All Dielectric Optical Nanoantenna

To be submitted as Thesis in partial fulfilment of the requirement for the degree of

Master of technology In Microwave & Optical Communication

Submitted By Richa Mantri (2k15/MOC/16) Delhi Technological University, New Delhi, India

> Under the Supervision of Dr. Ajeet Kumar

Department of Applied Physics and Electronic and Telecommunication Delhi Technological University (Formerly Delhi College of Engineering) Shahbad Daulatpur, Main Bhawana Road New delhi-110042, India

DECLARATION

I Richa Mantri, hereby declare that the work entitled **"All Dielectric Optical Nanoantenna"** has been carried out by me under the guidance of Dr. Ajeet Kumar, in Delhi Technological University, New Delhi.

This project is a part of the degree of Masters in Technology in Microwave & Optical Communication. This is an original work and all sources; reference and literature used and excerpted during elaboration of this work are properly cited and listed in complete reference to the due source.

Richa Mantri (2K15/MOC/16)

CERTIFICATE

This is to certify that the dissertation entitled: **All Dielectric Optical Nanoantenna** in the partial fulfilment of the requirements for the reward of the degree of Masters of Technology, Delhi Technological University (Formerly Delhi College of Engineering, University of Delhi), is an authentic record of the candidate's own work carried out by her under my guidance. The information and data enclosed in this project is original.

Dr. Ajeet Kumar (Assistant Professor) Department of Applied Physics Delhi Technological University (Formerly Delhi College of Engineering)

ACKNOWLEDGEMENT

I would like to express my gratitude to **Delhi Technological University, New Delhi** for giving me opportunity to be a part of it. I would like to thank **Dr. S.C. Sharma** Head of Department, Applied Physics for his kind leadership. Most of all I am very highly obliged to my project advisor **Dr. Ajeet Kumar, Assistant Professor, Department of Applied Physics**, Delhi Technological University, New Delhi for his exemplary guidance, monitoring and constant encouragement. I would also like to thank him for sparing the efforts in compiling the work presented here. I would also like to be thankful Reena Dalal, my parents and my friends for giving me love and support.

Richa Mantri 2K15/MOC/16

ABSTRACT

Optical Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-of-states engineering to ultra-sensing as well as enhancement of optical nonlinearities. Thus, the useful results prompt us to implement a more systematic and further exploration on nanoantennas of some specific configurations of interest. This dissertation is the study of various works in the field of optical nanoantenna, thereafter design and analyse optical nanoantenna.

The focus of this thesis is put on the investigations of single and multiple dielectric nanoparticles for their near-field optical and far-field radiation properties. In particular, we elaborately design and carefully analyse such structures to perform their functions as the nanoantennas operating in the optical range. Nanoantennas have been found capable of producing strong enhanced and highly localized light fields. The Generalized Kerker's conditions are studied in detail to understand scattering of light by nanoparticles of various shapes and size. Concept of Fano Resonance which has been well explored and implemented in metallic nanoantenna and only recently being extensively studies and implemented in dielectric materials is studied. In the present work, both the theories for directional scattering by dielectric nanoparticle have been exploited.

A study on the accurate behavior of single dielectric nanoparticle is done as to how the scattering of incident field by the nanoparticle enables it to exhibit unidirectional scattering at wavelengths where the First and Second Generalised Kerker's Conditions are fulfilled. Fano resonance is seen when multiple dielectric nanoparticles are used. In the work for this dissertation linear quadrumer is considered for designing an optical nanoantenna based on directional scattering at the Fano resonant wavelength. An appropriate numerical approach with use of FEM is developed for a more effective calculation of nanoantennas covering the broad frequency range including visible and infrared region. Comprehensive investigations are carried out and presented in detail on various factors which have significant impacts on the nanoantenna's performance in the optical range. The software used is COMSOL MULTIPHYSICS whose operation is dependent on the finite element analysis method. The software calculates scattering cross section, far-field pattern, and directivity for the optical nanoantenna MATLAB is also used for mathematical computation as and when required.

TABLE OF CONTENTS

Abstract	v
Table of Conte	ents vii
List of Figures	ix ix
List of Tables	xi
Chapter – 1	Introduction
1.1	Brief background1-2
	-
1.2	Motivation2-3
1.3	Thesis Objective
1.4	Thesis Outline
Chapter – 2	Optical Nanoantenna
2.1	Introduction5-6
2.2	Review of Studies on Nanoantenna Theory6-7
2.3	Types of Nanoantenna
	2.3.1 Metallic Nanoantenna9-11
	2.3.2 Metal-Dielectric Nanoantenna 11-12

	2.3.2	Metal-Dielectric Nanoantenna	11-12
	2.3.3	Dielectric Nanoantenna	12
2.4	Charao	cteristics of Optical Nanoantenna	13-16
2.5	Applic	cation of Optical Nanoantenna	16-21
2.6	Fabric	ation Techniques of Optical Nanoantenna	22

Chapter - 3 All Dielectric Optical Nanoantenna

3.1	Introdu	uction	23
3.2	Huyge	en Component	24-25
3.3	Optica	al Magnetism in Dielectric Nanoparticle	25-26
3.4	Unidir	rectional Scattering in Dielectric Nanoparticle	27
	3.4.1	Generalised Kerker's Condition	27-28
	3.4.2	Fano Resonance	

Chapter – 4 Calculation Method and Software Tools

4.1	Finite	Element Method					
	4.1.1	Introduction					
	4.1.2	The FEM Technique					
4.2	Softwa	are Tools Used					
	4.2.1	COMSOL Multiphysics					
	4.2.2	MATLAB					
Chapter – 5	Desig	n and Analysis of Optical Nanoantenna					
5.1	Cuboid	Cuboidal Dielectric Optical Nanoantenna					
	5.1.1	Motivation					
	5.1.2	Design and Approach					
	5.1.3	Scattering Analysis					
	5.1.4	Simulation and Results	41-42				
5.2	Linear	Quadrumer Dielectric Optical Nanoantenna	43				
	5.2.1	Motivation	43				
	5.2.2	Design and Approach	43-44				
	5.2.3	Simulation and Results	44-59				
5.3	Inferen	nces	60				

$Chapter-6 \ \ Conclusion \ and \ Future \ Scope$

6.1	Conclusion	61
6.2	Future Scope	62

References

LIST OF FIGURES

2.1	The Who	ole Electromagnetic Spectrum	5
2.2	The Basi	ic Principles of Nanoantenna Operation	6
2.3	Schemat	ic of Plasmonic/Metallic Nanoantenna	9
2.4	SEM Im	age of Plasmonic/Metallic Nanoantenna	10
2.5	Monopo	le Nanoantenna	11
2.6	Schemat	ic of Metal-Dielectric Nanoantenna	12
2.7	Directivi	ity Diagrams for A Yagi-Uda Nanoantenna	14
2.8	A Wide	Range of Applications Are Driving the Current Rese	arch in Optical
	Antenna	s	17
2.9	Differen	ce Between Conventional and Near Field Microscopy.	18
2.10	Surface 1	Enhanced Raman Spectroscopy (SERS)	19
2.11	The Proc	cedure of Optical Lithography	20
3.1	Schemat	ic View of Two Types of All-Dielectric Nanoantenna.	23
3.2	Illustrati	on of Huygens Guideline	24
3.3	Huygen	Component	25
3.4	Schemat	ic of Field Lines In SRR	26
3.5	Unidirec	tional scattering due the electric and magnetic dipole r	noments28
3.6	Plot of se	cattering cross-section versus normalized energy for va	arious values of
	the parar	neter q illustrating the asymmetric Fano line-shape	
4.1	Flow Ch	art of FEM	31
4.2	Meshing	done using FEM	32
4.3	COMSO	DL Dashboard	33
5.1	Schemat	ic Diagram of Cuboidal Nanoparticle	
5.2	Silicon N	Vanoparticle	41
5.3	Germani	um Nanoparticle	42
5.4	Schemat	ic of Si reducing size quadrumer with d = -10nm	44
	(a)	Narrow peak in the magnetic response with	broad electric
	response		45
	(b)	Fano dip seen at $\lambda = 500$ nm	45
	(c&d)	At $\lambda = 500$ nm Polar plot and 3D polarisation	46
	(e&f)	At $\lambda = 450$ nm Polar plot and 3D polarisation	46

5.5	Schematic	of Si reduc	cing siz	e quad	rumer with	d = 0	•••••		47
	(a)	Narrow	peak i	in the	magnetic	response	with	broad	electric
	response		•••••	•••••				•••••	47
	(b)	Fano dip	seen at	$\lambda = 50$	0nm				48
	(c&d)	At $\lambda = 50$	00nm P	olar plo	ot and 3D p	olarisation	ı		48
	(e&f)	At $\lambda = 45$	50nm P	olar plo	ot and 3D p	olarisation	1		49
5.6	Schematic	of Si reduc	cing siz	e quad	rumer with	d = +10nr	n	•••••	49
	(a)	Narrow	peak i	in the	magnetic	response	with	broad	electric
	response		•••••	•••••					50
	(b)	Fano dip	seen at	$\lambda = 50$	0nm			•••••	50
	(c&d)	At $\lambda = 50$	00nm P	olar plo	ot and 3D p	olarisation	1		51
	(e&f)	At $\lambda = 45$	50nm P	olar plo	ot and 3D p	olarisation	1	•••••	51
5.7	Schematic	of Si same	e size qu	uadrum	er with d =	-10nm	•••••		52
	(a)	Narrow	peak i	n the	magnetic	response	with	broad	electric
	response		•••••	•••••			•••••		52
	(b)	Fano dip	seen at	$\lambda = 50$	0nm				53
	(c&d)	At $\lambda = 50$	00nm P	olar plo	ot and 3D p	olarisation	1		53
	(e&f)	At $\lambda = 45$	50nm P	olar plo	ot and 3D p	olarisation	1	•••••	54
5.8	Schematic	of Si same	e size qu	uadrum	er with d =	= 0		•••••	54
	(a)	Narrow	peak i	n the	magnetic	response	with	broad	electric
	response		•••••	•••••			•••••		55
	(b)	Fano dip	seen at	$\lambda = 50$	0nm				55
	(c&d)	At $\lambda = 50$	00nm P	olar plo	ot and 3D p	olarisation	1		56
	(e&f)	At $\lambda = 45$	50nm P	olar plo	ot and 3D p	olarisation	1	•••••	56
5.9	Schematic	of Si same	e size qu	uadrum	er with d =	+10nm		•••••	57
	(a)	Narrow	peak i	in the	magnetic	response	with	broad	electric
	response		•••••	•••••			•••••		57
	(b)	Fano dip	seen at	$\lambda = 50$	0nm		•••••	• • • • • • • • • • • • •	58
	(c&d)	At $\lambda = 50$	00nm P	olar plo	ot and 3D p	olarisation	1		58
	(e&f)	At $\lambda = 45$	50nm P	olar plo	ot and 3D p	olarisation	1		59

LIST OF TABLES

5.1 1 able for directivity of various designs	5.1	Table for directivity of various designs	9
---	-----	--	---