
1

Prediction of Suitability of Agile Software Development

Methodology using Machine Learning

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Technology

By

Aditya Kumar Goyal

(Roll No: 2K15/SWE/03)

Under the guidance of

Prof. (Dr.) DAYA GUPTA

DEPARTMENT OF SOFTWARE TECHONOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI

2

DECLARATION

===

I hereby declare that the thesis entitled, “Prediction of Suitability of Agile Software

Development Methodology using Machine Learning”, is a bona fide work done by me in

partial fulfillment of requirements for the award of Master of Technology Degree in software

technology at Delhi Technological University (New Delhi) is an authentic work carried out by

her under my supervision and guidance. The matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or Diploma to the best

of my knowledge.

Aditya Kumar Goyal

Department of Software Engineering

Delhi Technological University,

Delhi.

3

CERTIFICATE

===

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, 110042

Date: ____________

This is to certify that the thesis entitled, “Prediction of Agile Suitability of Software

Development Methodology using Machine Learning”, a bona fide work done by Ms. Aditya

Kumar Goyal (2k15/SWE/03) in partial fulfillment of requirements for the award of Master

of Technology Degree in software technology at Delhi Technological University (New Delhi),

is an authentic work carried out by him under my supervision and guidance. The matter

embodied in the thesis has not been submitted to any other University / Institute for the award

of any Degree or Diploma to the best of my knowledge.

Prof (Dr.) Daya Gupta,

Department of Software Engineering,

Delhi Technological University, Delhi-110042

4

ACKNOWLEDGMENT

===================================

I would like to take this opportunity to express my gratitude and appreciation to all those who

have helped me in any way towards the successful completion of this work.

I take this opportunity to thank my supervisor, Prof. Daya Gupta, for guiding me and

providing me with all the facilities, which paved way to the successful completion of this work.

This thesis work was enabled and sustained by her vision and ideas. Her scholarly guidance

and invaluable suggestions motivated me to complete my thesis work successfully.

I have given sufficient time and research to complete my project under timeline defined by the

university. This project has given me opportunity to explore the domain of Software

Engineering.

Aditya Kumar Goyal

2K13/SWE/03

5

ABSTRACT

A Large numbers of software projects fail during their development phases due to high reliance

of inappropriate software development methods. It is not advisable to start with a randomly

chosen software development methodology for successful completion of a project within

budget and target time. All the development methodologies whether belongs to agile or non-

agile domain have their merits and demerits. Traditional plan-based software development

methods works extremely well if the requirements are static whereas for frequently changing

project requirements these methodologies are often considered as slow and insensitive. Agile

methods on the other hand are considered as light-weight methods that don’t produce

requirement and design documentation needs but requires intensive communication between

the developers and users. Here, we present a complete framework, Development Method

Selection Framework (DMSF) that provides an overall context in terms of software project

parameters for exploration of project-in-hand and selection of software development method.

6

Table 2.1: Common and Variable practices ... 25

2Table 3.1: Values for “volatility of requirement” ... 29

3Table 3.2: Values for “Complexity” ... 29

4Table 3.3: Value for “Flexibility”. .. 31

5Table 3.4: Metrics for “Modularization of task”. .. 31

6Table 3.5: Value for “Time to market" ... 32

7Table 3.6: Value for “clarity and completeness of requirements” .. 32

8Table 3.7: Value for “coupling” .. 33

9Table 3.8: Metric for “Tool experience” ... 33

10Table 3.9: Metrics for “Platform volatility” .. 34

11Table 3.10: Input Metrics for “Developer experience” ... 34

12Table 3.11: Values for “Existing Code Reuse” ... 35

` 13Table 3.12: Value for “Develop as base code” ... 35

14Table 3.13: Value for “Reuse of existing code”.. 36

15Table 3.14: Value for “Testing Support” .. 37

16Table 3.15: Value for “amount of requirements known initially.” 37

17Table 3.16: Values for “Platform experience” .. 38

18Table 3.17 : comparison between fuzzy logic and neural network...................................... 40

19Table 4.1: Values for “Task Extent”.. 44

20Table 4.2: Values for “Group Size” ... 44

21Table 4.3: Value for “Progress Approach”. .. 44

22Table 4.4: Metrics for “Code Style”. .. 45

23Table 4.5: Value for “Expertise Environment” .. 45

24Table 4.6: Value for “Physical environment” ... 46

25Table 4.7: Metrics for “Industry Customs”. ... 46

7

26Table 4.8: Metrics for “Abstraction Mechanism”. ... 47

27Table 4.9: Metrics for “Project requirements”. .. 47

28Table 4.10: Input Metrics for “Developer experience” ... 47

29Table 4.11: Project characteristics affecting essentiality of practices 52

30Table 5.1: Requirements for cab booking application .. 55

31Table 5.2: Values for “cab application system” .. 56

32Table 5.3: Values for “cab application system” .. 57

33Table 5.4: Weighted practices of scrum for case project 1 ... 57

8

Figure 2.1: Lifecycle of the XP process... 18

Figure 2.2 : Scrum Process .. 19

Figure 2.3: Feature Driven Development processes .. 20

Figure 2.4: DSDM process diagram .. 21

Figure 2.5:SD Lifecycle ... 22

6 Figure 3.1:BR Process .. 28

7Figure 4.1: Method selection and configuration framework ... 42

8Fig 4.2 Problem Mapped as Neural Networks [6] ... 49

9

Contents
1 Introduction 10

1.1Introduction & Motivation ... 10

1.2 Related Work .. 11

1.3 Problem statement ... 13

1.4 Scope ... 15

1.5 Organization of the thesis ... 16

2 Agile Modeling .. 17

2.1 Extreme Programming .. 17

2.2 Scrum .. 18

2.3 Feature Driven Development (FDD) .. 19

2.4 Dynamic System Development Method ... 20

2.5 Adaptive Software Development (ASD) .. 21

2.6 Agile Manifesto ... 22

2.7 Characteristics of Agile Methodologies .. 23

2.8 commonality and variability practices of agile methods .. 24

Paradigm selection ... 26

3.1 Paradigm selection .. 26

3.2 Case Bases in Databases ... 28

3.3 Case study: Banking application ... 38

3.4 Neural network v/s fuzzy logic .. 40

4 Proposed Method Prediction Process .. 41

4.1 Method Selection Block Diagram .. 41

4.2 Weight Distribution and Input values for agile method selection .. 43

4.3 Method Selection Tool .. 48

4.4 Details of the Implementation .. 53

5. Case study .. 55

6 Results & Conclusion ... 59

References ... 60

10

Chapter 1

1 Introduction

1.1Introduction & Motivation

For a strong house, we need a strong foundation. Similarly we need strong software

development methodology to develop a strong and reliable software product which meets the

needs of stakeholders. To ensure the durability and reliability of software, appropriate

methodology is required.

From the very beginning, many non-agile methods have been used for software development.

Developers used ER Diagrams to show detailed entity relationship model of an organization.

The main components of the ER diagrams were data entity, relationships and their associated

attributes. To show the flow in the Information system, Process flow diagrams were used.

For visualization, specifying and documenting object oriented system UML provides modeling

language. These approaches take significant time and cause overhead in the software

development even in the situations where they are not required. Major time is spent on

documenting rather than actually implementing the system.

Due to the drawbacks of the heavyweight traditional methods, agile methods are welcomed in

the industry by both the developers and the managers. Agile methods focus on quick delivery

of the software to the customer and modifying the software as per the requirements of the

customer. There is a need of the constant communication among the development teams and

the customer to provide feedback for the system so that it can be quickly adapted to new

requirements and satisfy the customer needs. Many Agile methodologies are used in the

industry such as DSDM (Data System Development Method), XP (Extreme Programming),

RAD (Rapid Application Development), SCRUM, FDD (Feature Driven Development) etc.

Refer to Chapter 2 for the overview of these methodologies. Large Software like Windows,

Google Drive cannot be developed using Agile Methods as there is proper documentation

required for the system being developed.

11

Due to these complicacies there is a need to tool that helps to determine appropriate software

development method for the project in hand based on the characteristics of the projects. The

value of the project characteristics varies according to projects like for mobile application

technical risk is less, but for Aircraft system technical risk is more.

In this project, we assign parameters to assign weights to the characteristics and their value

based on the project. Depending upon the value of the parameter our framework finds out the

most suitable agile method for the project development. Since process of evaluation is complex,

machine learning technique has been used for the evaluation process.

1.2 Related Work

Methods make the task of Software development easy and efficient. Due to which there is a

need to adopt a suitable Software In response to this, BrinkKemper has defined Method

Engineering as “discipline to design, construct and adapt methods, techniques and tools for an

Information System Domain (ISD) project” development method. This necessity makes the

task method engineering more important. Widely accepted the definition of Brink Kemper has

made method engineering popular.

Main focus of the method engineering community is to select method based on the

programmer’s capability, size of the project, requirement of the project, complexity of the

project etc. There are numerous proposals in the literature to develop method suitable for a

particular project such as method assembly (Fragment-Based Approach, GOPRR Based

Approach) or method generation(Contextual Approach for method generation, Engineering

Using Rules), method architecture(Intension-Architecture based approach (MIA),

Architecture-Centric Method Engineering Approach (ArCME))etc. Recently method

engineering has moved to method configuration where a base method is configured to meet

project requirements and method configuration has also been defined by Dwivedi [22, 3, 23].

(IEEE Std 610.12, 1990) defines method configuration as “The arrangement of a computer

system or component, defined by the number, nature, and interconnections of its constituent

parts”.

In configurability, first we create a new model called a configurable model followed by

selecting only those elements of the configurable model that are relevant to the user’s

requirement.

12

(Coplien et al., 98) define commonality as an assumption held commonly across a given set

of objects whereas variability is an assumption that is true for only some elements of the set.

(Weiss and Lai) defines the variability as an assumption about “How members of a family may

differ from one another: A configurable model identifies commonality and variability that can

be exploited in developing a new system from the configurable model.

(Davenport) describes the process of configuration as a methodology performed to allow a

business to balance their IT functionality with the requirements of their business.

Some proposals have been found that talks about configurability in Situation Method

Engineering domain but none of them reach at its maturity level and got success to give a

consistent and coherent solution. Rolland et al. [20] proposed method design as method

families, these method families are additionally surfaced to form a method line that eventually

brings about an configured method the proposition is in the outset stage and neglects to give

the definite procedure of designed strategy development. These proposition address many

issues, however issues like 'right granularity', 'fittingness of strategy being chosen' and 'explicit

portrayal of changeability' are as yet open.

Method Configuration is a sub-discipline to SME and has been figured and proposed via

Carlson et al in [22]. They characterized method configuration task as a "way to adjust a

specific technique to different arranged variables. The attention is therefore on one method as

a construct for configuration as opposed to with respect to configuration of strategies as a base

for assembly". Further, in their later recommendations, they [47] characterized high-level

configurable construct for their method configuration process. The configurable idea proposed

by them did not have the issues of liberality and granularity. Since the past proposition on

method configuration focused on the one single base method decreased the extent of the

method generation for each new project.

Dwivedi also provide framework for method configuration of Agile as well as traditional

methods [3, 22, 23].

Earlier approaches to method engineering focused mainly on non-agile configuration since

from ages only non-agile methods were used. With the popularity and need of Agile Software

Development methods, there is a necessity of Tool that provide framework, Meta Concepts and

Configuration Environment for Agile Methods and provide the solution based on agile

characteristics of the projects. Five metrics provided by Qumer and hendersonsellers for agile

13

method to be well defined are: Flexibility, Speed, Leanness, Learning and Responsiveness.

They have further provided proposal to find the agility in a project.

The development methodologies whether agile or non-agile have their merits and demerits. As

agile methods have their own limitation of less documentation, large cooperation from client

and limited, dedicated programmer they are not applicable to all project. In a recent research,

Dwivedi has stated that large numbers of software projects fail due to the high reliance on

inappropriate Software development paradigm.

So there is a need to draw some criteria that assist the software developers to select appropriate

software development paradigm for the current project. Dwivedi also gives the framework to

find software paradigm based on project characteristics [24]. Further in her work she has

presented a generic framework for method engineering that include method configuration for

agile paradigm. In this framework preprocessing is decision about agile methodology

selection[24] but due to the some limitation of the proposed framework like the once the

complexity of fuzzification and defuzzification, validity of fuzzy rules, it will produce the same

output irrespective of changing organizational requirements or behavior.

Our solution for providing the method selection framework uses neural network, where the

project database (weights of connecting lines) is enhanced every time the new query case

arrives thus providing much more experience for the upcoming projects. Further we are

configuring the selected agile method based on the project in hand.

For configuration Dwivedi[25] has proposed commonality and variability in an agile method.

Here commonality needs to be always there but variability may or may not be kept in the final

configured method.

Our solution for selecting the variability to be kept is by defining fuzzy rules based on project

characteristic. Project requirements are taken from customer and variability of agile method

can be computed.

The configuration is completed by taking common and variable functionalities of a particular

agile method. We are proposing a set of fuzzy rules for choosing the variable functionalities of

an agile method.

1.3 Problem statement

14

Software development methodology can be divided into two paradigm namely plan driven

methodology and agile methodology.

Depending on project characteristics such as characteristic of requirement, characteristic of

development team, user participation and project type & associated risk suitable paradigm is

chosen. For example:

-If user participation is low, plan driven methodology is suggested

-If development emphasis is high then agile methodology is suggested

-If requirements are volatile then agile methodology is suggested

A decision system support (Using fuzzy logic[9], Cuckoo search[10]) has been developed by

the authors (Rinki, Priyanka) to select a suitable paradigm.

If agile paradigm is selected, Rinki[3] has proposed organizational requirements such as Task

extent, Group size, Progress approach, Code style, expertise environment, Physical

environment, Industry customs and Abstraction mechanism. Based on fuzzy rules Rinki has

developed a method selection framework as follows:

1. Gather organizational requirements such as Task extent, Group size, Progress approach,

Code style, expertise environment, Physical environment, Industry customs and Abstraction

mechanism.

2. Apply fuzzy rules to select suitable base method from method base, which consists of

popular agile methods.

3. Finally based on project characteristics such as technology used, task extent, team

experience, physical environment, documented requirements and progress approach.

Since neural network outperforms fuzzy rules, thus neural network can be applied for selecting

suitable method from method base of popular agile methodologies.

Since an agile methodology consists of many practices which may not be usable for all kind of

projects. Intel Shannon, IBM, Nokia has been tailoring the base method based on particular

project characteristics. Fuzzy rules help in selecting applicable practices based on project

requirements.

Problem statement for this thesis is as below:

15

Develop a Decision support system to select a suitable base method from method base of

popular agile methods and develop fuzzy rules to choose usable practices based on the

project charactoristics.

1.4 Scope

Method base consists different agile method like Extreme programming, Scrum, Feature driven

development, Dynamic system development model, Adaptive development model and Crystal.

First task is to identify the project characteristics like task extent, group size, code style and

many other and study their impact on the agile methodology selection. Based on their impact

for current project in hand, agile method is selected from method base of agile method.

Since these weights and their value can vary depending upon the project in hand, we have taken

a large database of projects and apply neural network to find the suitable method for the

project in hand. Database (weights of neurons) store the previous projects experience and

output the result for project in hand.

Neural network is used to process the data in hand. Learning is initial phase, in this phase the

data is used to update weights of neural network. For learning feed-forward methodology is

used as shown in the algorithm.

Post assigning the weights to neural network, there comes a back-propagation phase in which

error calculation is done and it is back propagated to update the previously assigned weights

by the previous dataset.

After the successful completion of the learning phase, there comes the suggestion phase. In this

phase requirements are gathered for the project in hand. These requirements are given as input

in the neural network and output weights are calculated. The methodology with highest weight

is chosen.

Post suggesting a suitable agile method, practice selection framework is proposed using fuzzy

rules to configure project specific method. Project requirements are gathered after selecting a

suitable agile method for configuring the same for particular project.

Hence scope of the work can be summarized as:

• Identification of organizational requirements for agile method selection.

16

• For the selected method commonality and variability are defined and weights are

assigned to them.

• A set of fuzzy rules for base process has been developed in this thesis.

• Work out case studies taken from Industry visit and previous

1.5 Organization of the thesis

The structure of the thesis in terms of the contents of its various chapters is as follows.

Chapter 2: This chapter provides the overview of Agile Development methodology along with

different Agile Methods Available and the characteristics of Agile Methods.

Chapter 3: This chapter presents the work proposed by rinki for paradigm selection and

showing comparison between cuckoo search and neural networks

Chapter 4: This chapter presents the work done in the project to accomplish the task of agile

method selection. Algorithm, Implementation Control flow and Output are analyzed.

Chapter 5: Implementation and Case Studies are discussed and their outputs.

Chapter 6: This chapter is for the results and conclusion of the thesis.

17

Chapter 2

2 Agile Modeling

 agile– giving "the nature of being agile; preparation for movement; agility, action, skill in

movement" as specified in the Oxford Dictionary – are the techniques to offer give an answer

for the business searching for quicker and nimbler advancement process. All the agile

techniques recognize that amazing programming and consumer loyalty must be accomplished

by lightweight strategies as it were. The absolute most ordinarily utilized techniques are

explained beneath.

2.1 Extreme Programming

Extreme programming advanced because of issues of the conventional development models.

The XP procedure is portrayed by short advancement cycles, incremental planning, consistent

feedback and evolutionary plan. Due to these qualities, XP programmers respond to change

with much efficiency. Term “Extreme” comes from the applying following practices to extreme

level.

 • Planning – The developer evaluates the effort for implementation and client choose scope

and timing of release in light of estimate.

 • Small/short releases – Small and frequently release are provided. New version can be

released monthly or daily.

• Metaphor – There is a set of metaphor between customer and developer that defines how the

system will work.

• Simple Design – Simple solution is built with unnecessary code and complexity removed.

• Refactoring – It is the rebuilding of framework by evacuating duplication, enhancing

correspondence, disentangling and including flexibility bet without changing usefulness of

program.

• Pair programming – Production code composed by two developers on same system.

18

• Collective ownership – No particular individual is in charge of any code segment. Anybody

can change any part.

 • Continuous Integration – Newly developed code is integrated and tested as soon as it is

integrated.

• 40-hour week –A maximum of 40-hour working week for the developers.

• On-site customer – Customer must be accessible constantly with the advancement group.

• Coding Standards – Coding rules exist and are trailed by the software engineers to bring

consistency and enhance correspondence among the development group. The lifecycle of an

XP project appeared in Figure 2.1, is isolated into six stages: Exploration, Planning, Iterations

to discharge, Production, Maintenance and Death. In the Exploration phase, the customer

writes out the story cards to be included in their program. Then comes the Planning phase

where a priority order is set to each user story and a schedule for the first release is developed.

From iteration to release phase, development team develop and integrate their code. In

production phase, extra testing and performance is done. Ideas and suggestions found at this

phase are documented for later implementation in the updated releases made at the

Maintenance phase. The Death phase is when user has no story and there are no changes to be

made to system.

Figure 2.1: Lifecycle of the XP process

2.2 Scrum

Scrum is an iterative and incremental process for developing system in continuously changing

environment. Every iteration produces set of functionality. The term “scrum” is derived from

the strategy of the rugby game of “getting an out-of-play ball back into the play”. Scrum does

19

not define any particular method to be used but it requires certain management practices and

tools to avoid chaos by unpredictability and complexity. Key practices of Scrum are as follows:

• Product Backlog

• Sprints

• Sprint Planning meeting

• Sprint Backlog

• Daily Scrum

Figure 2.2 : Scrum Process

2.3 Feature Driven Development (FDD)

FDD was first used for the development of a large and complex banking application project in

the late 90’s.Unlike the other methodologies, the FDD approach only focuses on the design

and building phases.

 The first three phases are done at the beginning of the project and the last two phases are the

iterative part which supports the agile development with quick adaptations to late changes in

requirements and business needs. This approach includes frequent deliverables, along with

20

accurate monitoring of the progress of the report. FDD consists of five sequential steps (Figure

2.3), an explanation of the different roles and responsibilities if given below:

Figure 2.3: Feature Driven Development processes

• Develop an Overall

• Build a Features

• Plan by Feature

• Design by Feature & Build by Feature

2.4 Dynamic System Development Method

The Dynamic System Development Method was developed in the United Kingdom in the mid-

1990. Martin Fowler, one of the writers of Agile Manifesto, believes, “DSDM is notable for

having much of the infrastructure of more mature traditional methodologies, while following

the principles of the agile methods approach”.

The fundamental idea is to fix time and resources, and then adjust the amount of functionality

accordingly rather than fixing the amount of functionality and then adjusting time and resources

to reach that functionality. DSDM consists of five phases (Figure 2.4):

21

Figure 2.4: DSDM process diagram

 • Feasibility study

• Business Study

• Functional Model Iteration

• Design and Build Iteration

• Implementation

2.5 Adaptive Software Development (ASD)

ASD offers an agile and adaptive approach to high-speed and high-change software projects.

It becomes difficult to plan successfully in a fast moving and unpredictable business

environment. In ASD, instead of static plan-design life cycle is there is dynamic speculate-

collaborate-learn life cycle. ASD focal point is on three non-linear and overlapping phases

(Figure 8).

• Speculate

• Collaborate

• Learn

22

Figure 2.5:SD Lifecycle

2.6 Agile Manifesto

In February 2001, seventeen representatives from the different agile methods decided to form

an Agile Alliance to promote their views which gave birth to Agile ‘Software Development’

Manifesto. Agile techniques have already been used by developers but after the manifesto the

techniques have been grouped together in workable framework.

The values defined in the manifesto are as below:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

The 12 principles of the Agile Software development made by the Agile Manifesto:

• Highest priority is to satisfy the customer through early and continuous delivery of valuable

software.

• Address dynamic requirements, which come even late in development.

• Deliver working software frequently, from a couple of weeks to a couple of months, in a short

timescale.

• Users and developers must work together throughout development.

• Project developed among motivated individuals. Provide them the environment and support

they need, and trust them to get the job done.

23

• To efficiently and effectively convey information to and within a development team focus on

face-to-face conversation.

• Provide working software instead of prototype or design.

• The sponsors, developers, and users should be able to maintain a constant pace in software

development indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• The best architectures, requirements, and designs emerge from self-organizing teams.

• At regular intervals, the team reviews its performance and work on improving the efficiency.

2.7 Characteristics of Agile Methodologies

According to Highsmith and Cockburn , “what is new about agile methods is not the practices

they use, but their recognition of people as the primary drivers of project success, coupled with

an intense focus on effectiveness and maneuverability. This yields a new combination of values

and principles that define an agile world view.” Highsmith further describes the definition of

agility: “Agility... is a comprehensive response to the business challenges of profiting from

rapidly changing, continually fragmenting, global markets for high quality, high-performance,

customer-configured goods and services.”

The following characteristics of agile methodologies are seen as the main differences between

agile and traditional methods:

People Oriented- Agile methods consider people – customers, developers, stakeholders, and

end users – as the most important factor of software methodologies. If the people on the project

are good enough, they can use almost any process and accomplish their assignment. If they are

not good enough, no process will repair their inadequacy

Adaptive – The developer are not afraid of change. They welcome changes to the requirements

because they mean that the team has learned more about the market needs. Today the challenge

is how to better handle changes that occur throughout a project.

Conformance to Actual – Agile methodologies value conformance to the actual results rather

that conformance to the detailed plan. As Highsmith states, “Agile projects are not controlled

24

by conformance to plan but by conformance to the business value”. Each iteration adds

business value to the ongoing product.

Simplicity – Agile teams always prefers the simplest to achieve their goals, so that it will be

easy to change the design if needed on a later date. Never produce unnecessary and never

produce documents attempting to predict the future as documents will become outdated.

Collaboration –The customer of the software works in collaboration with the development

team, providing frequent feedback on their efforts. Due to its decentralized approach, there is

a need of discussion to get the feedback on the software provided by the development teams.

Small Self-organizing teams – Agile team is a self-organizing. Responsibilities are

communicated to the team and the team finds out the best way to fulfill them. Agile teams

discuss and communicate together on all aspects of the project, that’s why agility works well

in small teams. As mentioned by Alistair Cockburn and Jim Highsmith, “Agile development is

more difficult with larger teams. The average project has only nine people, within the reach of

most basic agile processes. Nevertheless, it is interesting to occasionally find successful agile

projects with 120 or even 250 people”

2.8 commonality and variability practices of agile methods

An agile method is not always perfectly suitable for a project. Some changes can be made in

the agile practice for making it suitable for the particular project.

For defining the changes Rinky[25] has proposed commonality and variability of every agile

method, which defines the common and variable practices of an agile method.

Here common practices have to be there in the final configured practice but the variable

components can be further analyzed for their existence in the configured method.

The common and variable practices can be defined in the table below:

Here C: common

 V: variable

25

 C

V

V

C

 C

V

V

 C

V

V

V

 C

V

V

 V

 C

V

 C

 V

V

In
d
iv

id
u

al
s

an
d

 I
n

te
ra

ct
io

n
s

o
v
er

 p
ro

ce
ss

es
 a

n
d
 t

o
o

ls

1
.P

ai
r

P
ro

g
ra

m
m

in
g

2
.C

o
ll

ec
ti

v
e

O
w

n
er

sh
ip

3
.O

n
-S

it
e

C
u

st
o

m
er

4
.T

h
e

p
la

n
n

in
g
 g

am
e

1
.S

cr
u

m
 T

ea
m

s

2
.D

ai
ly

 S
cr

u
m

 M
ee

ti
n

g

3
.S

p
ri

n
t

P
la

n
n
in

g
 m

ee
ti

n
g

1
.

D
o

m
ai

n
 O

b
je

ct
 M

o
d

el
li

n
g

.

2
.I

n
d
iv

id
u

al
 C

la
ss

 O
w

n
er

sh
ip

3
.F

ea
tu

re
 T

ea
m

s

4
.I

n
sp

ec
ti

o
n

1
.A

d
ap

ti
v
e

M
an

ag
em

en
t

M
o

d
el

2
.C

o
ll

ab
o

ra
ti

v
e

te
am

s

3
.J

o
in

t
A

p
p

li
ca

ti
o
n

D
ev

el
o
p

m
en

t
b

y
 i

n
d

ep
en

d
en

t

ag
en

ts

4
.C

u
st

o
m

er
 F

o
cu

s
G

ro
u
p

re
v

ie
w

s

1
.
E

m
p
o

w
er

ed
 T

ea
m

s.

2
.A

ct
iv

e
U

se
r

In
v
o

lv
em

en
t

1
.H

o
li

st
ic

 D
iv

er
si

ty
 a

n
d

S
tr

at
eg

y

2
.P

ar
al

le
li

sm
 a

n
d

 F
lu

x

3
.U

se
r

V
ie

w
in

g
s

 C

V

V

 C

V

C

V

V

V

 C

 V

V

C

 V

 V

C

 V

W
o

rk
in

g
 S

o
ft

w
ar

e
o

v
er

co
m

p
re

h
en

si
v

e

d
o
cu

m
en

ta
ti

o
n

1
.T

es
ti

n
g

2
.S

h
o

rt
 r

el
ea

se
s

3
.C

o
n

ti
n
u
o

u
s

In
te

g
ra

ti
o

n

1
.

S
p

ri
n

t

2
.S

p
ri

n
t

R
ev

ie
w

1
.D

ev
el

o
p
in

g
 B

y
 F

ea
tu

re

2
.I

n
sp

ec
ti

o
n

3
.R

eg
u
la

r
B

u
il

d
s

4
.R

ep
o

rt
in

g
/V

is
ib

il
it

y
 o

f

re
su

lt
s

1
.D

ev
el

o
p
in

g
 b

y

C
o

m
p
o

n
en

ts

2
.S

o
ft

w
ar

e
In

sp
ec

ti
o
n

3
.P

ro
je

ct
 P

o
st

 m
o

rt
em

1
.F

re
q

u
en

t
P

ro
d
u

ct

D
el

iv
er

y

2
.I

te
ra

ti
v

e
an

d

In
cr

em
en

ta
l

d
ev

el
o
p

m
en

t

3
.I

n
te

g
ra

te
d

 t
es

ti
n

g

1
.
M

o
n
it

o
ri

n
g

 o
f

a

p
ro

g
re

ss
.

2
.R

ev
is

io
n

 a
n
d

 R
ev

ie
w

 C

V

C

 V

C

C

 V

C

 V

C

V

C
u

st
o
m

er
 C

o
ll

ab
o

ra
ti

o
n

o
v
er

 c
o
n

tr
ac

t
n
eg

o
ti

at
io

n

1
.T

h
e

P
la

n
n

in
g

 G
am

e

2
.O

n
-S

it
e

C
u

st
o

m
er

1
.S

p
ri

n
t

p
la

n
n
in

g

m
ee

ti
n

g

2
 .

P
ro

d
u

ct
 B

ac
k
lo

g

1
.D

o
m

ai
n
 O

b
je

ct

M
o
d

el
li

n
g

1
.A

d
ap

ti
v
e

M
an

ag
em

en
t

M
o
d

el

2
.J

o
in

t
A

p
p

li
ca

ti
o
n

D
ev

el
o
p

m
en

t

1
.C

o
ll

ab
o

ra
ti

o
n
 a

n
d

C
o
o
p

er
at

io
n
 a

m
o
n

g

st
ak

eh
o
ld

er
s

2
.R

eq
u
ir

em
en

ts
 a

re

b
as

el
in

e
at

 a
 h

ig
h
 l

ev
el

1
.S

ta
g
in

g

2
.U

se
r

V
ie

w
in

g
s

 C

V

C

C

C

V

V

V

 C

V

C

C

C

C

V

R
es

p
o
n
d

in
g
 t

o
 c

h
an

g
e

o
v
er

fo
ll

o
w

in
g

 a
 p

la
n

1
.
M

et
ap

h
o

r

2
.S

im
p
le

 D
es

ig
n

3
.R

ef
ac

to
ri

n
g

4
.
C

o
d
in

g
 s

ta
n
d

ar
d

1
.

S
p

ri
n

t
P

la
n
n

in
g

 m
ee

ti
n

g

2
.

S
p

ri
n

t
R

ev
ie

w

3
.

S
p

ri
n

t
R

et
ro

sp
ec

ti
v

e

4
.

S
cr

u
m

 o
f

S
cr

u
m

s

1
.

D
o

m
ai

n
 O

b
je

ct
 M

o
d

el
li

n
g

.

2
.C

o
n

fi
g

u
ra

ti
o
n

 M
an

ag
em

en
t

1
.

A
d

ap
ti

v
e

C
y
cl

e
P

la
n

n
in

g

2
.C

u
st

o
m

er
 F

o
cu

s
g

ro
u
p

re
v

ie
w

s

1
.
R

ev
er

si
b
le

 C
h

an
g
es

1
.
R

ef
le

ct
io

n
 w

o
rk

sh
o
p

s

2
.M

et
h
o
d

o
lo

g
y

 T
u
n

in
g

A
g

il
e

V
al

u
es

X
P

S
cr

u
m

F
D

D

A
S

D

D
S

D
M

C
ry

st
al

Table 2.1: Common and Variable practices

26

Chapter 3

Paradigm selection

3.1 Paradigm selection

Software development methodologies can be divided into two paradigm namely plan driven

methodology and agile methodology.

Plan driven (or traditional) methodologies consists a series of steps namely requirement

definition, planning, building, testing and deployment. First the customer elaborates the

requirements and the requirements are documented to the full extent. Then project development

starts based on these requirements. Then comes various testing and deployment. Basic idea of

plan driven methodology is to visualize the finished project prior the development starts.

Agile methodologies have already been described in detail in chapter 2.

Depending on project characteristics such as characteristic of requirement, characteristic of

development team, user participation and project type & associated risk suitable paradigm is

chosen. For example:

-If team is experienced then plan driven methodology is suggested

-If requirements are volatile then agile methodology is suggested

-If same type of project have been developed then plan driven methodology is suggested

-If associated risk is high then agile methodology is suggested

A decision system support (Using fuzzy logic[9], Cuckoo search[10]) has been developed by

the authors (Rinki, Priyanka) to select a suitable paradigm.

Since cuckoo search outperforms neural network, hence cuckoo search is used. Cuckoo search

is based on case base reasoning which is explained below:

3.1.1 Case Based Reasoning

27

Case-based reasoning (CBR) is used to find solution of problems using the experience of

same type of problems faced in the past. A database is maintained of all previous problems and

their respective solutions. Using this database a learning process is performed which collects

the data and classifies it on the basis of problems. For a new problem it finds the best class and

suggest a solution. For example a doctor prescribe a disease based on symptoms that occurred

in previous patients.

It has been contended that case-based reasoning is a capable technique for computer reasoning,

as well as a typical behavior in regular human problem solving. We can state that all thinking

depends on past data present by experience. This view is identified with a model hypothesis,

which is most profoundly investigated in psychological science.

3.1.1.1Process

Case-based reasoning can be defined by a flow chart. The flow chart contains four steps used

in for computer reasoning.

1. Retrieve: For a given problem, fine the problems same as the target problem from

database. This group of problems can be used to suggest an appropriate solution by

finding respective solution of these problems.

2. Reuse: Using the solutions from the database, this step finds the appropriate solution

for the problem in hand. This step combines the solution of all matching problems to

form the best solution.

3. Revise: After finding the best solution using ‘Reuse’, this solution is tested on the

given problem. If it doesn’t fit to the problem find the next solution using previous step.

4. Retain: After the solution has been successfully tested on the problem and it is giving

the desired result, then the database is updated with a set of new problem and its

solution.

28

6 Figure 3.1:BR Process

3.2 Case Bases in Databases

Databases refer to the collection of data that is used in the proposed method selection tool. The

data collected is the past experience of the projects developed using the methodology, Agile,

Traditional or Hybrid (1, 2 or 3 respectively). The data is collected from different organizations,

developers, managers or the organizations. In the block diagram it refers to the past information

required in the tool to find out the method for the current project.

The data consist of values of project characteristics. The project characteristics are identified

based on below mentioned categories:

1. Characteristics of Requirements: Project requirements can be complex to work on.

Requirements can be known in the beginning, volatile in nature, complex, misunderstood.

2. Characteristics of Development team: - Method selection can depend on development

team experience, hands on technology, communication with each other and skills of the

team, whether training is provided to the team or the scope of training.

3. User’s participation: - How the user can communicate with the developers and provide

feedback on the software being developed plays an important role in method selection. It

provides clarity, completeness of requirement.

4. Project type and associated risk: - Project type and risks involved play an important role

in method selection.Technical Risk, Operational Risk , Business Risk characteristics cover

this need.

5. Based on Agile Configuration: Since there are 4 manifestos in Agile Software

Development, their characteristics are very important to analyze if agile has to be followed

or not. Communication among developer and user, time to market and team size are some

of the characteristics taken in account to address this need.

29

3.2.1 Weight Distribution and Input values for paradigm selection

According to the importance of the characteristic to the project in hand, the characteristics are

assigned weight and input values for different projects.

The project characteristics are mentioned below, to get better understanding the weight

distribution criteria are also explained. The numerical value assigned to the weights ranges

between 0.0 - 0.1.The total weights of characteristics for the projects should be 1.

Project Characteristic 1: Volatility of requirements

This characteristic can be handled in Agile methods as they known for the volatility of

requirement as we saw in chapter 2. Low weight is assigned to it as this is addressed in Agile

Method (0.02).Values can be assigned as follows:

2Table 3.1: Values for “volatility of requirement”

% of volatile known requirement Category

< 10% Very Low

10 to 19% Low

20 to 29% Medium

30 to 39% High

> 39% Very High

Project Characteristic 2: Complexity

More the complex project less the chances of using agile configuration, hence it is given high

weightage (0.12).Values can be assigned as follows:

3Table 3.2: Values for “Complexity”

Initial Time Category

< one week Very Low

< 15 days Low

< one month Medium

30

< six months High

> six months Very High

Project Characteristic 3: Business Risk

Business risk is associated with customer satisfaction, being on time, company image and

returns on investment. If customer is not satisfied, organization should be able to provide new

version immediately, also there is competition in the market, hence company should be able to

provide issue fixes, support at any time. Hence this characteristic is given less weight of 0.03.

Business risk can be influenced by various factors, including government regulations, sales

volume, per-unit price, input costs, overall economic climate and competition. So, the value of

this metric should be chosen by considering all the above-said factors.

Project Characteristic 4: Technical Risk

Technical risk involves tool failure, non-availability of developer, non-availability of Tool in

the development phase. This property is addressed in Traditional Method, hence the weight is

more 0.08 for this.

Technical Risk can range from system failure, software malfunction, virus that can destroy the

software. If company is shifting from one platform to another, it is not necessary that it can

work better. There can be a possibility that is worse from the previous one. These points should

be kept in mind and hence assign the value of the characteristic.

Project Characteristic 5: Operational Risk

Operational Risk involve the failure of funtionality of some or any component of the system.

This is a very major issue and this type of systems need to be developed using traditional

method in a systematic and properly defined way, hence assigned more weight(0.1).

Th value of this characteristic should be chosen depending upon the impact of failure or any

component on the system.This can vary from project to project. Project having high impact of

failure should

Project Characteristic 6: Flexibility

31

Flexibility refers to the ease with which a system can be modified. Agile is suitable for the

systems that are flexible to provide easy and quick delivery of the product at each iteration,

hence less weight for this (0.02).

4Table 3.3: Value for “Flexibility”.

Ease of modification Category

< 5% Very High

5 to 9% High

10 to 14% Medium

15 to 19% Low

> 20% Very Low

Project Characteristic 7: Modularization of Task

Modularization is very essential for quick and secure software development. It will be very

easy to develop the modules in parallel for quick release if the task is divided into modules.

Agile methodology is suitable for development of modular code. Results very less weight i.e.

0.03 for this. Values can be assigned as follows:

5Table 3.4: Metrics for “Modularization of task”.

Extent to which the project can be made modular Value

Complete project Very Low

More than half functionality Low

Half of the functionality Medium

Less than half High

Very minimum amount of modules Very High

Project Characteristic 8: Time to Market

This characteristic signifies the time (in months) before which at least first phase (least

functionality) of the product must be released. Agile methodology delivers in very short sprints

to the user. Results very less weight i.e. 0.02 for this. Values can be assigned as follows:

32

6Table 3.5: Value for “Time to market"

Time before the first release Time to market

2 months Very Low

4 months Low

6 months Medium

8 months High

Greater than 8 months Very High

Project Characteristic 9: Clarity and Completeness of requirement

This characteristics defines how well defined, clearly visible requirements are and require

minimum further analysis. These types of requirements can be addressed by both traditional

and agile. Results in a medium weight i.e. 0.05 for this. Values can be as follows:

7Table 3.6: Value for “clarity and completeness of requirements”

Amount of complete and consistent Requirements Category

< 20% Very Low

20 to 39% Low

40 to 59% Medium

60 to 79% High

> 79% Very High

Project Characteristic 10: Coupling

Coupling defines the degree of dependency between functionalities. More coupling, more is

the complexity and hence more value to it supports for traditional methodology. Results very

high weight i.e. 0.1 for this. Values can be assigned as follows:

33

NCM: Number of Couples modules.

8Table 3.7: Value for “coupling”

Value for NCM Modularization of Task

< 2 Very Low

2 to 3 Low

4 to 5 Medium

6 to 7 High

> 7 Very High

Project Characteristic 11: Tool Experience

The year of work experience the developer has, on the tool to be used for the development.

Since, agile development supports simple and automated tools to a large extent. Results a low

weight of 0.03 for this. Values can be assigned as follows:

9Table 3.8: Metric for “Tool experience”

Developers experience on the tool to be used for

project-in-hand.

Platform Experience

< 6 months Very Low

6 to 12 months Low

12 to 18 months Medium

18 to 24 months High

> 24 months Very High

Project Characteristic 12: Platform volatility

34

How frequently the projects is required to adapt the platform changes. Agile methodology

creates self-contained modules that are developed to accept technical changes. Results a low

weight i.e. 0.02 for this. Values can be assigned as follows:

10Table 3.9: Metrics for “Platform volatility”

Types of changes in platform Platform volatility

Likely to evolve from one platform to another having

different architectures (windows to Linux)

Very High

Likely to evolve from one platform to another having same

architectures (Red hat to Ubuntu)

High

Likely to evolve from one platform to another having

different version (windows XP service pack 2 to windows XP

service pack 3) Or (Ubuntu 10 to Ubuntu 11)

Medium

No visible change found, but may require at later stage Low

Never evolve Very Low

Project Characteristic 13: Developer Experience

This is the work experience of the developer on the desired application. Since, agile supports

collaborative and cooperative environment for the development. Collective ownership is also

there; that provides the group support to the developers at each level. Results a low weight i.e.

0.02 for this. Values can be assigned as follows:

11Table 3.10: Input Metrics for “Developer experience”

Time (in months) Application Experience

< 12 months Very Low

12 to 24 months Low

24 to 30 months Medium

30 to 36 months High

35

> 36 months Very High

Project Characteristic 14: Programmer’s capability

This characteristic defines the programmer’s capability of understanding. In agile, not only the

developer but the complete group work together to achieve a common goal, hence getting a

better understanding of the project. Results a low weight i.e. 0.03 for this. The input value for

this characteristic depends on the programmers vision, knowledge, interest , dedication for the

project and can vary accordingly.

Project Characteristic 15: Existing Code Reuse

It is the amount of code that can be taken from existing code. In agile, deliverables are

independent module which can be inherited from other projects and hence results a low weight

(0.03) for this. Values can be assigned as follows:

12Table 3.11: Values for “Existing Code Reuse”

Percentage of code reused Reuse of Existing Code Category

< 20% Very Low

20 to 39% Low

40 to 59% Medium

60 to 79% High

> 79% Very High

Project Characteristic 16: Develop as base code

Product developed for reuse should be well documented. Product quality for these project

should be very high and hence support traditional method. Therefore more weight is assigned

to the characteristic(0.07):

` 13Table 3.12: Value for “Develop as base code”

Purpose of the project Time to market

36

Developed only as a base project Very High

Probability of being used in another project is very high High

Project may require additional functionalities at a later stage Medium

No open project found that needs the code of present project-in-hand Low

Never to be reused Very Low

Project Characteristic 17: Team cohesion

It represents the ease of communication among the team members and how well they can

interact. This is needed for both traditional and agile methods and hence given avrage weight

of 0.04. Values can be assigned as follows:

Project Characteristic 18: Customer Collaboration

This refers to the level of interaction among user and the development team or the ease with

which customer can provide its feedback to the developer. If customer is not able to interact

with developer, than traditional method is more suited because agile sprint/module cannot be

provided without interaction, hence giving more weight (0.08) to this characteristic. Values can

be assigned as follows:

14Table 3.13: Value for “Reuse of existing code”

Percentage of code reused Customer Interaction with development teams Category

Less than 20% Very High

20-39% High

40-59% Medium

60-79% Low

Greater than 79% Very Low

37

Project Characteristic 19: Testing Support

Testing is required for both traditional and agile method, since agile produces more versions

of the product hence requires more frequent testing. Average weight of 0.05 is assigned to this

characteristic. Values can be assigned as follows:

15Table 3.14: Value for “Testing Support”

Percentage of code reused Reuse of Existing Code Category

Less than 20% Very Low

20-39% Low

40-59% Medium

60-79% High

Greater than 79% Very High

Project Characteristic 20: Requirements known initially

It is not possible to know requirements in the beginning, they evolve with iterations. Also the

customers are able to provide requirement only after using the product and should be able to

interact with the developers hence giving less weight (0.02) to the characteristic. Values can

be assigned as follows:

16Table 3.15: Value for “amount of requirements known initially.”

Amount of requirements known initially Category

< 20% Very Low

20 to 39% Low

40 to 59% Medium

60 to 79% High

> 79% Very High

38

Project Characteristic 21: Platform experience

Platform experience is the experience of developer needs on the platform. Since it is needed

for both, it is assigned average weight of 0.04. Values can be assigned as follows:

17Table 3.16: Values for “Platform experience”

Developer’s exp. on the platform used (in months) Platform Experience

< 6 months Very Low

6 to 12 months Low

12 to 18 months Medium

18 to 24 months High

> 24 months Very High

3.3 Case study: Banking application

By cuckoo search:

We gathered the requirements from the developers of the banking application. Problem

statement was gathered and the value of different metric was induced to find out the method

for the application. Problem statement for the banking application can be defined as

Open an account for a customer (savings or cheque), Deposit, Withdraw, Display details of an

account, Change LOC, Produce monthly statements. Current and savings account transactions,

up to 15 months (excluding MySave), credit card statements, your last statement and any

transactions made since it was issued, mortgage transactions, up to 3 years loan balance and

amount outstanding. The managers at the bank are consulted for the criticality of the project,

market need, team size, known requirement of the system to be developed and other factors

that are necessary to find the method suitable for the project.

Input Query to the Tool is as below:

39

From the ouput we can see that the Project with the maximum corelation used Traditional

project developement method and hence the output from the most corelated case is given.

Traditional Method is appropriate method for this project:

By cuckoo search:

Output

40

3.4 Neural network v/s fuzzy logic

Fuzzy logic and neural network both are very popular algorithms in the field of machine

learning. Fuzzy logic works on fix fuzzy rules made by the data available from previous

projects. These rules helps in fuzzification and de-fuzzification of the newer problem.

Neural network works on a circuit of neurons which are connected by interconnection lines.

Every neuron is consisting of a particular weight which gets updated after every learning cycle.

Properties Fuzzy logic Neural network

Computation cost Low High

Complexity High Low

Efficiency Low High

Adaptability Low High

Amount of data can handle Low High

Maintenance High(due to fizzification

and Defuzzificaion)

Low

18Table 3.17 : comparison between fuzzy logic and neural network

Considering all above advantages I have chosen neural network as a classification

methodology for selection of suitable agile methodology.

41

Chapter 4

4 Method Configuration Process

This chapter provides the proposed method configuration process (fig 4.1), project

characteristics, method selection algorithm and implementation. The project characteristics are

identified. Based on these characteristics method selection has to be carried out. The proposed

method selection process identifies the project characteristics and process them using neural

network.

4.1 Method Selection Block Diagram

The generic method configuration process is depicted using a flow diagram (fig 4.1) which

consists of seven major steps from gathering organizational requirements to configuring the

agile method. Each step is described below.

1. Input project requirements: This is the initial phase of this framework. Here project

requirements affecting paradigm selection, namely volatility of requirement, Complexity,

Business Risk, Technical Risk, Operational Risk etc. are gathered

2. Paradigm selection: Software development methodology can be divided into two paradigms

namely plan-driven methodology and agile methodology. Case-based reasoning is applied for

selecting the best suitable paradigm.

3. Configure plan driven paradigm: Plan driven paradigm is configured in case of selection

of traditional. It is illustrated in [7], which is beyond the scope of this thesis.

4. Elicitation of organizational requirements for agile method selection: In the case of

selection of agile methodology, First task is to identify the project characteristics namely group

size, code style, expertise environment, task extent, Physical Environment, Industry customs

and Abstraction mechanism and study their impact on the agile methodology selection. Based

on their impact for the current project in hand, an agile method is selected from method base

of agile method.

42

Method base consists different agile method namely Extreme Programming, Scrum, Feature-

driven development, Dynamic system development model, Adaptive development model and

Crystal.

 Apply CBR

 Agile Traditional method

7Figure 4.1: Method selection and configuration framework

1. Input project requirements (21

requirements)

2. Paradigm selection

(Agile /plan driven)

4. Gather organizational

requirements for agile

5. Suitable agile project

3. Configure plan driven paradigm

8. Method

base

6. Assign values to given

practices (0.0 to 1.0)

7. Configure agile method based

on selected practices

Apply neural network

to select agile method

Apply fuzzy

rules to practices

43

5. Suitable agile project: Since these weights of characteristics can vary depending upon the

project in hand, we have taken a large database of projects and apply neural network to find

the suitable method for the project in hand.

The method base for the tool is developed using the projects of different organizations. The

experts from different organization provided the data and the project characteristic values based

on their experience on the projects and method being used for the projects. Projects

characteristics and their values are defined. Further, the database of around 50 projects has

been developed using the experience of [24]. Around 50 test cases have been collected to train

the network. For which project the method is being selected, that is also added to the database

which helps to enhance the suggestion of the agile methodology of the project.

6. Assign values to given practices (0.0 to 1.0): Since an agile methodology consists of many

practices which may not be usable for all kind of projects. Intel Shannon, IBM, Nokia has been

tailoring the base method based on particular project characteristics. Fuzzy rules help in

selecting applicable practices based on project requirements.

Project characteristics namely Task extent, Technology complexity, Teams experience,

Physical environment, Requirements documentation, Progress approach are defined for the

particular project.

Using these project characteristic, Common and variable practices (defined in Table 3.1) have

been assigned weights (0.0 to 1.0) by applying fuzzy rules.

7. Configure agile method based on selected practice: Select the essential practices with

weights greater then a particular threshold value. Practices with less than the threshold value

can be made absolute.

4.2 Weight Distribution and Input values for agile method selection

According to the importance of the characteristic to the project in hand, the characteristics are

assigned weight and input values for different projects.

Project Characteristic 1: Task Extent

This characteristic defines the length of the project. We are classifying the length into four parts.

The length of project plays a major role in choosing of a decent software development

methodology.

44

Values can be assigned as follows:

19Table 4.1: Values for “Task Extent”

Task Extent Suggested method

Small XP, SCRUM, FDD, DSDM, Crystal

Medium XP, SCRUM, FDD, Crystal

Large FDD, ASD

Complex ASD

Project Characteristic 2: Group Size

Group size defines the number of people working on the project. Large number of people need

a methodology with good communication strategy among developers.

Preferred method is shown in the table:

20Table 4.2: Values for “Group Size”

Group Size Suggested method

Less than 10 XP, SCRUM, Crystal

Multiple teams SCRUM, DSDM, Crystal

Project Characteristic 3: Progress Approach

Progress approach is defined on the basis of frequency of review by the customer.

In rapid development methodology a prototype is made prior to actual development to ensure

the requirements by user. In iterative development methodology review is done after every

cycle of development. In distributive development the developing team is not at the same place,

that’s why the methodology should be supportive of communication among developers.

21Table 4.3: Value for “Progress Approach”.

Progress Approach Suggested method

45

Iterative XP, SCRUM, FDD, ASD, DSDM, Crystal

Rapid development XP, SCRUM, ASD, DSDM, Crystal

Distributive Development ASD

Project Characteristic 4: Code Style

Code style defines the type of language to be used for development. The code style may or

maynot be object oriented or platform oriented. Considering these factors code style is

categorized into two types weather the code is simple or not.

 Values can be assigned as follows:

22Table 4.4: Metrics for “Code Style”.

Code Style Suggested method

Clean and Simple XP

Not specified SCRUM, FDD, ASD, DSDM, Crystal

Project Characteristic 5: Expertise Environment

This characteristic signifies the time (in months) before which feedback will be given by the

client. In development feedback plays a major role since it is the only way of knowledge about

the customer’s expectation from the project.

Values can be assigned as follows:

23Table 4.5: Value for “Expertise Environment”

Expertise Environment Suggested method

Quick Feedback XP

Not Specified SCRUM, FDD, ASD, DSDM, Crystal

Project Characteristic 6: Physical environment

46

This characteristics defines the location of development team, weather it is located at the same

place or at different places. The teams at same place is called co-located teams. Teams at

different places are called distributed teams. There is also option of not specifying this

characteristic, this is useful when the team is not decided for the project.

Values can be as follows:

24Table 4.6: Value for “Physical environment”

Physical environment Suggested method

Co-located teams XP, ASD, Crystal

Distributed Teams XP, ASD

Not specified SCRUM, ASD, DSDM

Project Characteristic 7: Industry Customs

Industry cunstom is very essential for quick and secure software development. It will be very

easy to develop the modules if collaborative customs are there.

XP and DSDM Agile methodologys are suitable in case of collaborative customs.

Values can be assigned as follows:

25Table 4.7: Metrics for “Industry Customs”.

Industry Customs Suggested method

Collaborative and Cooperation XP, DSDM

Not specified SCRUM, FDD, ASD, Crystal

Project Characteristic 8: Abstraction Mechanism

This defines the type of abstraction being used in the project. Abstraction can be done using

two ways, by using object oriented technique or by using component oriented technique.

47

Values can be assigned as follows:

26Table 4.8: Metrics for “Abstraction Mechanism”.

Abstraction Mechanism Suggested method

Object Oriented XP, SCRUM, FDD, ASD, DSDM, Crystal

Component Oriented ASD, DSDM

Project Characteristic 9: Project requirements

It is not possible to know requirements in the beginning, they evolve with iterations. Also the

customers are able to provide requirement only after using the product and should be able to

interact with the developers.

Values can be assigned as follows:

27Table 4.9: Metrics for “Project requirements”.

Project requirements Suggested method

Adaptive XP, SCRUM, FDD, ASD, DSDM

Predictive Crystal

Project Characteristic 10: Developer Experience

This is the work experience of the developer on the desired application. Since, agile supports

collaborative and cooperative environment for the development. Collective ownership is also

there; that provides the group support to the developers at each level. Values can be assigned

as follows:

28Table 4.10: Input Metrics for “Developer experience”

Time (in months) Application Experience Suggested method

< 12 months Very Low XP, SCRUM, FDD

12 to 36 months Low ASD, DSDM

> 36 months Medium Crystal

48

4.3 Method Selection Algorithm

The proposed method selection algorithm, to form project specific method, is explained here.

Firstly project characteristics and method base are gathered. This method base is fed to neural

network to start the learning process and find the weights of neurons. Then project

characteristics are fed to updated neural network to find the most suitable base agile

methodology based on particular project characteristics.

Variable practices of the base agile method are fed to fuzzy logic to find weights of all practices.

Here weight refers to the essentiality of the practice for defined requirements. The practices

with ‘high weights’ or ‘most suitable practice’ are chosen.

Proposed algorithm takes method base and project characteristics as input and apply the

algorithm on the input query to suggest most suitable method.

4.3.1 Neural network

An Artificial Neural Network (ANN) is a data processing framework that is based on biological

nervous systems, for example, how the brain collect and store the processed information. The

key component of neural network is the novel structure of the data handling system. It is made

out of neurons which have high interconnectivity among them working as one to tackle

particular problem. Since neurons classifies the information, they can also be termed as

processing elements. ANNs, similar to individuals, learn by examples. An ANN is designed

for a particular application, for example, image processing or to classify data, through a

learning procedure. Learning in natural frameworks includes updating the values of

interconnecting associations that exist between the neurons. This is exactly what happens with

ANN also.

Paradigm selection process was simulated by three layer feed forward back propagation neural

network which contains input, hidden and output layer. Neural network tool is available in

MATLAB is used for training and simulation. Network used in the process was having eight

neurons at input layer, three neurons at hidden layer and six at output layer. Please refer below

figure.

49

8Fig 4.2 Problem Mapped as Neural Networks [6]

Output of the neural network is divided into six categories i.e 1, 2 … , 6.

The output ‘1’ of the network indicated that ‘extreme programming’ is the best suited for given

project parameters, output ‘2’ indicated that SCRUM can be used for the given project

parameters. A ‘3’ at the output indicated that ‘feature driven development’ can be used for the

given project parameters. The output ‘4’ of the network indicated that ‘adaptive software

development’ is the best suited for given project parameters, output ‘5’ indicated that ‘dynamic

software development method’ can be used for the given project parameters. A ‘6’ at the output

indicated that ‘crystal’ is the best suited for the development of the project in-hand.

4.3.2 Proposed Algorithm: For agile method selection using neural network:

Input in the query which consist of the input values for the project characteristics

Input: User query //Based on the factor values determine the methodology to be used.

Output: XP/SCRUM/FDD/ASD/DSDM/Crystal

Initialize times to 5000 which defines the ‘number of times’ a data to be learned

Initialize values of input layer neurons to 8, hidden layer neurons to 3, output layer neurons to

6

Initialize loop to 0

LEARNING

While (loop <= times)

{

 “Compute output of hidden layer”

 Compute input of every neuron of hidden layer

 --for every hidden layer neuron ‘Hi’

50

Find sum of multiplication of output of input layer neuron (Ni) with

weights of edge (Hi-Ni)

 Apply sigmoid function on sum to find output of neuron

 “Compute output of output layer”

Compute input of every neuron of output layer

 --for every Output layer neuron ‘Oi’

Find sum of multiplication of output of hidden layer neuron (Hi) with

weights of edge (Hi-Oi)

 Apply sigmoid function on sum to find output of neuron

}

BACK-PROPOGATION:

“Calculate error for every neuron of output layer”

For every neuron of Output layer O (i)

 Error (I) = (Expected Output (i) – Actual output (i))*

 (Actual output (i))*

 (1 – Actual output (i));

“Calculate error of every neuron of hidden layer”

For every neuron of hidden layer H (i)

 For every neuron of output layer O (j):

Find sum of multiplication of error(O(j)) with weight(O(j),H(i)) and assign it to

errtemp(i)

 Error(i) = errtemp(i)*

 Actual output(i)*

 (1 – Actual output(i));

WEIGHT UPDATION:

 For every output layer neuton o[i]

 For every Hidden layer neuron H[i]

 Weight[i][j]+= Learning rate *

 Error of output layer neuron*

 Output of Hidden layer neuron

 For every Hidden layer neuton o[i]

51

 For every Input layer neuron H[i]

 Weight[i][j]+= Learning rate *

 Error of hidden layer neuron*

 Output of Input layer neuron

PREDICTION:

“By taking project requirements:

“Compute output of hidden layer”

 Compute input of every neuron of hidden layer

 --for every hidden layer neuron ‘Hi’

Find sum of multiplication of output of input layer neuron (Ni) with

weights of edge(Hi-Ni)

 Apply sigmoid function on sum to find output of neuron

 “Compute output of output layer”

Compute input of every neuron of output layer

 --for every Output layer neuron ‘Oi’

Find sum of multiplication of output of hidden layer neuron (Hi) with

weights of edge(Hi-Oi)

 Apply sigmoid function on sum to find output of neuron

SIGMOID FUNCTION:

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥

4.3.4 Configuring the agile method:

In previous step an agile method is selected but the chosen agile method does not always fit to

the project requirement. For developing a good software the development methodology need

to be customized. Rinky have proposed commonalities and variability practice for each agile

method.

In extend of that we are proposing fuzzy rules for choosing the essential practices for the project

in hand.

There are some project characteristic which will affect practice selection. These characteristics

are defined below:

52

Characteristic Values practice support

(essential)

practice support

(not essential)

Task extent Large Sprint daily scrum

Small daily scrum

Technology Complex Scrum team

Simple Scrum team

Teams Experienced sprint

retrospective

Not experienced scrum of scrum Scrum

Physical environment Distributed teams Sprint review sprint

retrospective

Co-located teams

Requirements Documented product backlog scrum of scrum

Not documented sprint review

Progress approach Iterative

development

1.product backlog

2.sprint planning

meeting

29Table 4.11: Project characteristics affecting essentiality of practices

Using these project characteristics fuzzy rules have been defined for practice selection.

Fuzzy rules for SCRUM:

if <size> is <small> then <daily scrum> is <essential> to select

if <size> is <large> then <daily scrum> is <not essential> to select

if <size> is <large> then <sprint> is <essential> to select

if <requirements> is <documented> then <product backlog> is <essential> to select

if <technology> is <complex> then <scrum teams> is <essential> to select

53

if <team> is <experienced> then <sprint retrospective> is <not essential> to select

if <development> is <iterative> then <sprint planning meeting> is <essential> to select

if <technology> is <simple> then <scrum teams> is <not essential> to select

if <team> is <not experienced> then <scrum of scrum > is <essential> to select

if <physical environment> is <distributed> then <sprint retrospective> is <not essential> to

select

if <physical environment> is <distributed> then <sprint review> is <essential> to select

if <development> is <iterative> then <product backlog> is <essential> to select

if <requirements> is <not documented> then <sprint review> is <essential> to select

if <requirements> is <documented> then <scrum of scrum> is <not essential> to select

if <teams> is <co-located> then <sprint planning meeting> is <not essential> to select

if <team> is <not experienced> then <scrum> is <not essential> to select

4.4 Details of the Implementation

This section describes the details of the implementation from creating the case base to the

output.

4.4.1 Developing the Case Base: The case base for the tool is developed using the projects

from the organization. The experts from different organization provided the data and the project

characteristic values based on their experience on the projects and method being used for the

projects. Projects characteristics and their values are defined in Section 4.2. Further the

database of around 50 projects has been developed using the experience of [24]. Around 50

test cases have been collected to train the network. For which project the method is being

54

selected, that is also added to the database which helps to enhance the suggestion of the agile

methodology of the project.

4.4.2 Tool Development: The algorithm mentioned in section 4.3.4 is implemented using C

language.

The different data structures and modules of the implementation are mentioned below:

Modules:

1. Sigmoid(int x); //This module is to compute sigmoid function.

2.void suggest(double w[InputN][HN],double v[HN][OutN]) : This function is to predict

the methodology to be used using the trained neural network and project requirements given

by the customer.

3. Training: This module train the network using the database of previous projects. Here back

propagation methodology is applied to train the network. This takes previous project database

as input and trained neural network is presented as output.

4. Suggestion: The trained network is further used to find the suitable method based on new

project characteristics. This takes project characteristics and trained neural network as input

and suggested method is presented as output.

55

Chapter 5

5. Case study

In this section, we present the case studies for XP, SCRUM, FDD, ASD, DSDM or Crystal,

how the algorithm applies to these case studies and how the output is retrieved from the from

the tool.

Case Study 1: Cab booking application project:

Project is to develop an application for cab booking. After consulting the developers and

Managers at the organization developing the application project, we have found the below

mentioned characteristics of the project.

 In this project, there are a set of initial requirements to provide basic functionality to the user.

There is a feedback option to the user, so that he can give his feedback any time to improve the

application. Since there are already many cab booking applications and services running in the

city or town, business risk is high if we do not develop the application on time.

Based on the statement from the concerned persons at the organization, the values for the

metrics have been derived. Provide the method that can be used for this project. Input query to

the tool is:

30Table 5.1: Requirements for cab booking application

56

By applying cuckoo search agile methodology is found to be most appropriate methodology.

After this more requirements are gathered for choosing best agile methodology among six agile

methodologies.

31Table 5.2: Values for “cab application system”

Characteristics Values (Project specific)

Task extent Large

Group size Multiple teams

Progress approach Iterative

Code style Not specified

Expertise environment Quick feedback

Physical environment Distributed teams

Industry customs Collaborative and corporation

Abstraction mechanism Object oriented

Project requirement Adaptive

Developer experience Very low

From the ouput we can see that the Projects with the maximum corelation used similar

project developement method(Agile) and hence the output from the most corelated case is

given.Agile Method is appropriate method for this project:

57

Output

Since SCRUM is with highest favoring factor, so it is chosen for cab application development.

Identify characteristics for case study 1

32Table 5.3: Values for “cab application system”

Number Requirements

R1 Large software

R2 Complex technology

R3 Experienced teams

R4 Distributed teams

R5 Documented requirements

R6 Iterative development

33Table 5.4: Weighted practices of scrum for case project 1

Number Practice Weight

P1 Product backlog 0.8

P2 Sprint review 0.4

P3 Scrum teams 0.9

P4 Sprint 0.8

P5 Daily scrum meeting 0.3

P6 Sprint planning meeting 0.6

P7 Sprint retrospective 0.0

P8 Scrum of scrum 0.2

These weighted practices will provide support to the method engineer to select variable

attributes in the method.

A threshold value is chosen on the basis of the amount of attributes which can be kept in the

configured agile development method. Here we are choosing 0.5.

58

Considering the threshold value, these variable practices product backlog, scrum teams,

sprint and sprint planning meetings are chosen.

59

Chapter 6

6 Results & Conclusion

It was found that the organizations do not spend quality time on determining which method to

adopt for their project, which results in the failure of the project. One example of the fail case

without using method configuration can be found in case study 1[21].

It shows an example of "cab booking application" which was earlier developed without using

any proper methodology and they faced many problem of:

• Team members did not participate actively.

• Too much documentation was needed

• System became complex

• Could not satisfy the evaluators

• Project could not be completed on time.

When the same project was developed using Agile Method, the output was satisfactory and

project was developed perfectly with no problems.

From the example, it is clear that the method configuration is very important for successful

project completion.

In my thesis, I have tried to develop a tool for properly evaluating the method for project in

hand. With the use of neural network, the tool provides the result based on the past experience

of the developers and experts on the project. Also commonality and variability are defined for

all the agile methods.

We are also defining some fuzzy rules for selection of variability practices based on project

requirements.

The query case is again stored in the database to increase our case base for future evaluation of

method for any project.

"To sum up, the thesis found that there is a requirement to address the agile method selection

problem and to develop a method configuration process for the project in hand."

60

References

[1] Coad, P., LeFebre, E. and DeLuca, J. (2000). Java Modeling in Color with UML: Enterprise

Components and Process, Prentice Hall, Inc., Upper Saddle River, New Jersey.

[2] F.Karlsson and P.J.Ågerfalk, “Method Configuration: Adapting to Situational

Characteristics While Creating Reusable Assets”, Information and Software Technology,

vol.46, no.9, 2004, pp.619-633.

[3] D. Gupta, R. Dwivedi, “A Step towards Method Configuration from Situational Method

Engineering”, Software Engineering: An International Journal (SEIJ), Vol. 2, No. 1, 2012, pp.

51-59.

[4] A. Qumer and B. Henderson-Sellers, “Crystallisation of agility-back to basics” ICSOFT 2,

2006, pp. 121-126.

[5] A. Qumer and B. Henderson-Sellers, “A framework to support the evaluation, adoption and

improvement of agile methods in practice” Journal of systems and software, vol. 81, 2008, pp.

1899-1919.

[6] D. Gupta, R. Dwivedi, “A framework to support evaluation of project in-hand and selection

of software development method “

[7]Moaven S., Habibi, J. and Ahmadi, H. (2008). Towards an Architectural-Centric Approach

for Method Engineering. In IASTED conference on Software Engineering, Austria, (pp. 74-

79).

[8]Stapleton, J. (1997). Dynamic system development method- the system in practice. Addison

Wesley.

[9] D. Gupta, R. Dwivedi, “Configurable method model of agile methods - for creating project-

specific methods.”

[10] D. Gupta, R. Dwivedi, ”Applying Case based reasoning in Cuckoo search for the

expedition of Groundwater Exploration”.

[11] Agile Manifesto (2001) Manifesto for Agile Software Development, [online]

http://www.agilealliance.org/the-alliance/the-agile-manifesto/ (accessed 14 March 2005).

61

[12] Avison, D. E., (1996). Information Systems Development Methodologies: A Broader

Perspective. In Method Engineering. Principles of Method Construction and Tool Support.

Procs. IFIP TC8, WG8.1/8.2 Working Conference on Method Engineering, 26-28, Atlanta,

USA, S. Brinkkemper, K. Lyytinen, R.J. Welke, Eds. Chapman & Hall, London, (pp. 263-277).

[13] Brinkkemper, S. (1996). Method engineering: Engineering of information systems

development methods and tools. Information & Software Technology, 38(4), (pp. 275-280).

[14] Qumer, A. and Henderson-Sellers, B. (2008a). A framework to support the evaluation,

adoption and improvement of agile methods in practice. The Journal of Systems and Software,

81(11), 1899–1919.

[15] Rizwan, M. and Qureshi, J. (2012). Agile software development methodology for medium

and large projects. IET Software, 6(4), 358–363.

[16] http://www.unf.edu/~broggio/cen6940/ComparisonAgileTraditional.pdf

[17] http://www.mannaz.com/en/insights/when-is-agile-project-management-best-suited

[19] http://www.allaboutagile.com/is-agile-development-right-for-your-project/

[20] http://users.jyu.fi/~jpt/doc/thesis/ime-5_1.html

 [21]S. Pathak, P. Pateriya, "A Case Study on Software Development Projects in Academic

Knowledge Centers using SCRUM"

[22] Gupta D. and Dwivedi R. “Method Configuration from Situational Method Engineering”

ISSN No. 0163-5948, Vol. 37, No. 3,pp. 1-11, May 2012.

[23] Dwivedi R. and Gupta D. “A Complete method configuration process for configuring

project-specific methods” in Journal of Software, ISSN 1796-217X Vol. 9(3), pp. 29-40,

(2015).

[24] Dwivedi R. and Gupta D. “Applying machine learning for configuring agile methods” in

International Journal of Software Engineering and its Application, ISSN 1738-9984 vol.9,

No.3(2015), pp. 29-40.

http://www.unf.edu/~broggio/cen6940/ComparisonAgileTraditional.pdf
http://www.mannaz.com/en/insights/when-is-agile-project-management-best-suited
http://www.allaboutagile.com/is-agile-development-right-for-your-project/
http://users.jyu.fi/~jpt/doc/thesis/ime-5_1.html

62

[25] Dwivedi R. and Gupta D. “Configurable method model of agile methods – for creating

project specific methods” in International journal of software engineering, SERP’16 , pp.

86-91

