

Efficient Large Scale Frequent Subgraph Mining
Using MapReduce

A Dissertation submitted in partial fulfillment of the requirement for

the award of degree of

Master of Technology

In Computer Science Engineering

Submitted By

Vipul Kumar

2K15/CSE/21

Under the guidance of

Dr. Daya Gupta

Delhi Technological University

Shahbad Daulatpur, Main Bawana Road

Delhi – 110042

June, 2017	

i

CERTIFICATE	

This is to certify that the dissertation entitled “Efficient Large Scale Frequent Subgraph Mining

Using MapReduce” has been submitted by Vipul Kumar, Roll No. 2K15/CSE/21, in partial

fulfillment of the requirement for the award of Master of Technology degree in Computer Science

Engineering. This work is carried out by her under my supervision and has not been submitted

earlier for the award of any degree or diploma in any university to the best of my knowledge.

Dr. Daya Gupta

Project Guide

Department of Computer Science & Engineering

Delhi Technological University

ii

DECLARATION	

I hereby declare that the dissertation entitled “Efficient Large Scale Frequent Subgraph Mining

Using MapReduce” which is being submitted to Delhi Technological University, in partial

fulfillment of requirements for the award of degree of Master of Technology (Computer Science

and Engineering) is a bona fide work carried out by me. The material contained in the report has

not been submitted to any university or institution for the award of any degree.

Vipul Kumar

2K15/CSE/21

iii

ACKNOWLEDGEMENT	

I would like to express my deep sense of respect and gratitude to my project supervisor Dr. Daya

Gupta for providing the opportunity of carrying out this project and being the guiding force behind

this work. I am deeply indebted to her for the support, advice and encouragement she provided

without which the project could not have been a success.

Also, I would like to express gratitude to Mrs. Shruti Jaiswal (Research Scholar, Delhi

Technological University) for providing me continuous support and guidance during this project.

 I would also like to acknowledge Delhi Technological University library and staff for providing

the right academic resources and environment for this work to be carried out. Last but not the least

I would like to express sincere gratitude to my parents and friends for constantly encouraging me

during the completion of work

Vipul Kumar

2K15/CSE/21

M.Tech (Computer Science Engineering)

Department of Computer Engineering

Delhi Technological University Delhi – 110042

iv

Abstract	

Graph based data representations are getting popular in areas like bioinformatics, social networks,

web data mining, etc. Over the years many algorithms have been created for analysis on graph

data. One such challenging task in this field is Frequent Subgraph Mining (FSM). Extracting

frequent subgraphs from a huge set of graphs is a fundamental task in numerous information

mining applications.

There are existing frequent subgraph mining algorithms for unweighted graphs but they do not

take into consideration the strength of relationships within the graph. In weighted graphs, some

edges/vertices have more importance than others. In areas such as mobile communication

networks, social networks, etc. weighted graphs are more useful. More relevant and specific

subgraphs are generated through weighted frequent subgraph mining.

There has been only some little work done in the field of frequent subgraph mining on weighted

graphs. Also most of the current techniques are memory-based and are not scalable. This work

uses an existing distributed approach for Frequent Subgraph Mining using iterative MapReduce

based framework and applies different weighing schemes over the current approach. This work

uses two different weighing schemes, Average Total Weighing (ATW) scheme and Affinity

Weighing (AW) scheme, and compares both approaches.

v

Table	of	Contents	

	

CERTIFICATE .. i	

DECLARATION .. ii	

ACKNOWLEDGEMENT ... iii	

Abstract .. iv	

Table of Contents .. v	

List of Figures .. viii	

List of Tables ... ix	

Chapter 1: Introduction ... 1	

1.1.	 Overview .. 1	

1.2.	 Basic Concepts ... 2	

1.2.1.	 Graph ... 2	

1.2.2.	 Graph Isomorphism .. 2	

1.2.3.	 Support .. 3	

1.2.4.	 Frequent Subgraph Mining ... 3	

1.2.5.	 MapReduce ... 4	

1.3.	 Motivation .. 7	

1.4.	 Related Work .. 8	

1.5.	 Problem Statement ... 8	

1.6.	 Scope of Work .. 9	

vi

1.7.	 Thesis Organization .. 9	

Chapter 2: Literature Review .. 11	

2.1.	 Frequent Subgraph Mining ... 11	

2.2.	 Distributed Frequent Subgraph Mining .. 17	

2.3.	 Frequent Subgraph Mining in Weighted Graphs ... 18	

Chapter 3: Frequent Subgraph Mining ... 20	

3.1.	 Simple in-memory frequent subgraph mining : gSpan .. 20	

3.2.	 Basic	Weighted	Frequent	Subgraph	Mining	Algorithm ... 21	

3.3.	 Distributed	Frequent	Subgraph	Mining ... 23	

3.4.	 Graph	Weighting	Mechanisms ... 25	

3.4.1.	 Average Total Weighting (ATW) Scheme ... 25	

3.4.2.	 Affinity Weighting (AW) Scheme .. 26	

Chapter 4: Proposed Method .. 28	

4.1.	 Distributed weighted subgraph mining using ATW weighing scheme 28	

4.2.	 Distributed weighted subgraph mining using AW weighing scheme 32	

Chapter 5: Implementation and Results .. 36	

5.1.	 Hardware Details .. 36	

5.2.	 Software Details ... 36	

5.3.	 Dataset .. 36	

5.4.	 Results .. 38	

Chapter 7: Conclusions and Future Work ... 41	

vii

References ... 42	

 	

viii

List	of	Figures	

Figure 1.1: Graph Isomorphism [5] .. 2	

Figure 1.2: Support Counting [5] .. 3	

Figure 1.3 : (a) A sample Graph database (b) Frequent subgraphs with support as 2. 4	

Figure 1.4: MapReduce pipeline [9] ... 5	

Figure 1.5: MapReduce data flow [9] ... 6	

Figure 6.1: Number of frequent patterns for Unweighted, ATW and AW schemes 38	

Figure 6.2: Number of patterns in ATW and AW for different r(g) ... 39	

Figure 6.3: Running time of ATW and AW for different different support values with r(g) = 0.2

... 40	

ix

List	of	Tables	

Table 5.1: Description of Data .. 37	

Table 5.2: Description of Graph Dataset .. 37	

	

1

Chapter	1:	Introduction	

This chapter provides the overview of frequent subgraph mining, motivation and problem

statement of the thesis. The chapter explains some basic concepts of the domain and describes the

scope of the work. The organization of this thesis is described at the end of this chapter.

1.1. Overview	

Graph representation is expressive in nature and thus can be used to represent complex data

and relationships in numerous real world scenarios. Over the years, many techniques have

been designed to extract and discover useful knowledge from the complex data represented

as graphs. Techniques like clustering, classification, searching, indexing, pattern finding,

etc are used across different domains.

Graph mining techniques are used in a variety of domains such as chemoinformatics,

bioinformatics, and social networks. Research on association rule mining has motivated

many researchers in the field of frequent pattern mining [1].

Graph mining deals with pattern identification from data in graph form. Frequent subgraph

mining is a form of graph mining used to find patterns (subgraphs) that occur frequently in

a single large graph or a set of small graphs.

Due to its wide range of applications in the above mentioned domains, frequent subgraph

mining has been studied by a lot of researchers [2] [3]. Different functions and relations

can be understood through frequent patterns. Frequent patterns can show a close friend

circle in the field of social networks. Similarly, frequent patterns can help discover

unknown functions of a protein in a protein-protein interaction network (PPI).

In the case of weighted graphs, weighted support function is used to identify weighted

frequent subgraph mining. The main issue with weighted subgraph mining is that the anti-

monotone property would not be applicable if the weights are assigned in normal manner.

Anti-monotone property states that if a subgraph of size K is not frequent, then all of its

2

supergraphs of size K+1 would not be frequent. This is important for restricting search

space size while matching patterns. Thus, the weighting strategy should be created in such

a way that anti-monotone property holds true. [4]

	

1.2. Basic	Concepts	

1.2.1. Graph	

A graph is defined as G = (V, E), where V is a set of vertices and E ⊆ V × V is a set of

edges. We denote the label for vertex v ∈ V, by L(v) and the label for the edge (v1, v2) ∈ E

by L(v1, v2). In our context, we will we use P = (VP, EP) for a pattern graph and G represents

the input graph.

1.2.2. Graph	Isomorphism	

We say that the pattern P is subgraph isomorphic to G = (V, E), denoted as P ⊆ G, if there

exists an injective function, φ : VP → V such that: 1) ∀v ∈ VP, L(v) = L(φ(v)), and 2) ∀(vi,

vj) ∈ EP, (φ(vi), φ(v j)) ∈ E and L(vi, vj) = L(φ(vi), φ(v j)). In this case, the isomorphic

subgraph in G comprising the vertices φ(v1), φ(v2), . . . , φ(vp) (where p = |VP|) is also called

an embedding of the pattern P in the input graph G. An example of graph isomorphism is

showed in figure 1.1.

Figure 1.1: Graph Isomorphism [5]

3

1.2.3. Support	

Let Σ(P) = {φ1, φ2, . . .} denote the set of all isomorphic graphs of pattern graph, P in input

graph, G. Some function Σ(P) can be used to define the support of pattern, P, such as

cardinality. However, in this case cardinality will not satisfy the anti-monotonic property

as the support of subgraph cannot be less than the support of pattern. In order to tackle this

problem, Kuramochi and Karypis (2005) proposed a technique using maximum

independent set of overlapping in subgraphs [6]. But this technique is a NP-Hard problem.

[7]. Figure 1.2 shows an example of support counting for the isomorphic graphs shown in

figure 1.1.

Figure 1.2: Support Counting [5]

1.2.4. Frequent	Subgraph	Mining	

A graph database consisting of labeled, connected, simple and undirected graphs is given

by G = {G1, G2, . . ., Gn}. The size of a graph, g is the number of edges it has. The support-

set of the graph g is given by t(g) = {Gi : g ⊆ Gi ∈ Gg}, ∀i = {1 . . . n. The support-set

consists of all isomorphic subgraphs of g in the input graph database G. The support of g

is given by the cardinality of the support-set. If support ≥ 𝜋min then g is called frequent.

4

𝜋min is the minimum support threshold which can be user defined or predefined. F

represents the set of frequent patterns.

Example. A graph database is showed in Fig. 1.3(a) with graphs (G1, G2 and G3). In Fig.

1.3(b), the frequent subgraphs of the database with minimum support threshold of 2,	𝜋min=2

are shown.

Figure 1.3 : (a) A sample Graph database (b) Frequent subgraphs with support as 2.

1.2.5. MapReduce	

MapReduce [8] is a programming model initially created by Google for parallel and

distributed execution of code across multiple clusters. It is composed of Map() and

Reduce() methods. A worker node in a cluster can be either a mapper or a reducer, as per

its role in the computation. The mapper nodes filter and sort the data and output key-value

pairs. The reducer nodes summarizes the output of mapper nodes by aggregating the values

5

with same key and writes the output to a file. A distributed file system manages all the files

of MapReduce.

Figure 1.4: MapReduce pipeline [9]

Figure 1.4 shows the high-level pipeline of MapReduce. The input comes from files loaded

in the HDFS. The mapper task runs on each node. Each mapper loads and processes the

files local to it. After mapping, the intermediate values are shuffled and distributed among

all the reducer nodes. This is the only communication step in MapReduce. Individual

mappers do not communicate with each other. [9]

6

The detailed data flow of Hadoop MapReduce pipeline is given below in figure 1.5. Only

two nodes are shown in the figure but the same pipeline can be replicated for a large number

of nodes.

Figure 1.5: MapReduce data flow [9]

1.2.6. Iterative	MapReduce	

In iterative MapReduce [10] the mapper and reducer are run multiple times with some

minor changes every time. The mapper in each iteration uses the output of the reducer from

previous iteration as input. The termination of the loop is governed by an external

condition. The pseudo code of the method is shown in the algorithm given below.

7

Algorithm: Iterative MapReduce Algorithm

MapReduce_Itr():	
	

1.	 As long as condition is true:
2. Perform MapReduce
3. Record output on DFS
4. Update counters and the condition	
	

	

1.3. Motivation	

Frequent pattern mining is a fundamental task in many areas of chemistry, biology and

networks. For example, social scientists can find closely related communities through

frequent subgraph mining. Similarly, bioinformatics researchers can use it to find common

subgraphs in protein structures. Graph indexing, clustering and classification are some

other graph applications.

Frequent subgraph mining has been implemented by many researchers [11] [12] using

MapReduce framework [13], as well as in grid environments [14]. Most of the popular

subgraph mining algorithms assume that the memory size is enough to fit the whole graph.

This approach works on graphs of small size but proves inefficient as the graph size

increases. To solve this issue, some database based implementations [15] [16] [17] were

proposed. However, it is not scalable and computation time increases as the dataset size

increases.

There are many frequent subgraph mining algorithms for unweighted graphs but very less

work has been done in the field of weighted graphs. There are numerous fields where the

relationship between entities is important such as social networks, transportation networks,

etc. For example, the users of a social network are all connected to each other but still some

relationships are stronger than others. In such situations, weighted graphs prove to be more

useful than unweighted graphs. The use of weighted frequent subgraph mining in weighted-

graph classification, logistics and software defect localization has been showed in [18].

However, in the field of weighted graphs, there are still very few implementations of

frequent subgraph mining [4].

8

1.4. Related	Work	

In [19], the authors have proposed an iterative MapReduce based method for extracting

significant patterns in labeled graphs. The method worked for both directed and undirected

graphs. Using the work in [19], Bhuiyan and Al Hasan created a framework for frequent

subgraph mining using iterative MapReduce called FSM-H [5]. This framework is ten

times more efficient than the work done in [19].

Babu and John in 2016 [20] applied FSM-H on weighted graphs. The authors used Average

Total Weighting method for mining frequent patterns in the PubChem database [21].

1.5. Problem	Statement	

Frequent subgraph mining over MapReduce framework is a challenging problem. The

support of the subgraph needs to be calculated over the complete graph database. Also, in

a distributed environment, the input graphs would be distributed across various machines.

In such a case, the node storing the graph can only compute its local support which is not

enough to determine if the subgraph is frequent.

In MapReduce framework, there is not built-in method for accessing global data structures.

Thus, the local support computed cannot be stored in global variables. It is also not feasible

to delay the support computation. According to Apriori principle [22], only frequent

patterns can generate future candidate patterns.

Most of the existing FSM algorithms are for unweighted graphs. They assume that all the

frequent subgraphs are equally important. However, the work done in this thesis assumes

that some subgraphs have higher importance due to the weight associated with the edges.

In this thesis, weighting techniques are applied in an unweighted frequent subgraph mining

approach. Non-negative real values are assigned to the edges of the input graphs. By doing

this, a subset of more significant subgraphs can be identified.

The research question posed in this thesis is thus:

“Proposing a weighted frequent subgraph mining method using Affinity Weighting

technique in a distributed environment.”

9

1.6. Scope	of	Work	

In this thesis, a MapReduce based approach is presented for weighted-frequent subgraph

mining. The presented method is efficient than current methods as both data and

computation are distributed. The method takes a weighted graph dataset as input and finds

the significant weighted frequent subgraphs.

The system runs in an iterative way. The output of the previous iteration is the input for the

next iteration. The input of the mapper of the current step comes from the output of the

reducer of the previous step.

At each nth iteration, the mapper creates subgraphs of size n. The local support of the

subgraph is also calculated by the mapper during each iteration.

At each nth iteration, the globally frequent subgraphs of size n are identified by the reducer

using their local supports.

The performance is evaluated using a Facebook-like Social Network [65] database. The

performance of different weighting techniques is compared.

The scope of work can be summarized as:

• Proposing a distributed method for mining weighted frequent subgraphs

• Designing mapper and reducer functions for affinity based weighting techniques

• Performance evaluation on a real biological dataset

• Performance comparison of different weighting techniques

1.7. Thesis	Organization	

Further thesis is organized as follows:

Chapter 2 presents the literature review of existing frequent subgraph mining methods.

Chapter 3 explains different graph weighting techniques used in this thesis.

Chapter 4 provides the detailed description of proposed method for Frequent Subgraph

Mining using iterative MapReduce method.

10

Chapter 5 describes the implementation details of this research work.

Chapter 6 lists the results and evaluates the proposed system. It also compares the

performance of the proposed system with other weighting techniques.

Chapter 7 concludes the thesis and discusses the possible improvements in this research

work in future.

 	

11

Chapter	2:	Literature	Review	

In this section, first we discuss the work in the field of frequent subgraph mining and distributed

frequent subgraph mining followed by work related to frequent subgraph mining in weighted

graphs.

2.1. Frequent	Subgraph	Mining	

gSpan [12], AGM [23] , FSG [24], Gaston [25], and DMTL [26] are some notable frequent

subgraph mining algorithms. These algorithms are in-memory based. They work on small

datasets. The time taken to complete the mining task is also not too much.

There are mainly two types of FSM algorithms: (a) Pattern Growth based approach, or (b)

Apriori based approach.

Frequent subgraph mining algorithms based on pattern growth approach are discussed

below:

Subdue was introduced by Nikhil S Ketkar et al in 2005 [27]. It takes a single large graph

as input represented by adjacency matrix. It searches level-wise and generates subgraphs.

It uses minimum description code length string for frequency counting and generates

complete set of frequent subgraphs. The only limitation to this approach is that the number

of patterns is extremely small.

gSpan [12] takes a graph dataset as input which are represented by adjacency list. It uses

DFS order for frequency counting and generates the frequent graphs. The limitation to this

approach is that it is not scalable.

In the year 2003, Yan proposed Close Graph [28] method. It takes a graph dataset as input

which are represented by adjacency list. It uses DFS order for frequency counting and

12

generates close connected frequent graphs. The limitation to this approach is that failure

detection takes a lot of time overhead.

Gaston is a popular subgraph mining tool created by Nijssen in 2004 [25]. It takes a graph

dataset as input which are represented by hash table. It uses embedding lists for frequency

counting and generates maximal frequent subgraphs. The limitation to this approach is that

some interesting patterns may be lost.

TSP takes a graph dataset as input which are represented by adjacency list. It uses TSP tree

for frequency counting and generates closed temporal frequent subgraphs. But there is an

extra overhead to check whether temporal patterns are closed [29].

MOFA [30] was proposed by Berthold for mining molecular fragments. It takes a graph

dataset as input which are represented by adjacency list. It uses DFS order for frequency

counting and generates all frequent subgraphs. There is always a possibility of error in this

method. The frequent subgraphs generated may not be exactly frequent.

RP-FP method proposed by Li [31] takes a graph dataset as input which are represented by

adjacency list. It uses DFS order for frequency counting and generates representative

graphs. The limitation to this approach is that the time summarizing the patterns is more

than that for mining.

RP-GD is just like RP-FP. It takes a graph dataset as input which are represented by

adjacency list. It uses DFS order for frequency counting and generates representative

graphs. The limitation to this approach is that the time summarizing the patterns is more

than that for mining [31].

JPMiner takes a graph dataset as input which are represented by adjacency list [32]. It uses

DFS order for frequency counting and generates frequent jump patterns. Sometimes the set

of jump patterns is too small.

13

MSpan takes a graph dataset as input which are represented by adjacency list. It uses DFS

order for frequency counting and generates frequent subgraphs. [33]

Frequent subgraph mining algorithms based on apriori based approach are discussed

below:

Table 2.1: Pattern growth based frequent subgraph mining algorithms

Name	 Input	 Graph	
Representation	

Frequency	
Counting	
Technique	

Output	 Limitation	

Subdue	 Single	
large	
graph	

Adjacency	
matrix	

Minimum	
description	
code	
length	
string	

Set	of	frequent	
subgraphs	

Extremely	
small	
number	of	
patterns	

gSpan	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	
subgraphs	

Not	scalable	

CloseGraph	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Close	
connected	
frequent	
graphs	

Overhead	
time	

Gaston	 Set	of	
graphs	

Hash	Table	 Embedding	
lists	

Maximal	
frequent	
subgraphs	

Some	
interesting	
patterns	
may	be	lost	

TSP	 Set	of	
graphs	

Adjacency	list	 TSP	tree	 Closed	
temporal	
frequent	
subgraphs	

Extra	
overhead	to	
check	if	
temporal	
patterns	are	
closed	

MOFA	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	
subgraphs	

Frequent	
subgraphs	
generated	
may	not	be	
exactly	
frequent	

14

RP-FP	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Representative	
graphs	

Time	spent	
summarizing	
the	patterns	
is	more	than	
that	for	
mining	

RP-GD	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Representative	
graphs	

Time	spent	
summarizing	
the	patterns	
is	more	than	
that	for	
mining	

JPMiner	 Set	of	
graphs	

Adjacency	list	 DFS	order	 Frequent	jump	
patterns	

Sometimes	
the	set	of	
jump	
patterns	is	
too	small	

	

In 2001, Nijssen proposed another subgraph mining method called Farmer [34]. It takes a

graph dataset as input which are represented by a trie structure. Potential candidates are

generated through level-wise search. It uses the trie data structure for frequency counting

and generates frequent subgraphs. But this method is not efficient.

At the same time in 2001, Karypis [24] proposed another method called FSG. It takes a

graph dataset as input which are represented by adjacency list. Potential candidates are

generated through one edge extension. It uses transaction identifier (TID) lists for

frequency counting and generates frequent connected subgraphs. This is a NP-complete

algorithm.

HSIGRAM [35] takes a single large graph as input which is represented by adjacency

matrix. Potential candidates are generated through iterative merging. It uses maximal

independent sets for frequency counting and generates frequent subgraphs. But this

approach is not much efficient.

15

Again in 2004, Karypis proposed another apriori based subgraph mining method, GREW

[36]. It takes a single large graph as input which is represented by sparse graph

representation. Potential candidates are generated through iterative merging. It uses

maximal independent sets for frequency counting and generates maximal frequent

subgraphs. The limitation to this approach is that it misses many interesting patterns.

FFSM, proposed by Huan in 2003 [37] is a very popular subgraph mining algorithm. It

takes a graph dataset as input which are represented by adjacency matrix. Potential

candidates are generated through merging and extension. It uses sub-optimal canonical

adjacency matrix tree for frequency counting and generates frequent subgraphs. This is a

NP-complete algorithm.

ISG is itemset based subgraph mining [38]. It takes a graph dataset as input which are

represented by edge triplets. Potential candidates are generated through edge triplet

extension. It uses transaction identifier (TID) lists for frequency counting and generates

maximal frequent subgraphs. The set of graphs generated is incomplete.

Spin, also proposed by Huan [39], takes a graph dataset as input which are represented by

adjacency matrix. Potential candidates are generated through join operations. It uses

canonical spanning tree for frequency counting and generates maximal frequent subgraphs.

Non-maximal graphs can also be found but needs an entire database scan.

Dynamic GREW [36] is a modification of GREW. It takes dynamic graphs as input which

are represented by sparse graph representation. Potential candidates are generated through

iterative merging. It uses suffix trees for frequency counting and generates dynamic

patterns in frequent subgraphs. The limitation to this approach is that there is an extra

overhead for identifying dynamic patterns.

AGM [23] is an apriori based graph mining method. It takes a graph database as input

which is represented by adjacency matrix. Potential candidates are generated through

16

vertex extension. It uses canonical labelling for frequency counting and generates frequent

subgraphs.

MUSE was proposed in 2010 by Zou [40]. It takes an uncertain set of graphs as input which

are represented by adjacency matrix. Potential candidates are generated through disjunctive

normal forms (DNF). It uses DFS order for frequency counting and generates frequent

subgraphs. The limitation to this approach is that the frequent subgraphs are not exact.

DB-FSG [16], OOFSG [17], and DB-Subdue [41] have also been proposed for mining

large datasets. These algorithms are traditional database based.

Table 2.2: Apriori based frequent subgraph mining algorithms

Name Input Graph
Representatio
n

Candidate
Generatio
n

Frequency
Counting
Technique

Output Limitatio
n

Farmer Set of
graphs

Trie structure Level-wise
search

Trie data
structure

Frequent
subgraph
s

Not
efficient

FSG Set of
graphs

Adjacency list One edge
extension

Transactio
n identifier
(TID) lists

Frequent
connecte
d
subgraph
s

NP-
complete
algorithm

HSIGRA
M

Single
large
graph

Adjacency
matrix

Iterative
merging

Maximal
independe
nt sets

Frequent
subgraph
s

Not
efficient

GREW Single
large
graph

Sparse graph
representation

Iterative
merging

Maximal
frequent
subgraphs

Maximal
frequent
subgraph
s

Misses
many
interesting
patterns

FFSM Set of
graphs

Adjacency
matrix

Merging
and
extension

Sub-
optimal
canonical
adjacency
matrix tree

Frequent
subgraph
s

NP-
complete
algorithm

ISG Set of
graphs

Edge triplets Edge
triplet
extension

Transactio
n identifier
(TID) lists

Maximal
frequent
subgraph
s

Incomplet
e set of
graphs
generated

17

Spin Set of
graphs

Adjacency
matrix

Join
operations

Canonical
spanning
tree

Maximal
frequent
subgraph
s

Entire
database
scan
needed for
not
maximal
graphs

Dynamic
GREW

Dynamic
graphs

Sparse graph
representation

Iterative
merging

Suffix trees Dynamic
patterns
in
frequent
subgraph
s

Extra
overhead
for
identifyin
g dynamic
patterns

MUSE Uncertai
n set of
graphs

Adjacency
matrix

Disjunctiv
e normal
forms
(DNF)

DFS order Frequent
subgraph
s

Frequent
subgraphs
are not
exact

Shared memory parallel algorithms have also been designed by researchers for large-scale

graph mining. A parallel version of the frequent subgraph mining algorithm, Subdue [42]

was presented by Cook et al. A parallel toolkit [43] for Motif-Miner [44] algorithm was

also developed by Wang et al.

Parmol [45] is a parallel implementation of Mofa [30], gSpan [12], FFSG [37] and Gaston

[25]. gSpan also has a parallel implementation called ParSeMis [46].

PartMiner [47] and PartGraphMining [48] partition the graph dataset in order to scale up

the size of input dataset. For CMP Architectures, there is a work [49] on adaptive parallel

graph mining.

2.2. Distributed	Frequent	Subgraph	Mining	

Frequent patterns can be mined through MapReduce framework. It has been used for input

datasets of sets [50], [51], [52], [53], and sequences [54].

18

In [19], the approach used by the author for mining using MapReduce is not efficient. It

has various shortcomings. There is no way to generate unique patterns in their method.

There may be duplicate patterns. Thus, leading to an increase in the size of search space.

Also, there will be duplicates in output. Such output is hard to unify. A separate subgraph

isomorphism method would be required for this. This method does not determine the

number of MapReduce iterations by itself. The number of iterations are fed by the user.

Induced occurrences of subgraphs in a single large graph is also used to mine subgraphs in

some existing works [55], [56].

	

2.3. Frequent	Subgraph	Mining	in	Weighted	Graphs	

In the area of weighted frequent subgraph mining, very little work has been done yet.

However, a lot of work has been done in the field of weighted sequence mining (WSM)

and weighted association rule mining (WARM) [57].

The concept of “support confidence” and “weight confidence” was introduced by Yun and

Leggett [57] in 2005. In their work, they integrated weight and support confidences in the

mining method. They identified patterns with similar weight and support levels through

this approach.

A study done by Eichinger et al [18] showed that frequent subgraph mining with weights

can provide more accurate results. They have explained the constraints of weight based

work. Integration of weights in mining algorithms has also been demonstrated in this paper.

Real-world problems like weighted-graph classification, logistics and software defect

localization are discussed in this study. The precision increased and the runtime decreased

in this study. The results displayed better explorative logistics.

19

Jiang et al [4] proposed another work on weighted frequent subgraph mining. They

introduced weighting mechanisms namely: Average Total Weighting (ATW), Affinity

Weighting (AW) and Utility Based Weighting (UBW). By identifying the most significant

subgraphs, these weighting schemes led to a reduction in the overall search space and

improved efficiency and accuracy.

In order to verify the relevance of the results, the weighting techniques were applied to

classification problems. The experiment was conducted on two data sets. A text mining

data set [58] and an MRI scan data set [59] were used in the experiments. The results proved

that the classification precision improved by using the weighting techniques.

Conclusion: A lot of work has been done in the field of Frequent Subgraph Mining.

Weighting techniques have been explored to mine weighted graphs. MapReduce based

techniques have been implemented which have made mining scalable and more efficient.

However distributed mining of weighted graphs is still an unexplored territory. Thus, this

work proposes a MapReduce based technique for mining patterns in weighted graphs.

20

Chapter	3:	Frequent	Subgraph	Mining	

Frequent subgraph mining has been a hot topic of interest for many years. Different researchers

have proposed different algorithms and approaches for frequent subgraph mining. In this chapter,

some basic frequent subgraph mining approaches are discussed.

3.1. Simple	in-memory	frequent	subgraph	mining	:	gSpan	

gSpan is one of the most popular frequent subgraph mining algorithm. It runs on a single

machine and uses a sparse adjacency list representation to store graphs. It uses DFS

lexicographical ordering for frequency counting. The algorithm is discussed below:

	
Algorithm:	gSpan	algorithm	–	single	node,	in-memory	approach	

gSpan(DataSet, ResultSet):

1. Sort DataSet by frequency
2. Eliminate non-frequent edges/vertices from DataSet
3. ResultSet1 = all frequent single edge graphs in DataSet
4. Sort ResultSet1 in DFS order
5. ResultSet = ResultSet1
6. For each edge in ResultSet1
7. sol = all graphs that contain edge
8. MineSubgraph(DataSet, ResultSet, sol)
9. DataSet = DataSet - edge
10. If |DataSet| < minimumSupport
11. break
	
	
Algorithm:	Subprocedure	for	mining	in	gSpan	algorithm	

MineSubgraph(DataSet, ResultSet, sol):

1. if sol ≠ min(sol)
2. return
3. ResultSet = ResultSet U {sol}
4. Find sol in each graph in DataSet and count its children
6. For each child of sol
7. If support(child) > minimumSupport
8. sol = child
9. MineSubgraph(DataSet, ResultSet, sol)
	

	

21

Consider a graph with edges {A, B, C,}. Lines 6-11 will discover all the frequent

subgraphs containing an edge A---A in the first iteration. All frequent subgraphs

containing edge A---B, but not A---A will be identified in second iteration. The loop

continues until all frequent subgraphs are identified. As the loop continues the size of the

DataSet decreases (line 9). MineSubgraph is called recursively. It expands the graph and

finds its children. It ends when the support of graph is less than minimum Support or the

DFS code is not minimum. [12]

	

3.2. Basic	Weighted	Frequent	Subgraph	Mining	Algorithm	

There are two main steps in unweighted frequent subgraph mining. First is to construction

of candidate subgraphs. Second is the frequency counting of candidate subgraphs. But in

weighted graphs, the candidates generated also have weights which tell their relevance. In

weighted frequent subgraph mining, the importance of subgraphs is identified by a

weighting function. It means that even though a subgraph may have higher frequency, it

might not be that much relevant for the results. Similarly, a subgraph having lower

frequency may be more relevant.

A generic weighted frequent subgraph mining algorithm is described below:

Algorithm: Basic weighted frequent subgraph mining algorithm

Weighted_FSM(WG, support_threshold):

0. //n = 1
1. Populate WFP1
2. While WFPn has elements
3. Cn+1 = Generate_Candidate_Set (WFPn, WG)
4. Forall candidate, c in candidate set Cn+1
5. If Isomorphism_Check(c) = true
6. Weighted_Support_Counting(c, WG)
7. If support ≥ support_threshold
8. Add candidate, c to WFPn+1
9. Increment n by 1
10. Return WFP

22

The algorithm uses breadth-first candidate enumeration. It is a candidate-generation-and-

test based algorithm. The algorithm starts with single edge patterns (frequent patterns of

size 1) denoted as WFP1 (Line 1). Using a while loop (Line 3-9), the algorithm finds WFP2,

WFP3 and so on. The loop continues till the complete weighted frequent pattern set (WFP)

is created. The loop repeats if at the end of iteration WFPn is non-empty. It generates

candidate subgraphs of size n+1 from each of the frequent patterns in WFPn (Line 3). The

candidate patterns are denoted by C. The algorithm calculates the candidate’s support

against the dataset WG (Line 6). The generated pattern is frequent if its support is greater

than support_threshold and is stored in the set WFPn+1 (Line 8). The algorithm makes sure

that it only processes unique candidate patterns (Line 5). The while loop (line 2 to 9)

continues till all frequent patterns of size n+1 are obtained. During ith iteration, frequent

patterns of size i+1 are obtained, and it repeats until all the frequent subgraphs are

generated.

The algorithm has three main steps:

1. Generation of Candidate Set

Suppose c is a frequent pattern of size n. During candidate generation, a frequent

edge (from WFP1) is added to c and a new candidate d of size n+1 is created. If a

new vertex is present in the new candidate, then the new edge is a forward edge,

otherwise a backward edge. Backward edge connects existing vertices of the

candidate subgraph. In case of a forward edge, the new vertex is assigned an integer

id. This id is larger than ids of any other vertices. Thus the vertex id represents the

order of their addition to the candidate subgraph.

2. Isomorphism Check

There can exist multiple paths by which a candidate is generated. But only one path

should be processed during the mining process to avoid duplicity. Thus,

isomorphism check is required during subgraph mining so that the duplicate copies

of the candidate subgraphs can be ignored. Canonical coding scheme is a popular

23

way of checking graph isomorphism. In this method, the edges of the graph are

serialized in a specific order and a string is generated. All isomorphic graphs

generate same strings. min-dfscode is one such canonical coding scheme [12]. min-

dfscode checks the generation path of pattern. If the edge ordering and insertion

ordering in the generation path are same, then it is considered to be correct.

Otherwise it is a duplicate and is ignored.

3. Support Counting

Support counting is a fundamental task in frequent subgraph mining. It determines

whether the generated subgraph is frequent. We need to count the occurrence of the

subgraph in all the input graphs for finding its support. This a NP-complete

problem. Support functions differ for different weighting schemes.

	
	

3.3. Distributed	Frequent	Subgraph	Mining	

Distributed weighted FSM algorithm [5] has four phases:

1. Input Refining

During the refining stage, the pre-processing is done. Firstly, the graph weights are

computed. Then weight frequent edges are determined. As per the anti-monotone

property, non-frequent edges are discarded, as non-frequent subgraphs cannot be used

to generate frequent subgraphs. For further processing, only frequent edges are kept.

2. Input Splitting

During the splitting phase, the input data is split into chunks and distributed across

Hadoop Distributed File System (HDFS). The input file is split in such a way that

almost equal number of edges are present across all the chunks. This helps in load

balancing.

24

3. Initialization

The data structures are initialized during initialization step. Data structures required for

support computation and map and reduce jobs for candidate generation are initialized.

A data structure is needed to maintain the list of all the vertices and all the possible

extensions from those vertices for candidate generation.

4. Mining

This is the actual mining phase. Iterative process is used to find weighted frequent

subgraphs. The first iteration starts with the single length weighted frequent subgraphs

(size=1).

Figure 3.1: Workflow of complete mining process

25

Figure 4.1 presents the complete workflow of all the steps. Input data is first refined. The

weighted frequent edges are identified. Then the input goes through the splitting phase and

is filtered and split across various chunks.

Then during the preparation phase, the data structures are initialized. Finally, the mining

starts. At each ith iteration, subgraphs of size i+1 are generated. The mining process repeats

until all frequent subgraphs of size i+1 are identified.	

	

3.4. Graph	Weighting	Mechanisms	

In this section, the graph weighing mechanisms used in this thesis are described.

In the context of weighted FSM, the weights associated with a subgraph pattern, g can be

defined in a number of ways.

3.4.1. Average	Total	Weighting	(ATW)	Scheme	

Inspired by the work in Tao et al. [60] , in the Average Total Weighting (ATW) scheme,

given a graph data set GD = {G1, G2, . . . , Gn}, the weight for a subgraph g is calculated

by dividing the sum of the avg weights in the graphs that contain g with the sum of the

average weights across the entire graph dataset GD. It can be used for both edge and vertex

weighted graphs.

Given a graph data set GD = {G1, G2, . . . , Gn}, if Gi is edge weighted by {w1, w2, . . . ,

wk}, then the average weight of Gi is defined as:

 𝑤()* 𝐺, =
./

0

/12

3
 (1)

Where wj is either defined by the user or calculated by some weighting methods.

The total weight of GD is defined as:

 𝑤456 𝐺𝐷 = 𝑤()* 𝐺,
8

,9:
 (2)

26

Given a graph data set GD = {G1, G2, . . . , Gn}, and an arbitrary subgraph g, let the set of

graphs where g occurs equal GD(g). Then, the weight of g with respect to δGD is:

 𝑊<= * =
>?@∈A?B C DEFC <,

GHIJ ?B
 (3)

The actual importance of subgraph g is told by WGD(g). The weighted support of a subgraph

g is given by the product of the support of g and the importance factor of g:

wsupGD(g) = WGD(g) x supGD(g)

A subgraph g is weighted frequent with respect to GD, if wsupGD(g) ≥ 𝜏 , where 0 < τ ≤ 1

is a weighted support threshold.

In equation 3, the anti-monotone property is satisfied by the function	𝑊<= * . This means

that if a subgraph of size k is not frequent, then all the supergraphs of size k+1 containing

k won’t be frequent too and they can be pruned during candidate generation. This approach

is best suited when the graphs in the dataset are of similar size. The reason behind this is

that this approach will tend to be more favored towards larger graphs as compared to

smaller graphs.

3.4.2. Affinity	Weighting	(AW)	Scheme	

In Affinity Weighting (AW) scheme, the search space growth is restricted by two factors:

(a) graph distance measure, and (b) weighting ratio measure. For a subgraph g to be

weighted frequent, both must be greater than specified user thresholds. Let g be a candidate

pattern for a graph dataset GD = {G1, G2, . . ., Gn}. We define graph distance as:

 𝑊<= * =
:?@∈A?B C L M C

M ?@
N *

 (4)

Where V(Gi) is the set of vertices in transaction graph Gi and V(g) is the set of vertices in

the sub-graph g.

27

The value of (4) will only decrease on adding vertexes to g because 𝛿<= * cannot be

increased.

The graph distance measure is based on the number of vertices in a graph. The weighting

ratio is concerned with the edge weights. r(g) is the weighting ratio of an edge-weighted

subgraph g. It returns a value between zero and one which is non-increasing in the number

of edges of g. Given an edge weighted subgraph g with weights S = {w1, w2, …, wn}, the

weighting ratio function r(g) which is similar to [61], is defined as:

 𝑟 𝑔 =
RSTU@∈V W@
RXYU/∈V ./

 (5)

Given an edge-weighted graph data set GD = {G1, G2, . . . , Gn}, a weighted support

threshold τ ∈ (0, 1], and a weighting ratio threshold 𝜆 ∈ [0, 1], a subgraph g is weighted

frequent only if the following two conditions (C1 and C2) are satisfied:

(C1) wsupGD(g) = supGD(g) x WGD(g) ≥ τ;

(C2) r(g) ≥ 𝜆

Thus, we get another pruning method. This method may be used in any frequent subgraph

mining algorithm. The weighted support and weighting ratio are tracked during mining.

While selecting candidates, the candidates which do not satisfy at least one of the

conditions will be discarded.

28

Chapter	4:	Proposed	Method	

The proposed system for weighted frequent subgraph mining works on weighted graph dataset.

The input dataset contains graphs of medium size. The graphs have undirected weighted edges.

The goal of weighted frequent subgraph mining is to find weighted-frequent subgraphs in the input

database occurring more than the provided weighted-support threshold value.

The proposed system uses two different weighting mechanisms for frequent subgraph mining,

namely Average Total Weighting (ATW) and Affinity Weighting (AW). The mining algorithm

for both ATW and AW weighting schemes are presented below:

4.1. Distributed	weighted	subgraph	mining	using	ATW	weighing	scheme	

Algorithm: Mapper for ATW scheme based frequent subgraph mining

ATW_Map(key, value):

1. Subgraph = getSubGraph(value)
2. Reconstruct_DataStructures(value)
3. C = Generate_Candidate_Set(Subgraph)
4. For each graph, c in C
5. If Isomorphism_Check(c) = true
6. If any graph of this division contains c
7. outkey = min_dfs_code(c)
8. out1 = ATW_weighted_support_factor(c)
9. out2 = serialized value of c
10. outval = out1 + out2
11. Output the values outkey, outval

A key-value pair is provided as input to the AWT_Map function. In order to uniquely

identify subgraphs, min-dfscode is used for key. The serialized value of the subgraph is

used as the value. Initially, the data structures are initialized. The candidate is generated in

line 3. Only one isomorphic subgraph will be used for each candidate generated. If at least

one graph contains a subgraph, then it should be sent for processing to reducer function.

29

outkey is set as min_dfs_code of this new candidate subgraph. Along with min_dfs_code,

weighted_support_factor is also calculated and appended to the serialized value of the

subgraph. The weighted_suppot_factor and serialized value of subgraph are set as outval.

The function emits the (outkey, outval) pair. This pair is then shuffled and sorted with other

pairs before sending to the reducer.

Algorithm: Algorithm for weighted support factor for ATW scheme

ATW_weighted_support_factor(c):

1. for each edge in c
2. Total += weight(c)
3. Counter = counter + 1
4. Return total/counter

The ATW_weighted_support_factor method takes a candidate graph as input and returns

the average weight of the candidate graph. It traverses all edges and adds their weights. It

then divides the total weight by the number of edges. This gives us the average weight of

the candidate graph.

Algorithm: Reducer for ATW scheme based frequent subgraph mining

ATW_Reduce(key, values):

1. For each value in values
2. total_support += getATWWeightedSupport(value)
3. If total_support / total_weight ≥ support_threshold
4. For each value in values
5. write_ouput(key, value)

The intermediate outputs are shuffled and sorted before going to the reducer. One reducer

function will receive the outputs from mapper functions with same outkey. In

30

ATW_Reduce, the weighted-support factor from all mapper functions are aggregated and

total support is calculated. Total support is then divided by total weight of input dataset.

This result is the total weighted support of that subgraph pattern. Then, it checks if the

subgraph is weight frequent or not by verifying the support threshold. If it is frequent then

it is written to the HDFS. The number of output files will be equal to the number of reducer

nodes.

The flowchart of the algorithm is shown below in figure 4.1

31

Figure 4.1: Flowchart of distributed FSM using ATW scheme

32

4.2. Distributed	weighted	subgraph	mining	using	AW	weighing	scheme	

Algorithm: Mapper for AW scheme based frequent subgraph mining

AW_Map(key, value):

1. Subgraph = getSubGraph(value)
2. Reconstruct_DataStructures(value)
3. C = Generate_Candidate_Set(Subgraph)
4. For Each graph, c in C
5. If Isomorphism_Check(c) = true
6. If any graph of this division contains c
7. outkey = min_dfs_code(c)
8. out1 = AW_weighted_support_factor(Subgraph,c)
9. out2 = serialized value of c
10. outval = out1 + out2
11. Output the values outkey, outval

A key-value pair is provided as input to the AW_Map function. In order to uniquely

identify subgraphs, min-dfscode is used for key. The serialized value of the subgraph is

used as the value. Initially, the data structures are initialized. The candidate is generated in

line 3. Only one isomorphic subgraph will be used for each candidate generated. If at least

one graph contains a subgraph, then it should be sent for processing to reducer function.

outkey is set as min_dfs_code of this new candidate subgraph. Along with min_dfs_code,

weighted_support_factor is also calculated and appended to the serialized value of the

subgraph. The weighted_suppot_factor and serialized value of subgraph are set as outval.

The function emits the (outkey, outval) pair. This pair is then shuffled and sorted with other

pairs before sending to the reducer.

33

Algorithm: Algorithm for weighted support factor for AW scheme

AW_weighted_support_factor(Graph, Candidate):

1. For Each vertex in Graph
2. g++
3. For Each vertex in Candidate
4. c++
5. Return 1 – g/c

The AW_weighted_support_factor method takes as input, the transaction graph and the

candidate graph. It returns the ratio of number of vertices (of the transaction graph) not

present in the subgraph to the total number of vertices in the candidate graph. It counts the

number of vertices in the graph as well as the potential candidate solution. It returns the

ratio of difference in number of vertices in transaction graph and candidate graph to the

total number of vertices in the candidate subgraph.

Algorithm: Reducer for AW scheme based frequent subgraph mining

AW_Reduce(key, values):

1. For each value in values
2. total_support += getAWWeightedSupport(value)
3. Vg = getVerticeSet(key)
3. If total_support / Vg ≥ support_threshold
4. For each edge in getEdges(key)
5. If max < getEdgeWeight(edge)
6. max = getEdgeWeight(edge)
7. If min > getEdgeWeight(edge)
8. min = getEdgeWeight(edge)
9. ratio = max / min
10. If ratio ≥ weighting_ratio
11. For each value in values
12. write_ouput(key, value)

34

The intermediate outputs are shuffled and sorted before going to the reducer. One reducer

function will receive the outputs from mapper functions with same outkey. In AW_Reduce,

the weighted-support factor from all mapper functions are aggregated and total support is

calculated. Total support is then divided by total number of vertices in the subgraph. This

result is the total weighted support of that subgraph pattern. The AW_Reduce function

checks the support_threshold and also computes the ratio of the maximum and minimum

edge weights and checks if it is greater than the weight ratio required. If it is frequent then

it is written to the HDFS. The number of output files will be equal to the number of reducer

nodes.

The flowchart of the algorithm is shown below in figure 4.2

35

Figure 4.2: Flowchart of distributed FSM using AW scheme

36

Chapter	5:	Implementation	and	Results	

This chapter discusses the implementation details of the method proposed in the previous chapter.

The objective of implementation is to check whether the if fewer patterns are generated using the

weighted frequent subgraph mining as compared to standard unweighted subgraph mining.

Another goal is to compare and analyze both weighting schemes in the context of frequent

subgraph mining and check weighting scheme is faster and which weighting scheme produces

fewer patterns.

5.1. Hardware	Details	

The experiment was performed on Linux-based machines. A Hadoop cluster with 4 nodes

was created. In the cluster one node was set as the master node which also worked as a data

node. The rest of the three nodes were data nodes. Each node had a 3.2 GHz Intel Core i5

processor and 2GB of memory.

5.2. Software	Details	

The Hadoop version used was 2.7.3. The code for preparation and mining phase was

written in Java. A 32-bit version of Java 7 was used for the experiments. The data was

compressed while writing to HDFS. This saved execution time of the MapReduce job.

5.3. Dataset		

For the purpose of evaluation, a real-life social network dataset was used. A dataset

containing Facebook-like Social Network was acquired from an online source [65].

The Facebook-like Social Network was created using the data of students in University of

California. The users that sent or received any message were included in the database. The

message sent by a user to another message is represented as a list of edges.

Three types of datasets were used in this work.

37

Table 5.1: Description of Data

Dataset Name Description

DS1 Weighted longitudinal one-mode network (weighted by number of
characters)

DS2 Weighted static one-mode network (weighted by number of
characters)

DS3 Weighted static one-mode network (weighted by number of
messages)

Out of the complete dataset, the dataset for three types were used. The description of the

data used is presented in table 5.1

Table 5.2: Description of Graph Dataset

Name # of graphs # of edges Avg # of edges Total graph
weight

Avg. graph
weight

DS1 9567 247684 28.9 18331 1.9160

DS2 2024 75487 37.3 8213 4.0578

DS3 1954 71971 36.8 7610 3. 8945

Table 5.2 describes the complete description of the graph dataset. It specifies the number

of graphs, the number of edges and the average number of edges in each dataset. It also

states the total weight of the complete graph as well as the average weight of the graph.

38

5.4. Results	

The performance of the system proposed in chapter 4 is discussed in this section. The performance

of both ATW and AW weighting techniques are compared. The number of patterns for varying

support functions is depicted.

Figure 6.1: Number of frequent patterns for Unweighted, ATW and AW schemes

Figure 6.1 shows the comparison of unweighted and weighted frequent subgraph mining in terms

of number of frequent patterns identified. There is a significant decrease in number of patterns in

case of weighted frequent subgraph mining. Less number of pattern means that only the relevant

and significant patterns are identified. Further within weighted mining, ATW scheme has more

patterns than AW scheme. This clearly shows that AW scheme gives fewer and more relevant

results as compared to ATW scheme.

0

500

1000

1500

2000

2500

3000

3500

10% 20%

#	
of
	F
re
qu

en
t	P

at
te
rn
s

Support

Unweighted ATW	Scheme AW	Scheme

39

Figure 6.2: Number of patterns in ATW and AW for different r(g)

Figure 6.2 shows the comparison of ATW and AW schemes for different weighting ratios, r(g). It

can be observed from the figure that the number of patterns decrease drastically on increasing the

r(g) threshold for same support threshold. AW weighting scheme gives further advantage over

ATW scheme by adding an additional constraint of weighting ratio. And thus provides only the

specific and significant patterns.

However, on increasing the weighting ratio to a higher value, the number of patterns decrease

drastically and on further increasing, there may be no results at all. One has to carefully choose

the value of the weighting ratio in order to get the best and most accurate results.

40

Figure 6.3: Running time of ATW and AW for different different support values with r(g) = 0.2

The running time of both ATW and AW schemes for different datasets is depicted in figure 6.3

shown above. It is clear that AW scheme has a slightly higher running time than AW scheme. This

is because more computation is required in case of AW. However, the running times become

comparable on increasing the support threshold.

From the results shown in this chapter, it can be deduced that there is a tradeoff between ATW and

AW weighting schemes. AW has a slightly higher running time as compared to AW. But the

number of patterns generated by AW is significantly less than ATW for same dataset, which leads

to more significant and specific results. One can choose any of the schemes on the basis of the

requirement. ATW should be used in the scenarios where running time is a crucial factor.

Otherwise AW can be used when more filtered and relevant patterns are required.

41

Chapter	7:	Conclusions	and	Future	Work	

A distributed approach for weighted frequent subgraph mining is proposed in this work. The work

uses ATW and AW schemes for finding more important subgraphs from weighted frequency

subgraph dataset. In this work, edge weightings are assumed, but the same approach may be

applied for vertices. The proposed method finds weighted frequent subgraphs that satisfy the

weight threshold. The method

The comparison of results of weighted and unweighted frequent subgraph mining revealed that

fewer and more significant patters are extracted. A MapReduce based distributed system was

created to manage large graph databases. The performance of the system was evaluated for four

datasets using different parameters. The proposed method is efficient and scalable. It can handle

huge graph datasets, which cannot be handled on a single machine.

It is found that the AW scheme consumes more time than ATW scheme. It is due to slightly extra

complexity in calculations. However, AW scheme gives the least number of patters. The patterns

found are more significant, relevant and specific. In the case of ATW scheme, the number of

patterns found is more than AW scheme but lower than the number of patterns in the case of

unweighted frequent subgraph mining.

Thus, it can be concluded that ATW scheme has a better runtime than AW scheme, but the patterns

produced in the case of AW scheme are more significant and relevant.

In the future, the algorithm can be optimized to use some sort of caching or intermediate values.

Apache Spark framework [63] can be used to optimize the algorithm. Apache Spark will reduce

the serialization and disk I/O overhead of writing results of each iteration to disk. It has been found

that iterative algorithms are faster than MapReduce [64] based algorithms. Thus, Spark is an ideal

platform for distributed graph algorithms.

References	

	

[1] R. A. a. R. Srikant, "Fast algorithms for mining association rules," in 20th International

Conference on Very Large Data Bases (VLDB), September 1994.

[2] H. T. a. R. D. K. L. Dehaspe, "Finding frequent substructures in chemical compounds," in

4th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

August 1998.

[3] D. J. C. a. S. D. L. B. Holder, "Substucture discovery in the subdue system," in Workshop

on Knowledge Discovery in Databases (KDD) Proceedings, July 1994.

[4] F. C. M. Z. Chuntao Jiang, "Frequent Sub-graph Mining on Edge Weighted Graphs," in

International Conference on Data Warehousing and Knowledge Discovery, September

2010.

[5] M. A. H. Mansurul A. Bhuiyan, "An Iterative MapReduce Based Frequent Subgraph Mining

Algorithm," IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.

608-620, March 2015.

[6] G. K. Michihiro Kuramochi, "Finding Frequent Patterns in a Large Sparse Graph," Data

Mining and Knowledge Discovery, vol. 11, no. 3, pp. 243-271, 2005.

[7] M. J. Z. N. Talukder, "A distributed approach for graph mining in massive networks," Data

Mining and Knowledge Discovery, vol. 30, no. 5, p. 1024–1052, September 2016.

[8] S. G. Jeffrey Dean, "MapReduce: simplified data processing on large clusters,"

Communications of the ACM, vol. 51, no. 1, pp. 107-113 , 2008.

[9] "Hadoop Tutorial - YDN," Yahoo Developer Network, [Online]. Available:

https://developer.yahoo.com/hadoop/tutorial/module4.html.

[10] J. L. a. C. Dyer, Data-Intensive Text Processing with MapReduce, Morgan and Claypool

Publishers, 2010.

[11] X. J. H. C. J. M. X. Z. Yang Liu, "MapReduce-Based Pattern Finding Algorithm Applied in

Motif Detection for Prescription Compatibility Network," in 8th International Symposium

on Advanced Parallel Processing Technologies, 2009.

[12] J. H. Xifeng Yan, "gSpan: Graph-Based Substructure Pattern Mining," in IEEE International

Conference on Data Mining, Maebashi City, Japan, 2002.

[13] S. G. Jeffrey Dean, "MapReduce: simplified data processing on large clusters,"

Communications of the ACM, vol. 51, no. 1, pp. 107-113 , January 2008.

[14] G. D. F. a. M. Berthold, "Dynamic load balancing for the distributed mining of molecular

structures," IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 8, pp. 773

- 785, August 2006.

[15] R. B. a. R. B. S. Chakravarthy, "DB-Subdue: Database Approach to Graph Mining," in 8th

Pacific-Asia Conference in Knowledge Discovery and Data Mining (PAKDD) Proceedings,

May 2004.

[16] S. C. a. S. Pradhan, "Db-fsg: An sql-based approach for frequent subgraph mining," in 19th

international conference on Database and Expert Systems Applications (DEXA)

Proceedings, 2008.

[17] B. S. a. R. Sunderraman, "Oo-fsg: An object-oriented approach to mine frequent subgraphs,"

in Australasian Data Mining Conference (AusDM) Proceedings, December 2011.

[18] F. M. H. a. K. B. Eichinger, "On the usefulness of weight-based constraints in frequent

subgraph mining," in Research and Development in Intelligent Systems XXVII, October

2010.

[19] B. S. a. R. S. S. Hill, "An iterative Mapreduce approach to frequent subgraph mining in

biological datasets," in Proc. ACM Conf. Bioinformat., Comput. Biol. Biomed, 2012.

[20] A. J. Nisha Babu, "A distributed approach to weighted frequent Subgraph mining," in

International Conference on Emerging Technological Trends (ICETT), 2016.

[21] "The PubChem Project," NCBI - National Center for Biotechnology Information, 2004.

[Online]. Available: https://pubchem.ncbi.nlm.nih.gov/.

[22] R. S. Rakesh Agrawal, "Fast Algorithms for Mining Association Rules in Large Databases,"

in 20th International Conference on Very Large Data Bases, 1994.

[23] T. W. H. M. Akihiro Inokuchi, "An Apriori-Based Algorithm for Mining Frequent

Substructures from Graph Data," in 4th European Conference on Principles of Data Mining

and Knowledge Discovery, 2000.

[24] M. K. a. G. Karypis, "Frequent subgraph discovery," in Proc. Int. Conf. Data Mining, 2001.

[25] a. J. K. S. Nijssen, "A quickstart in frequent structure mining can make a difference," in Proc.

10th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2004.

[26] M. H. S. S. a. M. Z. V. Chaoji, "An integrated, generic approach to pattern mining: Data

mining template library," Data Mining and Knowledge Discovery, vol. 17, no. 3, p. 457–

495, 2008.

[27] L. B. H. D. J. C. Nikhil S. Ketkar, "Subdue: compression-based frequent pattern discovery

in graph data," in Proceedings of the 1st international workshop on open source data mining:

frequent pattern mining implementations, 2005.

[28] X. a. J. H. Yan, "CloseGraph: mining closed frequent graph patterns," in Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and data mining,

2003.

[29] C.-T. L. Hsun-Ping Hsieh, "Mining Temporal Subgraph Patterns in Heterogeneous

Information Networks," in IEEE Second International Conference on Social Computing,

2010.

[30] C. B. a. M. Berthold, "Mining molecular fragments: finding relevant substructures of

molecules," in Proc. IEEE Int. Conf. Data Mining, 2002.

[31] Y. L. a. H. G. Jianzhong Li, "Efficient Algorithms for Summarizing Graph Patterns," IEEE

Transactions On Knowledge And Data Engineering, vol. 23, no. 9, September 2011.

[32] J. L. H. G. Yong Liu, "JPMiner: Mining Frequent Jump Patterns From Graph Databases," in

Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009.

[33] Q. L. G. Z. D. D. Y. J. W. B. Yuhua Li, "A Directed Labeled Graph Frequent Pattern Mining

Algorithm Based on Minimum Code," in Third International Conference on Multimedia and

Ubiquitous Engineering, 2009.

[34] S. a. K. J. Nijssen, "Faster association rules for multiple relations," in IJCAI’01: Seventeenth

International Joint Conference on Artificial Intelligence, 2001.

[35] F. a. M. Z. Chuntao Jiang, "A Survey of Frequent Subgraph Mining Algorithms," The

Knowledge Engineering Review, vol. 28, no. 1, pp. 1-31, 2004.

[36] M. K. a. G. Karypis, "GREW A Scalable frequent subgraphdiscovery algorithm," in Fourth

IEEE International Conference on Data Mining, 2004.

[37] W. W. a. J. P. J. Huan, "Efficient mining of frequent subgraphs in the presence of

isomorphism," in Proc. 3rd IEEE Int. Conf. Data Mining, 2003.

[38] L. V. S. a. K. K. Thomas, "Isg: Itemset based subgraph mining," IIIT, Hyderabad, December

2009.

[39] J. W. W. J. P. a. J. Y. Huan, "Spin: mining maximal frequent subgraphs from graph

databases," in Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, 2004.

[40] J. L. H. G. a. S. Z. Zhaonian Zou, "Mining Frequent Subgraph Patterns from Uncertain Graph

Data," IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 9, pp. 1203-

1218, September 2010.

[41] R. B. a. R. B. S. Chakravarthy, "Db-subdue: Database approach to graph mining," in Proc.

Adv. Knowl. Discov. Data Mining, 2004.

[42] L. B. H. G. G. a. R. M. D. J. Cook, "Approaches to Parallel Graph-Based Knowledge

Discovery," Journal of Parallel and Distributed Computing, vol. 61, no. 3, pp. 427-446 ,

2001.

[43] C. W. a. S. Parthasarathy, "Parallel algorithms for mining frequent structural motifs in

scientific data," in Proc. 18th Annu. Int. Conf. Supercomput., 2004.

[44] S. P. a. M. Coatney, "Efficient discovery of common substructures in macromolecules," in

Proc. IEEE Int. Conf. Data Mining, 2002.

[45] M. W. O. U. I. F. a. M. P. T. Meinl, "The parmol package for frequent subgraph mining,"

Electron. Commun. EASST, vol. 1, p. 1–12, 2006.

[46] M. A. D. a. T. W. M. Philippsen, "Parsemis - The parallel and sequential mining suite," 2011.

[Online]. Available: https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html.

[47] W. H. M. L. L. a. C. S. J. Wang, "A partition-based approach to graph mining," in Proc.

22nd Int. Conf. Data Eng.,, 2006.

[48] M. E. O. a. X. L. S. N. Nguyen, "Graph mining based on a data partitioning approach," in

Proc. 19th Australasian Database Conf., 2008.

[49] S. P. a. Y.-K. C. G. Buehrer, "Adaptive parallel graph mining for CMP architectures," in

Proc. 6th IEEE Int. Conf. Data Mining, 2006.

[50] Y.-B. Y. a. Y. Z. G.-P. Chen, "Mapreduce-based balanced mining for closed frequent

itemset," in Proc. IEEE 19th Int. Conf. Web Serv., 2012.

[51] Y.-B. Y. Y. G. G.-P. C. a. Y. Z. S.-Q. Wang, "Mapreduce-based closed frequent itemset

mining with efficient redundancy filtering," in Proc. IEEE 12th Int. Conf. Data Mining

Workshops, 2012.

[52] Z. Z. J. C. J. L. J. H. a. S. F. L. Zhou, "Balanced parallel FP-growth with Mapreduce," in

Proc. IEEE Youth Conf. Inf. Comput. Telecommun, 2010.

[53] Y. W. D. Z. M. Z. a. E. Y. C. H. Li, "Pfp: parallel FP-growth for query recommendation," in

Proc. ACM Conf. Recommender Syst., 2008.

[54] H.-J. C. M. A. H. M. M. R. a. M. R. K. B.-S. Jeong, "A MapReduce framework for mining

maximal contiguous frequent patterns in large DNA sequence datasets," IETE Technical

Review, vol. 29, no. 2, pp. 162-168, 2012.

[55] G. K. Michihiro Kuramochi, "Finding Frequent Patterns in a Large Sparse Graph*," Data

Mining and Knowledge Discovery, vol. 11, no. 3, pp. 243-271, November 2005.

[56] E. A. S. S. P. K. Mohammed Elseidy, "GraMi: frequent subgraph and pattern mining in a

single large graph," Proceedings of the VLDB Endowment, vol. 7, no. 7, pp. 517-528, March

2014.

[57] L. J. Yun U, "Mining weighted support affinity patterns," in 18th International Conference

On Computer Applications in Industry and Engineering, 2005.

[58] F. C. R. S. M. Z. Chuntao Jiang, "Text classification using graph mining-based," Knowledge-

Based Systems, vol. 23, no. 4, pp. 302-308, 2010.

[59] F. C. A. Elsayed, "Corpus callosum MR image classification," Knowledge-Based Systems,

vol. 23, no. 4, pp. 330-336, 2010.

[60] F. M. F. F. M. Tao, "Weighted Association Rule Mining using Weighted Support and

Significance Framework," in The Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2003.

[61] U. Yun, "WIS:Weighted Interesting Sequential Pattern Mining with a Similar Level of

Support and/or Weight," ETRI Journal, vol. 29, no. 3, pp. 336-352, 2007.

[62] "XIFENG YAN," University of California Santa Barbara, [Online]. Available:

https://www.cs.ucsb.edu/~xyan/dataset.htm.

[63] M. C. T. D. A. D. J. M. M. M. M. J. F. S. S. I. S. Matei Zaharia, "Resilient distributed

datasets: a fault-tolerant abstraction for in-memory cluster computing," in Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation, 2012.

[64] Y. Q. U. F. M. L. J. C. W. B. R. F. Ö. Juwei Shi, "Clash of the titans: MapReduce vs. Spark

for large scale data analytics," Proceedings of the VLDB Endowment, vol. 8, no. 13, pp.

2110-2121, 2015.

