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Chapter 1 

Introduction 
 

The science that involves the study of friction, wear and lubrication of interacting surfaces in 

relative motion is known as Tribology. It mainly concerns with the basic need to minimize work 

and wear wherever loads and motion must be transmitted between two or more mechanical parts. 

It involves the modeling of lubrication phenomenon as well as the development of new 

lubricants and technologies for surface treatment. It deals with the optimization of tribological 

elements, to reduce the wear and power losses. 

One of the major causes of wastage of material and loss in mechanical performance is the 

wearing out of components. Friction is one of the principal causes of wear and dissipation of 

energy.  One of the most effective way of controlling friction and thus wear is lubrication. Most 

of the devices developed by mankind involve the interaction between surfaces and thus it wears 

out, most of the times because of relative motion between surfaces. 

Though a lot of research has been done towards the design for the optimization of machinery 

components, wear, controlling friction between surfaces and lubrication is still a topic of intense 

research and development. A large amount of heat is being generated due to friction between the 

moving parts of a machine which results in power loss as well as change in working 

environment. About one third of global energy has been estimated to be spent in attempt to 

overcome friction in the various forms that it occurs. Clearly, there are potential economic 

benefits of reducing friction, and also the recent environmental concerns are responsible for the 

increasing interest in this field. Thus, Tribology can be described as a field of science which 

employs an operational analysis to problems of great economic significance, such as reliability, 

maintenance and wear of components. 

Rotating machines are important assets in most of the industries. They constitute a fundamental 

unit for converting raw power into useful work. They are involved in almost every aspect of life, 

be it the crank shaft in the engine of an automobile, the hub on a bicycle, or the turbine/generator 

unit in a power plant. Regardless of their scale and use, all rotating machines usually have some 

sort of bearing which is used to separate the rotating part from the stationary part. 
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1.1 Bearings and its types 

A bearing is machine element that constrains relative motion to solely the desired motion, and 

reduces friction between moving components. Bearing provides an easily sheared layer that 

allows the surface of the rotating part (shaft) to slide relative to the stationary part. The primary 

function of a bearing is to carry load and reduce the wearing out of material due to direct sliding 

contact between components. 

There are numerous ways of classification of the bearings. However, one of the most common 

ways of classification of bearing is on the basis of type of frictional contact between the shaft 

and bearing. On the basis of type of frictional contact between shaft and bearing surface, bearing 

can be classified into two primary categories: 

1. Sliding contact bearings 

2. Sliding contact bearings.  

1.1.1 Sliding Contact Bearings 

Sliding Contact bearings have a surface of shaft which slides over the surface of bush thus 

causing wearing out and frictional losses. They are also called as plain bearings or journal 

bearings. A film of lubricating oil is provided between two surfaces which helps in separating the 

surface and thus minimize friction and wear. Based on the types of lubrication sliding contact 

bearings are further classified as Hydrodynamic Lubricated bearings and Hydrostatic lubricated 

bearings. 

                  

 Figure 1.1 Sliding Contact Bearing [1]   Figure 1.2 Rolling Contact Bearing [1] 
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1.1.2 Rolling Contact Bearings 

Rolling contact bearings employs rolling elements like balls or rollers which transforms the 

sliding friction onto rolling friction. The rolling elements are placed between the two rings 

known as races. The inner race of the bearing remains in contact with the shaft while the rolling 

elements forms various point contacts with the outer race which is held stationary. The relative 

motion between the races causes the rolling elements to roll with very little rolling resistance and 

with little sliding. Rolling contact bearing can be further classified into various types as spherical 

roller bearings, cylindrical roller bearing, needle roller bearing etc. 

1.1.3 Comparison between Sliding and Rolling Contact Bearing 

Almost all heavy industrial turbo-machines use fluid film bearings of different types to support 

the shaft weight as well as control the disturbances and vibrations caused by unbalance forces. 

Fluid film bearings have following advantages over the rolling element bearings: 

I. Vibration Damping: External or internal oscillations are quickly dampened in a well-

designed journal bearing. The damping is vital in many rotating machines where the 

fluid film bearings are typically responsible for the absorption of excess of energy which 

is necessary to control vibrations. 

II. Fatigue Life: In rolling contact bearings, rolling elements are in constant rolling motion 

in the raceway which results in metal fatigue. This fatigue generated is a typical cause of 

bearing failure. A journal bearing on the other hand has no metal-to-metal contact, so the 

theoretical fatigue life is extended. Journal bearings also have an incredibly long-life 

provided the lubricant is free from any contamination and supplied in appropriate 

quantity. 

III. Acoustical Performance: In a ball bearing, a lot of noise is produced at high speeds 

because of the contact of balls with the raceway. Fluid film bearings, in contrast, are 

almost silent because of the presence of lubricant which prevents metal-to-metal contact.  

IV. Shock Performance: An oil film separates the working parts of a fluid film bearing. The 

oil film acts as a shock absorber and prevents damage to the bearing surfaces. 
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1.2 Plain Bearings 

Plain bearings are the simplest type of bearings in which there is only sliding contact between the 

mating parts and they do not possess any rolling element. Plain bearings can be further classified 

into three types: 

 Radial bearings are the bearings which supports radial loads. 

 Thrust bearings are the bearings which supports loads in axial direction. 

 Guide or slipper bearings are the bearings which guides moving parts into a straight line. 

 Radial bearings also known as sleeve or journal bearings are the most commonly used 

type of plain bearings. These can be further classified into full journal bearing in which there is 

full 360° contact between mating parts and partial journal bearing in which there is less than 

180° sliding contact between the mating parts. 

 

Figure 1.3 Full or 360° Journal Bearing 

 

 

Figure 1.4 Partial journal bearing 
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1.3 Types of Lubrication 

Lubrication is the science of reducing friction by application of a suitable substance called 

lubricant, between the rubbing surfaces of bodies having relative motion. The main aim of the 

use of a lubricant is to: 

i. Reduce friction. 

ii. Reduce or prevent wear and tear. 

iii. Carry away heat generated due to friction. 

iv. Protect against corrosion. 

The basic modes of lubrication are thick and thin film lubrication. 

1.3.1 Thin Film Lubrication: 

Thin film lubrication or boundary lubrication corresponds to the condition when the film 

between the two surfaces in thin and a partial metal to metal contact is present between two 

surfaces. Boundary lubrication is generally seen under excessive load, insufficient surface area or 

oil supply, low speed and misalignment. 

1.3.2 Thick Film Lubrication: 

Thick film lubrication corresponds to a condition of lubrication, where two surfaces of bearing in 

relative motion are completely separated by a fluid film. The properties of surface have little or 

no influence on the performance of the bearing because of no contact between the surfaces. The 

resistance to the relative motion arises from the viscous resistance of the fluid. Therefore, the 

performance of the bearing is only affected by the viscosity of the lubricant. Thick film 

lubrication is further divided into two groups: hydrodynamic and hydrostatic lubrication. 

Hydrodynamic Lubrication: Hydrodynamic lubrication can be defined as a system of 

lubrication in which the fluid film supporting the load is created by the relative motion and shape 

of the sliding surfaces. Hydrodynamic effect can be observed when two conditions are fulfilled. 

First condition being that the fluid film has a convergent-divergent geometry and the second 

condition being a relative motion between the shaft and the sleeve. 
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Hydrostatic Lubrication: Hydrostatic lubrication is defined as a system of lubrication in which 

the fluid film which supports the load and separates the two surfaces is created by an external 

source, like a pump, supplying sufficient fluid under pressure. Since the lubricant is supplied 

under pressure, this type of bearing is called externally pressurized bearing. Also it does not 

require the dynamic interaction between the surfaces in order to produce the lubricating effect. 

                          

Figure 1.5 Hydrodynamic action in bearings  [2]                  Figure 1.6 Hydrostatic action in bearings [2] 

 Stribeck curve is a graph between the coefficient of friction between the surfaces and the 

bearing modulus or bearing characteristic number, which is dependent on the lubricant viscosity, 

speed of rotation of the journal and the average pressure.  

Figure1.7 Stribeck curve showing various regions of lubrication [3] 
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Stribeck curve divides the lubrication into three distinct zones. At rest, the two surfaces are in 

contact with each other and thus the coefficient of friction is quiet high. Lubricant pressure starts 

to build up with the onset of relative motion between the two surfaces. The load gets shifted from 

the asperities to lubricant because of pressure build up. With the building up of pressure in the 

lubricant the load shifts from the surface asperities to the lubricant. Further increase in speed or 

decreased in load or increase in lubricant viscosity, the bearing modulus keeps on increasing and 

thus the lubricant pressure continues to build, thus increasing the separation between the 

surfaces. With further increase of bearing modulus, lubricant pressure attains a value at which 

the surface are no more in contact and load is completely supported by the lubricant. A layer of 

lubricant is formed between the two surfaces which can be easily sheared off thus resulting in 

huge reduction of friction. With further increase in speed shear rate increases resulting in 

increased friction between surfaces. Wear of surfaces usually decreases as the lubrication regime 

changes from boundary lubrication to mixed lubrication and ideally there is no wearing out of 

surfaces in hydrodynamic lubrication regime. 

 

Figure 1.8 Hydrodynamic bearing in action [3] 

Hydrodynamic journal bearing are one of the most widely used bearings with a large area of 

applications starting from mechanical components like pumps, compressors, fans, turbines etc. to 

even hard disks of computers. The characteristics of journal bearings depend on various 

mechanical and physical parameters like misalignment, shaft flexibility, load, temperature, etc. 

of the rotor-bearing system. Thus it is extremely important to consider all these parameters to 

predict the exact bearing characteristics. 
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1.4  Misalignment in journal bearings: 

It has been found that most of the journal bearings operate under misalignment in normal 

conditions. However, independent designing is done for the shaft and journal bearing in any 

mechanism without the consideration of any interaction between them. However, it has been 

found that there is certainly interaction and interplays in shaft and bearing. The shaft gets 

deformed when a force (load) acts on it and it gets misaligned while in working condition. 

 

Figure 1.9 Misalignment produced due to loading [36] 

 

The several reasons that might result in journal misalignment are:  

 Thermal distortion of a shaft 

 Deformation of a shaft due to heavy load 

 Manufacturing errors 

 Faulty bearing housing supports  

 Improper installation 

 Asymmetric load 

 Wearing out of the shaft 

 Thus, it can be concluded that journal misalignment is an unavoidable error in the system 

and it is extremely important to consider the effect of this misalignment effect on the lubrication 

of a journal bearing. 
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Chapter 2 

Literature Review 
 

Exact analysis of journal bearings involves the study of a large number of factors affecting 

bearing performance and a lot of investigations have been done in this field. It is very difficult to 

include all the literature in this report; however a sincere effort has been made to bring about the 

literature which is closely related and available. 

Journal bearings have been used since a long period of time but their lubrication principle was 

unknown until Reynolds equation was derived first by Reynolds [4] in 1886. Under certain 

assumptions Reynolds equation gave the relationship for the pressure of a convergent oil film in 

an eccentric journal bearing with the bearing parameters like lubricant viscosity, velocity and 

geometry. Since then a lot of investigations have been done by other researchers on Reynolds 

equation to obtain the pressure in an oil film. 

Over the last few years, misalignment in journal as well as thrust bearings has been increasingly 

studied. Fisher [5] was one of the first researchers to notice the irregular heating of bearing as 

well as the differences in axial flow at bearing ends due to misalignment. The very first analysis 

on the misalignment of journal bearing was made by McKee et al. [6] which revealed the 

distribution of pressure in the axial direction. Piggott [7] showed that the load catrrying capacity 

of a bearing was reduced due to a misalignment of 0.0002 radians. However, in all of these 

studies misalignment only represented one part of work and was considered as a phenomenon 

which was limited to occur only in certain cases. 

The first study that was completely dedicated to the concept of misalignment was carried out by 

Dubois et al. [8, 9 and 10] who studied the pressure field and the misalignment couple under 

journal misalignment. They observed increase in the maximum pressure and decline in the 

bearing performance because of the permanent deformation of the bearing at the ends. Smalley et 

al. [11] discussed in detail about the bearing misalignment of un-grooved bearings for different 

values of slenderness rations. Minimum film thickness and friction force of a two-groove bearing 

under misalignment in vertical plane was investigated by Asanable et al. [12].  
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Pinkus et al. [13] presented an in-depth analysis of misaligned bearings. They also presented 

some charts which depicted some important features of misaligned journal bearings. Mokhtar et 

al. [14] presented the solution for axially fed misaligned journal bearings considering adiabatic 

conditions. Buckholz et al. [15] studied the influence of misalignment on cavitation and load 

carrying capacity of journal bearings using non-Newtonian fluids. Jiang et al. [16] gave an 

adiabatic solution of a journal bearing under misalignment using non-Newtonian lubricants 

which obeys the power-law fluid model. A modified form of Elrod cavitation algorithm was used 

by Keith et al. [17] to study the consequences of misalignment on the performance of a journal 

bearing with a line groove for flooded as well as starved conditions. 

Nicolas et al. [18] studied the changes in static as well as dynamic characteristics of hybrid 

bearings under the influence of misalignment of geometrical parameters for laminar as well as 

turbulent flow regimes and drew comparison between the experimental results and the results 

obtained from numerical procedures. Qiu et al. [19,20] investigated the characteristics of two 

misaligned journal bearings theoretically as well as experimentally. They studied and compared 

various static and dynamic characteristics for a grooved journal bearing with different value of 

eccentricities and misalignment conditions. An algorithm for the identification of damping and 

stiffness coefficients of a misaligned three lobe bearing was given by Arumugam et al. [21].  

Banwait et al. [22] presented the thermo-hydrodynamic (THD) effects for circular plain journal 

bearings with misalignment. Guha [23] analyzed steady state performance characteristics of a 

misaligned journal bearing incorporating the effects of isotropic roughness, eccentricity ratio and 

degree of misalignment. Bouyer et al. [24] carried out an experiment to analyze the influence of 

misalignment on the performance of a plain journal bearing with a diameter of 100mm. Pierre et 

al. [25] developed a 3D thermo-hydrodynamic model for a misaligned plain journal bearings 

along with the consideration of thermal and cavitation effects. Booker et al. [26] investigated the 

transient as well as steady-state characteristics of groove-less misaligned bearings. 

Ma [27] analyzed the performance characteristics for a dynamically loaded journal bearing with 

the incorporation of the consequences of couple stress and elasticity of the liner. Sun et al. [28] 

considered various parameters like thermal effects, surface roughness, the relationship between 

the viscosity and pressure of the lubricating oil and the deformation of the bearing surface to 

calculate the lubrication characteristics of a journal bearing under misalignment.  
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A steady state mixed TEHD thermo-elasto-hydrodynamic model was developed by Wang et al. 

[29] along with the consideration of fluid flow in the gap formed due to surface thermo-elastic 

deformations, rough surfaces, asperity contact and the angular misalignment between the bearing 

and journal. They also considered the variation of viscosity of lubricant with pressure and 

temperature. and the angular misalignment between the journal and the bearing. The model was 

further utilized to predict the importance of all these factors while analyzing mixed lubrication 

phenomenon for a journal bearing. Khonsari et al. [30] used a 3D thermo-hydrodynamic model 

with shaft temperature field to study the influence of misalignment on a journal bearing using a 

mass-conserving cavitation algorithm during analysis. 

Ashour et al. [31] studied the pressure distribution, fluid film thickness and other bearing 

performance characteristics of a misaligned tilting-pad journal bearing under transient loading 

conditions using finite element analysis. Das et al. [32] carried out the study on the performance 

of misaligned journal bearing lubricated with micro-polar fluid under steady state. Papadopoulos 

et al. [33] presented a plot for the friction coefficient versus wear depths and misalignment 

angles for different values of Sommerfeld number. They also investigated the variation in loss of 

power for the rotor bearing system and obtained the power loss as a function of wear depth and 

misalignment angles. Pai et. al. [34] studied the effect of turbulence and misalignment on steady 

state characteristics of a centrally loaded single pad externally adjustable bearing using finite 

difference method to solve Reynolds equation.  

Sun et. al. [35] analyzed the hydrodynamic lubrication characteristics of a journal bearing, taking 

in to consideration the misalignment caused by shaft deformation. Various parameters like film 

pressure, load-carrying capacity, attitude angle, end leakage flow-rate, frictional coefficient, and 

misalignment moment of a journal bearing were calculated for different values of misalignment 

degree and eccentricity ratio. Gui et. al. [36] developed a special test bench for the study on 

lubrication performance of cylindrical journal bearings. The effect of journal misalignment on oil 

film pressure, oil film thickness and oil temperature of journal bearing as a result of shaft 

bending under load was studied. 

Xu et. al. [37] carried out a comprehensive analysis on the oil film pressure, oil film temperature, 

oil film thickness, load carrying capacity, oil film stiffness, and damping of journal bearing with 

different misalignment ratios considering the turbulent and thermo effects based on solving the 
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generalized Reynolds equation and energy equation. Jang et. al. [38] reviewed the effect of 

misalignment on the static and dynamic performances. They presented the basic theory for the 

misalignment and presented some results for the circular journal bearing to show the general 

trends of the misalignment. 

Scientists have been involved in predicting the effect of misalignment in journal bearings. Also it 

has been tried to rectify the problem arising from it. Still there is need of further research for 

investigating the accurate effect of the misalignment in the journal bearings. Modern techniques 

and tools have facilitated the researchers in the modelling and simulation of exact and real world 

problems. Also the defects and results with the current scenario must be rectified for further 

investigations.  

In this project, an effort has been made to understand the behaviour of a journal bearing under 

the misaligned conditions. A numerical approach has been used which is based on finite 

difference method in order to get the operational characteristics of the bearing. 
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Chapter 3 

Calculation of the characteristics of journal bearings 
 

3.1 Journal Bearings 

Journal bearings are very common engineering components and are used in almost all types 

of machinery. Combustion engines and turbines virtually depend on journal bearings to 

obtain high efficiency and reliability. Journal bearing is a type of bearing having a plain surface 

to support the load and uses a lubricant which helps in reducing the friction between the rotating 

and the stationary part. These types of bearings are also termed as fluid film bearings because of 

the presence of a film of lubricant between shaft and bearing. It consists of a shaft rotating 

within a stationary bush. 

3.1.1 Bearing Geometry 

A journal bearing consists of a journal which is attached to the shaft using some key and it 

rotates along with the shaft inside a stationary bush. A lubricant is provided in between the 

bearing and the journal which supports the load by the formation of a film. A journal bearing in 

operation has been depicted in figure 3.1. Some of the important parameters of a journal bearing 

geometry are: 

I. Radial clearance (c): Radial clearance refers to the clearance along the radius of a 

bearing and a journal. It is given by the difference of the radii of the bearing and journal. 

Mathematically it is given as 

c = R2  R1 

The radial clearance (c) in a bearing should be small enough to produce the necessary 

velocity gradient, so that the pressure built up in the lubricant can support the load. Small 

clearance also helps in reducing the flow rate due to side leakage in bearings. However, 

the allowance must be made for manufacturing tolerances in the journal and bushing. 

II. Eccentricity (e): During operation of a journal bearing, the journal rotates with a center 

different from the center of bearing. The radial distance between these centers is known 

as eccentricity. 
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III. Clearance ratio: It is defined as the ratio of radial clearance between bearing and journal 

to the radius of journal. 

IV. Attitude or Eccentricity ratio: It is defined as the ratio of eccentricity (defined in point 

II) to radial clearance between the bearing and journal (defined in point I) 

 

 

 

 

 

 

 

Figure 3.1 Journal bearing geometry where Ob and Os are centers of bearing and shaft respectively, R1 and 

R2 is the radius of bearing and journal respectively, h is the film thickness 

V. Minimum thickness of Oil film (hmin): It is the minimum thickness of the lubricating oil 

film when the bearing is under operation. It is given by the minimum radial distance 

between journal and bearing and it occurs along the center line. 

VI. : It is the angle between the line of centers and the direction of 

loading in the bearing.  

Now, considering the triangle OsObAB (figure 3.2) from the journal bearing geometry, 

 

 

or            

thus            

On the further simplification of the equation using sine rule it can be written as 

 

or        (3.1) 
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Figure 3.2 

inclination angle or wedge angle 

3.2 Reynolds Equation and Journal bearings 

The mechanism of hydrodynamic lubrication can be described by Reynolds equation. It was 

given by Osborne Reynolds and is a general equation that analyses different types of 

hydrodynamic lubrication. Hydrodynamic lubrication is defined as the occurrence of relative 

motion between two surfaces which causes fluid to form a lubricating wedge. Reynolds equation 

is a combined equation formed using Navier-stokes and continuity equation. 

 For the hydrodynamic lubrication to take place, there are two necessary things: 

I. Relative motion with sufficient velocity for film formation. 

II. Inclination of surface as some angle for pressure generation. 

The principle of pressure generation in hydrodynamic lubrication between two moving inclined 

surfaces can be schematically illustrated as in figure 3.3.   

 
Figure 3.3 Principle of hydrodynamic pressure generation [45] 

  

As the bottom surface starts rotating, lubricant is dragged by it along with itself. However the 

upper plate being inclined to the lower plate results in an increase in pressure of lubricant, which 
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results in formation of a pressure field. At the beginning of the wedge, the pressure goes on 

increasing which restricts the entry of lubricant. The pressure reaches its maximum value and 

then it starts to decrease thus boosting the exit flow. Thus the fluid velocity profile is bend 

inwards at the entrance and bend outwards at exit because of the pressure gradient as depicted in 

Figure 3.3. As a result, the two surfaces are separated by the pressure generated by the wedging 

action and it is also able to support a certain load. The formation of planar wedge around a shaft 

results in pad bearings, while a curved or wrapped wedge results in journal bearings. 

 In order to understand the mathematical description of the fundamental mechanism 

underlying hydrodynamic lubrication, certain assumptions are to be made. All the simplifying 

assumptions necessary for the derivation of the Reynolds equation are summarized in Table 3.1. 

Assumption Comments 

1 

Body forces are neglected Always valid, since there are no extra outside fields 

of forces acting on the fluids with an exception of 

magneto-hydrodynamic fluids and their applications. 

2 

Pressure is constant through 

the film 

Always valid, since the thickness of hydrodynamic 

films is in the range of several micrometers. There 

3 

No slip at the boundaries Always valid, since the velocity of the oil layer 

adjacent to the boundary is the same as that of the 

4 

Lubricant behaves as a 

Newtonian fluid 

Usually valid with certain exceptions, e.g. polymeric 

oils. 

5 

Flow is laminar Usually valid, except large bearings, e.g. turbines. 

6 

Fluid inertia is neglected Valid for low bearing speeds or high loads. Inertia 

effects are included in more exact analyses. 

7 

Fluid density is constant Usually valid for fluids when there is not much 

thermal expansion. Definitely not valid for gases. 

8 

Viscosity is constant 

throughout the generated fluid 

film 

Crude assumption but necessary to simplify the 

calculations, although it is not true. Viscosity is not 

constant throughout the generated film. 
 

Table 3.1 Assumptions made in Reynolds equation 

  



17 
 

continuity equation for the lubricant between the shaft and the bearing. Reynolds equation in 

three dimensions can be given as in equation 3.1. 

 

)  (3.2) 

where, u, v and w represents the velocities along x, y and z axis respectively, h represents 

thickness of the wedge,  represents absolute viscosity of the lubricant and p depicts the 

pressure. 

Bearing parameters predicted by Reynolds Equation 

Majority of the important critical design parameters of bearings can be obtained by the simple 

integration of Reynolds equation. These parameters are: 

I. Pressure Distribution: Pressure distribution for a bearing is obtained by the integration 

of Reynolds equation over a specified fluid film h=f(x,y). 

II. Load Capacity: The load carrying capacity of a bearing is by the integrating the pressure 

distribution of the bearing obtained previously over the corresponding area of cross 

section. For change in load, the bearing film geometry changes and thus the pressure field 

also changes. The load that can be supported by a bearing for a particular film geometry 

is given as 

      (3.3) 

However, in journal bearings the fluid film formed between the shaft and the bearing 

surface is initially converging, reaches a minimum thickness and then starts diverging 

again. The pressure increases in the converging area while it decreases in the diverging 

area. This leads to the formation of negative pressure in the diverging area. Also the load 

carrying capacity of bearing comes out to zero because of the symmetrical distribution of 

positive and negative pressure over the bearing halves. Also negative pressure formation 

is impossible in a bearing. The negative pressures results in cavitation in the fluid film. 

Also, Half-Sommerfeld conditions are commonly used for load calculations, i.e. the 

negative pressures in one half of the bearing are discounted.  

Load was calculated from two components, one acting along the line of shaft and 

bush centres and a second component perpendicular to the first. The attitude angle 
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can be calculated through this method. The pressure distribution and load components 

for a journal bearing have been depicted in Figure 3.4. 

 
Figure 3.4 Pressure field and load components in a journal bearing 

  

To obtain the expressions of the load components W1 and W2, a small element of area 

bearing is unwrapped as shown in figure 3.5. It is similar to the formation of cylinder 

due to rolling of a sheet. This view gives a complete visualization of the film. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Unwrapped journal bearing [3] 
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For the small element considered, the incremental force exerted d u e  t o  

hydrodynamic pressure can be resolved into two components: 

  

  

Thus the load component along the line of centres can be given as: 

      (3.3) 

 Similarly, the load component in the normal direction can be given as: 

      (3.4) 

The total load supported by the bearing can be expressed as: 

        (3.5) 

 

III. Sommerfeld Number: Sommerfeld number or duty parameter is an important parameter 

for journal bearings as it can  express  t he  l oad  ca r r i ed b y the  bear ing as a 

function of eccentricity ratio. It can be expressed as in equation (3.6). 

      (3.6) 

where  p refers to the pressure calculated over the projected area of the film. 

IV. Friction Force: Under the assumption that the only shear stress is caused due to friction 

force, it can be obtained by the integration of shear stresses over the whole bearing area. 

     (3.7) 

Shear stress at any point in the fluid film can be expressed as 

     

where du/dz is the velocity gradient.  

V. Coefficient of friction: The coefficient of friction can be obtained as the ratio of load and 

the friction force, which have been obtained previously. 

       (3.8) 

The virtue of hydrodynamic analysis is that it is concise, simple, and the same procedure can be 

applied to different kinds of bearing geometries whether its linear bearing or journal bearing or 

step bearing. With the introduction of effects like misalignment, heating, variation in local 
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viscosity, elastic deformation, cavitation etc the solutions become complex. However, the basic 

method of analysis remains unchanged. 

3.3 Practical and operation aspects of journal bearing 

Journal bearings are commonly incorporated as integral parts of various machineries with a wide 

range of design requirements. Thus there are some problems associated with practical 

implementation and operation of journal bearings. For example, in many practical applications 

the lubricant is fed under pressure into the bearing or there are some critical resonant shaft 

speeds to be avoided. The shaft is usually misaligned and there are almost always some effects of 

cavitation for liquid lubricants. Elastic deformation of the bearing will certainly occur but this is 

usually less significant than for pad bearings. All of these issues will affect the performance of a 

bearing to some extent and allowance should be made during the design and operation of the 

bearing. Some of the major issues affecting journal bearing performance have been discussed in 

the following sections. 

I. Misalignment: In most of the practical applications, the axis of shaft is not aligned 

parallel to the bearing axis. Even if the shaft is accurately aligned during assembly, the 

load on the shaft causes bending and tilting of the shaft in a bearing. The critical 

minimum film thickness will occur at the edge of the bearing, as shown in Figure 3.6. 

The critical film thickness for misaligned shafts thus gets considerably lesser than for 

parallel shafts. The basic parameter to describe the misalignment of the shaft is the 

misalignment factor or tilt ratio which is defined as: 

         (3.9) 

 where  t refers to the tilt ratio 

   m  refers to the distance between axes of misaligned shaft and   
    bearing axis measured at the edge 

   c refers to the radial clearance 
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 Figure 3.6 Details of misalignment in journal bearing 

 The minimum film thickness reduces due to misalignment. Assuming that minimum 

 film thickness occurs along the load line it is given by the equation (3.10) 

       (3.10) 

 where    refers to the attitude angle 

 In most cases of heavily loaded shafts, the attitude angle is small and its cosine can be 

 approximated by unity. 

 To  calculate  the  effect  of  misalignment on  bearing  geometry,  the  Reynolds  

 equation  is applied to the journal bearing with a film geometry modified by 

 misalignment. The various parameters for the journal bearing may change due to the 

 change in film thickness equation. 

II. Oil whirl or vibration caused by lubricant: Oil whirl is the colloquial term describing 

hydro-dynamically induced vibration of a journal bearing. It can cause severe problems 

in the operation of journal bearings and thus it should be considered during the design 

process. Oil whirl is characterized by severe vibration of the shaft which occurs at a 

specific speed. Another form of bearing vibrati is caused by the 

combined action of shaft flexibility and bearing vibration characteristics. 

Although it may appear unlikely that a liquid such as oil would cause vibration, but as per 

the hydrodynamic theory, a change in load on the bearing is always accompanied by a 

finite displacement. This constitutes a form of mechanical stiffness or spring constant and 

when combined with the mass of the shaft, vibration is the natural result. A rotating shaft 

L 

Bearing Axis m 
Shaft Axis m 

ho 
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nearly always provides sufficient exciting force due to small imbalance forces. It is 

essential to know the critical speed at which oil whirl occurs and avoid it during 

operation. It has been found that severe whirl occurs when the shaft speed is 

approximately twice the bearing critical frequency [].  

A complete analysis of bearing vibration is quiet complex as it involves non-linear 

stiffness and damping coefficients. However a simple means of determining the 

occurrence of unstable vibration is based on linearized stiffness and damping coefficients. 

These coefficients are accurate for small stable vibrations and a critical shaft speed is 

found by this method. 

Factors such as grooves, misalignment and elastic deformation have a strong (usually 

negative) influence on vibrational stability and are the subject of continuing study. Large 

angular extent grooves, e.g. 90° extent, are particularly deleterious to stability. 

One of the most accepted solutions of bearing vibration problems is to apply specially 

designed bearings with an anti-whirl configuration. It is based on the basic principle of 

destroying the symmetry of a plain journal bearing which encourages vibration. Although 

many anti-whirl configurations have been patented no solution has yet been found that 

completely eliminates oil whirl. 

III. Cavitation: As discussed previously, large negative pressures in the hydrodynamic film 

are predicted when surfaces move apart or mutually sliding surfaces move in a divergent 

direction. However, for most liquids a phenomenon known as cavitation occurs when the 

pressure falls below atmospheric pressure.  

The reason for this is that most liquids contain dissolved air and minute dirt particles. 

When the pressure becomes sub-atmospheric, bubbles of previously dissolved air 

nucleate on pits, cracks and other surface irregularities on the sliding surfaces and also on 

dirt particles. It has been shown that very clean fluids containing a minimum of dissolved 

gas can support negative pressures but this has limited relevance to lubricants which are 

usually rich in wear particles and are regularly aerated by churning.  

If there is a significant drop in pressure, the operating temperature can be sufficient for 

the lubricant to evaporate. The lubricant vapour accumulates in the bubbles and their 

sudden collapse is the cause of most cavitation damage. When a bubble collapses against 

a solid surface very high stresses are generated and this will usually cause wear. Wear 
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caused by cavitation progressively damages the bearing until it ceases to function 

effectively. The risk of occurrence of cavitation increases the elevation of bearing speeds 

 

 

Large lubricant supply grooves have been found to suppress negative hydrodynamic film 

pressures and so prevent cavitation. This practice is similar to using partial arc bearings 

and has the disadvantage of raising the lubricant flow rate and the precise location of the 

cavitation front varies with eccentricity. This means that cavitation might only be 

prevented for a restricted range of loads and speeds. In practice it is very difficult to 

avoid cavitation completely with the conventional journal bearing. 

 

Various other factors like lubricant supply, grooving in journal bearings, elastic 

deformation of bearings, movable pads, partial bearings etc. affects the operational 

characteristics of a journal bearing. However, this project report has been limited to the 

prediction of effect of misalignment of bearing on the operational characteristics and 

vibrational stability of bearings. 
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Chapter 4 

Computational Approach for Journal Bearing 
 

The differential equations which arose from the Reynolds equation and other theories were 

these equations using specialized and obscure mathematical functions, but these processes were 

tedious and the reach of solutions was limited. A gap or discrepancy always existed between 

what was needed in the engineering solutions to hydrodynamic problems and the solutions 

available. Analogue methods like electrically conductive paper were used as the means of 

determining the hydrodynamic pressure fields. However, with the development of numerical 

techniques to solve differential equations these methods became largely obsolete. These changes 

radically affected the general understanding and approach to various fields like hydrodynamic 

lubrication, heat transfer etc.  

This chapter deals with the application of numerical techniques to the phenomenon of 

process.  

4.1 Non-dimensionalization of the Reynolds equation 

Non- dimensionalization refers to the technique of substituting all the real variables is an 

equation with the dimensionless fraction of two or more parameters. It helps in the generalization 

of a numerical solution. One of the basic disadvantages of a numerical solution is that the data is 

provided only for specific values of controlling variables. On the other hand, analytical 

expressions are not limited to any specific values and are suited for providing data for general 

use. In order to provide a comprehensive coverage of all the controlling parameters, a computer 

program has to be executed several times for different cases. Non-dimensionalization helps in 

reducing the controlling parameters and thus required information can be obtained from limited 

set of data. 

h

p U -dimensional forms of the equation's 

variables are following: 
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      (4.1) 

where   

   

   

   

   

  entraining velocity [in m/s] 

  -s] 

  x, y are hydrodynamic film coordinates 

The Reynolds equation in the non-dimensional form is given as: 

     (4.2) 

4.2      The Vogelpohl parameter 

v  

           (4.3) 

On the substitution of the above parameter is the non-dimensional form of Reynolds equation, it 

is obtained as the equation 4.4. 

          (4.4) 

 

     (4.5) 
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         (4.6) 

The Vogelpohl parameter facilitates computing by simplifying the differential operators of the 

Reynolds equation, and furthermore it does not show high values of higher derivatives in the 

final solution, i.e. dnMv /dx*n where n > 2 p*

p*

h* Mv values. Large values of higher derivatives cause 

significant truncation error in numerical analysis. 

4.3 Finite difference approximation in Reynolds equation 

Finite difference method has been used for journal bearing analysis. It is based on approximating 

a differential quantity by the difference between function values at two or more adjacent nodes. 

v/ x* is given by: 

 

Figure 4.1 Approximation using Finite Difference Method [41] 

          (4.7) 

where the subscript i+1 and i-1 denote the position immediately just behind and in front of the 

 

2Mv/ x*2 can be found by subtracting the expression for v/ x* 

at node i- *. 
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         (4.8) 

Also, it can be given as            

              

Substituting these expressions in equation 5.2, results in 

         (4.9) 

 

Figure 4.2 Principle for the derivation of finite difference approximation of second derivative of a function [41]  

 

Similarly, the expression for ( 2Mv / x*2 + 2Mv/ y*2) is calculated using finite difference 

variation of Mv 
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v at the ith node and adjacent nodes required by 

Reynolds equation which form a finite difference operator can be calculated as in figure 5.3. 

 

 

 

 

 

Figure 4.3 Finite difference operator and nodal scheme for numerical analysis of the Reynolds equation [46] 

The finite difference operator is convenient for computation and it does not create difficulties 

with boundary conditions. A special arrangement of imaginary nodes outside the boundary is 

required for the finite difference operator located at the boundary. The solution domain is the 

F G

are considered along with the finite difference operator to form a complete equivalent of the 

Reynolds equation. The equation thus obtained on rearrangement is given in equation 4.10. 

     (4.10) 

; 

 

 

 

 

 

j+

j 

j-1 

i-1 i i+1 

To boundary 

of solution domain 
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where             

and       

This expression is the basis for the finite difference solution for the Reynolds equation. Its 

v  

Definition of Solution Domain and Boundary Conditions 

The next step after the establishment of controlling equations is the definition of boundary 
*

v

bearing and also cavitation prevents the occurrence of negative pressures in the bearing. For a 
*

* -0.5 to 0.5 as mid plane of bearing is selected as datum.  

All the interior nodes require solution by finite difference method while the nodes on the edges 

of bearing have a pre-determined zero value. An extra column of nodes outside the solution 

domain is required for zero value consideration, when the solution is to be made over the half 

domain only as the nodes on the mid-line of the bearing are also variable. This extra column is 

generated by adopting node values from the column one step from the mid-line on the opposite 

side.  In analytical terms this is achieved by setting: 

          (4.11) 

where jnode is the number of nodes in j or y* direction.  

Splitting of solution domain helps in reducing the number of nodes but when analyzing a non-

symmetric or misaligned bearing a domain covering complete bearing is necessary. In this case 

y* -0.5 to +0.5 and the mid- line boundary 

condition vanishes. 
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 Sliding direction
 

 
Extra row for half bearing 

Load 
line   Extra row of nodes 

for overlap with x* = 0 

 

i=1 
x*=0 x*  
 

 

 

 

 

 

Figure 4.4 Nodal pressure domains for finite element analysis of hydrodynamic bearing 

Calculation of Dimensionless Friction Force and Friction Coefficient 

Friction force and friction coefficient are calculated from the film thickness and pressure 

gradient data. As  discussed earlier in the previous chapter, the  frictional  force  operating  

across  the  hydrodynamic f

area, i.e.: 

         (4.12) 

where     

In the manner similar to hydrodynamic pressure, friction force has to be expressed in 

dimensionless form. On the substitution of dimensionless parameters into the equation, the 

expression for shear stress is given as in equation 4.13. 

         (4.13) 

where the last portion of the expression represents dimensionless form of shear *.  

So the expression for frictional force is obtained as in equation 4.14. 

      (4.14) 

The coefficient of friction is the ratio of frictional force to the load acting on the bearing. Load 

on a journal bearing is given as in equation 4.15. 

       (4.15) 

j= j node
full bearing

j= j node 
half bearing 

j= 1 
i= i node 
x*  
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where the term cos(x*) rises from the fact the load supporting the pressure is located close to 

x* *)=1. Any pressure close to x*=0 merely imposes an extra load on the bearing as it 

acts in the direction of the load. The negative sign refers the fact that the load direction does not 

coincides with the direction of minimum film thickness.  

The expression for load supported by the bearing is expressed in non-dimensional form in 

equation 4.16. 

       (4.16) 

From equation 4.14 and 4.16, the coefficient of friction can be gives as in equation 4.17. 

                                                       (4.17) 

The presence of cavitation in the bearing adds complication to the calculation of coefficient of 

friction. Within the cavitated region, the proportion of clearance space between shaft and bush 

that is filled by lubricant is represented by h*
cav/ h* where h*

cav is the dimensionless film 

thickness at cavitation front and h* is the dimensionless film thickness at specified position 

downstream of cavitation front. 

* */dx*

friction is dependent on the fraction of lubricant filled in the clearance space. Under the 

assumption of simple proportionality between fluid filled volume and total shear force, the 

effective dimension e
* that allows for zero shear stress between streamers of 

lubricant, is given by 

                                                        (4.18) 

The expression of non-dimensionless film thickness is given as in equation 4.19. 

                                 (4.19) 

* * whereas the 
*  

The derivatives of h* are found by direct differentiation and are given as follows: 
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Numerical Solution Technique for Vogelpohl Equation 

Gauss-Siedel iterative approach is utilized for the iterative solution. All the nodes are assigned an 

initial value of zero and finite difference equation (4.10) is repeatedly applied until the 

convergence is obtained. 

4.4 Numerical analysis of hydrodynamic lubrication in idealized journal and 

partial arc bearings 

The Reynolds equation (4.2) for the full and partial arc journal bearings were solved numerically 

to find the dimensionless pressure field corresponding to the equation 4.10 and other important 

bearing parame

in software package MATLAB 2011. The flow chart of the computer program is depicted in 

figure 4.4. The program provides a solution for aligned as well as misaligned journal bearings. 

Misalignment has a pronounced effect on bearing characteristics but cannot be modeled by either 

the infinitely long or narrow bearing theories. 

The program calculates the dimensionless load, attitude angle, and dimensionless (normalized) 

friction coeffici L/D

misalignment ratio. The solution is based on an iso-viscous model of hydrodynamic lubrication 

with no elastic deflection of the bearing.  

P request for data input from the operator. The 

The values of relaxation factor, limiting residual, limiting number of iterations and node numbers 
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Figure 4.5 Program Flowchart for numerical analysis of hydrodynamic bearing using Matlab 

Program Description 

With all data recorded, the program proceeds to execution and in the first step a finite difference 

x* x* y*

number of steps between nodes, i.e.: 

 

where   alpha is the angle subtended of partial arc bearing in radians 

  inode, jnode are the number of nodes in x and y direction respectively 

  deltax, deltay corresponds to x* y* 

assigned as zero. The solution of journal bearing requires two levels of iteration since the 

pressure or Vogelpohl parameter must be solved and the attitude angle is unknown. The attitude 

Return 

1 

Set sweep number = 1 

Add 1 to sweep number 

Apply relaxed from of finite difference 
equation for each I,J node 

Calculate residual of Mv field 

Is the residual 
number too large and 
sweep number within 
limit? 

Yes No 
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beta

pressure field bisects the bearing. 

w the values 

Fi,j Gi,j

h*/ x* h*/ y* 2h*/ x*2 
2h*/ x*2 whose values are calculated as per the expressions discussed in previous sections.  

M(i,j) sum

M(i,j)

of zero t for M(i,j)

i 2 inode-1 j 2 jnode-1 i j

except those on the edge of the bearing. 

The misaligned bearing is also analyzed in this program so that an entire bearing domain is 

-

M(i,j) -hand side of the equation 4.10 is assigned to a variable 

store M(i,j)  

; 

where the terms on the right hand side of the computing expression are the old values and the 

term on the left- -Seidel relaxation 

factor whose value is typically 1.3 for this iteration. The negative val

immediately suppressed by the statement: 

 

 

 

which  

for

sum sum2  
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sum sum2 residp

the convergence limit. To test convergence an inequality is used with a limit on the number of 

sweeps or iteration rounds included: 

 

where   reslim1 is the prescribed value of residual to terminate the iteration; 

  n1 is a counter variable for the number of sweeps; 

  nlim1 the limiting number of sweeps. 

On the completion of iteration for Vogelpohl parameter, the program proceeds to the calculation 

for attitude angle. The pressure integral parallel and normal to the load-line are required for the 

P(i,j)  

P(i,j) -

cos(x*) sin(x*)

force pressure inte for

where, at each node, the value of the function to be integrated at this node and the preceding 

For al node in any 

given line of nodal values to be integrated. In this way, all nodes except the first contribute twice 

the nodal value to the integral sum as required by the trapezium rule. 

 the normal film force is called 
*

* * *  

The attitude angle can now  

; 

 

attang1

beta
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from over- attang1

attang1 through 180°. This lead to the step: 

 

beta

Vogelpohl parameter, i.e.: 

 

termination value and that the number of iteration rounds has not exceeded a predetermined 

limit. 

The coefficient of friction was calculated in the final iteration. It begun with the search for a 

-

 

TORR(i,j)

supplied for the cavitated and uncavitated regions of the bearing, i.e.: 

 

where:  dpdx     

   

    the second statement 

The values of dimensionless shear stress were then integrated by the same method which was 

used for the calculation of dimensionless load i.e. the trapezium form of numerical integration 
* * * *

The dimensionless friction coefficient was then calculated. 
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Upon the completion of iterations for both the vogelpohl parameter and attitude angle, and the 

coefficient of friction determined, the final task is to depict the values of load and pressure 

profile for the bearing. All pressures were depicted as the percentage of maximum pressure to 

avoid any difficulties in format for large range of dimensionless pressure. 

4.5 Vibrational stability in journal bearing 

As discussed in the previous chapter, hydrodynamic bearings are prone to a vibrational 

the vibrational characteristics of a hydrodynamic film. These coefficients can be computed from 

the solutions of the Reynolds equation. 

A simpler mode of analysis for practical engineering applications is used. Routh-Hurwitz 

criterion of stability is used to calculate limiting shaft speed at the onset of vibrations. The 

criterion provides a conservative estimate of the shaft speed at which some level of sustained 

vibration occurs. It has often been found that at moderate shaft speeds, shaft vibration may occur 

but it is limited to finite and safe amplitudes. On the other hand at higher speeds, there is no limit 

to the amplitude of vibration and the shaft will oscillate in ever wider trajectories until it touches 

the bush which inevitably results in destruction of the bearing. 

In order to analyze shaft trajectories, the non-linear variation in stiffness and damping 

coefficients with shaft position must be included in the analysis. The advantage of the Routh-

Hurwitz method is that only infinitesimal amplitudes of vibration are considered which allow the 

use of linearized stiffness and damping coefficients. The linearized Routh-Hurwitz analysis of 

bearing vibration and the computation method is described in the following sections. 

4.5.1 Determination of Stiffness and Damping Coefficients 

Stiffness and damping coefficients are obtained by including in the Reynolds equation the effect 

of small displacements and squeeze velocities. Stiffness and damping coefficients are calculated 

from the change in pressure integral, by dividing the changes by the displacement and squeeze 

velocity respectively. Magnitudes of displacements and squeeze velocities are held at small 

values in order to minimize inaccuracy due to non-linear variation of film forces. A cartesian 

coordinate system aligned with the direction of bearing load, shown in Figure 4.6, is established 

and values of stiffness and damping coefficients normal and co-directional with the load-line are 
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then computed. Four stiffness coefficients relating to the range of possible bearing movements 

xx yy xy yx xx yy xy yx

required for vibration analysis. To find these coefficients the effect of small displacements on 

hydrodynamic pressure integral must be analyzed. 

Shaft displacements are modelled in the Reynolds equation in terms of their effect on dh/dx. It is 

convenient to use non-dimensional forms of shaft displacement in terms of the radial bearing 

clearance, i.e.: 

          (4.20) 

Where  x refers to the displacement of shaft center in x direction 

  c refers to the radial clearance of the bearing 

  x* refers to the non-dimensional displacement  

 

 

 

 

 

 

 

Figure 4.6 Journal bearing coordinate configuration for vibration analysis 

dh*/dx* is given in the following form according to basic geometrical principles: 

      (4.21) 

where   x* refers to the film ordinate around bearing 

W 

 y 

x 
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  refers to the variation in film thickness for static case 

h* 2h*/ x*2 which are required for the Vogelpohl equation follow 

the scheme already described and are given in equation (4.22) and (4.23) 

    (4.22)  

   (4.23) 

h*

h*/ x* h*/ y* etc. Non-dimensional stiffness coefficients are defined as 

follows: 

          (4.24) 

where  K*  refers to the non-dimensional stiffness 

  K  refers to the real stiffness 

  c  refers to the radial clearance of the bearing 

  W  refers to the bearing load  

This form of non-dimensionalization can be shown to be equivalent to: 

         (4.25) 

x*  

          (4.26) 

In other words, non-dimensional stiffness coefficients are equal to the change in non-

dimensional load divided by the product of non-dimensional displacement and static non-

W*

integration of the hydrodynamic pressure field with the displacement parameters included, and 

the static load, i.e.: 

         (4.27) 
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x y

Kxx
*  calculated according to the following equation, 

i.e.: 

          (4.28) 

where   Wx
* x  

Similarly, Kyx
* is given as in equation (4.29) 

          (4.29) 

where   Wy
*  y  

Similarly, other stiffness coefficients can be calculated. 

Damping coefficients are found by adding appropriate squeeze terms to the Reynolds equation. 

A non-dimensional squeeze term is defined as: 

           (4.30) 

where  w  refers to the squeeze velocity in 

  c  refers to the radial clearance 

    refers to the angular velocity of the shaft 

The non-dimensional form of Reynolds equation with squeeze terms is given as follows: 

      (4.31) 

The squeeze velocity is not constant around the hydrodynamic film but varies in a sinusoidal 

manner similar to the displacements. An expression for the dimensionless squeeze velocity at 

any position on t

is given by: 

        (4.32) 

*  
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      (4.33) 

Damping coefficients are computed in a similar manner to the stiffness coefficients, i.e. an 

arbitrary infinitesimal squeeze velocity is applied to cause a change in the pressure integral. The 

non-dimensional damping coefficient is defined in a similar manner to the non-dimensional 

stiffness coefficient, i.e.: 

          (4.34) 

where  C* refers to the non-dimensional damping coefficient 

  C refers to the real damping coefficient 

In terms of non-dimensional quantities, the non-dimensional damping coefficient can be 

expressed as in equation (4.35). 

          (4.35) 

The specific damping coefficient can be calculated as in equation (4.36). 

          (4.36) 

After determining all the necessary values of stiffness and damping coefficients the vibrational 

stability of a bearing can be evaluated. There are various theories of bearing vibrational analysis 

and the obtained stiffness and damping coefficients can be used in any of these methods. The 

method developed by Hori [47] has been used in this analysis. In this theory a simple disc of a 

configuration is shown in Figure 4.7. 

There are two sources of disc deflection in this model; the shaft can bend and the two bearings 

are of finite stiffness which allows translation of the shaft. This system was analyzed by 

Newton's second law of motion to provide a series of equations relating the acceleration of the 

and bearing damping coefficients. The description of this analysis can be found in [ ]. 
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Figure 4.7  [47] 

The equations of motion of the disc can be solved to produce shaft trajectory but this is not often 

required since the most important information resulting from the analysis is the limiting shaft 

speed at the onset of bearing vibration. The limiting shaft speed is derived from the Routh-

-

 

       (4.37) 

where  A1, A2, A3, A4, A5  refers to the dimensionless stiffness and damping products 

  c
*  

 refers to the dimensionless bearing critical frequency 

The bearing critical frequency is also given by: 

          (4.38) 

where  c  refers to the angular speed of the shaft 

  g  refers to the acceleration due to gravity 

  c  refers to the radial clearance of the bearing 

and the  parameter can be expressed as in equation 4.39. 

           (4.39) 
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where  W  refers to the weight on the shaft 

  k  refers to the stiffness of the shaft 

commencing computing of a solution to equation (4.37). 

ollowing manner [ ]: 

 

 

 

The analysis is completed with the calculation of the non- c  

4.5.2 Computer Program for the Analysis of Vibrational Stability in a Partial Arc Journal 

Bearing 

bearing is listed and described in the Appendix and its flow chart is shown in Figure 4.8. The 

program computes the limits of bearing vibrational stability. The Vogelpohl equation is solved 

 

Program Description 

t ratio. The dimensionless exciter mass is 

also required in this program. The dimensionless exciter mass refers to the rotating mass of the 

shaft or attached disc which provides the energy for vibration. 

The program then proceeds to solve the Vogelpohl equation according to the steps adapted from 

.   function is used 

inside the iteration subroutine  to exempt cavitated nodes from the iteration. 
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Figure 4.8 Flowchart for the stability analysis in a journal bearing 

A 

Solve Vogelpohl and attitude angle iterations by same 
method as in program MISALIGNMENT 

Stabilization of cavitation front 

Assign SWITCH=1 for M(I,J) nodes 

Store values of M(I,J) as MSAVE(I,J); Store load etc. 

Calculate pressure field difference based on 
 

Calculate coefficients of Routh Hurwitz criterion 

Apply Routh-Hurwitz criterion 

Output: Print KXX, KXY, KYX, KYY, CXX, CXY, CYX, 
CYY and dimensionless frequency limit 

 This loop is 
done 4 
times:  
# = DX 
# = DY 
# = WX 
# = WY 
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Print Warning 
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This variable is only activated, i.e. non-zero values assigned to further iteration, after completion 

of the iteration for the st SWITCH1(i,j)

the cavitated region during calculation of stiffness and damping coefficients. Calculation of these 

coefficients is based on very small differences between the equilibrium pressure field and a 

perturbed pressure field resulting from small displacements and squeeze velocities. Accurate 

values of the coefficients are only obtained when the static or equilibrium pressure field is 

iterated to a high degree of accuracy. To meet this requirement, once the initial double iteration 

for pressure field and attitude angle is completed, cavitated nodes are isolated. 

from the attitude angle iteration. Th

any possible errors caused by a mobile cavitation front. When these steps are completed, it is 

d in 

rbations begins with calculations 

 

have been calculated then the subroutine for the  

The 

pressures so that it can be read directly in the subroutine for load integration to find the stiffness 

urbed solution must also include the 

of stiffness would be obtained. For squeeze perturbations, the film thickness is identical to the 

static case. The difference in load capacity is then obtained by applying the load integration 

then found by applying the following steps: 
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An analogous set of statements is employed to calculate the damping coefficients. For example, 
* * lowing steps: 

 

Once the values of stiffness and damping coefficients are known, the program then proceeds to 

calculate the dimensionless critical frequency by applying equations (4.37-4.39). The program 

concludes with a print-out of the values of dimensionless critical frequency, stiffness and 

damping coefficients. 
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Chapter 5 

Results and Discussions 
 

Computer programs have been developed for the software package Matlab to predict the effect of 

misalignment in a journal bearing. Numerical simulations have been carried out to analyse the 

effect of misalignment on the bearing parameters like load carrying capacity, maximum pressure, 

film thickness and attitude angle using the 

misalignment on the vibrational stability of bearing is analysed using the program 

misalignment on stiffness and damping parameters using this program. 

The main specifications of the bearing model and lubricant used in the calculation are given in 

Table 5.1. This model had been used by Bouyer et. al. to experimentally find out the effect of 

misalignment in a hydrodynamic plane journal bearing[24]. 

S.No. Parameter Value 

1. Bearing diameter 0.099780m 

2. Bearing length 0.080m 

3. Radial clearance 0.0001175m 

4. L/D 0.8 

5. Speed 4000 rpm 

6. Oil supply Temperature 40°C 

7. Lubricant grade ISO VG 32 

8. Density 870 kg/m3 

9. Specific heat 2000 J/kgK 

10. Viscosity (@40°C) 0.0293 Pa-s 

     Table 5.1 Input parameters 

The characteristics of the bearing were calculated for a full journal bearing with different 

eccentricity ratios considering and without considering the misalignment effect. Misalignment 

parameter was varied from 0 to 0.2 for the analysis of misaligned journal bearing. The results 

obtained have been discussed further. 
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The iterations were carried out with 100 nodes in both x and y directions. The terminating value 

for residual for iterations to solve Vogelpohl equation and attitude angle were set to 0.000001 

and 0.0001 respectively. The relaxation factors for both the iterations were set to 1.2 and 1 

respectively. The maximum number cycles for both the iterations are limited to 100.  

S.No. Eccentricity 

Ratio 

Dimensionless load 

for misalignment 

parameter t=0 

Dimensionless load 

for misalignment 

parameter t=0.1 

Dimensionless load 

for misalignment 

parameter t=0.2 

1. 0.1 0.028154 0.028238 0.028284 

2. 0.3 0.096704 0.095815 0.096068 

3. 0.5 0.21585 0.2162 0.21272 

4. 0.7 0.53318 0.53588 0.54425 

5. 0.9 2.4729 2.6496  4.0948 

Table 5.2 Variation in dimensionless load for different eccentricity ratios 

S.No. Eccentricity 

Ratio 

Dimensionless 

maximum pressure for 

misalignment 

parameter t=0 

Dimensionless 

maximum pressure 

for misalignment 

parameter t=0.1 

Dimensionless 

maximum pressure 

for misalignment 

parameter t=0.2 

1. 0.1 0.026253 0.026357 0.026504 

2. 0.3 0.097539 0.096671 0.097149 

3. 0.5 0.24924 0.25024 0.25863 

4. 0.7 0.75334 0.76524 0.80365 

5. 0.9 5.2888 7.0263 51.853 

Table 5.3 Variation in dimensionless maximum pressure for different eccentricity ratios 

Now using equation for the dimensionless load, the load on the bearing was calculated according 

to the equation (4.16). 

         

Similarly the maximum pressure was calculated using equation 
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The variation in the maximum pressure due to misalignment is depicted using the following 

graph. 

 

Figure 5.1 Graph for the variation in maximum pressure with eccentricity ratio 

From the graph, it can be concluded that the maximum pressure in fluid film bearing is affected 

by the misalignment of shaft. Misalignment has much more severe effects at high values of 

eccentricity ratio. 

 

Figure 5.2 Graph for variation in pressure with misalignment parameter 
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S.No. Eccentricity 

Ratio 

Dimensionless friction 

coefficient for 

misalignment 

parameter t=0 

Dimensionless 

friction coefficient 

for misalignment 

parameter t=0.1 

Dimensionless 

friction coefficient 

for misalignment 

parameter t=0.2 

1. 0.1 230.62 230.13  230.68 

2. 0.3 83.703 84.518  84.724 

3. 0.5 58.105 58.196 59.863 

4. 0.7 49.807 50.085 50.976 

5. 0.9 9.4703 9.5959 4.3108 

Table 5.4 Variation in dimensionless friction coefficient for different eccentricity ratios 

Also the value of coefficient of friction was obtained using equation (4.17) 

      

 

S.No. Eccentricity 

Ratio 

Attitude angle for 

misalignment 

parameter t=0 

Attitude angle for 

misalignment 

parameter t=0.1 

Attitude angle for 

misalignment 

parameter t=0.2 

1. 0.1 83.306° 83.569° 83.509° 

2. 0.3 70.396° 70.675° 70.687° 

3. 0.5 57.256° 57.26° 56.842° 

4. 0.7 43.238° 43.202° 43.098° 

5. 0.9 25.555° 24.825° 19.973° 

Table 5.5 Variation in attitude angle coefficient for different eccentricity ratios 

From table 5.5, the variation in the attitude angle for different values of misalignment can be 

obtained. It has been found that the attitude angle decreases with increase in misalignment. 

However, the effect is more prominent for higher values of eccentricity ratio. 

The pressure fields for the bearing for the different values of eccentricity ratio and misalignment 

parameter were obtained. The pressure distribution obtained for eccentricity ratio equal to 0.1 is 

shown in the figure below. 
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Figure 5.3 Pressure field for =0.1 and t=0 

 

Figure 5.4 Pressure field for =0.1 and t=0.1 
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Figure 5.5 Pressure field for =0.1 and t=0.2 

 

 

Figure 5.6 Pressure field for =0.5 and t=0 
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Figure 5.7 Pressure field for =0.5 and t=0.1 

 

 

Figure 5.8 Pressure field for =0.5 and t=0.2 
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Figure 5.9 Pressure field for =0.7 and t=0 

 

Figure 5.10 Pressure field for =0.7 and t=0.1 
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Figure 5.11 Pressure field for =0.7 and t=0.2 

 

Figure 5.12 Pressure field for =0.9 and t=0 

 



59 
 

 

Figure 5.13 Pressure field for =0.9 and t=0.1 

 

Figure 5.14 Pressure field for =0.9 and t=0.2 
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From the pressure fields depicted above, it can be seen that the peak pressure in shifting from 

middle in case of aligned bearing towards the end in the case of misaligned bearing. The shifting 

increases as the misalignment increases and the effect are more prominent at higher eccentricity 

ratios. 

Computer program STABILITY was used to find out the variation in stiffness and damping 

coefficients due to misalignment. The characteristics of the bearing were calculated for a full 

journal bearing with different eccentricity ratios considering and without considering the 

misalignment effect. Misalignment parameter has been varied from 0 to 0.2 for the analysis of 

misaligned journal bearing. The results obtained have been discussed further. 

The bearing model and lubricant specifications are same as in the previous iterations (table 5.1). 

An additional input of dimensionless mass was required, which was assumed to be constant (0.1) 

throughout the program. The iterations were carried out with 100 nodes in both x and y 

directions. The terminating value for residual for iterations to solve Vogelpohl equation and 

attitude angle were set to 0.000001 and 0.0001 respectively. The relaxation factors for both the 

iterations were set to 1.2 and 1 respectively. The maximum number cycles for both the iterations 

are limited to 100. The incremental displacement in x and y direction is 0.001 each and the 

incremental squeeze velocity is also take as 0.001 each. 

 

S.No. Eccentricity 

Ratio 

Dimensionless critical 

frequency for 

misalignment 

parameter t=0 

Dimensionless 

critical frequency 

for misalignment 

parameter t=0.1 

Dimensionless 

critical frequency 

for misalignment 

parameter t=0.2 

1. 0.1 2.4809 2.5404 2.6053 

2. 0.3 2.8309 2.8344 2.8359 

3. 0.5 3.524 3.9064 3.4592 

4. 0.7 1.1822 1.1812 1.1602 

5. 0.9 0.4549 0.41714 0.19715 

Table 5.6 Variation in dimensionless critical frequency for different eccentricity ratios 
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Figure 5.15 Graph for the variation in critical frequency  

It has been found that the critical frequency decreases with the increase in misalignment. Thus, 

misaligned bearings must not be operated in close speeds to the critical speed as it may result in 

failure. However, at high values of misalignment, critical speed increases because of increase in 

kxx. 

 

S.No. Eccentricity 

Ratio 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0.1 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0.2 

kxx kxy kxx kxy kxx kxy 

1. 0.1 1.2652 1.8707 1.2253 1.7893 1.2971 1.8869   

2. 0.3 1.4138 0.96116   1.4167  0.96263 1.4237 0.96403 

3. 0.5 2.0101 1.3308   3.3929 3.8245 2.0283  1.3372 

4. 0.7  3.1659  1.748 3.1931 1.7646  3.2885 1.8205 

5. 0.9 10.055 4.578 11.615 5.1377   37.591 12.598 

Table 5.7 Variation in dimensionless stiffness coefficient (in x dir.) for different eccentricity ratios 
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S.No. Eccentricity 

Ratio 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0.1 

Dimensionless 

stiffness coefficient 

for misalignment 

parameter t=0.2 

kyx kyy kyx kyy kyx kyy 

1. 0.1 -2.339 -0.68395 -2.2735 -0.53542 -2.2795  -0.4551  

2. 0.3 -0.55014 0.61582 -0.54577  0.62262 -0.55566 0.62084   

3. 0.5 0.08083 0.85868  -0.03005 0.91515  0.077504  0.8655  

4. 0.7 0.33111 1.0963 0.33508  1.1009  0.3574 1.1182 

5. 0.9 1.3237 1.6111 1.6142 1.7167   6.6052 2.7864 

Table 5.8 Variation in dimensionless stiffness coefficient (in y dir.) for different eccentricity ratios 

 

S.No. Eccentricity 

Ratio 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0.1 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0.2 

Cxx Cxy Cxx Cxy Cxx Cxy 

1. 0.1 4.9625 4.5134 4.8637 4.3367 5.0467 4.3748 

2. 0.3 2.0616 2.217 2.0652 2.2155 2.0755 2.2139 

3. 0.5 2.2227 2.5075 2.2304 6.6548 2.2369 2.5042 

4. 0.7 2.7073 2.7069 2.7331 2.7209 2.8034 2.7409 

5. 0.9 6.8445 4.2514 7.3814 4.223 12.363 4.3018 

Table 5.9 Variation in dimensionless damping coefficients (in x dir.) for different eccentricity ratios 
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S.No. Eccentricity 

Ratio 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0.1 

Dimensionless 

damping coefficient 

for misalignment 

parameter t=0.2 

Cyx Cyy Cyx Cyy Cyx Cyy 

1. 0.1 -0.66668 4.0411   -0.50048 4.2757  -0.4919 4.4095   

2. 0.3 0.4748 1.9749  0.4756 1.9626 0.46824 1.969 

3. 0.5 0.73895 1.5216  0.765 1.5001 0.74304 1.5136   

4. 0.7 1.1057 1.4349  1.1149 1.4393 1.1304 1.4265  

5. 0.9 1.8652 1.2086  1.9241 1.1391  2.5728 0.90059 

Table 5.10 Variation in dimensionless damping coefficients (in y dir.) for different eccentricity ratios 

There is certain variation in the stiffness coefficients and the damping coefficients with the 

misalignment of shaft in a journal bearing. However, further analysis is required for the exact 

behaviour of a misaligned bearing in terms of stability conditions. 
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Chapter 6 

Conclusions and further scope 

 

Based on the results and discussions made in the previous chapter, following conclusions have 

been drawn for the configuration of bearing under study: 

 The most observable effect of misalignment of bearing is the decrease in minimum film 

thickness. High values of misalignment may result in metal to metal contact. 

 The maximum pressure increases in a misaligned bearing as compared to a perfectly 

aligned bearing. A large amount of increase in pressure is observed for high values of 

misalignment parameter.  

 The maximum pressure acting in a perfectly aligned bearing is at the mid plane of the 

bearing. However, the position of maximum pressure gets shifted towards the end for a 

misaligned bearing. 

 The coefficient of friction reduces considerably with increase in amount of misalignment 

in a journal bearing. 

 The attitude angle gets reduced with increase in misalignment of a bearing. 

 The critical frequency of bearing system is found to get reduced with increase in 

misalignment. 

 There magnitude of stiffness and damping coefficients also changes due to misalignment. 

 The results and conclusions discussed are found to be in much resemblance with the 

studies made earlier. The experimental results depicted by Bouyer et. al.[24] are found in 

agreement with the numerical results obtained from the Matlab program.  

Numerical analysis of journal bearing was carried out in order to study the operating 

characteristics and stability parameters under the influence of misalignment. However, still many 

assumptions like constant viscosity of the lubricant, neglecting the negative pressures etc have 

been made during the analysis. The strong influence of secondary effects such as lubricant 

heating and bearing deformation on bearing parameters still need to be carried out. With 

increases in the speed of computing it may become possible to perform the simultaneous analysis 

of several different effects on bearing performance, e.g. the combined effect of heating, 
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deformation and misalignment. The finite difference method used in numerical analysis is 

versatile and simple to apply, but is also relatively inaccurate. Newer methods of devising 

numerical equivalents of differential equations are being increasingly adopted. 
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Appendix 

Program MISALIGNMENT 

clc; cla reset; echo off; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbt tbd tbg tba tbinfo tbclose],'Enable','off'); 
% BEGIN OF INPUT DATA 
% ------------------- 
prompt = {'Eccentricity ratio:', 'L/D ratio:', 'Arc bearing angle [°]:', 
'Misaligment parameter from interval [0,0.5]:'}; 
title='INPUT DATA (PARTIAL)'; lineno=1; def={'0.8','1', '120', '0'}; answer= 
inputdlg(prompt,title,lineno,def); 
if size(answer) == 0, % PROGRAM IS TERMINATED 
    set(tbp, 'Value', get(tbp, 'Min')); set([tbv tbs tbt tbd tbg tba tbinfo 
tbclose],'Enable','on'); break; end; 
[epsilon,loverd,alpha,t] = deal(answer{:}); epsilon = str2num(epsilon); 
loverd = str2num(loverd); 
alpha = str2num(alpha); t = str2num(t); slender = 0.5/loverd; alpha = 
alpha*pi/180; 
if t < 0, t = 0; end; if t > 0.5, t = 0.5; end; 
% SET MESH CONSTANTS 
prompt = {'Number of nodes in the i or x direction:','Number of nodes in the 
j or y direction:','Terminating value of residual for iter. to solve 
Vogelpohl equation:','Terminating value of residual for iter. to find 
attitude angle:','Relaxation factor of iter. to solve Vogelpohl 
equation:','Relaxation factor of iter. to find attitude angle:','Max number 
of cycles during iter. to solve Vogelpohl equation:','Max number of cycles 
during iter. to find attitude angle:'}; 
title='INPUT DATA (PARTIAL)'; lineno=1; def={'11','11','0.000001', '0.0001', 
'1.2', '1', '100','30'}; 
answer= inputdlg(prompt,title,lineno,def); 
if size(answer) == 0, % PROGRAM IS TERMINATED 
    set(tbp, 'Value', get(tbp, 'Min')); set([tbv tbs tbt tbd tbg tba tbinfo 
tbclose],'Enable','on'); break; end; 
[inode,jnode,reslim1,reslim2,factor1,factor2,nlim1,nlim2] = deal(answer{:}); 
inode = str2num(inode); jnode = str2num(jnode); reslim1 = str2num(reslim1); 
reslim2 = str2num(reslim2); 
factor1 = str2num(factor1); factor2 = str2num(factor2); nlim1 = 
str2num(nlim1); nlim2 = str2num(nlim2); 
% END OF INPUT DATA 
% ----------------- 
subplot(1,1,1); 
text('units','normalized','position',[0.2 0.55], 'FontWeight', 
'bold','color',[1 0 0], 'string', 'CALCULATIONS IN PROGRESS'); 
figure(1); slender = 0.5/loverd; deltax = alpha/(inode-1); deltay = 1/(jnode-
1); 
% DIFFERENTIAL QUANTITIES FOR STABILITy CALCULATIONS 
% INITIALIZE VALUES OF M(I,J), SWITCH(I,J) AND P(I,J) 
M = zeros(inode,jnode); P = zeros(inode,jnode); 
% SET INITIAL VALUE OF OFFSET ANGLE 
beta = 0; 
% ENTER ATTITUDE ANGLE ITERATION CYCLE, CALCULATE H, F AND G VALUES 
n2 = 0; betas = 0; residb = reslim2 + 10; 
while (residb > reslim2) & (n2 < nlim2), 
    n2 = n2 + 1; 
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for i = 1:inode,
        xaux = (i-1)*deltax + pi - 0.5*alpha; theta = xaux - beta; 
        for j = 1:jnode, 
            y = (j-1)*deltay - 0.5; h0 = y*t*cos(xaux) + epsilon*cos(theta) + 
1; 
            dhdx0 = -y*t*sin(xaux) - epsilon*sin(theta); d2hdx20 = -
y*t*cos(xaux) - epsilon*cos(theta); 
            dhdy0 = t*cos(xaux); d2hdy20 = 0; H(i,j) = h0; G(i,j) = 
dhdx0/h0^1.5; 
            F(i,j) = 0.75*(dhdx0^2 + (slender*dhdy0)^2)/h0^2 + 1.5*(d2hdx20 + 
d2hdy20*slender^2)/h0; 
        end; 
    end; 
    coeff1 = 1/deltax^2; coeff2 = (slender/deltay)^2; 
    % ------------------------------------------ 
    % SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
    sum2 = 0; n1 = 0; residp = reslim1 + 10; 
    while (residp > reslim1) & (n1 < nlim1), 
        n1 = n1 + 1; sum = 0; 
        for i = 2:inode-1, 
            for j = 2:jnode-1, 
                store = ((M(i+1,j) + M(i-1,j))*coeff1 + (M(i,j+1) + M(i,j-
1))*coeff2 -G(i,j))/(2*coeff1 + 2*coeff2 + F(i,j)); 
                M(i,j) = M(i,j) + factor1*(store-M(i,j)); 
                if M(i,j) < 0, M(i,j) = 0; end; 
                sum = sum + M(i,j); 
            end; 
        end; 
        residp = abs((sum-sum2)/sum); sum2 = sum; 
    end; 
    % ---------------------------------------- 
    % FIND PRESSURE FIELD FROM VOGELPOHL PARAMETER 
    for i = 2:inode-1, 
        for j = 2:jnode-1, 
            P(i,j) = M(i,j)/H(i,j)^1.5; 
        end; 
    end; 
    % ITERATION RESIDUAL ON ATTITUDE ANGLE ITERATION 
    % CALCULATE TRANSVERSE AND AXIAL LOADS 
    % ----------------------------------- 
    % SUBROUTINE TO INTERGRATE FOR FORCES 
    for i = 1:inode, 
        SUMY(i) = 0; 
        for j = 2:jnode, SUMY(i) = SUMY(i) + P(i,j) + P(i,j-1); end; 
        SUMY(i) = SUMY(i)*0.5*deltay; 
    end; 
    axialw = 0; transw = 0; 
    for i = 2:inode, 
        x = (i-1)*deltax + pi - 0.5*alpha; x2 = (i-2)*deltax + pi - 
0.5*alpha; 
        axialw = axialw - cos(x)*SUMY(i) - cos(x2)*SUMY(i-1); transw = transw 
+ sin(x)*SUMY(i) + sin(x2)*SUMY(i-1); 
    end; 
    axialw = axialw*deltax*0.5; transw = transw*deltax*0.5; 
    % ------------------------- 
    loadw = sqrt(axialw^2 + transw^2); attang = atan(transw/axialw); 
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if axialw > 0, attang1 = attang; end; if axialw < 0, attang1 = -attang; 
end; 
    beta = beta + factor2*attang1; residb = abs((beta-betas)/beta); betas = 
beta; 
end; 
% ------------------------------------------ 
for j = 1:jnode, ICAV(j) = 1000; end; 
for j = 2:jnode-1, 
    for i = 2:inode, 
        if (M(i,j) == 0) & (ICAV(j) == 1000), ICAV(j) = i; end; 
    end; 
end 
% EXTRAPOLATED VALUES OF ICAV(J) AT EDGES OF BEARING 
ICAV(1) = 2*ICAV(2) - ICAV(3); if ICAV(1) < 1, ICAV(1) = 1; end; 
if ICAV(1) > inode, ICAV(1) = inode; end; ICAV(jnode) = 2*ICAV(jnode-1) - 
ICAV(jnode-2); 
if ICAV(jnode) < 1, ICAV(jnode) = 1; end; if ICAV(jnode) > inode, ICAV(jnode) 
= inode; end; 
% CALCULATE FRICTION COEFFICIENT 
% FIND VALUES OF DIMENSIONLESS SHEAR STRESS 
for i = 1:inode, 
    for j = 1:jnode, 
        % CALCULATE dpdx FROM DOWNSTREAM VALUES 
        if i > 1, dpdx = (P(i,j) - P(i-1,j))/deltax; end; 
        % VALUE OF dpdx FOR i = 1 
        if i == 1, dpdx = P(2,j)/deltax; end; if i < ICAV(j), TORR(i,j) = 
1/H(i,j) + 3*dpdx*H(i,j); end; 
        if i == ICAV(j), TORR(i,j) = 1/H(i,j); end; i10 = ICAV(j); 
        if i > ICAV(j), TORR(i,j) = H(i10,j)/H(i,j)^2; end; 
    end; 
end; 
% INTEGRATE FOR TORR(i,j) OVER X AND Y 
for i = 1:inode, 
    % LINE INTEGRAL IN Y-SENSE 
    SUMY(i) = 0; 
    for j = 2:jnode, SUMY(i) = SUMY(i) + TORR(i,j) + TORR(i,j-1); end; 
    SUMY(i) = SUMY(i)*0.5*deltay; 
end; 
friction = 0; 
for i = 2:inode, friction = friction + SUMY(i) + SUMY(i-1); end; 
friction = friction*0.5*deltax; 
% ---------------------------- 
% CALCULATE DIMENSIONLESS FRICTION COEFFICIENT 
myu = friction/loadw; 
% SEARCH FOR MAXIMUM PRESSURE 
pmax = 0; 
for i = 2:inode-1, 
    for j = 2:jnode-1, 
        if P(i,j) > pmax, pmax = P(i,j); end; 
    end; 
end; 
% EXPRESS ALL PRESSURES AS PERCENTAGE OF MAXIMUM PRESSURE 
for i = 1:inode, 
    for j = 1:jnode, 
        P(i,j) = P(i,j)*100/pmax; 
    end; 
end; 
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% PRESSURE FIELD PLOT
xi = 0:inode-1; yj = 0:jnode-1; xi = (xi*alpha*180/pi)/(inode-1); yj = 
yj/(jnode-1); 
colormap([0.5 0.5 0.5]); subplot(1,1,1); surfl(xi,yj,P'); axis([0 max(xi) 0 1 
0 100]); 
xlabel('Degrees'); ylabel('Inlet'); zlabel('Dimensionless pressure [%]'); 
text('units','normalized','position',[0.1 1.05],'string', 'PRESSURE FIELD FOR 
JOURNAL BEARING'); 
% PRINT OUT VALUES OF INPUT AND OUTPUT DATA 
% ----------------------------------------- 
fprintf(' \n'); fprintf(' INPUT AND OUTPUT DATA FOR PROGRAM PARTIAL\n'); 
fprintf(' \n'); 
fprintf(' INPUT DATA:\n'); 
fprintf(' Eccentricity ratio = %0.5g\n',epsilon); 
fprintf(' L/D ratio = %0.5g\n',loverd); 
fprintf(' Bearing arc angle = %0.5g°\n',alpha*180/pi); 
fprintf(' Misaligment parameter = %0.5g\n',t); 
fprintf(' \n'); 
fprintf(' OUTPUT DATA:\n'); 
fprintf(' Dimensionless load = %0.5g\n', loadw); 
fprintf(' Attitude angle = %0.5g°\n',beta*180/pi); 
fprintf(' Dimensionless friction coefficient = %0.5g\n', myu) 
fprintf(' Maximum dimensionless pressure = %0.5g\n',pmax); 
fprintf(' \n'); fprintf(' PROGRAM MISALIGNMENT HAS BEEN COMPLETED\n'); 
set(tbp, 'Value', get(tbp, 'Min')); set([tbv tbs tbt tbd tbg tba tbinfo 
tbclose],'Enable','on'); 
 

Program STABILITY 

clc; cla reset; echo off; warning off; 
global reslim1 nlim1 inode jnode SWITCH1 M G F coeff1 coeff2 sum2; 
global SUMY P deltay deltax axialw transw alpha factor1 residp; 
clear global reslim1 nlim1 inode jnode SWITCH1 M G F coeff1 coeff2 sum2; 
clear global SUMY P deltay deltax axialw transw alpha factor1 residp; 
global tbv tbs tbp tbt tbd tbg tba tbinfo tbclose; 
set([tbv tbs tbp tbt tbd tbg tbinfo tbclose],'Enable','off'); 
% BEGIN OF INPUT DATA 
% ------------------- 
prompt = {'Eccentricity ratio:','L/D ratio:','Arc bearing angle 
[°]:','Misaligment parameter from interval [0,0.5]:','Dimensionless exciter 
mass:'}; 
title='INPUT DATA (STABILITY)'; lineno=1; def={'0.7', '1', '120', 
'0.3','0.1'}; answer= inputdlg(prompt,title,lineno,def); 
if size(answer) == 0, % PROGRAM IS TERMINATED 
    set(tba, 'Value', get(tba, 'Min')); set([tbv tbs tbp tbt tbd tbg tbinfo 
tbclose],'Enable','on'); break; end; 
[epsilon,loverd,alpha,t,gamma] = deal(answer{:}); epsilon = str2num(epsilon); 
loverd = str2num(loverd); 
alpha = str2num(alpha); t = str2num(t); gamma = str2num(gamma); alpha = 
alpha*pi/180; 
prompt = {'Number of nodes in the i or x direction:','Number of nodes in the 
j or y direction:','Terminating value of residual for iter. to solve 
Vogelpohl equation:','Terminating value of residual for iter. to find 
attitude angle:','Relaxation factor of iter. to solve Vogelpohl 
equation:','Relaxation factor of iter. to find attitude angle:'}; 
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title='INPUT DATA (STABILITY)'; lineno=1; def={'11', '11', '0.0000001', 
'0.00001', '1.2','1'}; 
answer= inputdlg(prompt,title,lineno,def); 
if size(answer) == 0, % PROGRAM IS TERMINATED 
    set(tba, 'Value', get(tba, 'Min')); set([tbv tbs tbp tbt tbd tbg tbinfo 
tbclose],'Enable','on'); break; end; 
[inode,jnode,reslim1,reslim2,factor1,factor2] = deal(answer{:}); inode = 
str2num(inode); jnode = str2num(jnode); 
reslim1 = str2num(reslim1); reslim2 = str2num(reslim2); factor1 = 
str2num(factor1); factor2 = str2num(factor2); 
prompt = {'Max number of cycles during iter. to solve Vogelpohl 
equation:','Max number of cycles during iter. to find attitude 
angle:','Incremental displacement in x direction:','Incremental displacement 
in y direction:','Incremental squeeze velocity in x direction of the above 
axes:','Incremental squeeze velocity in y direction of the above axes:'}; 
title='INPUT DATA (STABILITY)'; lineno=1; 
def={'100','30','0.001','0.001','0.001','0.001'}; 
answer= inputdlg(prompt,title,lineno,def); 
if size(answer) == 0, % PROGRAM IS TERMINATED 
    set(tba, 'Value', get(tba, 'Min')); set([tbv tbs tbp tbt tbd tbg tbinfo 
tbclose],'Enable','on'); break; end; 
[nlim1,nlim2,dx,dy,w0x,w0y] = deal(answer{:}); nlim1 = str2num(nlim1); nlim2 
= str2num(nlim2); 
dx = str2num(dx); dy = str2num(dy); w0x = str2num(w0x); w0y = str2num(w0y); 
% END OF INPUT DATA] 
% ----------------- 
subplot(1,1,1); 
text('units','normalized','position',[0.2 0.55], 'FontWeight', 
'bold','color',[1 0 0], 'string', 'CALCULATIONS IN PROGRESS'); 
figure(1); deltax = alpha/(inode-1); deltay = 1/(jnode-1); slender = 
0.5/loverd; 
% INITIALIZE VALUES OF M(i,j), SWITCH1(i,j) & P(i,j) 
M = zeros(inode,jnode); SWITCH1 = zeros(inode,jnode); P = zeros(inode,jnode); 
% SET INITIAL VALUE OF OFFSET ANGLE 
beta = 0; 
% ENTER ATTITUDE ANGLE ITERATION CYCLE, CALCULATE H,F & G VALUES 
n2 = 0; betas = 0; residb = reslim2 + 10; 
while (residb > reslim2) & (n2 < nlim2), 
    n2 = n2+1; 
    for i = 1:inode, 
        x = (i-1)*deltax + pi - 0.5*alpha; theta = x - beta; 
        for j = 1:jnode, 
            y = (j-1)*deltay - 0.5; h0 = y*t*cos(x) + epsilon *cos(theta) + 
1; dhdx0 = -y*t*sin(x) - epsilon *sin(theta); 
            d2hdx20 = -y*t*cos(x) - epsilon *cos(theta); dhdy0 = t*cos(x); 
d2hdy20 = 0; H(i,j) = h0; G(i,j) = dhdx0/h0^1.5; 
            F(i,j) = 0.75*(dhdx0^2 + (slender*dhdy0)^2)/h0^2 + 1.5*(d2hdx20 + 
d2hdy20*slender^2)/h0; 
            DHDX(i,j) = dhdx0; D2HDX2(i,j) = d2hdx20; DHDY(i,j) = dhdy0; 
        end; 
    end; 
    coeff1 = 1/deltax^2; coeff2 = (slender/deltay)^2; 
    % SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
    vogel_stability; 
    % FIND PRESSURE FIELD FROM VOGELPOHL PARAMETER 
    for i = 2:inode-1, 
        for j = 2:jnode-1, 
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P(i,j) = M(i,j)/H(i,j)^1.5;
        end; 
    end; 
    % ITERATION RESIDUAL ON ATTITUDE ANGLE ITERATION 
    % SUBROUTINE TO CALCULATE TRANSVERSE AND AXIAL LOADS 
    loads_stability;  
    loadw = sqrt(axialw^2 + transw^2); attang = atan(transw/axialw); 
    if axialw > 0, attang1 = attang; end; if axialw < 0, attang1 = -attang; 
end; 
    beta = beta + factor2*attang1; residb = abs((beta-betas)/beta); betas = 
beta; 
end; 
% STABILIZATION OF M(i,j) FIELD BEFORE COMPUTATION OF STIFFNESS AND 
% DAMPING COEFFICIENTS *** FIX LOCATION OF CAVITATION FRONT USING 
SWITCH1(i,j) 
for i = 2:inode-1, 
    for j = 2:jnode-1, 
        if M(i,j) == 0, SWITCH1(i,j) = 1; end; 
    end; 
end; 
% CALCULATE VALUES OF F(i,j) AND G(i,j) USING FINAL VALUE OF beta 
for i = 1:inode, 
    x = (i-1)*deltax + pi - 0.5*alpha; theta = x - beta; 
    for j = 1:jnode, 
        y = (j-1)*deltay - 0.5; h0 = y*t*cos(x) + epsilon *cos(theta) + 1; 
dhdx0 = -y*t*sin(x) - epsilon *sin(theta); 
        d2hdx20 = -y*t*cos(x) - epsilon *cos(theta); dhdy0 = t*cos(x); 
d2hdy20 = 0; H(i,j) = h0; G(i,j) = dhdx0/h0^1.5; 
        F(i,j) = 0.75*(dhdx0^2 + (slender*dhdy0)^2)/h0^2 + 1.5*(d2hdx20 + 
d2hdy20*slender^2)/h0; 
        DHDX(i,j) = dhdx0; D2HDX2(i,j) = d2hdx20; DHDY(i,j) = dhdy0; 
    end; 
end; 
% RE-ITERATE: REMOVE ANY CAVITATION INDUCED INSTABILITIES IN M FIELD 
% SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
vogel_stability; 
% SAVE VALUES OF M(i,j) 
for i = 1:inode, 
    for j = 1:jnode, 
        MSAVE(i,j) = M(i,j); 
    end; 
end; 
% SUBROUTINE TO CALCULATE TRANSVERSE AND AXIAL LOADS 
loads_stability; loadw = sqrt(axialw^2 + transw^2); loadw1 = loadw; 
% CALCULATE STIFFNESS COEFFICIENTS kxx AND kyx 
for i = 1:inode, 
    x = (i-1)*deltax + pi -0.5*alpha; 
    for j = 1:jnode, 
        h0 = H(i,j) + dx*cos(x); dhdx0 = DHDX(i,j) - dx*sin(x); d2hdx20 = 
D2HDX2(i,j) - dx*cos(x); G(i,j) = dhdx0/h0^1.5; 
        F(i,j) = 0.75*(dhdx0^2 + (slender*DHDY(i,j))^2)/h0^2 + 
1.5*d2hdx20/h0; 
    end; 
end; 
% SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
vogel_stability; 
% CALCULATE CHANGE IN FORCES 



76 
 

for i = 1:inode,
    x = (i-1)*deltax + pi - 0.5*alpha; 
    for j = 1:jnode, 
        P(i,j) = M(i,j)/(H(i,j)+dx*cos(x))^1.5- MSAVE(i,j)/H(i,j)^1.5; 
    end; 
end; 
% SUBROUTINE TO CALCULATE TRANSVERSE AND AXIAL LOADS 
loads_stability; kxx = axialw/(dx*loadw1); kyx = -transw/(dx*loadw1);% 
CALCULATE STIFFNESS COEFFICIENTS kxx AND kyx 
for i = 1:inode, 
    x = (i-1)*deltax + pi - 0.5*alpha; 
    for j = 1:jnode, 
        h0 = H(i,j) + dy*sin(x); dhdx0 = DHDX(i,j) + dy*cos(x); d2hdx20 = 
D2HDX2(i,j) - dy*sin(x); G(i,j) = dhdx0/h0^1.5; 
        F(i,j) = 0.75*(dhdx0^2 + (slender*DHDY(i,j))^2)/h0^2 + 
1.5*d2hdx20/h0; 
    end; 
end; 
% SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
vogel_stability; 
% CALCULATE CHANGE IN FORCES 
for i = 1:inode 
    x = (i-1)*deltax + pi - 0.5*alpha; 
    for j = 1:jnode, P(i,j) = M(i,j)/(H(i,j)+dy*sin(x))^1.5 - 
MSAVE(i,j)/H(i,j)^1.5; end; 
end; 
% SUBROUTINE TO CALCULATE TRANSVERSE AND AXIAL LOADS 
loads_stability; kyy = -transw/(dy*loadw1); kxy = axialw/(dy*loadw1); 
% CALCULATE DAMPING FORCES cxx AND cyx 
for i = 1:inode, 
    x = (i-1)*deltax + pi - 0.5*alpha; w = w0x*cos(x); 
    for j = 1:jnode, 
        G(i,j) = (DHDX(i,j) + 2*w)/H(i,j)^1.5; 
        F(i,j) = 0.75*(DHDX(i,j)^2 + (slender*DHDY(i,j))^2)/H(i,j)^2 + 
1.5*D2HDX2(i,j)/H(i,j); 
    end; 
end; 
% SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
vogel_stability; 
% CALCULATE CHANGE IN FORCES 
for i = 1:inode, 
    for j = 1:jnode, P(i,j) = M(i,j)/H(i,j)^1.5 - MSAVE(i,j)/H(i,j)^1.5; end; 
end; 
% SUBROUTINE TO CALCULATE TRANSVERSE AND AXIAL LOADS 
loads_stability; 
% CALCULATE DAMPING FORCES cxx AND cyx 
cxx = axialw/(w0x*loadw1); cyx = -transw/(w0x*loadw1); 
for i = 1:inode, 
    x = (i-1)*deltax + pi - 0.5*alpha; w = w0y*sin(x); 
    for j = 1:jnode, 
        G(i,j) = (DHDX(i,j) + 2*w)/H(i,j)^1.5; 
    end; 
end; 
% SUBROUTINE TO SOLVE THE VOGELPOHL EQUATION 
vogel_stability; 
% CALCULATE CHANGE IN FORCES 
for i = 1:inode, 


