proc. 

Adv. Knowl. Discov. Data Mining, 2004.  

[42]  L. B. H. G. G. a. R. M. D. J. Cook, "Approaches to Parallel Graph-Based Knowledge 

Discovery," Journal of Parallel and Distributed Computing, vol. 61, no. 3, pp. 427-446 , 

2001.  

[43]  C. W. a. S. Parthasarathy, "Parallel algorithms for mining frequent structural motifs in 

scientific data," in Proc. 18th Annu. Int. Conf. Supercomput., 2004.  

[44]  S. P. a. M. Coatney, "Efficient discovery of common substructures in macromolecules," in 

Proc. IEEE Int. Conf. Data Mining, 2002.  

[45]  M. W. O. U. I. F. a. M. P. T. Meinl, "The parmol package for frequent subgraph mining," 

Electron. Commun. EASST, vol. 1, p. 1–12, 2006.  

[46]  M. A. D. a. T. W. M. Philippsen, "Parsemis - The parallel and sequential mining suite," 2011. 

[Online]. Available: https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html. 

[47]  W. H. M. L. L. a. C. S. J. Wang, "A partition-based approach to graph mining," in Proc. 

22nd Int. Conf. Data Eng.,, 2006.  

[48]  M. E. O. a. X. L. S. N. Nguyen, "Graph mining based on a data partitioning approach," in 

Proc. 19th Australasian Database Conf., 2008.  

[49]  S. P. a. Y.-K. C. G. Buehrer, "Adaptive parallel graph mining for CMP architectures," in 

Proc. 6th IEEE Int. Conf. Data Mining, 2006.  

[50]  Y.-B. Y. a. Y. Z. G.-P. Chen, "Mapreduce-based balanced mining for closed frequent 

itemset," in Proc. IEEE 19th Int. Conf. Web Serv., 2012.  

[51]  Y.-B. Y. Y. G. G.-P. C. a. Y. Z. S.-Q. Wang, "Mapreduce-based closed frequent itemset 

mining with efficient redundancy filtering," in Proc. IEEE 12th Int. Conf. Data Mining 

Workshops, 2012.  



 

 

[52]  Z. Z. J. C. J. L. J. H. a. S. F. L. Zhou, "Balanced parallel FP-growth with Mapreduce," in 

Proc. IEEE Youth Conf. Inf. Comput. Telecommun, 2010.  

[53]  Y. W. D. Z. M. Z. a. E. Y. C. H. Li, "Pfp: parallel FP-growth for query recommendation," in 

Proc. ACM Conf. Recommender Syst., 2008.  

[54]  H.-J. C. M. A. H. M. M. R. a. M. R. K. B.-S. Jeong, "A MapReduce framework for mining 

maximal contiguous frequent patterns in large DNA sequence datasets," IETE Technical 

Review, vol. 29, no. 2, pp. 162-168, 2012.  

[55]  G. K. Michihiro Kuramochi, "Finding Frequent Patterns in a Large Sparse Graph*," Data 

Mining and Knowledge Discovery, vol. 11, no. 3, pp. 243-271, November 2005.  

[56]  E. A. S. S. P. K. Mohammed Elseidy, "GraMi: frequent subgraph and pattern mining in a 

single large graph," Proceedings of the VLDB Endowment, vol. 7, no. 7, pp. 517-528, March 

2014.  

[57]  L. J. Yun U, "Mining weighted support affinity patterns," in 18th International Conference 

On Computer Applications in Industry and Engineering, 2005.  

[58]  F. C. R. S. M. Z. Chuntao Jiang, "Text classification using graph mining-based," Knowledge-

Based Systems, vol. 23, no. 4, pp. 302-308, 2010.  

[59]  F. C. A. Elsayed, "Corpus callosum MR image classification," Knowledge-Based Systems, 

vol. 23, no. 4, pp. 330-336, 2010.  

[60]  F. M. F. F. M. Tao, "Weighted Association Rule Mining using Weighted Support and 

Significance Framework," in The Ninth ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 2003.  

[61]  U. Yun, "WIS:Weighted Interesting Sequential Pattern Mining with a Similar Level of 

Support and/or Weight," ETRI Journal, vol. 29, no. 3, pp. 336-352, 2007.  

[62]  "XIFENG YAN," University of California Santa Barbara, [Online]. Available: 

https://www.cs.ucsb.edu/~xyan/dataset.htm. 



 

 

[63]  M. C. T. D. A. D. J. M. M. M. M. J. F. S. S. I. S. Matei Zaharia, "Resilient distributed 

datasets: a fault-tolerant abstraction for in-memory cluster computing," in Proceedings of the 

9th USENIX conference on Networked Systems Design and Implementation, 2012.  

[64]  Y. Q. U. F. M. L. J. C. W. B. R. F. Ö. Juwei Shi, "Clash of the titans: MapReduce vs. Spark 

for large scale data analytics," Proceedings of the VLDB Endowment, vol. 8, no. 13, pp. 

2110-2121, 2015.  

 

 

 


