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Abstract

In the present thesis, various aspects of glucose - insulin dynamics, its consequences

and maintenance of glucose level in and around physiological range in diabetics have

been discussed through mathematical model. We have analyzed different mathemat-

ical models which satisfies the physiology behind the mechanism involved in glucose

- insulin dynamics of both type 1 diabetics and type 2 diabetics. We have investigat-

ed the facts and reasons behind the consistently raised glucose concentration level

in the people suffering from diabetes. After analyzing several systems, various result-

s obtained by dynamical analysis of the problems are discussed. All mathematical

models have been analyzed for stability, positiveness and boundedness. Local lin-

earization, Routh-Hurwitz stability criterion, Lyapunov function, Runge-Kutta method,

Matlab 2012b (ode45, dde45) are the main tools applied for analysis and simulation of

mathematical models.

We have studied two types of mathematical models : ordinary differential equations

(ODE) model and delay differential equations (DDE) model. The delay occurred in the

dynamics of different phenomena is responsible for the severity of the disease and

hence in its treatment. Therefore, importance of DDE model can not be ignored in the

development of artificial pancreas. DDE models have been developed for the better

functioning of artificial pancreas.

Keywords : Glucose, Insulin, Insulin pump, Artificial pancreas, Vitamin D, Free Fatty

Acids, Obesity, Liver, Kidney, Central nervous system (CNS), Delays, Intravenous glu-

cose tolerance tests, Insulin analogues, Aspart, Lispro, Ordinary differential equations

(ODE), Delay differential equations (DDE).
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Chapter 1

Introduction

This chapter is introductory in nature which gives a short review of the work done in the

field till now about the physiology of diabetes through important mathematical equations.

In this chapter, literature survey has been made which describe the types of diabetes,

its diagnosis, risk factors, symptoms and treatment of disease. The basic mathematical

model is discussed in the chapter which explains the glucose - insulin dynamics precisely

and clearly. The purpose of this chapter is to provide the motivation behind the work

carried out in the thesis.

1



2

1.1 Introduction

Diabetes is a global problem with devastating human, social and economic impact. It

is a growing epidemic threatening to overwhelm global health care services, especially

in developing countries. The number of people with diabetes is increasing due to aging,

urbanization, and increasing prevalence of obesity and physical inactivity. Diabetes is a

highly prevalent disease in India where more than 35 million people suffer from diabetes.

Diabetes is mostly a problem in the western countries today, but as more and more devel-

oping countries switch from manual to knowledge-based sedentary labor as their primary

source of income, the number of people with diabetes in these countries is expected to

soar. By the year 2030, total number of people in the world with diabetes will increase

from 171 million in 2000 to 366 million [1]. India had 32 million diabetic subjects in the

year 2000 and this number would increase to 80 million by the year 2030 as estimated

by World Health Organisation (WHO) [1]. The International Diabetes Federation (IDF)

also reported that the total number of diabetic subjects in India is 41 million in 2006

and this would rise to 70 million by the year 2025 [2]. International Diabetes Federation

reported that 48.3 % of the total population have diabetes and the figures are expected

to rise to 9.9 % by 2030 [2].

Diabetes - a disease reorganised centuries ago has entered into an era of existing scien-

tific research, discovery and controversy. Obesity and diabetes are the results of modern

lifestyle adopted by human. It is also estimated that several million people have the

diabetes but are unaware of it. Diabetes and the complications associated with it impose

burden on the individuals, families, health system and on countries. WHO reported that

diabetes will be the 7th leading cause of death by the year 2030 [3]. In 2012, an estimat-

ed 1.5 million deaths were directly caused by diabetes [4]. More than 80 % of diabetes

deaths occur in low and middle income countries [4]. Healthy diet, regular physical ac-

tivity, maintaining a normal body weight and avoiding tobacco use can prevent or delay

the onset of type 2 diabetes [5].

Due to large population of diabetes patients in the world and the big health expenses,

many researchers are motivated to study the glucose-insulin endocrine metabolic regu-

latory system so that we can better understand the working of mechanism [6–12], what

cause the dysfunction of the system [13].

Diabetic research is very young. It is reported that most of the path - breaking research
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has been done in the late 80’s and early 1990’s. A total of 2,77,781 papers were published

all over the world in the SCI (expanded) - indexed journals on diabetes during 1976 -

2006. Out of these, 3,068 research papers were contributed by India which was just 1.04

% [14].

Diabetes is epidemic ?

Increasing prevalence of the disease demands this description whether diabetes is epi-

demic or not. The declaring of diabetes as an epidemic also helps make clear that public

health approaches must be brought to bear in its control. The strategies used to con-

trol the disease includes surveillance, risk identification, interventions, identification of

affected individuals and monitoring of outcomes. Such approaches helps to control the

communicable disease. In addition to surveillance and risk reduction, disease control also

relies on “find them, treat them” approach. The diabetes epidemic is expected to increase

at an alarming rate unless effective prevention and treatment measures are put in place.

1.2 History of diabetes

Diabetes was a well known disease by the 17th century. Apollonius of Memphis was the

first physician to actually call “diabetes”. In 20th century, if a patient was diagnosed with

diabetes it was the same as a death sentence. During 1900’s the first known treatment

was starvation. In 1920’s lack of insulin was considered as a symptom of diabetes. In

1944, an insulin syringe was developed in order to make diabetes more controllable. In

1990 external insulin pumps were created for own use. In 1993 doctors started use of

glucose tablets [15].

1.3 What is diabetes?

Diabetes, commonly referred to as Diabetes Mellitus, means sweet urine. Long persis-

tence of high blood sugar level in our bloodstream leads to a condition named as diabetes.

In diabetes, the absence or insufficient production of insulin by the organ liver causes hy-

perglycemia. Diabetes is a syndrome characterized by chronic hyperglycemia resulting

from absence or relative impairment in insulin secretion and/or insulin action. It can also
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be referred to as a condition characterized by the disturbances of carbohydrate, protein

and fat metabolism, the way our bodies use digested food for growth and energy [16].

1.3.1 Physiology of diabetes

When food is given to the body, it is broken down into smaller components - sugar and

carbohydrates, which further broken down into glucose for the body to utilize it as an

energy source. Glucose is also produced by liver. In normal body, the hormone insulin,

which is secreted by the β cells of the pancreas, helps the muscle and fat cells to utilize

glucose. Glucagon is secreted by the α cells of the pancreas and increase the glucose level

in body. Liver stores the glucagon into glycogen form, which further break down into

glucose when the glucose level falls in the blood. When blood glucose level falls, during

exercise for example, insulin level falls too. In diabetic condition, the glucose - insulin

dynamics is disrupted and insufficient or no insulin is secreted from the β cells due to

β cell defect which leads to high glucose level [17]. Also, the glucagon secretion from α

cells is disturbed, resulting excess glucagon or insufficient glucagon release leads to high

glucose level (hyperglycemia) or low glucose level (hypoglycemia).

1.3.2 Types of diabetes

Diabetes is of mainly three types : Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus

and Gestational Diabetes.

1. Type 1 diabetes mellitus (T1DM)

Type 1 diabetes also known as insulin - dependent diabetes mellitus (IDDM) or juvenile

- onset diabetes. In this condition the immune system attacks and destroys the β cells

of pancreas, which will create insulin deficiency. Thus it is termed as an autoimmune

disease where there are anti insulin or anti islet cell antibodies present in blood. These

causes lymphocytic infiltration and destruction of the pancreas islets. The destruction

may take time but the onset of the disease is rapid and may occur over a few days to

weeks. Type 1 diabetes does not respond to insulin - stimulating oral drugs and hence

always requires insulin therapy. About 5% to 10% of all diabetics are diagnosed with

type 2 diabetes. Autoimmune, genetic, and environmental factors are the risk factors for

type 1 diabetes.



5

Symptoms of T1DM

• Increased thirst

• Frequent urination

• Bedwetting in children

• Extreme hunger

• Weight loss

• Irritability

• Fatigue and weakness

• Blurred vision

• A vaginal yeast infection in females [18]

Risk factors of T1DM

• Family history

• Unhealthy food

• Overeating

• Diseases of pancreas

2. Type 2 diabetes mellitus (T2DM)

Type 2 diabetes also known as adult onset or non - insulin dependent diabetes mellitus

(NIDDM). Type 2 diabetes is caused by a relative deficiency of insulin but not an absolute

deficiency. The body is unable to produce sufficient amount of insulin to lower blood

glucose level [19]. There is β cell deficiency coupled with peripheral insulin resistance [20].

Peripheral insulin resistance means that inspite of high level of insulin, blood glucose level

never lower down. The reason are may be the changes in insulin receptors that bring the

actions of the insulin. Obesity is considered as the main cause of insulin resistance. Type

2 diabetes may account for 90% to 95% of all diagnosed with cases of diabetes. Type 2

diabetes is increasingly being diagnosed in children and adolescents [21].
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Symptoms of T2DM

• Increased thrust and frequent urination

• Increased hunger

• Weight loss

• Fatigue

• Blurred vision

• Frequent infection

• Areas of darkened skin [22]

Risk factors of T2DM

• Family history of diabetes

• Overeating

• Unhealthy diet

• Physical inactivity

• Increasing age

• High blood pressure

• History of gestational diabetes

• Poor nutrition during pregnancy

• Insulin resistance

• Low level of High Density Lipoprotein (HDL) cholesterol and high level of triglyc-

erides (TG)

• Sedentary lifestyle

• Polycystic ovary syndrome
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3. Gestational diabetes

Gestational diabetes is among pregnant women who have never had diabetes before but

having high blood glucose levels during pregnancy. It is caused when there are excessive

counter insulin hormones of pregnancy and leads to a state of insulin resistance and

high blood sugar. According to 2014 analysis by the centers for diabetes control and

prevention, the prevalence of gestational diabetes is as high as 9.2 % [23].

Risk factors of gestational diabetes

• Age greater than 25 : When older than 25 age, they are more likely to develop

gestational diabetes

• Family history

• Over weight

• Women who are black Hispanic, American Indian or Asian are more likely to develop

gestational diabetes, while the reason is not clear.

1.4 Glucose - insulin endocrine metabolic regulatory system

Normal range of the glucose concentration level is considered as 70 - 110 mg/dl and the

person is said to have glucose problem if the glucose concentration crossed the normal

physiological range. Glucagon and insulin are the pancreatic endocrine hormones which

plays an important role in regulating the glucose - insulin metabolic system. When

plasma glucose concentration level is high in the body, then following process will occur :

• Raised plasma glucose concentration triggered the pancreas to release insulin from

β cells.

• Insulin binds to the cells insulin receptors.

• Insulin receptors holding the insulin cause the glucose transporters (GLUT4) to

transport glucose into cells (muscles and adipose cells).

• Glucose is consumed by cells and later converted into energy.

When plasma glucose concentration level is low, the following dynamics will occur :
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• Low glucose concentration level triggered the α cells of pancreas to secrete glucagon.

• Secreted glucagon is transported to liver.

• Liver convert the glucagon into glucose.

The process increase the glucose concentration level in the plasma and unused glucose

is stored in liver which further convert into glucose if the glucose concentration lower

down in the plasma. Exogenous glucose infusion (meal ingestion, oral glucose uptake,

continuous eternal nutrition) increase the glucose concentration. Liver plays an important

role in maintaining the glucose concentration in the normal physiological range.

1.5 Some basic definitions and terms

• Glucose : is the most widely used aldohexose in living organisms. It is the main

source of energy for human body. Glucose is stored as a polymer, in plants as starch

and in animals as glycogen [24].

• Glycogen : is a multi branched polysaccharide of glucose that serves as a form of

energy. Glycogen is stored in the cells of liver and muscles hydrated with three or

four parts of water. Glycogen is found in the form of granules in the cytoplasm of

cells and pays an important role in the glucose cycle [25].

• Glucagon : is a peptide hormone, produced by α cells of the pancreas. It raises

the glucose concentration in the bloodstream and works just opposite to hormone

insulin which lowers glucose level. When the glucose concentration falls low in the

blood, then pancreas secrete glucagon [26].

• Endocrine system : is made up of glands that secrete chemical called “hormones” in-

to bloodstream or surrounding tissues. The system includes pituitary gland, thyroid

gland, parathyroid gland, adrenal gland, pancreas, testes and ovaries [27].

• α cells : are endocrine cells in the pancreatic islets of the pancreas and secrete the

peptide hormone glucagon [28].

• β cells : are found in the pancreatic islets of the pancreas and make upto 65-80 % of

cells in the islets. The primary function of β cells is to store and release insulin [29].
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• GLUT4 : Glucose transporter type 4, is a protein encoded in human, by the GLUT4

gene and is insulin - regulated glucose transporter found primarily in adipose tissues

and muscles [30].

• Peptide hormone : is synthesized in cells from amino acids and having short amino

acid chain length than protein hormones [31].

• Pancreas : is an endocrine gland producing several important hormones like insulin,

glucagon, somatostatin etc. which circulate in the blood and performed different

functions. Pancreas also secrete several pancreatic juice containing digestive en-

zymes that helps in digestion and absorption of nutrients in small intestine [32].

• Insulin : Insulin is a peptide hormone produced by β cells of the pancreas. It absorb

glucose from blood to skeletal muscles and fat tissue to regulate the metabolism

of carbohydrates and fats. Insulin also inhibits the production of glucose by the

liver [33]. The role of insulin in the body is:

(i) facilitation of glucose transport through certain membranes;

(ii) convert glucose to glycogen;

(iii) slowdown of gluconeogenesis;

(iv) regulation of lipogenesis.

• Hyperglycemia : A condition in which the pancreas either does not secrete sufficient

amount of insulin or for unknown reason the secreted insulin does not help muscle

and liver cells to uptake glucose. This will rise the glucose concentration level in

the body and the condition is referred as hyperglycemia.

• Hypoglycemia : A condition in which extra amount of insulin secreted by pancreas

which lower the glucose concentration below the normal physiological range.

• Insulin resistance : A condition in which cells of the body fail to respond to normal

actions of hormone insulin. The cells become resistant to insulin and unable to

use it effectively which leads to high blood glucose level. Also β cells of the pan-

creas subsequently release the hormone insulin, which further increase the blood

insulin level in the body. Often the condition remain undetected and contribute

to occurrence of type 2 diabetes mellitus [34]. The exact reason behind the insulin

resistance is still unknown but some factors i.e lack of exercise, obesity, unbalanced

diet, physical inactivity may cause the insulin resistance.
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• Insulin sensitivity : is a general phenomenon in the body and can be measured

in different way through studies. Insulin sensitivity describe the sensitivity of the

body to the effects of insulin. Insulin sensitive body requires smaller amount of

insulin to lower blood glucose level than the person who have low sensitivity.

• Glucose effectiveness : Ability of glucose to enhance its own disappearance inde-

pendent of insulin presence [35].

• AIRglucose : First phase insulin response [36].

• DI (Disposition index) : Ability of pancreatic β cells to compensate for insulin

resistance [36].

• φ1 : First phase pancreatic responsivity [37].

• φ2 : Second phase pancreatic responsivity [37].

• Ultradian oscillations : An ultradian oscillation is a recurrent period or cycle re-

peated throughout a 24 hour day [38].

• Gluconeogenesis : is a process of generation of glucose from non carbohydrate

carbon substitutes such as glycerol, lactate and glycogenic amino acids [39].

• Lipogenesis : is a process of conversion of acetyl-Coenzyme A into fatty acids [40].

• Insulin pump: It is a small electronic device about the size of a paser used to

control the raised glucose concentration in the body by delivering precise doses of

rapid acting insulin 24 hr a day through a continuous subcutaneous insulin infusion

(CSII).

Basal dose : is the amount of insulin delivered continuously for normal functioning

of the body.

Bolus dose : is the additional amount of insulin which can be delivered in the body

to maintain the glucose concentration.

• Artificial pancreas : It is used to control blood glucose level of diabetic people by

providing the substitute of healthy pancreas. Improper functioning of β cells of the

pancreas motivates the researchers to develop substitutes of insulin [41]. The goal

of the artificial pancreas is to improve insulin replacement therapy, and to ease the

insulin therapy for the type 1 diabetic people.
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• Insulin lispro : Insulin lispro is a rapid acting insulin analogue and it was the first

insulin analogue to enter in the market in 1996 [42]. Insulin lispro has a shortened

delay of onset.

• Insulin aspart : Insulin aspart is also a rapid acting insulin analog and is manufac-

tured from the human insulin by changing a single amino acid.

• Insulin glargine : Insulin glargine developed by rDNA technology in 2002 is a long

acting basal insulin analogue, given once daily to help in controlling the raised blood

glucose level.

• Time delays : In the whole glucose - insulin regulatory system some delays are

observed. These delays are :

(i) A time delay in insulin secretion either the insulin secreted from the pancreas

or by insulin pump.

(ii) A time delay in inhibition in hepatic glucose production.

(iii) A time delay in insulin action to lower the glucose concentration.

1.6 Testing and treatment therapies for diabetes

Diabetes is a common disease, yet every individual needs unique care and treatment.

People with diabetes and their families should be encouraged to know about the latest

medical therapies and approaches to deal with the disease.

1.6.1 Glucose tolerance tests for diagnosis of disease

A number of glucose tolerance tests have been developed over the years and applied in

clinical experiments [37,43–46]. Glucose tolerance tests helps to diagonize if a person has

diabetes or not.

• A1c : is a blood test that provides information about a person’s average blood

glucose level over the past 3 months. The A1C test is also named as hemoglobin

A1c, HbA1c, or glycohemoglobin test [47].

• FSIGTT (Frequently sampled intravenous glucose tolerance test) : is a blood test

to measure the blood glucose level in which nothing (drink and eat) is given for 8
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to 12 hr before the test. If the glucose level is found > 126 mg/dl (7.0 mmol/l)

then the person is prone to have diabetes.

• OGTT (Oral glucose tolerance test) : In OGTT, a glass of glucose liquid (75 mg)

is given to the individual and blood samples are collected over 2 hr following the

glucose infusion. If the glucose level is > 200 mg/dl (11.1 mmol/l) then the person

may prone to diabetes.

• IVGTT (Intravenous glucose tolerance test) : A test in which glucose is injected in-

travenously and blood samples are collected following the glucose injection. IVGTT

and FSIGTT are used to test insulin sensitivity or response to high plasma glucose

concentration level. In these test plasma glucose and serum insulin are sampled

frequently and the individual need to fast for 8-10 hr before test. A bolus of 0.33

g/kg body weight [48] is given and is administered into an antecubital vein in ap-

proximately 2.5 min. Insulin sensitivity can be determined by taking information

from the sampled data.

1.6.2 Treatment therapies for diabetes

Diabetes is an incurable condition that can be improved through administration of

insulin or by adopting sedentary lifestyle.

1. Lifestyle

• Healthy eating

• Regular exercise

• Eating balanced diet

• Involved in physical activities

• Play outdoor games

2. Oral medication

In type 2 diabetes, blood glucose control is often controlled by proper meal planning,

weight loss and exercise timely. If these measures are not able to bring blood glucose

levels down near the normal range then the next step is to take oral medicine. Some
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of the medicines recommended by doctors are : Alpha-Glucosidase Inhibitors (acar-

bose, miglitol), Biguanides (metformin-alogliptin, metformin-canagliflozin, metformin-

glipizide, metformin-glyburide), DPP-4 Inhibitors (alogliptin, alogliptin and pioglitazone,

linagliptin), Meglitinides (nateglinide and repaglinide) and many more [49].

3. Insulin infusion

Blood glucose level should be monitored regularly for better living. Insulin is the most

potent agent to lower blood glucose, is rapidly effective and is easily titrated [50, 51].

However, insulin is a high-alert medication which requires accurate monitoring and s-

tandardized protocols to minimize risks while maximizing benefits [52, 53]. Intravenous

infusion is the preferred route to deliver insulin in critical care, labor and delivery. Type

1 diabetics and severe cases of type 2 diabetes who were treated with insulin require

subcutaneous insulin infusion [54].

(3.a) Continuous Subcutaneous Insulin Infusion (CSII)

CSII and multiple daily insulin injection therapy are effective means of diabetes man-

agement with the goal of achieving near to normal level of blood glucose and improved

lifestyle in severely affected diabetics Working of insulin pump is done in CSII style [55].

Insulin pump is not only for treatment of type 1 diabetics but also provide a feasible al-

ternative for type 2 diabetes for exogenous injection of insulin [56–58]. The recommended

insulin analogues for insulin pumps are [49] :

• short-acting : regular (R) (Humulin, Novolin, and other brands)

• rapid-acting: insulin aspart (NovoLog, FlexPen), insulin glulisine (Apidra), insulin

lispro (Humalog)

• intermediate-acting: insulin isophane (Humulin, Novolin, Iletin)

• long-acting: insulin detemir (Levemir), insulin glargine (Lantus).

Rapid acting insulin analogs are appropriate for insulin pumps. The stability of these

insulin in pumps has been confirmed.

Depending upon the severity of disease (Type 1 diabetes), artificial pancreas may be

considered as the future of CSII.
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(3.b) Artificial pancreas

All insulin pumps used for diabetic treatment follow the open loop approach i.e. insulin

is injected in the body without the prior knowledge of blood glucose level. A risk in

the open loop control in hypoglycemia. Many researchers have been making great ef-

forts in developing technology that will close the loop. The objective was to develop a

system that combines continuous blood glucose monitoring with an insulin pump and

thus works as an artificial pancreas. The idea of artificial pancreas came in 2005 from

Dr. Edward R. Damiano. He met with Dr. Steven Russell in order to design and get a

medical perspective on his proposed idea.

Working of artificial pancreas

The artificial pancreas has four components in order to make it work.

• A glucose sensor and transmitter that measures the glucose levels continuously.

• It transmits the information to a receiver that displays the glucose levels for the

patients at regular intervals.

• This is connected to a small computer which calculates how much insulin is required.

• Then via bluetooth the small computer give command to insulin pump to release

the required amount of insulin into the patient [41].

1.7 Development of mathematical model for diabetes

The two main variables involved in glucose - insulin regulatory system of human body

which can be observed or manipulate clinically are blood glucose level, G, and the blood

insulin level, I .

Let G(t) and I(t) represents the glucose and insulin concentration at time t ≥ 0. The

model comprises of :-

(Rate of change of glucose concentration) dG(t)
dt = glucose production - glucose utilization

and

(Rate of change of insulin concentration)
dI(t)

dt = insulin production - insulin utilization.

Glucose production : When glucose level drops below the basal level Gb, glucose is either
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released from the liver or given orally. Glucose is obtained from the food we eat in the

form of starch or sucrose. Glucose is also consumed through oral glucose intake, meal

ingestion, glucose infusion.

Hence,

dG(t)
dt

∝ (Gb−G(t)) (1.7.1)

Glucose utilization : The presence of insulin induces the metabolism of sugar, hence

lowering the blood sugar level. Higher amount of blood sugar level or insulin level makes

the utilization faster, hence the product of two levels is an adequate representation for

glucose utilization.

dG(t)
dt

∝ −G(t)I(t) (1.7.2)

Hence rate of change of glucose concentration may be modeled as :

dG(t)
dt

= a(Gb−G(t))−bG(t)I(t) (1.7.3)

where a and b are the sensitivities of glucose gradient to low blood glucose level and

presence of insulin respectively.

Insulin production : If the blood sugar level rises above its fasting level, insulin is

secreted by β cells of the pancreas or infused by outer source (Insulin pump or artificial

pancreas) in case of diabetic people. Hence

dI(t)
dt

=











c(G(t)−Gb), if G(t)> Gb

0, if G(t)≤ Gb

(1.7.4)

Insulin utilization : Insulin itself degrades by separate biochemical process. Hence

dI(t)
dt

∝ −eI(t), I(t)≥ 0 (1.7.5)

Hence rate of change of insulin concentration may be modeled as :

dI(t)
dt

= c(G(t)−Gb)
+−eI(t) (1.7.6)
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where c and e are sensitivities of insulin gradient to high glucose level and insulin level.

Hence model for diabetes is given as below :

dG(t)
dt

= a(Gb−G(t))−bG(t)I(t) (1.7.7)

dI(t)
dt

= c(G(t)−Gb)
+−eI(t) (1.7.8)

where a, b, c and e are the parameters defined above.

After the development of this basic model, many models have been developed which

involved ordinary differential equation (ODE) and delay differential equation (DDE) mod-

els, as discussed below :

1.7.1 Ordinary differential equations (ODE) mathematicalmodels

Researchers have proposed man ODE models till date to explain various phenomena

in glucose - insulin dynamics [6,37,71]. A year wise development in ODE models will be

presented in this section.

Bolie [59] developed an ODE minimal model to evaluate the coefficients of normal blood

glucose regulation. The differential equations for glucose - insulin regulatory system is

written as :

dx(t)
dt

= p−αx+βy (1.7.9)

dy(t)
dt

= q− γx−δy (1.7.10)

where x represents the deviation in insulin concentration from their mean physiological

value, y represents the deviation in glucose concentration from their mean physiologi-

cal value, p is the intravenous injection functions İ (rate of insulin injection) divided

by extracellular compartment value, q is the intravenous injection functions Ġ (rate of

glucose injection) divided by extracellular compartment value, α denotes the sensitivity

of insulinase activity to elevate insulin concentration, β denotes the sensitivity of pan-

creatic insulin to elevate glucose concentration, γ represents the combined sensitivity of

liver glycogen storage and tissue glucose utilization to elevate insulin concentration and δ

represents the combined sensitivity of liver glycogen storage and tissue glucose utilization

to elevate glucose concentration [59].
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In 1964, Ackerman et al. [60] reviewed a model to predict the blood glucose level by

simulating the behavior of human regulating system. He compared the predictions made

during OGTT to regulate the blood glucose and blood insulin concentration. In 1970,

Segre et al. [61] considered a 2 compartment model and analysed glucose and insulin

control mechanism in 26 normal, 16 diabetic and 8 obese subjects. Glucose level for all

the three groups were determined by infusing glucose (0.5 gm/min for about 300 min).

In 1978, Ruby et al. [62] discussed a model to indicate the roles of both insulin and

glucagon as regulators of blood glucose. The simulation results suggest that insulin plays

the most important role in the control of hyperglycemia and glucagon is an important

regulatory hormone under conditions of hypoglycemia when the blood glucose value falls

below 50 mg/dl. In 1979, Bergman et al. [63] discussed the studies which led to defi-

nition and measurement of the characteristic parameters of metabolic regulation. The

parameters presented a novel and powerful way of metabolic regulation, which provides

an improved means for investigating the environmental, dietary and activity related fac-

tors which alter the regulation of metabolism in mammalian species. In 1979, Bergman

and Cobelli [46] estimated the insulin sensitivity after evaluating a mathematical model

of glucose disappearance. Seven mathematical models of glucose uptake were compared

to find the glucose disappearance. The parameter of the model were estimated from a

single IVGTT, to estimate the insulin sensitivity. In 1980, Toffolo et al. [64] proposed

the minimal model for the insulin kinetics in dog. The proposed minimal model was

used for the physiological studies of insulin secretary function in dog by using IVGTT

and proposed the idea to apply the model for the pathophysiological studies in man also.

Toffolo compared six mathematical models to study the insulin kinetics and found that

the model (discussed by him) is superior in explaining insulin dynamics with respect to

all aspects. In 1981, Bergman et al. [37] introduced two separate mathematical models

: one for glucose kinetics and other for insulin kinetics. Insulin model produce the pa-

rameters : φ1, φ2, responsivity of β cells to glucose, whereas glucose model produce the

insulin sensitivity (SI ) parameter during IVGTT. In 1984, Defronzo et al. [65] examined

the tissue sensitivity to insulin in 36 control subjects and 19 insulin dependent diabet-

ics using insulin clamp technique. Following hyperinsulinemia, suppression of hepatic

glucose production was ∼ 95 % in both diabetics and controls, suggested that peripher-

al tissues are primarily responsible for observed impairment in insulin mediated glucose

uptake. In 1985, Bergman et al. [66] examined the different approaches introduced by re-
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searchers for the evaluation of insulin sensitivity. He reviewed pancreatic suppression test

( [67–69]), glucose clamp ( [67,68]), and minimal model approach ( [37,70]) to find the ef-

fect of closed loop feedback relation between insulin action and insulin secretion. In 1986,

Pacini and Bergman [71] proposed mathematical model for measuring two main factors

- insulin sensitivity and pancreatic responsivity to control glucose tolerance. Bergman

proposed MINMOD (Minimal modelling Approach) - a computer program to identify the

model parameters SG, SI , φ1, φ2 and analyzed FSIGTT data. In 1990, Welch et al. [72]

determined the exogenous infusion of insulin in the minimal model FSIGTT analysis.

The information about insulin mediated glucose uptake and non insulin mediated glu-

cose uptake, insulin sensitivity and insulin secretion was also extracted. In 1991, Sturis

et al. [6] developed a six dimensional ODE model. Later in 2001, Tolic et al. [7] simpli-

fied the model and the model has been the basis of many DDE models [17, 73–77]. In

1991, M.E. Fisher [78] presented a mathematical model for glucose insulin interaction

in the blood system. Mathematical optimization techniques are applied to mathemati-

cal model to derive insulin infusion program. A semi - closed algorithm is proposed for

continuous insulin delivery to diabetic patients. In 1995, Coates et al. [79] studied the

minimal model (MINMOD) analysis of the frequently sampled intravenous glucose toler-

ance test (FSIVGTT) depends on an adequate insulin response to the glucose load. In

MINMOD, subjects having non insulin dependent diabetes mellitus (NIDDM) were not

included. Hence, the technique has been modified by using intravenous bolus of insulin.

Also they compared estimates of insulin sensitivity derived from minimal modeling of a 4

hr insulin modified FSIVGTT and the glucose clamp in subjects with NIDDM. In 1997,

Vicini et al. [80] showed that 2CMM (2 compartment minimal model) provide indexes of

glucose effectiveness (SG), insulin sensitivity (SI ) and plasma clearance rate (PCR). The

limitation of one compartment minimal model [81] was also overcome by providing the

plausible profile of endogenous glucose production. In 2000, Topp et al. [8] developed a

β IG model for β cell mass, insulin and glucose kinetics for diabetes. In 2001, Ryan et

al. [82] modified the mathematical model of β cell mass, insulin and glucose kinetics for

diabetes developed by Topp et al. [8]. The effects of insulin receptor dynamics which was

very important in the pathogenesis of diabetes was included. He also showed that insulin

sensitivity can be increased by 36 % due to exercise and required insulin level can also

be decreased to maintain the glucose concentration. The system of equations improves

the quantitative prediction of β cell mass values and provides a theoretical justification
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for the fact. In 2000, Gaetano and Arino [48] proposed another model known as “dynam-

ical model” in order to overcome the limitations and drawbacks of the coupled minimal

model. They reported that unstable steady state does not exists for the model while Li

et al. [83] found that these models can posses unstable positive steady states producing

oscillatory solutions. In 2002, Cobelli et al. [84] proposed a new approach to estimate

insulin sensitivity from an OGTT using an “integral equation”. Three different model :

Piecewise linear (P), Spline (S) and dynamic (D) were presented in the paper to deter-

mine rate of appearance of oral glucose in plasma (Ra). All the three models estimated

the insulin sensitivity. In 2002, Derouich and Boutayeb [85] introduced the effect of phys-

ical activities and exercise via parameters in a mathematical model given by Bergman et

al. [37] and compared the behavior of normal, NIDD and IDD people. The new added

parameters demonstrated the effect of physical exercise on the diabetic body. In 2002,

Mari et al. [86] investigated β - cell function and its relationship to insulin sensitivity by

choosing 17 normal volunteers. Insulin secretion and insulin sensitivity were measured by

applying mathematical model on meal test (MT) and oral glucose tolerance test (OGTT)

with the help of euglycemic insulin clamp technique. In 2003, Toffolo and Cobelli [87]

introduced a new improved version of 2 compartment minimal model (2CMM) [80]. The

new improved version of 2CMM, proved a more reliable and precise parameter of glucose

metabolism during an IVGTT. In 2004, Dellaman et al. [88] used the reference method :

tracer 2 step method and compared the results on database of 88 subjects. The method

was compared with the Homeostasis Model Assessment (HOMA) [89, 90], Quantitative

Insulin Sensitivity (QUICK) [91], MATSUDA - De Fronzo [92] to measure the insulin

sensitivity during an OGTT. The results confirmed the rate of appearance of glucose

absorption and insulin sensitivity accurately by using Oral Minimal Model (OMM). In

2005, DallaMan et al. [93] presented a labelled Oral Minimal Model (OMM∗) by adding

a tracer to the oral dose and labelled insulin sensitivity (S∗I ). OMM∗ not only estimates

the labelled rate of appearance of oral glucose in plasma (R∗
a) but also accurately measure

S∗I . In 2005, R.N. Bergman [36] considered the minimal model and showed that insulin

sensitivity or insulin sensitivity index (SI ) can be calculated from parameters of minimal

model by performing frequently sampled IVGTT, measure glucose and insulin, fit the da-

ta to the minimal model and calculate insulin sensitivity. Also he showed that product of

insulin sensitivity and insulin secretion would be approximately constant i.e. insulin sen-

sitivity × insulin secretion = disposition index (SI × AIRglucose= DI). In 2006, Boutayeb
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et al. [35] presented a mathematical model for the size of a population of diabetes melli-

tus. The non linear case was discussed and critical values of the population were analysed

for stability. In 2006, Bergman et al. [94] performed dimensional analysis of MINMOD

and found that with non dimensionalization, pathological DI is naturally defined in the

model and it has the meaning of insulin sensitivity at unit first phase pancreatic response.

Using simulated data and human FSIVGTT data they found the new approach which

provide highly correlative parameter estimates to the original dimensional formulation.

In 2006, Wang et al. [95] formulated a mathematical model to deal with the question

about heterogeneity between young and adult onset type 1 diabetes (T1D). It was found

that if autoimmunity is initiated then the turnover is slow, a stable steady state can exist

with the β cell turnover is rapid. In 2007, Silber et al. [96] developed an integrated model

for healthy and type 2 diabetic (T2D) patients to regulate the glucose and insulin con-

centration by using IVGTT data form 30 healthy and 42 diabetic individuals. Analysis

of all the data by non linear mixed effect modelling was performed in NONEM. In 2007,

Silber et al. [97] extended the previously developed integrated model [96] for glucose -

insulin regulatory system by including the OGTT in healthy volunteers by simulation

and bootstrap of the model. The new model developed was based on incretin effect (i.e

oral glucose provocations results in stronger insulin response compared to intravenous

provocations). In 2007, Roy and Parker [98] extended the minimal model [37], and in-

cluded the major effects of exercise on plasma glucose and insulin concentration level

in the body. In 2008, an attempt has been made by Gaetano et al. [99], to discuss the

progression of type 2 diabetes (T2D) through mathematical model. A model of the pan-

creatic islet compensation was formulated by the help of some physiological assumptions

and compared with the model developed by Topp et al. [8]. The model was found more

robust and useful for clinical purpose through assessment of the related parameters. In

2008, Stahl and Johansson [100] made an attempt to show how system identification

and control may be used to estimate predictive quantitative models which can be used

in designing of optimal insulin regimens. In 2008, Periwal et al. [101] examined various

mathematical models analogues with the minimal model of glucose disposal (MMG) to

quantify the combined influence of insulin on lipolysis and glucose disposal during an

insulin - modified frequently sampled intravenous glucose tolerance tests (FSIGT). The

tested models contain compartments of plasma free fatty acids (FFA), glucose and insulin.

Out of 23 models, the best fitted model was selected by using Bayesian model compar-
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ison method which minimized model complexity. In the best model, insulin suppressed

lipolysis via. a Hill function through a remote compartment that acted both on FFA and

glucose simultaneously, and glucose dynamics obeyed the classic MMG. In 2010, Pacini

et al. [102] compared the insulin sensitivity index (SI) and glucose effectiveness (SG). The

common protocols are regular (rFSIGT) and an insulin modified test (mFSIGT), with an

additional insulin administration at 20 min. Both FSIGTs with minimal model analysis

provide the same SI , which was a very robust index. In 2011, Javier et al. [103] extended

the model of Topp et al. [8] by proposing two models : one to show the effects of adipose

tissue on insulin sensitivity and second to show the effect of fat accumulation on the

regulatory system. He also discussed three different formulations for fat accumulation :

a linear case and two nonlinear cases where the relationship between fat accumulation,

insulin and glucose was discussed.

The mechanism behind the glucose - insulin dynamics is very complicated and the

mathematical models developed so far play an increasingly important role to understand

the complex biological phenomenon. Different aspects of diabetes are targeted by different

types of models ranging from clinical studies to health service research [104]. No doubt

numerous mathematical models exists in the literature which attempt to address the

complexity of the disease, still an imbalance exists between the current knowledge given

by experimental approach and their mathematical representation [104].

Most of the ODE models were developed to evaluate the diagnostic tests such as intra-

venous glucose tolerance test (IVGTT), oral glucose tolerance test (OGTT), meal glucose

tolerance test (MGTT) etc. The aim of these tests were to estimate the insulin sensitivi-

ty (SI ), glucose effectiveness (SG), disposition index (DI), insulin secretion, insulin action

and β cell function.

1.7.2 Delay differential equation (DDE) mathematical models

Delay differential equations (DDE) have been used in mathematical models in many

areas of biology and medicine, such as epidemiology, population biology, physiology, cell

mobility, immunology etc. [105, 106]. Delayed effects often exists in the glucose - insulin

metabolic system. The three physiological time delays occurring in glucose - insulin dy-

namics are : delay in insulin secretion stimulated by elevated glucose concentration by

β cell of the pancreas, delay in inhibition in hepatic glucose production, delay in insulin
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absorption and insulin action (time needed for plasma insulin to cross the endothelial

barriers and become interstitial insulin that helps the body cells (muscles, adipose tissue

etc.) to consume glucose) [6,75,107]. Hence the delay terms need to be taken in account

when modeling the glucose - insulin regulatory system to match the physiology of human

body. The general approach to include the technique of compartment split by introducing

auxiliary variable in ordinary differential equations (ODE) and delay differential equa-

tions (DDE) mathematical models are constructed by using explicit time delays either in

discrete or distributed form [42, 48].

Modeling of DDE mathematical models can be grouped according to their function-

s/purpose include and models:

• used to analyze the ultradian insulin secretion oscillations [6, 74, 75].

• used with diagnose tests.

• related to insulin therapies;

• to take intracellular activity of β - cells into account.

In 1991, Sturis et al. [6] developed a six dimensional ODE mathematical model. Sturis

incorporated a delay term in the model and reported that oscillations depends on the

existence of a delay between increment in insulin concentration and corresponding effect

on glucose production. Also the model does not exhibit oscillations if the delay term is

omitted. Oscillations were damped for very short delay (< 25 min) and for very large

delay (> 50 min) and sustained oscillations obtained in the range of 25-50 minwith period

of 95-140 min.

The DDE mathematical model for the glucose - insulin regulatory system is :

dG
dt

= Gin− f2(G(t))− f3(G(t)) f4(I(t))+ f5(I(t)) (1.7.11)

dI
dt

= f1(G(t))−diI(t) (1.7.12)

with the initial conditions I(0) = I0 ≥ 0, G(0) = G0, G(t)≡ G0 and I(t)≡ I0 for t ≥ 0. The

functions fi , i = 1,2,3,4,5 and their values are taken from [6] as the shape of the functions

are more important than their forms [74]. The shapes of the functions are shown in
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Figure 1.1.

f1(G) =
Rm

1+exp((C1−G/Vg)/a1)
(1.7.13)

f2(G) =Ub(1−exp(−G/(C2Vg))) (1.7.14)

f3(G) =
G

C3Vg
(1.7.15)

f4(I) =U0+
(Um−U0)

1+exp(−β log(I/C4(1/Vi +1/Eti)))
(1.7.16)

f5(I) =
Rg

(1+exp(α(I/Vp−C5)))
(1.7.17)

• Gin is glucose infusion rate.

• f1(G(t)) represents insulin secretion.

• f2(G(t)) represents glucose utilization independent of insulin.

• f3(G(t)) f4(I(t)) represents insulin mediated glucose utilization.

• f5(I(t)) represents total glucose production.

• di is insulin degradation rate.

In 2006, Li et al. [107] proposed a model by incorporating two explicit time delay for

better understanding of the glucose - insulin regulatory system. It was reported in the

study that time delay of insulin secretion stimulated by the elevated glucose concentration

may be one of the possible cause for ultradian insulin secretion oscillation. The numerical

simulation focussed on detecting the bifurcation points on a single parameter out of the

four parameters. : delay (τ1), delay (τ2), constant glucose infusion rate Gin and insulin

degradation rate di. In 2007, Li et al. [75] studied the mathematical model analytically

and numerically by varying two parameters simultaneously in DDE models. It was stated

that the delays in the glucose - insulin regulatory system were critical for ensuring the

sustained oscillations of insulin secretion. In fact the delay in insulin secretion and newly

synthesized insulin become remote insulin is more critical than delay in hepatic glucose

production. The simulations also reveal that the delay τ1 has to be extremely large (>
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Figure 1.1: The shapes of the functionsf1, f2, f3, f4 and f5.
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400 min) to produce any sustained oscillations, which clearly falls out of the normal

physiological range. In 2007, Panunzi et al. [108] proposed a new, discrete single delay

model (SDM) for the glucose - insulin regulatory system. The model was applicable to

intravenous glucose tolerance test (IVGTTs) as well as to multiple injection and infusion

schemes. The model was considered for the determination of insulin sensitivity from the

IVGTT. In 2007, Wang et al. [73] modeled the insulin therapies using a delay differential

equation model. The model was studied both quantitatively and qualitatively and the

analytical results corresponds to ultradian insulin secretion oscillation. In 2009, Wang

et al. [109] proposed a new model for insulin therapy for both types of diabetes - type

1 and type 2 in which the insulin degradation rate assumes Michaelis - Menten kinetics.

The results showed that pancreatic insulin secretion can be mimic by exogenous insulin

infusions.

Basal dose and bolus dose are the two types of insulin doses which simulate the insulin

pulsatile secretion and ultradian secretion in an oscillatory manner, respectively [42].

Insulin analogue exists in hexameric, dimeric and monomeric states and hexameric form is

the predominant state after the subcutaneous injection of soluble insulin. The hexameric

form dissociates into dimeric and monomeric form which can penetrate the capillary

membrane and can be absorbed into plasma [110].

In 2009, Li et al. [42] proposed the ODE mathematical models to stimulate the dynamics

of rapid acting insulin analogue of the whole metabolic system. In 2009, Li and John-

son [111] considered the explicit delay τ > 0 for transformation of hexameric to dimeric

form and demonstrate the plasma insulin concentration profile and compared with the

experimental data but the range of the delay term was not figured out.

1.8 The organization of thesis

The work presented in this thesis investigate ordinary differential equation mathemati-

cal model and delay differential equation mathematical model to explore various aspects

in understanding the glucose -insulin dynamics for better management of the disease in

affected population.

The thesis entitled “Mathematical modeling of diabetes” containing 8 chapters which

are arranged in the form :
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Chapter 1 : Chapter 1 is introductory in nature which gives a short review of the work

done in the field till now about the physiology of diabetes through important mathemat-

ical equations. In this chapter, literature survey has been conducted which describe the

types of diabetes, its diagnosis, risk factors, symptoms and treatment of disease. The

basic mathematical model is discussed in the chapter which explains the glucose - insulin

dynamics precisely and clearly. The purpose of this chapter is to provide the motivation

behind the work carried out in the thesis.

Chapter 2 : In chapter 2, the effect of vitamin D on glucose - insulin dynamics of normal

and diabetic people has been discussed. Maintenance of glucose concentration for diabetic

people is very important and challenging. Though our body is a complex structure and

it is difficult to find out one reason behind any abnormality, but it has been reported

in the literature that when type 1 diabetics were tested they were found having vitamin

D deficiency. Since then medical practitioner started considering vitamin D as a vital

factor in diabetes. Vitamin D improves insulin sensitivity, decrease the insulin resistance

and increases insulin secretion in our body. Hence an attempt has been made to analyze

glucose - insulin concentration under the effect of vitamin D, by inducing parameters

for relevant phenomena in mathematical model proposed by Bergman et al. [71]. The

effect of vitamin D on dynamics of glucose - insulin regulatory system for diabetics has

been discussed. The results of numerical simulations suggest that presence of vitamin D

helps in regulating the glucose and insulin concentration in normal, T1DM and T2DM

people. The work reported in the chapter has been accepted as a research paper entitled,

“Dynamics and control of glucose - insulin regulatory system in diabetics using vitamin

D”.

Chapter 3 : Obese people have always been on a high risk of consistent raised glucose

concentration. In this chapter, we analyze the effect of FFA together with obesity on

the glucose - insulin dynamics of NIDD people through a mathematical model. Indexing

HDMR method is proposed to get a polynomial based structure to measure the glucose

level in a normal body. For this purpose data set of 90 normal people is used for the

study. An attempt has been made to capture the glucose and insulin concentration levels

for NIDD people having raised level of FFA and obesity through numerical simulation of

the model. It has been observed from the simulation of the model that elevated level of

plasma FFA inhibit glucose uptake, glucose utilization, decrease insulin sensitivity and

increase insulin resistance in NIDD people as compared to normal people. The work
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reported in the chapter has been published in two research papers entitled, “Study of the

effects of FFA and obesity on diabetes through numerical simulation of the mathematical

model” and “Application of I-HDMR in glucose - insulin dynamics”.

Chapter 4 : Diabetes is not just a single disease but it brings many health related prob-

lems and hence affect our organs. Diabetes, if uncontrolled, can affect both the nervous

system and circulatory system. In this chapter, an attempt has been made to capture

the changes in glucose - insulin dynamics of central nervous system, liver and kidney

which are severely affected by diabetes through mathematical modeling and simulation.

The numerical simulation of the mathematical models explains that decreased volume of

glucose and insulin space may be one of the possible reasons behind the prolonged raised

glucose level in the central nervous system, liver and kidney of the diabetic people. The

work reported in the chapter has been published as a research paper entitled, “Dynamical

system for glucose - insulin space in different organs of diabetics”.

Chapter 5 : The most widely used model in physiological research on the metabolism of

glucose is “minimal model”, which describes intra venous glucose tolerance test (IVGTT)

experimental data well with the smallest set of identifiable and meaningful parameters

[46, 71]. This model was used for the study of time delay occurs in insulin secretion by

Li et al. Literature confirms that there is a delay occur in insulin action also but not

much attention has been paid on the numerical range of this delay. This motivated us

to further extend the model by incorporating the second time delay for insulin action.

The extended model has been analyzed for stability and then numerical simulation is

being carried out using Matlab 2012b. From the simulation results, we have concluded

that sustained periodic oscillations are observed for both the time delays. Also, the

simulation shows that after introducing the delay in insulin action, the delay length of

insulin secretion proposed by Li et al. has been shortened, which can be proved important

in maintaining the glucose level after delivery of insulin. The work reported in the chapter

has been communicated in the paper entitled, “Study of two time delays in IVGTT glucose

- insulin dynamical system”.

Chapter 6 : In chapter 6, ranges of time delays in glucose - insulin dynamics of type 1

diabetics using artificial pancreas has been quantified. Time delay in insulin secretion, its

absorption and action is a point of consideration in artificial pancreas as it may prove fatal

in the extreme situation. The present mathematical model deals with two time delays

out of which one occur in insulin secretion and second in its absorption and action. The
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model assess the change in glucose - insulin dynamics after the induction of different

values of these time delays in their respective range. Also, simulation is performed over

the model to quantify the amount of two time delays to avoid diabetic comma, which

has not been explored much. The work reported in the chapter has been published as a

research paper entitled, “Quantitative analysis of time delays of glucose - insulin dynamics

using artificial pancreas”.

Chapter 7 : In chapter 7, we extend our attempt of modeling the closed - loop control

of glucose concentration level by considering three time delays instead of two time delays

for the proper functioning of artificial pancreas. The three delays which are taken in

the present study are in insulin secretion, in inhibition in hepatic glucose production

stimulated by insulin and in time taken by insulin to reach interstitial compartment to

lower glucose level (i.e. glucose utilization delay or insulin action delay). Our analytical

and numerical results shows that periodic and sustained oscillations of glucose and insulin

concentration exists for type 1 diabetic people and delay in insulin secretion may be one

of the major possible reason behind the occurrence of ultardian oscillations. We have

also found out more feasible range of all three time delays from the simulation of present

model, which may be proved very useful in better designing and improved functioning

of artificial pancreas. The work reported in the chapter has been communicated in the

paper entitled, “Quantitative and stability analysis of three time delays in glucose and

insulin oscillations profile using artificial pancreas”.

Chapter 8 : Management of type 1 diabetes and severe type 2 diabetes rely on exogenous

insulin or insulin analogues to control raised blood glucose concentration. Insulin lispro

and insulin aspart are rapid acting insulin analogue which have a shortened delay of

onset and are easily absorbed in the bloodstream. Insulin analogue exists in hexameric,

dimeric and monomeric states and hexameric form dissociates into dimeric and monomeric

form which can penetrate the capillary membrane and can be absorbed into plasma.

For different insulin analogues the transformation of hexameric state into dimeric and

monomeric state takes different time which will be considered as first time delay in the

present study. More the time it will take in this transformation, utilization of insulin

in the body will be delayed which will be termed as second time delay. Therefore, an

attempt has been made to find the ranges of these two time delays for the concoction

of better rapid acting insulin analogues for better management of glucose and insulin

concentration in diabetics through DDE model. The model has been analyzed for the
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stability and then simulation has been carried out using Matlab 2012b. The profile of

plasma insulin concentration level obtained from the simulation of the model are in good

agreement with previously observed results for the quantified range of both the time

delays. The work reported in the chapter has been communicated in the paper entitled,

“Modeling the dynamics of plasma insulin concentration level of insulin analogues in type

1 diabetes using two explicit time delays”.





Chapter 2

Dynamics and control of glucose - insulin

dynamics using vitamin D

In this chapter,1 the effect of vitamin D on glucose - insulin dynamics of normal and

diabetic people has been discussed. Maintenance of glucose concentration for diabetic

people is very important and challenging. Though our body is a complex structure and

it is difficult to find out one reason behind any abnormality, but it has been reported in

the literature that when type 1 diabetics were tested they were found having vitamin D

deficiency. Since then medical practitioner started considering vitamin D as a vital factor

in diabetes. It has been reported that vitamin D improves insulin sensitivity, decreases

insulin resistance and increases insulin secretion in our body. Hence an attempt has

been made to analyze glucose - insulin concentration under the effect of vitamin D,

by inducing parameters for relevant phenomena in mathematical model. The effect of

vitamin D on dynamics of glucose - insulin regulatory system for diabetics has been

discussed. The results of numerical simulations proves that presence of vitamin D helps

in overall regulation of the glucose and insulin concentration in normal, T1DM and T2DM

people.

1The results of this chapter has been accepted as a research paper entitled “Dynamics and control of glucose -
insulin regulatory system in diabetics using vitamin D” inMathematics in computer science.
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2.1 Introduction

Recent studies have shown that deficiency of vitamin D results in reduction of insulin

secretion and thus in hyperglycemia, which leads to diabetes if it persists for long duration

[112]. Optimal profile of insulin release for diabetics has been discussed by Nilam et

al. [113]. Vitamin D deficiency was significantly associated with increased diastolic blood

pressure, increased triglycerides levels and reduced high density lipoprotein cholesterol

[114]. A review states evidence of strong link between abnormal glucose - insulin dynamics

and deficiency of vitamin D [115]. Vitamin D also plays a role in the pathogenesis of

type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with a special

emphasis on the direct effects of vitamin D on pancreatic cells [116]. Evidence from animal

and human studies suggest that vitamin D may play an important role in modifying

risk of T2DM and hypertension. Vitamin D has both direct and indirect effects on

various mechanisms related to the pathophysiology of T2DM and hypertension, including

pancreatic beta cell dysfunction and impaired insulin action [117]. Till the time, the

casual link between vitamin D, T2DM and hypertension, remained to be determined.

Most of the research have conducted in the United States on local People suffering from

diabetes, either T1DM or T2DM. Insulin resistance is a risk factor for T2DM, and recent

studies have shown a strong relation among insulin resistance and vitamin D deficiency.

Vitamin D is a powerful substance that our body usually produces on its own with the

help of sunlight which enable our body to produce a powdery substance that converts

into vitamin D. Vitamin D is obtained from exposure to sunlight, fortified foods and

dietary supplements. When our skin is exposed to solar ultraviolet radiation (wavelength

290 - 350 nm), 7 - dehydrocholesterol is converted to previtamin (D3) which is rapidly

converted to cholecalciferol (D3). Ergocaliferol (D2), obtained from food along with c-

holecalciferol (D3), is converted into 25 - hydroxyvitamin D in the presence of vitamin

D - 25 - hydroxylase in the liver, which is the major circulating metabolite and used to

determine a patient’s vitamin D status [112,114–117]. Almost all 25 - hydroxyvitamin D

is bound to circulate DBP (vitamin D - binding protein) and is filtered by the kidneys

and reabsorbed by the proximal convoluted tubules. The biologically inactive 25 - hy-

droxyvitamin D must be converted in the kidneys to active 1, 25 - hydroxyvitamin D by

1 - alpha hydroxylase. Finally, the active 1, 25 - hydroxyvitamin D can bind to VDR -

RXR (vitamin D receptor - retinoic acid X - receptor complex) in the intestine, bone and
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Binding to Vitamin D receptors

Figure 2.1: Mechanism of synthesis of Vitamin D.

parathyroid glands. VDRs are present in pancreatic β cells and vitamin D is essential for

normal insulin secretion [118]. ( See Figure 2.1 for the mechanism of synthesis of vitamin

D).

Islet cell insulin secretion is reduced in vitamin D - deficient animals and can be cor-

rected by vitamin D supplementation [118–120]. The impact of vitamin D deficiency on

β cell function seen in vitro and in vivo animal models has been matched by vitamin D

studies in human volunteers undergoing hyperglycaemic clamps [121]. Epidemiological

studies have shown that vitamin D deficiency might increase the incidence of autoim-

mune disease, such as T1DM genetically at risk individuals [122]. Vitamin D appears

to affect exclusively the insulin response to glucose stimulation, while it does not appear

to influence basal insulinemia [123, 124]. Vitamin D may have a beneficial effect on in-

sulin action by stimulating the expression of insulin receptor thereby enhancing insulin
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responsiveness for glucose transport [125]. Association between low vitamin D level and

decreased insulin sensitivity has been reported in cross- sectional studies [121, 125–131].

Based on available data from recent studies, vitamin D supplementation is considered to

be a potential and inexpensive therapy, which not only decrease the risk, but also im-

proves glycemic parameters in T2DM [132]. The positive effects of vitamin D on insulin

secretion and sensitivity and secondary its action on inflammation can be seen through

available clinical and epidemiological data [133].

American Academy of Pediatrics recommended to start 400IU soon after birth and con-

tinuing through childhood and adolescence [134]. Canadian cancer society recommended

a daily dose of 1000IU per day for adults [134]. Since literature shows that vitamin D

increases insulin sensitivity [125], decreases insulin resistance [132] and improves insulin

action [125] in the body [135], therefore parameters have been introduced for these three

phenomenon in minimal model [37]. These parameters will throw an insight to estimate

the effects of different dosage of vitamin D in normal, NIDD and IDD. Stability analysis

is carried out for the proposed model which confirms the positive and bounded solution

of the model.

2.2 Mathematical model

Glucose is stored in liver and peripheral tissues, including muscle tissues. Glucose uti-

lization process is controlled by insulin, which enhances glucose uptake. Also, an increase

in glucose concentration augments pancreatic release of insulin. This feedback loop leads

to difficulties in interpretation of test results. To overcome this problem, the whole sys-

tem is decomposed into two independent components [43] : (i) the effect of insulin to

accelerate glucose uptake and (ii) the effect of glucose to enhance insulin secretion.

The two subsystems have been described in mathematical terms and the mathemati-

cal model given by Bergman et al. [71] is given as :

dG(t)
dt

= −X(t)G(t)− p1(G(t)−Gb);G(0) = G0 (2.2.1)

dX(t)
dt

= −p2X(t)+ p3(I(t)− Ib);X(0) = X0 (2.2.2)

dI(t)
dt

= p5(G(t)−Gc)
+t − p4(I(t)− Ib); I(0) = I0 (2.2.3)
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where, G(t) [mg/dl] represents glucose concentration at time t, X(t) [min−1] represents

remote insulin concentration at time t, I(t) [µU/ml] represents the interstitial insulin at

time t, Gc [mg/dl] represents the threshold level of glucose above which the endogenous

insulin secretion will be stimulated, Gb [mg/dl] represents the basal glucose level and Ib

[µU/ml] denotes the basal insulin level. The parameters pi (pi > 0), i = 1,2,3,4,5 are

defined in Table 2.1 .

To model the effects of vitamin D on glucose - insulin dynamics, we take into account

four major factors [135]: (i) vitamin D help the cells in glucose uptake i.e. it increases

glucose effectiveness (ii) it improves insulin sensitivity of the body (iii) insulin secretion

is increased due to vitamin D (iv) it decreases insulin resistance.

To observe the changes in glucose - insulin dynamics due to the above said effects of

vitamin D, four new parameters v j (v j > 0), j = 1,2,3,4 have been introduced in the

model (2.2.1 - 2.2.3) for which explanation is as follows:

• v1 [min−1] represents effect of vitamin D on muscles and fat cells to utilize glucose

so it is incorporated with parameter p1 which represents glucose effectiveness.

• v2 deals with the effect of vitamin D on muscles and fat cells to increase insulin

sensitivity, hence incorporated in the term containing X(t)G(t).

• Since vitamin D affects pancreas to increase the secretion of insulin, hence v3

[ml(µU)−1min−2] is combined with p3 which explains the same phenomena.

• v4 [min−1] represents effect of vitamin D in increasing utilization of the insulin,

therefore combined with parameter p4.

After incorporating the above new parameters in the minimal model, the extended model

is as follows :

dG(t)
dt

= −v2X(t)G(t)− p1v1(G(t)−Gb);G(0) = G0 (2.2.4)

dX(t)
dt

= −p2X(t)+ p3v3(I(t)− Ib);X(0) = X0 (2.2.5)

dI(t)
dt

= p5(G(t)−Gc)
+t− p4v4(I(t)− Ib); I(0) = I0+ Ib (2.2.6)
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where

(G(t)−Gc)
+t =











(G(t)−Gc)t, i f G(t)> Gc

0, i f G(t)≤ Gc

2.3 Positive and bounded solutions of the model

Proposition 1. : Let (G(t),X(t), I(t)) be a solution of system (2.2.4-2.2.6) with G(0) = G0 >

0, X(0) = X0 > 0 and I(0) = I0 > 0, then G(t)> 0, X(t)> 0, I(t)> 0 and also bounded above

for all t > 0.

Proof. (i) G(t) is positive.

Eqn.(2.2.4) can be written as

dG(t)
dt

+[v2X(t)+ p1v1]G(t) = p1v1Gb

The solution is given by

G(t) =
p1v1Gb

∫ t
0 f (u)du+G0

f (t)
(2.3.1)

where

f (t) = e
∫ t
0 [v2X(s)+p1v1]ds> 0

Sincep1 > 0, v1 > 0, Gb > 0, G0 > 0 and f (u) > 0, therefore right hand side of the eqn.(2.3.1)

is positive. HenceG(t) > 0.

(ii) I(t) is positive.

Now eqn.(2.2.6) implies

dI(t)
dt

= p5(G(t)−Gc)
+t − p4v4(I(t)− Ib)

dI(t)
dt

+ p4v4(I(t)− Ib) = p5(G(t)−Gc)
+t
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The solution is given by

I(t) = Ib+ I0e−p4v4t +
∫ t

0
p5(G(u)−Gc)

+e−p4v4(t−u)udu (2.3.2)

Since the integral term in the right hand side of the eqn.(2.3.2) is non-negative,

therefore,

I(t)≥ Ib+ I0e−p4v4t ,∀t ≥ 0 (2.3.3)

which implies

I(t)≥ Ib > 0,∀t ≥ 0 (2.3.4)

Hence, at any time the level ofI(t) will never be lesser thanIb.

(iii) X(t) is positive.

Eqn.(2.2.5) can be written as

dX(t)
dt

+ p2X(t) = p3v3(I(t)− Ib)

The solution is given by

X(t)−X0e
−p2t =

∫ t

0
p3v3e−p2(t−u)(I(u)− Ib)du

From eqn.(2.3.3),

I(t)− Ib ≥ I0e−p4v4t ,∀t ≥ 0

After solving

X(t)−X0e
−p2t ≥











I0p3v3(e−p4v4t−e−p2t)
p2−p4v4

, if p2 6= p4v4

I0p3v3e−p2tt, if p2 = p4v4
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Since the right hand side of the above expression is non-negative, therefore

X(t)≥ X0e−p2t > 0,∀t ≥ 0 (2.3.5)

Hence,X(t) always exceeds thanX0 for all time t.

(iv) G(t) is bounded.

From eqn.(2.2.4),

dG(t)
dt

= −v2X(t)G(t)− p1v1(G(t)−Gb),G(0) = G0

Therefore,

dG(t)
dt

≤ −p1v1(G(t)−Gb)

Let P(t) = G(t)−Gb. Then,

dP
dt

+ p1v1P≤ 0

which implies

P(t)≤ P(0)e−p1v1t ,∀t > 0

G(t)−Gb ≤ (G(0)−Gb)e
−p1v1t

< (G(0)−Gb),∀t > 0

which implies

G(t)< G(0),∀t > 0.

SinceG(t)> 0 andG(t)≤ G(0), this impliesG(t) is bounded.

Hence we can conclude that all the solutionsG(t), X(t), I(t) are positive,G(t) is bounded

(hence remain finite for allt ≥ 0). The boundedness of X(t) and I(t) will be discussed in the

next section.
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2.4 Stability analysis of mathematical model

In this section, stability analysis of the system (2.2.4-2.2.6) has been discussed.

Theorem 2.4.1.(Comparison Theorem [136]): Letφ1,i(t) be a solution of the ordinary differ-

ential equations

dxi

dt
= fi(x, t), i = 1,2.....n

andφ2,i(t) be a solution of a second system

dxi

dt
= gi(x, t), i = 1,2.....n

satisfying the same initial conditionsφ1,i(t0) = φ2,i(t0) = xi,0, i = 1,2....n, over the interval a≤

t ≤ b. fi ,gi are defined on U× [a,b] and U⊂Rn is an open domain. Hence fi ,gi : U × [a,b]→R

are continuous functions such that fi < gi [ f i > gi ] on U. Then,φ1,i(t)≤ φ2,i(t)[φ1,i(t)≥ φ2,i(t)]

for all t in the interval [a, b].

To check the stability of the model at the equilibrium point, Gc = Gb (Preposition

I.5, [48]) is taken in the eqn.(2.2.6) of the model. Let us consider the model, given by

eqns. (2.2.4–2.2.6).

For conciseness of notation, define

g(t) = (G(t) - Gb), x(t) = S(t), i(t) = (I(t) - Ib), q1= p1v1; q2= v2Gb; q3= p3v3; q4= p4v4

We may write system (2.2.4–2.2.6) in the form:

dg(t)
dt

= −v2x(t)g(t)−q2x(t)−q1g(t) (2.4.1)

dx(t)
dt

= −p2x(t)+q3i(t) (2.4.2)

di(t)
dt

= p5H(g(t))t−q4i(t) (2.4.3)

Where H ≡ H(g(t)) is the unit step function :

H(g(t)) =











0, if g(t)< 0

1, if g(t)> 0
(2.4.4)
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From the structure of the system, we note that, since the first term on the right - hand

side of (2.4.3) is non - zero only when g > 0, any instability would arise only if g were

maintained above zero i.e., G> Gb for all t ≥ 0.

Using the Comparison Theorem 2.4.1, we may establish certain inequalities in the so-

lutions to (2.2.4–2.2.6) that will enable us to determine the stability of the system.

Suppose g(0) < 0 (i.e.,G(0) < Gb). Then H = 0, and from equations (2.4.1–2.4.3) we

see that g(t), x(t) and i(t) decay to zero, and hence the system is stable for G(0)< Gb.

From the eqn.(2.4.1), and using the Comparison Theorem 2.4.1 (where H = 1), we have :

dg
dt

= −q1g−q2x−v2gx

≤ −q1g−q2xmin−v2gxmin

= −Qg−q2xmin,

where Q= q1+v2xmin

The solution is given by

g(t)≤ g(0)e−Qt −
q2xmin

Q
(1−e−Qt) (2.4.5)

and

dg
dt

≤ −Qg(0)e−Qt −q2xmine
−Qt

< 0,∀t ≥ 0

which is negative.

At t → ∞, eqn.(2.4.5)g(0)e−Qt − q2xmin
Q (1−e−Qt) becomes −q2xmin

Q < 0

From this, we conclude that, if g(0) > 0 (i.e.,G(0) > Gb), the right-hand-side of (2.4.5)

decreases to zero after a finite time T, so that g(t) passes through 0 after a time TG,

where TG ≤ T. Also, at t = TG, H becomes zero.
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From eqn.(2.4.3),

di
dt

= p5Hgt−q4i

= p5H(g(t))g(t)t−q4i

The solution is given by

i(t) = i(0)e−q4t + p5e−q4t
∫ t

0
H(g(s))sg(s)ds (2.4.6)

Now, the integral on the right in (2.4.6) is bounded above by

∫ TG

0
sg(s)ds< ∞

which implies i(t) ≤ imax i.e. i(t) is bounded above for t ≥ 0. Also from eqn.(2.4.6),

i(t)≥ imin for some finite imin i.e. i(t) is bounded below for all t ≥ 0. Hence i(t) is bounded.

Similarly, using the eqn.(2.4.2) and Theorem 2.4.1, we have

dx
dt

=−p2x+q3i ≤−p2x+q3imax

The solution is given by

x(t) ≤ x(0)e−p2t +
q3imax

p2
(1−e−p2t)

≤ x(0)+
q3imax

p2

≡ xmax

implies x(t) is bounded above.

Now, from the eqn.(2.4.2), and using the Comparison Theorem 2.4.1,

dx
dt

=−p2x+q3i ≥−p2x+q3imin
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The solution is given by

x(t)≥ x(0)e−p2t +
q3imin

p2
(1−e−p2t) (2.4.7)

which implies x(t) is bounded below for t ≥ 0.

Hence, x(t) is bounded.

Hence we can say that if G(0) < Gb, then the system (2.2.4–2.2.6) is stable and if

G(0)> Gb, then the solutions of (2.2.4–2.2.6) are bounded for all t ≥ 0.

2.5 Analysis of model

Behavior of the model will be discussed at the equilibrium point, as it is necessary to

analyze a mathematical model in the neighborhood of equilibrium point for its stability.

Therefore, to determine the effect of vitamin D on glucose disappearance, and insulin

sensitivity after a glucose bolus, a modification has been introduced in the model (2.2.4–

2.2.6) to include a glucose source. The modified model is given as:

dG(t)
dt

= −v2X(t)G(t)− p1v1(G(t)−Gb)+Gin(t),

dX(t)
dt

= −p2X(t)+ p3v3(I(t)− Ib),

dI(t)
dt

= p5(G(t)−Gc)
+t − p4v4(I(t)− Ib),

where Gin(t) is the glucose infusion rate per unit of volume at time t which is assumed to

be constant for the stability analysis.

2.5.1 Equilibrium condition

At equilibrium (G,X, I) = (G∗,X∗, I ∗), we have

X∗ =
p3v3(I ∗− Ib)

p2

G∗
in = v2X∗G∗+ p1v1(G

∗−Gb)
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where G∗
in represents the constant rate of injection of glucose

G∗ =
p1v1Gb+G∗

in
v2p3v3(I∗−Ib)

p2
+ p1v1

Define I = I ∗− Ib, then the function G∗(I) is given by

G∗(I) =
p1v1Gb+G∗

in
v2p3v3I

p2
+ p1v1

(2.5.1)

We see that G∗ is a decreasing function of I and

lim
I→0

G∗(I) = Gb+
G∗

in

p1v1
(2.5.2)

and

lim
I→∞

G∗(I) = 0 (2.5.3)

Eqn.(2.5.2) shows that in absence of insulin, the presence of vitamin D does not lower

the glucose concentration, and a risk of hyperglycaemia may occur in case of IDD and

NIDD.

On the other hand eqn.(2.5.3) also does not lead to hypoglycemia as the total required

amount of insulin is given by an external source is finite.

2.6 Numerical simulation and results

The model (2.2.4–2.2.6) is numerically simulated by using Matlab 2012b. To carry the

numerical simulation, the values of parameters pi , i = 1,2,3,4,5 are given in Table 2.2,

Table 2.3 and Table 2.4. Gb [∼ 100 mg/dl] [137], Gc [∼ 100 mg/dl] [137] are taken for the

numerical simulation of the model. According to the literature, vitamin D helps to regu-

late the glucose - insulin regulatory system. Hence the values of the parameters of vitamin

D are assumed according to their compatibility with other parameters (p1, p2, p3, p4, p5)

and their effect on different mechanism. The new parameters vi , i = 1,2,3,4 will take

two set of values corresponding to varying dosage of vitamin D. The values of the new
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parameters vi , i = 1,2,3,4 which are introduced to assess the effect of vitamin D on glucose

- insulin dynamics are given in the Table 2.2, Table 2.3 and Table 2.4. Then comparisons

were made in the glucose - insulin dynamics corresponding to these different set of val-

ues. Graphs are plotted for each case (normal, NIDD, and IDD) to capture the effect of

vitamin D in lowering the glucose level near to basal value.

2.6.1 Normal case

In normal case, β cells produces enough insulin and utilized properly in the body.

Therefore, Ie ≥ 0 and Ib ≥ 0 are considered for numerical simulation. For the glucose

- insulin dynamics, the values of parameters p1, p4,G0, I0 are taken from the Bergman

et al. paper [71]. The values of parameters p2, p3, p5 were considered from the average

normal values in humans. The values of the parameters for the normal case are given in

Table 2.2. Vitamin D is crucial for our metabolism and stamina but excess of vitamin

D can be proved fatal also. It can be seen in Figure 2.2 that in normal case excess of

vitamin D can bring the glucose level near to 50 mg/dl which lead to hypoglycemia. It is

also reported that excess intake of vitamin D may lead to various problems in metabolism

which is also verified from Figure 2.2. Therefore, it is suggested that external dose of

vitamin D should be consumed under the prescription of medical practitioner.

2.6.2 NIDD (Non insulin dependent diabetes) case

In NIDD case, β cells produces enough insulin but not utilized by the body properly

due to insulin resistance of the body. Therefore, Ie ≥ 0 and Ib ≥ 0 are considered for

numerical simulation. The values of the parameters (p1 to I0) are considered from the

paper [72]. Lower value of glucose effectiveness (SG) and insulin sensitivity (SI) are the

main reason behind the consistent raised glucose concentration. Therefore, SG and SI

are lower taken than the normal case [72]. The parameter p2 has less effect on original

minimal model so we take the value of p2 same as in the normal case, p3 is derived from

p2.SI , where SI = (p3/p2) was obtained by parametric estimation for the NIDD data with

basal values (Gb and Ib) and peak glucose values comparable to the normal data. The

parameter p5 is taken as 10% of the p5 value for the normal case. The values of the

parameters for the NIDD case are given in Table 2.3. Dose of vitamin D helps to lower

the glucose concentration from 175 mg/dl to 150 mg/dl that can be seen in Figure 2.3.
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Since 150 mg/dl is still not in physiological range, reason behind is that for numerical

simulation sole effect of vitamin D is considered without any medical treatment.

2.6.3 IDD (Insulin dependent diabetes) case

In IDD case, either no insulin is secreted by β cells or little amount is secreted which

is not utilized properly by the body. Therefore, Ie= 0 and Ib = 0 are considered. Glucose

- insulin is completely disturbed because of which SG and SI are further decreased and

hence less value of SG and SI are taken as compared to normal case. The values of the

parameters (p1 to I0) are considered from the paper [138]. Value of p2 is taken within

the normal range and the parameters p4, I0 were obtained by linear regression of log

transformed IDD data. The value of p5 is taken as very small, as the IDD cases have

lower response to pancreas [85, 138]. The values of the parameters for the IDD case are

given in Table 2.4. Dose of vitamin D helps to lower the glucose concentration from 180

mg/dl to 160 mg/dl that can be seen in Figure 2.4. This amount of glucose concentration

is still higher than the normal value, but it is proved that even without medical treatment,

vitamin D can be helpful in lowering down the glucose concentration.

2.7 Conclusion and future scope

A mathematical model containing the effect of vitamin D on plasma glucose - insulin

dynamics was developed. The principle goal was to extend the Bergman Minimal model

[71] by adding suitable parameters to capture the physiological phenomenon induced by

vitamin D. The added terms in the proposed model are linear and as well as non linear

in nature, and thus we tried to maintain the simplistic approach of the original model.

The model captured the effect of vitamin D on glucose - insulin dynamics in which it is

confirmed that the important parameters which determine insulin sensitivity, pancreatic

responsivity, and glucose effectiveness have a significant impact on the model.

People belonging to poor families, having low income and suffering from diabetes all

over the world are struggling to get just the necessary amount of insulin, and it is very

difficult for them to fight with the disease as the treatment involves insulin therapy which

is very costly. This motivates us to find an approachable way to control the disease and

make us to focus on the vitamin D which not only increases the insulin sensitivity but

also decreases insulin resistance and increases inulin secretin in our body. To the best
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of our knowledge, it is the first model which incorporates the effects of vitamin D via

parameters. This illustration confirms that we should include a dose of vitamin D in our

daily routine, especially for the persons who are involved in the industrial sector and do

indoor jobs. Each individual should adjust the dosage of vitamin D according to his/her

situation.

In future, we will try to develop a mathematical model to find the exact amount of

vitamin D needed to be given to the diabetic patients, according to the severity of the

disease and lifestyle. Such model will be of great help to the diabetic community which

is increasing very rapidly.

Parameters Units Explanation References
p1 min−1 represents glucose effectiveness [37]
p2 min−1 fractional rate of insulin

appearance in interstitial
compartment [37]

p3 (min−2)(µU/ml)−1 contribution of plasma insulin
to the remote compartment

from interstitial compartment [37]
p4 min−1 clearance of plasma insulin [37]
p5 (min−2)(µU/ml)(mg/dl)−1 degree by which glucose exceeds

threshold or baseline
glucose level [37]

Table 2.1: Explanation of the parameters of model.
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Para Normal With varying amount of Vit. D With varying amount of Vit. D Ref
p1 0.0399 0.0399 0.0399e [71]
p2 0.0200 0.0200 0.0200 [71]
p3 0.00004 0.00004 0.00004 [71]
p4 0.257 0.257 0.257 [71]
p5 0.001 0.001 0.001 [71]
G0 287 287 287 [71]
I0 351 351 351 [71]
v1 - 0.30 0.25 -
v2 - 0.75 0.75 -
v3 - 0.95 0.90 -
v4 - 0.60 0.50 -

Table 2.2: Values of parameters for normal case.

Para NIDD With varying amount of Vit. D With varying amount of Vit. D Ref
p1 0.014 0.014 0.014 [72]
p2 0.0200 0.0200 0.0200 [72]
p3 0.00000128 0.00000128 0.00000128 [72]
p4 0.129 0.129 0.129 [72]
p5 0.0001 0.0001 0.0001 [72]
G0 438 438 438 [72]
I0 1322 1322 1322 [72]
v1 - 0.20 0.15 -
v2 - 0.85 0.85 -
v3 - 0.90 0.85 -
v4 - 0.55 0.35 -

Table 2.3: Values of parameters for NIDD case.

Para IDD With varying amount of Vit. D With varying amount of Vit. D Ref
p1 0.016 0.016 0.016 [138]
p2 0.043 0.043 0.043 [138]
p3 0.0000038 0.0000038 0.0000038 [138]
p4 0.02676 0.02676 0.02676 [138]
p5 0.0000001 0.0000001 0.0000001 [138]
G0 300 300 300 [138]
I0 51 51 51 [138]
v1 - 0.12 0.10 -
v2 - 0.90 0.90 -
v3 - 0.95 0.90 -
v4 - 0.48 0.40 -

Table 2.4: Values of parameters for IDD case.
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Figure 2.2: Comparison of glucose concentration level of normal people for three different
cases (one without vitamin D and two with varying amount of vitamin D) is shown in fig (a).
Interstitial insulin peaks are compared and can be seen in fig(b). Plasma insulin concentration
level for all three cases are shown in fig (c).
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Figure 2.3: Comparison of glucose concentration level of NIDD people for three different
cases (one without vitamin D and two with varying amount of vitamin D) is shown in fig (a).
Interstitial insulin peaks are compared and can be seen in fig(b). Plasma insulin concentration
level for all three cases can be seen in fig (c).
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Figure 2.4: Comparison of glucose concentration level of IDD people for three different cases
(one without vitamin D and two with varying amount of vitaminD) is shown in fig (a). Peak
of interstitial insulin for all the cases are compared and can be seen in fig (b). Plasma insulin
concentration level for all three cases can be seen in fig (c).



Chapter 3

Effects of FFA and obesity on diabetes

Obese people have always been on a high risk of consistent raised glucose concentration.

The aim of this chapter,1 is to analyze the effect of FFA together with obesity on the

glucose - insulin dynamics of NIDD people through a mathematical model. An attempt

has been made to capture the glucose and insulin concentration levels for NIDD people

having raised level of FFA and obesity through numerical simulation of the model. It

has been observed from the simulation of the model that elevated level of plasma FFA

inhibit glucose uptake, glucose utilization, decrease insulin sensitivity and increase insulin

resistance in NIDD people as compared to normal people. Also Indexing HDMR method

is proposed to get a polynomial based structure to measure the glucose level in a normal

body. For this purpose a data set of 90 normal people is used for the study.

1The results of this chapter have been published in two research papers entitled “Study of the effects of FFA
and obesity on diabetes through numerical simulation of themathematical model” inJournal of mathematics and
system science, 5 (2015) doi: 10.17265/2159-5291/2015.06.004 and “Application of I-HDMR in glucose - insulin
dynamics” inInternational conference on mathematical sciences(2014).
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3.1 Introduction

Obesity has been a growing health problem in the first half of the 20th century. The

earliest identified discussions on the need for an organisation addressing obesity took

place in Great Britain in 1961. The first meeting of the “Obesity Association” was held in

London in 1967. In the 1970s, the field of obesity research began to blossom in Europe. If

70s was a decade of foundation laying, 80s was a time of consolidation and construction,

witnessing the birth of the International Association for the Study of Obesity (IASO).

The 90s was the decade of maturation, and several important developments increased

IASO’s prominence on the international scene. The 6th, 7th and 8th ICOs were held

respectively in Kobe, Japan in 1990; Toronto, Canada in 1994; and Paris, France in 1998,

with attendance that reached 3000. In August 2002, following an extensive strategic

review process, IASO and IOTF merged to become a single entity capable of confronting

the challenges posed by the global obesity epidemic in the 21st century. The newly

incorporated IASO became a registered NGO in the WHO system when the IOTF’s

work with the WHO was formalised [139].

Insulin resistance can have many causes [140], but so far obesity is considered to be

the major cause in the developed countries. The exact reason, how obesity cause insulin

resistance in not fully known so far. But in US, obesity is approaching epidemic proportion

where more than 2/3 of all adults are either overweight or obese [141].

Obesity is associated with elevated plasma free fatty acids (FFA) levels, with insulin

resistance and hyperinsulinemia, two important cardiovascular risk factors for diabetes

[142]. Obesity has a great impact on the glucose effectiveness and insulin sensitivity of

any human body system. Infact Hofman et al. [143] found that insulin sensitivity was

approximated 80 % lower in obese horses than in non obese horses, an effect similar to

reported 76 % reduction in insulin sensitivity in obese vs. non - weight humans [144].

Lowering of plasma FFA levels would improve insulin resistance, hyperinsulinemia and

glucose tolerance in obese non diabetic and diabetic subjects.

Free Fatty Acids (FFA) are one of the outcomes of the food digestion process and

these acids are described as “free” because they are freely transported in the bloodstream

without the help of any other carrier and source [145]. Fatty acids are called essential fatty

acids as they are required by the human body but cannot be provided in sufficient quantity

by other substrates, hence must be obtained from food [145]. The relationship between
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obesity, FFA and type 2 diabetes is explained in Figure 3.1. FFA not only increase

Figure 3.1: Relationship of obesity, FFA and type 2 diabetes

insulin resistance [146–148] but also affect insulin secretion in normal as well as diabetic

people [149]. Glycogen synthesis in euglycemic diabetes patients were decreased to an

even greater degree than rate of glucose uptake (-72 vs - 53%) [148]. FFA and glycerol

increased insulin suppressed hepatic glucose production and thus caused insulin resistance

in the whole body. Glucose uptake decreased by ∼50 % (from 8.8 to 4.2 mg/kg/min) when

FFA concentration rose from ∼50 to ∼750 µM. When FFA concentration rose from ∼50

to ∼500 µM, glucose uptake decreases by ∼3 mg/kg/min, CHO oxidation and glucagon
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synthesis also decreases. Decline in glucose uptake, which occurred when plasma FFA

concentration rose further (∼ 550 to ∼ 750 µM), was caused exclusively by a decrement

in glycogen synthesis [147].

Mathematical modeling of the glucose - insulin dynamics of the diabetic patient affected

by the elevated FFA plasma level and obesity will help to find the ways to maintain the

glucose concentration in physiological range. To the time, theoretical evidences are given

by many researchers about the strong link between raised FFA level, obesity and diabetes

but still it is unfold mathematically.

Since it is evident from the past research articles that FFA and obesity are closely

associated with diabetes, therefore an attempt has been made to analyze the effect of

elevated FFA level and obesity on the glucose - insulin dynamics of diabetic people. The-

oretical changes suggested by Boden has been incorporated in the mathematical model

and then simulation has been carried out by using Matlab 2012b. There is a strong

relation between obesity and FFA [150], which are amongst the main factors responsible

for occurrence of type 2 diabetes. FFA also cause hepatic insulin resistance by inhibiting

insulin suppression of glycogenolysis [151]. On the basis of theoretical results obtained

by Boden and Chen (1995), the effect of physiological elevation of plasma FFA on the

glucose and insulin concentration level for obese people having type 2 diabetes through

a mathematical model will be discussed in the present study. Indexing HDMR will be

used to propose a polynomial based structure to calculate the glucose concentration by

taking a data set of 90 healthy subjects.

3.2 Mathematical model

The minimal model [37] for the glucose - insulin dynamics is given as

dG(t)
dt

=−X(t)G(t)− p1(G(t)−Gb);G(0) = G0 (3.2.1)

dX(t)
dt

=−p2X(t)+ p3(I(t)− Ib);X(0) = X0 (3.2.2)

dI(t)
dt

=−p4(I(t)− Ib)+ p5(G(t)−Gc)
+t; I(0) = I0+ Ib (3.2.3)

where, G(t) [mg/dl] represents glucose concentration at time t, X(t) [min−1] represents

remote insulin concentration at time t, I(t) [µU/ml] represents the interstitial insulin at
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time t, Gb [mg/dl] represents the basal glucose level, Gc [mg/dl] represents the threshold

glucose level of glucose above which the endogenous insulin secretion will be stimulated

and Ib [µU/ml] represents the basal insulin level. The parameters pi (pi > 0), i = 1,2,3,4,5

are given in Table 2.1.
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Figure 3.2: Relationship between insulin stimulated glucose uptake and plasma FFA.

Elevated level of plasma FFA level and insulin simulated glucose uptake by the cells of

the body shows a linear relationship implies if the level of FFA increases, glucose uptake

by the cells decreases [145], shown in Figure 3.2. Total stimulated (insulin stimulated plus

basal) glucose uptake has been inhibited by 40–50 % in isoglycemic and in euglycemic

patients at plasma FFA concentration of ∼ 950 and ∼ 550 µM [148] respectively, hence

the expression −X(t)G(t) in the first equation of the model (3.2.1–3.2.3) is changed to

−(0.5)X(t)G(t). This will lead to a change in the first equation of minimal model. Also

as reported by Boden peripheral insulin sensitivity and hence whole insulin sensitivity

decreases which is represented by p3 in eqn.(3.2.2). Hence there will be a change in the

numerical value of p3 which will be reflected in the simulation of the modified model.

FFA is found to have an affect on peripheral insulin resistance which is represented by

p5 in eqn.(3.2.3) and hence we allow the value of parameter p5 to vary. After making

the above discussed changes, the modified mathematical model for the glucose - insulin
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dynamics of NIDD people is given below :

dG(t)
dt

=−(0.5)X(t)G(t)− p1(G(t)−Gb);G(0) = G0 (3.2.4)

dX(t)
dt

=−p2X(t)+ p3(I(t)− Ib);X(0) = X0 (3.2.5)

dI(t)
dt

=−p4(I(t)− Ib)+ p5(G(t)−Gc)
+t; I(0) = I0+ Ib (3.2.6)

3.3 Stability analysis of mathematical model

To check the stability of the model at the equilibrium point, Gc = Gb is taken in the

eqn.(3.2.6) of the model.

Consider the model (3.2.4–3.2.6). Let us define g(t) = (G(t) - Gb), x(t) = S(t), i(t) =

(I(t) - Ib)

We may write system (3.2.4–3.2.6) in the form:

dg(t)
dt

= −(0.5)x(t)g(t)−Gbx(t)− p1g(t) (3.3.1)

dx(t)
dt

= −p2x(t)+q3i(t) (3.3.2)

di(t)
dt

= p5H(g(t))t−q4i(t) (3.3.3)

Where H ≡ H(g(t)) is the unit step function :

H(g(t)) =











0, if g(t)< 0

1, if g(t)> 0
(3.3.4)

To determine the stability of the model (3.2.4–3.2.6), we may establish certain inequal-

ities in the solutions to (3.2.4–3.2.6)

Let g(0) < 0 (i.e.,G(0) < Gb). Then H = 0, and from equations (3.3.1–3.3.3) we see

that g(t), x(t) and i(t) approaches to zero, and hence the system is stable for G(0)< Gb.
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From the eqn.(3.3.1), and using the Comparison Theorem 2.4.1 (where H = 1), we have :

dg
dt

= −p1g−Gbx− (0.5)gx

≤ −p1g−Gbxmin− (0.5)gxmin

= −Pg−Gbxmin,

where P= p1+(0.5)xmin

The solution is given by

g(t)≤ g(0)e−Pt−
Gbxmin

P
(1−e−Pt) (3.3.5)

and

dg
dt

≤ −g(0)Pe−Pt −Gbxmine
−Pt

< 0,∀t ≥ 0

which is negative.

At t → ∞, eqn.(3.3.5)g(0)e−Pt− Gbxmin
P (1−e−Pt) becomes −Gbxmin

P < 0

Hence, we can say that if g(0) > 0 (i.e.,G(0) > Gb), the right-hand-side of (3.3.5) de-

creases to zero after a finite time T, so that g(t) passes through 0 after a time TG, where

TG ≤ T. Also, at t = TG, H becomes zero.

From eqn.(3.3.3),

di
dt

= p5Hgt− p4i

The solution is given by

i(t) = i(0)e−p4t + p5e−p4t
∫ t

0
H(g(s))sg(s)ds (3.3.6)
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Now, the integral on the right in (3.3.6) is bounded above by

∫ TG

0
sg(s)ds< ∞

which implies i(t) ≤ imax i.e. i(t) is bounded above for t ≥ 0. Also from eqn.(3.3.6),

i(t)≥ imin for some finite imin i.e. i(t) is bounded below for all t ≥ 0. Hence i(t) is bounded.

Similarly, using the eqn.(3.3.2) and Theorem 2.4.1, we have

dx
dt

=−p2x+ p3i ≤−p2x+ p3imax

The solution is given by

x(t) ≤ x(0)e−p2t +
p3imax

p2
(1−e−p2t)

≤ x(0)+
p3imax

p2

≡ xmax

Hence, x(t) is bounded above.

Now, from the eqn.(3.3.2),

dx
dt

=−p2x+ p3i ≥−p2x+ p3imin

The solution is given by

x(t)≥ x(0)e−p2t +
p3imin

p2
(1−e−p2t) (3.3.7)

which implies x(t) is bounded below for t ≥ 0.

Hence, x(t) is bounded.

Hence we can say that if G(0) < Gb, then the system (3.3.1–3.3.3) is stable and if

G(0)> Gb, then the solutions of (3.3.1–3.3.3) are bounded for all t ≥ 0.
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3.4 Numerical simulation and results

On the basis of above results, numerical simulation has been carried out by using

Matlab 2012b. Boden suggested that for every 100 µM increase in plasma FFA, peripheral

insulin sensitivity decreased by ∼ 8 % [145], and whole insulin sensitivity decreased by

approximately 76 % in obese people as compared to normal subjects [144]. The value of p3

in the model (3.2.4–3.2.6) is taken as 8 % of the value p3 used for normal subjects, hence

p3 = 0.0000024, obtained from the relation SI = p3/p2 (insulin sensitivity of the normal

people), S
′

I = SI −76%SI (insulin sensitivity for the NIDD people) and p2 = 0.0200. FFA

could account for maximally 50 % of peripheral insulin resistance in patients with type

2 diabetes [145], hence the value of the parameter p5 in the model (3.2.4–3.2.6) is 50

% more of the value p5 used for normal subjects, therefore p5 = 0.0015 is taken for the

numerical simulation. The values of all the parameters for normal and NIDD people are

given in Table 3.2.

Elevated level of plasma FFA cause decrement in insulin sensitivity and increment in

insulin resistance, because of which glucose level does not reach to the normal basal value.

This effect is shown in Figure 3.3. Comparison between the changes in glucose and insulin

concentration in normal and elevated FFA in NIDD people is shown in Figure 3.4. First

graph of Figure 3.4(a) depicts that glucose level approaches to physiological basal level

faster in normal people than in NIDD with elevated FFA.

It is also observed that more time is taken by NIDD people with elevated FFA than

normal to attain nearly same glucose level. The effects of elevated FFA in insulin level

can be seen from second and third Figure 3.4. These graphs shows that more insulin is

required in NIDD with elevated FFA to perform the same action than in normal, which

can be understood as the need of external insulin in NIDD with elevated FFA.

The biggest challenge in the model (3.2.1–3.2.3) is to find the values of the parameters.

To get rid of this problem, an endeavor has been made to establish a polynomial relation

among the various important parameters of the body. To establish such a relation, first

of all ranking has been done of the parameters to list out most important parameter

affecting glucose - insulin dynamics.
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Sr. no. Parameters Rank value
1. BMI 0.051325
2. age 0.02418
3. sex 0.020057
4. weight 0.01167
5. height 0.01054
6. thigh 0.008436

Table 3.1: The selected parameters with their rank value

3.5 Preparing data set

We are going to deal with data set of 90 normal people and around 30 attributes, out

of which 60 are training nodes and 30 are testing nodes. Some of the attributes are listed

below: age of patient (years), body mass index of patient (bmi), blood insulin (mcg/dl),

c-peptide, fast blood sugar (fbs) (mg/dl), urine in blood (µU/ml), creatinine (mg/dl),

total cholesterol (mg/dl), triglyceride (mg/dl), high density lipoprotein (hdl) (mg/dl),

low density lipoprotein (ldl) (mg/dl), very low density lipoprotein (vldl), sex (male or

female), height (cms), weight (kg), oral glucose tolerance test (ogtt2hr), suberosal (ss),

thigh (cms) and many more.

A feature selection method used to select the significant parameter out of 50 parame-

ters. For this purpose, info gain attribute ranking method is applied to the data sets at

WEKA. It is known that the hdl and ldl levels have inverse ratio. For this reason, only

one parameter is selected to increase the performance of I-HDMR method. If both hdl

and ldl stay within the first five features, the one with the higher rank will be selected.

Another point is not to use fbs and glucose in urine level together in the modeling process

as high level fast blood sugar (fbs) causes glucose in urine.

The selected parameters are Body mass Index(BMI), Age, Sex, Weight, Height, Thigh

circumference. The rank value of the parameters are given in Table 3.1.

3.6 Methods

In this section the details of the Indexing HDMR method used to find the glucose level

are given. Also, the steps of the algorithm are discussed below. I-HDMR has the ability

to partition a given multivariate random data and to obtain an analytical structure for
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the given interpolation problem and to find testing data location in the index space.

The equation of the HDMR method for a given multivariate function is as follows :

f (x1.......xn) = f0+
N

∑
i1=1

fi1(xi1)

+
N

∑
i1,i2=1
i1<i2

fi1 fi2(xi1,xi2)

+ f1,2......N(x1,x2....xN)

This expansion is a finite sum and is composed of 2N components such as a constant, N

univariate terms, N(N - 1)/2 bivariate terms and so on. The purpose of this method is

to construct a unique representation for the given multivariate function. The “bivariate

HDMR approximation” can be given by the following relation:

f (x1.......xn) ≈ f0+
N

∑
i1=1

fi1(xi1)

+
N

∑
i1,i2=1
i1<i2

fi1 fi2(xi1,xi2)

However, we know that HDMR method can partition the multivariate data having or-

thogonality geometry in which the class values at all possible nodes of the problem do-

main should be known [152]. This domain can be described as P≡ P1×P2× .......×PN,

Pj ≡ ξ 1
j ..........ξ

n j
j , 1 ≤ j ≤ N, where N is the number of parameters in the problem,

n1,n2, ...,nN are the number of different values that the parameters can take and the set

P stands for the cartesian product set constructed through all possible parameter values

of the given problem which satisfies the orthogonal geometry need for the HDMR method.

Therefore, there are n1×n2× ....×nN nodes in this set. The training data set does not

include the class values at all nodes of the problem domain. The nodes at which the class

values are known, are distributed arbitrarily inside the given domain.

This structure has a non-orthogonal geometry. I-HDMR method constructs an algorith-

m to obtain an orthogonal geometry from this non-orthogonal geometry to make HDMR

applicable to the data partitioning process in order to determine an analytical structure

for the given problem.
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3.6.1 Algorithm

The steps of I-HDMR algorithm can be expressed as follows:

Step 1. Evaluate the prime factors of training nodes which is 60. The factors are 2,

2, 3, 5. The following assignments are done for glucose level:

n1 = 2, n2 = 2, n3 = 3, n4 = 5

Step 2. Specify the index sets for glucose level.

Step 3. Construct a cartesian product set by using the index sets given in Step 2. The

general structure of this set is given above.

Step 4. Sort the given training set by class values in ascending order.

Step 5. Construct a one-to-one mapping between the given training set nodes and the

cartesian product set of Step 3.

Step 6. Build an analytical structure for each I-HDMR component through partitioned

data sets.

Step 7. Find out the appropriate training node for each testing node.

Step 8. Determine the location of each testing node in the index space.

Step 9. Insert the values of testing node location into analytical structure and evaluate

the class of testing node under consideration.

3.7 Findings

The main task of this work is to model the given data by using the Indexing HDMR

method and to build a planning structure for glucose level. The accuracy, sensitivity and

root mean squared error (RMSE) results will be found out for glucose level and method.

The evaluations will be done by using Perl programming language. We will try to estab-

lish a polynomial relation between the selected parameters and the glucose level.
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The polynomial structure may be of the form:

f (x1,x2.......x6) = a0x1+a1x2+ ......+a5x6

+a6x1x2+ ......+a10x1x6

+a11x2x2+ .....+a14x2x6

+a15x3x1+ .....+a20x6x6

+a21x1x2x3+ ..................

where f represents glucose concentration level, xi , i = 1,2,3,4,5,6 are the above selected

parameters based on their rank value and a j are the constant coefficients. This relation

can be used to calculate the glucose concentration by having the value of 6 parameters

which are available without any advance test. Therefore, this polynomial may be proved

extremely useful for the individuals to keep close check on glucose level once the values

of ai are known.

3.8 Conclusion and future scope

The present mathematical model shows that elevated level of plasma FFA inhibit glu-

cose uptake, glucose utilization, decrease insulin sensitivity and increases insulin resis-

tance in NIDD people. It also explained the need of external insulin in NIDD with

elevated FFA. To explore the effects of obesity and elevated FFA in normal and NIDD

subjects BMI (body mass index) is selected as most effective parameter among all sorted

parameters to form a polynomial.

In future, a relation will be formulated among various physiological parameters which

includes BMI, age, sex etc and glucose level for diabetic patients with medication and

without medication.
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Parameters Value for normal References Value for NIDD References
p1 0.0399 [71] 0.014 [72]
p2 0.0200 [71] 0.0200 [72]
p3 0.00004 [71] 0.0000024 -
p4 0.257 [71] 0.129 [72]
p5 0.001 [71] 0.0015 -
G0 287 [71] 392 [72]
I0 351 [71] 1322 [72]

Table 3.2: The values of the parameters.
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Figure 3.3: Glucose - Insulin dynamics for NIDD people.
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Figure 3.4: Comparison of glucose - insulin dynamics for normal and NIDD people.



Chapter 4

Dynamical system for glucose - insulin

space in organs of diabetics

Diabetes is not just a single disease but it brings many health related problems and

affect our organs. Diabetes, if uncontrolled, can affect both the nervous system and

circulatory system. In this chapter,1 an attempt has been made to capture the changes in

glucose - insulin dynamics of central nervous system, liver and kidney which are severely

affected by diabetes through mathematical modeling and simulation. The numerical

simulation of the mathematical models explains that decreased volume of glucose and

insulin space may be one of the possible reasons behind the prolonged raised glucose level

in the central nervous system, liver and kidney of the diabetic people.

1The results of this chapter has been published in a research paper entitled “Dynamical system for glucose -
insulin space in different organs of diabetes” inCommunication in Mathematical Biology and Neuroscience, 9
(2016).

67
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4.1 Introduction

Diabetes affects our blood vessels and nerves and therefore can affect any part of the

body. As these two systems involved in almost all body functions resulting diabetes

leads to many health related complications and sometimes leads to failure of the multiple

organs. However, certain organs of our body are affected more than other organs for e.g

brain, heart, kidney, liver and pancreas.

It is clinically proved that type 2 diabetes may increase the risk of failure of many

major organs in the body, directly and indirectly. The following parts of the body which

may be affected by the diabetes depends upon the severity of the disease : eye, heart,

kidney, liver, nervous system and the reproduction system. In diabetes, nervous system

fails first and later all other systems. It motivates us to find the possible reason behind

the raised glucose concentration in the respective organs whose functioning are impaired

by the diabetes.

Diabetes affect the CNS in several ways. Diabetes increases the stroke risk and overdose

with insulin or oral intake can permanently damage the brain. Diabetes changes brain

transport, blood flow and metabolism [153]. The brain system fails first which puts

pressure on the islet system, causing further decomposition in the brain system that ends

in type 2 diabetes. The vessels in the brain can also become damaged by hyperglycemia,

and there is some evidences that this damage contributes to a progressive decline in brain

function [154, 155]. Frequent exposure to high glucose levels likely diminishes mental

capacity, as higher HbA1c levels have been associated with a greater degree of brain

shrinkage [156].

Continued excessive sugar levels in the kidney affect the glomeruli, or the blood filter-

ing units of the kidneys. In diabetes, the flow of blood through the kidneys increases

and glomeruli have to work harder resulting the kidneys get larger in size than normal.

Diabetes is among the leading cause of kidney failure [157]. Nearly one third of kidney

failure patients are diabetics.

Liver plays a major role in metabolism and has a number of functions in the body,

including glycogen storage, decomposition of red blood cells, plasma protein synthesis,

hormone production and detoxification [158]. Several roles are played by liver like carbo-

hydrate metabolism, formation of glycogen, breakdown of glycogen, synthesis of glucose

from certain amino acids and many more. In diabetics, fat is accumulated in the liver
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resulting excess deposition of fat in the liver and decreased removal of fat increase the

size of liver. An enlarged liver and enzyme abnormalities are characteristics of fatty liver.

The National Institute of Diabetes and Digestive and kidney disease reports that 10 to

20% of Americans have fatty liver [159].

The whole body models provide very important quantitative information about the

glucose - insulin dynamics. It is important but at the same time remarkably difficult

also to measure the physiological changes in the glucose - insulin dynamics at the organ

level. Here, for all three organs; CNS, kidney and liver, mathematical models have been

developed separately for each organ, to analyze the effect of volume of glucose and insulin

space on the glucose - insulin dynamics of diabetic people. The mathematical model has

been checked for its stability properties, positive and bounded solutions of the system are

also discussed in further section of the chapter.

It can be concluded from the results obtained from numerical simulation of the model

that decreased volume for glucose and insulin space (plasma and remote compartments)

may be one of the major reason for the raised glucose level in type 2 diabetics. Other

possible reasons together with the decreased volume of glucose and insulin space for the

raised glucose concentration (hyperglycemia) in each organ of the body are discussed at

the end of each section.

4.2 Model derivation

Insulin and glucose are the two main factors in the glucose - insulin endocrine metabolic

regulatory system. The glucose - insulin dynamics of human body is shown graphically

in Figure 4.1. By applying law of conservation of mass, we attempt to model the glucose

- insulin dynamics of three organs (CNS, Kidney and Liver) which are severely affected

by the long term persistence of diabetes in human body. Let G(t) and I(t) are the glucose

and insulin concentration at time t ≥ 0, then

dG
dt = Glucose production - Glucose utilization

dI
dt = Insulin production - Insulin utilization

On the basis of conservation law, we discuss the mathematical models to capture the

physiological changes of the glucose - insulin dynamics in various organs of human body.
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Figure 4.1: Glucose - Insulin dynamics of the human body
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4.3 Mathematical model

The mathematical model for glucose - insulin dynamics of the whole body [7] is given

as :

dG
dt

= Gin− f2(G(t))− f3(G(t)) f4(I(t))+ f5(I(t)) (4.3.1)

dI
dt

= f1(G(t))−diI(t) (4.3.2)

with initial conditions I(0) = I0 ≥ 0, G(0) = G0 ≥ 0, G(t) represents the glucose concen-

tration and I(t) represents the insulin concentration at time t.

• Gin is glucose infusion rate.

• f1(G(t)) represents insulin secretion.

• f2(G(t)) represents glucose utilization independent of insulin.

• f3(G(t)) f4(I(t)) represents insulin mediated glucose utilization.

• f5(I(t)) represents total glucose production.

• di is insulin degradation rate.

The functions fi , i = 1, 2, 3, 4, 5 are given below [7] :

f1(G) =
Rm

1+exp((C1−G/V1)/a1)

f2(G) =Ub(1−exp(−G/(C2V1)))

f3(G) =
G

C3V1

f4(I) =U0+
(Um−U0)

1+exp(−β log(I/C4(1/V2+1/Eti)))

f5(I) =
Rg

(1+exp(α(I/V3−C5)))

where,
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• V1 represents volume of glucose space.

• V2 represents volume of remote insulin compartment.

• V3 represents volume of plasma insulin compartment.

• ti is time constant for remote insulin degradation.

• E is the rate constant for exchange of insulin between plasma and remote compart-

ment.

4.4 Mathematical model for central nervous system (CNS)

Brain controls and governs the action of all parts of human body and approximately

25 % of total body glucose is required for the proper functioning of the brain. Brain also

maintain the glucose homeostasis i.e the balance of insulin and glucagon to maintain the

blood glucose. Normal glucose regulation in the body depends upon the link between in-

sulin produced by β cells and signal in hypothalamus. Initially, the brain was considered

to be an insulin-insensitive tissue, and the uptake of glucose was an insulin-independent

process [160]. However, subsequent studies demonstrated the existence of Insulin Recep-

tors in the brain [161]. Type 2 diabetes appears to be the result of failure of both brain

centered system and pancreatic islet system.

The magnitude of the glucose utilization dependent on insulin may not seems large,

because it is superimposed on background of insulin independent glucose uptake. A 15

% increase in brain glucose uptake secondary to insulin stimulation may have clinical

significance [162].

The mathematical model for glucose - insulin dynamics of the whole body [7] is given

in (4.3.1-4.3.2). In model (4.3.1-4.3.2), the functions fi , i = 1,2,3,4,5 represents the

physiological changes occurred in the glucose - insulin dynamics of the human body.

Rosenzweig in 1980 demonstrated the presence of insulin in brain of rat and human

in higher concentration than in plasma [163]. In 1986, Darrel illustrated that insulin is

produced within the CNS, specifically by neurons within the CNS of rats [164]. Insulin

in the brain has been found at level higher level than plasma. It has been reported that

high concentration of insulin are maintained in the CNS compartment compared to plas-

ma levels and the CNS insulin concentration is not affected by alternations in plasma
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insulin concentration [165]. This phenomena has been represented by γ in eqn.(4.4.2) of

the model (4.4.1-4.4.2).

The functions which are included in the mathematical model for CNS are given as :

• f1(GB(t)) represents insulin secretion but there is no significant production of insulin

takes place in CNS hence not considered in the CNS model.

• f2(GB(t)) represents glucose utilization independent of insulin and according to the

literature available, glucose uptake in brain is almost non insulin mediated [160],

hence the function is included in the model.

• f3(GB(t)) f4(IB(t)) represents insulin mediated glucose utilization, it has already

been demonstrated that insulin mediated glucose uptake take place in brain, hence

the functions are considered for the CNS model.

• f5(IB(t)) represents glucose production and there is no direct glucose production in

the brain, hence the function is not included in the model.

Hence, the glucose - insulin regulatory system for Central Nervous System is

dGB

dt
= Gin− f2(GB(t))− f3(GB(t)) f4(IB(t)) (4.4.1)

dIB
dt

= −di IB(t)+ γ (4.4.2)

with initial conditions I(0)= I0≥ 0, G(0)=G0≥ 0. GB(t) represents glucose concentration

in the brain, IB(t) represents insulin concentration in the CNS at time t. The functions

fi , i = 2,3,4 have been found behaving in the manner given below. The functions are

modeled as :

f2(GB) =U
′

b(1−exp(−GB/(C2V
′

1)))

f3(GB) = GB/(C3V
′

1)

f4(IB) =U
′

0+
(Um−U

′

0)

1+exp(−β log(I/C4(1/V
′

2+1/Eti)))

where
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• V
′

1 represents volume of glucose space in CNS.

• V
′

2 represents volume of remote insulin compartment.

• γ denotes the insulin concentration in the brain.

• U
′

b denotes the rate of glucose utilization with respect to glucose concentration i.e

non insulin mediated glucose uptake.

• U
′

0 denotes the glucose utilization rate with respect to plasma insulin i.e insulin

mediated glucose uptake in the CNS.

4.5 Mathematical model for liver

Liver plays an important role to maintain the homeostasis of glucose level in the body

for normal people. But for diabetic people, α and β cells are impaired in action and hence

the working of liver is also disturbed due to which glucose absorption and production from

the liver is also disturbed and resulting the glucose level either lowers down or raised very

much leads to hypoglycemia or hyperglycemia respectively. In type 2 diabetes, increased

level of insulin resistance leads to increase hepatic glucose production [166].

It was found in the study that hepatic glucose production in obese type 2 diabetic

patients may be increased by 12%compared to healthy people. The reason for including

insulin production function in second differential equation of the model is that insulin is

able to suppress hepatic glucose production about 25%of the values measured at fasting

insulin concentration in the morning both in the healthy and in type 2 diabetic peo-

ple [167]. The liver seems to be very sensitive and important organ to insulin in both

normal and type 2 diabetics because maximal suppression is obtained at insulin concen-

tration about 30 to 50 µU/min. Endogenous glucose production can be considered as

sum of all glucose production by kidney, intestines, liver, glucose intake and even muscles,

and here hepatic glucose production is used synonymous with total endogenous glucose

production. Hepatic glucose production was found more in type 2 diabetics due to a

reduced insulin sensitivity of liver cells. Increased amount of hepatic glucose production

add to the degree of hyperglycemia in diabetic people [167]. Splanchnic glucose produc-

tion was higher in diabetic than in non diabetic people. Thus, excessive insulin induced

suppression of splanchnic glucose release is also impaired [168].
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The functions which are included in the mathematical model of Liver are given as :

• f1(GL(t)) represents insulin secretion and almost glucose utilization in the liver is

insulin mediated, hence the function is included in the model.

• f2(GL(t)) represents glucose utilization independent of insulin and some amount

of glucose uptake in the liver is also non insulin mediated, hence included in the

model.

• f3(GL(t)) f4(IL(t)) represents insulin mediated glucose utilization, hence incorporat-

ed in the model.

• f5(IL(t)) represents hepatic glucose production.

Hence, the glucose - insulin regulatory system for liver is :

dGL

dt
= Gin− f2(GL(t))− f3(GL(t)) f4(IL(t))+ f5(IL(t)) (4.5.1)

dIL
dt

= f1(GL(t))−diIL(t) (4.5.2)

with initial conditions I(0)= I0≥ 0, G(0)=G0 ≥ 0, GL(t) represents glucose concentration

in liver and IL(t) represents insulin production in liver at time t. The functions fi , i =

1,2,3,4,5 are given as :

f1(GL) =
R

′

m

1+exp((C1−GL/V
′′

1 )/a1)

f2(GL) =Ub(1−exp(−GL/144V
′′

1 ))

f3(GL) = GL/(C3V
′′

1 )

f4(IL) =U0+
Um−U0

1+exp(−β log(IL/C4(1/V
′

2+1/Eti)))

f5(IL) =
R

′

g

(1+exp(α(IL/V
′

3−C5)))

where,
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• V
′′

1 represents volume of glucose space in liver.

• V
′

2 represents volume of remote insulin compartment.

• V
′

3 represents volume of plasma insulin compartment.

• R
′

m represents the rate of insulin secretion.

• R
′

g represents the rate of hepatic glucose production.

4.6 Mathematical model for kidney

Besides liver, kidney is the only organ capable of generating sufficient glucose (glu-

coneogenesis) to release in the blood by its reabsorption and excretion [169–171]. The

kidneys are designed to filter plasma, reabsorb glucose and excrete substances that must

be eliminated from the body. The basic functions of the kidney is regulation of fluid, body

fluid osmolality, excretion of metabolic waste, hormone secretion and maintain glucose

balance [172, 173]. The primary mechanism of the kidney include release of glucose into

the circulation via gluconeogenesis, glucose uptake from the circulation to satisfy the kid-

ney’s energy needs and reabsorption of glucose at the level of the proximal tubule [172].

Diabetes is characterized by increased rate of glucose turnover (Glucose production -

Glucose utilization) in the human body. Increased glucogenesis is considered to be one

of the major reason of overproduction of glucose in type 2 diabetics [174, 175]. It was

observed that approximately 25 % of systemic glucose production is contributed by re-

nal glucose production and renal glucose uptake accounts for 20 % of systemic glucose

removal indicate an important role of the human kidney to maintain the glucose home-

ostasis [176]. The observation also provide a possible explanation that why people with

renal failure are more prone to develop hypoglycemia [177,178]. In case of type 2 diabetic

people, renal glucose release is inscribed in both the postprandial and post absorptive

states, implies the kidney’s distribution to the hyperglycemia [171]. A 3-fold increase in

renal glucose release was observed in patients with diabetes verses normal [179], while as

hepatic glucose release increased by only 30% in the diabetic state. During hypoglycemia,

the 2-fold increase in renal glucose production rates in normal subjects, and not observed

in patients with diabetes [180].

Renal glucose reabsorption tends to increase with plasma glucose levels, upto plasma

concentration of 180 mg/dl to 200 mg/dl [172]. In patients with diabetes, the kidneys may



77

be susceptible to the effects of hyperglycemia, as kidney cells are unable to decrease glu-

cose transport rates to prevent intracellular hyperglycemia in states of increased glucose

concentration [181]. The possible reason behind is that may be insulin fails to suppress

renal glucose production in diabetic patients. Diabetic kidney diseases are more common

in type 2 diabetic people and is one of the reason for kidney failure.

The functions which are included in the mathematical model for kidney are given as:

• f1(GK(t)) represents insulin secretion and glucose utilization is controlled by the

insulin hence incorporated in the model.

• f2(GK(t)) represents glucose utilization independent of insulin and some glucose

uptake in the kidney is also non insulin mediated, hence the function is included in

the model.

• f3(GK(t)) f4(IK(t)) represents insulin mediated glucose utilization, hence incorpo-

rated in the model.

• f5(IK(t)) represents renal glucose production.

Hence, the glucose - insulin regulatory system for kidney is :

dGK

dt
= Gin− f2(GK(t))− f3(GK(t)) f4(IK(t))+ f5(IK(t)) (4.6.1)

dIK
dt

= f1(GK(t))−diIK(t) (4.6.2)

with initial conditions I(0) = I0 ≥ 0, G(0) = G0 ≥ 0, GK(t) represent the glucose concen-

tration in kidney and IK(t) represent the insulin concentration in kidney at time t. The

functions fi , i = 1,2,3,4,5 are given below :

f1(GK) =
R

′′

m

1+exp((C1−GK/V
′′

1 )/a1)

f2(GK) =Ub(1−exp(−GK/144V
′′

1 ))

f3(GK) = GK/(C3V
′′

1 )
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f4(IK) =U0+
Um−U0

1+exp(−β log(IK/C4(1/V
′

2+1/Eti)))

f5(IK) =
R

′′

g

(1+exp(α(IK/V
′

3−C5)))

where,

• V
′′

1 represents volume of glucose space in kidney.

• R
′′

m represents rate of insulin secretion.

• R
′′

g represents rate of renal glucose production.

4.7 Positive and bounded solutions of mathematical model

In this section, we will show the solutions (G(t), I(t)) of system (4.3.1-4.3.2) are positive

and bounded.

Proposition 2. : Let (G(t), I(t)) be a solution of system (4.3.1-4.3.2) with G(0) = G0 > 0,

I(0) = I0 > 0, then G(t) and I(t) are positive and bounded for all t> 0.

Proof. (i) G(t) is positive.

The solution of model (4.3.1-4.3.2) with given initial condition exists and is unique for allt ≥ 0.

If there exists at0 > 0 such thatG(t0) = 0 andG(t)> 0 for 0< t < t0, thenG
′
(t0) ≤ 0. So we

have

0≥ G
′
(t0) = Gin− f2(G(t0))− f3(G(t0)) f4(I(t0))+ f5(I(t0))

= Gin− f2(0)− f3(0) f4(I(t0))+ f5(I(t0))

= Gin+ f5(I(t0))> 0

which is a contradiction, hence impliesG(t)> 0 for all t > 0.

Hence,G(t) is positive.

(ii) G(t) is bounded.

If lim t→∞ supG(t) = ∞, then there exist a sequence{tn}∞
n=1↑∞ such that limn→∞ G(tn) = ∞

and G(t
′

n) ≥ 0. Thus 0< G
′
(tn) = Gin − f2(G(tn))− f3(G(tn)) f4(I(tn))+ f5(I(tn)) ≤ Gin −
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f2(G(tn))−k4 f3(G(tn))+K5, and therefore

0≤ lim
n→∞

G
′
(tn) ≤ Gin− lim

n→∞
f2(G(tn))−k4 lim

n→∞
f3(G(tn))+K5

≤ Gin−K2−k4 lim
x→∞

f3(x)+K5 < 0

(The steady state of the system (4.3.1-4.3.2) is unique, hence

lim
x→∞

f3(x)> (Gin−K2+K5)/k4).

This contradiction shows that there exist aKG > 0 such thatG(t) < KG for all t > 0 implies

G(t) is bounded above.

Hence,G(t) is bounded.

(ii) I(t) is positive and bounded.

Eqn.(4.3.2) can be written as

dI
dt

= f1(G(t))−diI(t)

dI(t)
dt

+di I(t) = f1(G(t))

The solution is given by

I(t)edit = I(0)+
∫ t

0
f1(G(t))editdt

I(t) = I(0)e−dit +e−dit
∫ t

0
f1(G(t))editdt

which implies, I(t)≥ I(0)e−dit , At t → ∞, I(t) > 0, implies I(t) is positive.

At steady point, I(t) =d−1
i f1(x), Since| f1(x)| ≤ K1, therefore I(t)≤ d−1

i K1 = K, hence I(t) is

bounded.

Hence the solution(G(t), I(t)) of the model (4.3.1-4.3.2) are positive and bounded.
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4.8 Stability analysis of mathematical model

To discuss the stability analysis of the model (4.3.1-4.3.2), we assume that all functions

fi , i = 1,2,3,4,5 satisfies the following conditions [75] :

(i) β cells of the pancreas secrete insulin to control the glucose concentration level and

since pancreas stop releasing insulin when the glucose concentration is abundant, hence

f1(x)> 0 and f
′

1(x)< 0 for x> 0. Since the highly raised glucose concentration saturate

the secretion of insulin, hence the amount of insulin secreted by pancreas is finite and

so we take limx→∞ f1(x) = K1 for x> 0. Some amount of insulin can also be secreted by

pancreas without the glucose stimulation, hence we assume f1(0) = k1 > 0.

(ii) The function f2(x) represents the insulin - independent glucose utilization, it is clear

that f2(0) = 0, f2(x)> 0 and f
′

2(x)> 0 for x> 0. Also the utilization of glucose is limited,

we assume that limx→∞ f2(x) = K2 and f
′

2(x)< K
′

2 for x> 0.

(iii) The insulin - dependent utilization of glucose in the body is represented by the

function f3(G(t)) f4(I(t)), so it can be written as f3(0) = 0, f
′

3(x) > 0, f4(0) = k4 > 0,

f4(x)> 0 and f
′

4(x)> 0 for x> 0. From [75], we assume that there exists constants k3 > 0,

K4 > 0 such that 0< f3(x)≤ k3x, limx→∞ f4(x) = K4 for x> 0.

(iv) f5 denotes the total glucose production and since organs stops releasing glucose

when the insulin concentration is abundant, hence f5(x)> 0, and f
′

5(x)< 0 for x> 0, and

limx→∞ f5(x) = 0. Amount of glucose produced by liver is small and it takes some time

also, so there exists K5 such that f5(x) ≤ K5 for x> 0, and f5(0) = k5.

Consider the linearized system of model (4.3.1-4.3.2) about the steady point (G∗, I ∗):

dG
dt

= −AG(t)−BI(t) (4.8.1)

dI
dt

= CG(t)−diI(t) (4.8.2)

where, A= f
′

2(G
∗) + f

′

3(G
∗) f4(I ∗), B = f3(G∗) f

′

4(I
∗) - f

′

5(I
∗), C = f

′

1(G
∗)

The characteristic equation is given as :

λ 2+aλ +b= 0

in which, a = A + di, b = Adi - BC.
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Apply Routh - Hurwitz Criterian on the characteristics polynomial to prove the sys-

tem as stable and for that we need to show the following conditions :

(i) a = A + di >0

(ii) b = Adi - BC >0

(iii) A > 0

Proof. (i) a = f
′

2(x) + f
′

3(x) f4(x) + di ,

since f
′

2(x) > 0, f
′

3(x) > 0, f4(x) > 0 anddi > 0 implies a> 0.

(ii) b = ( f
′

2(x) + f
′

3(x) f4(x))di - ( f3(x) f
′

4(x) - f
′

5(x)) f
′

1(x),

since f
′

2(x) > 0, f
′

3(x) > 0, f4(x) > 0, f
′

5(x) < 0, di > 0, f4(x) > 0, f
′

4(x) > 0 and f
′

1(x) < 0

implies b> 0.

(iii) A = f
′

2(G
∗) + f

′

3(G
∗) f4(I ∗) > 0,

From part (i) it can be seen that all the terms of A are> 0.

Hence it is concluded that the mathematical model (4.3.1-4.3.2) which represents the

glucose - insulin dynamics for normal people is stable. To avoid the repetition, the

stability analysis of the remaining mathematical models are not discussed.

4.9 Numerical simulation

We used Matlab 2012b to simulate the mathematical models numerically. The results

of our simulation reveals the possible reasons behind the raised glucose concentration in

CNS, liver and kidney which are severely affected by the diabetes, if it persists long in

the human body.

The total glucose space for the severe diabetic people is 124.47 ml/kg or 9.68775 l [182].

Out of which 1.04 % i.e 0.8112 l of body weight is taken for the CNS and 11.41 % i.e

8.8765 l of the total body weight is taken for the remaining compartments (liver and

kidney). The total volume space for the insulin is 10.92 l or 14.04 % of body weight,

out of which 3.131 l is for the plasma insulin compartment and 7.800 l is for remote

insulin compartment [183]. The average weight of human body is assumed to be 77.8 kg
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throughout the paper.

4.9.1 Normal

Mathematical model (4.3.1-4.3.2) is numerically simulated to observe the glucose and

insulin concentration in normal body. The values of the parameters which are taken in

the numerical simulation are given in Table 4.1.

4.9.2 Central Nervous System

(i) To find the direct impact of volume of glucose and insulin space on the glucose -

insulin dynamics in CNS for diabetic people, the parameters V
′

1 and V
′

2 are taken and are

given in Table 4.2. Since glucose uptake and glucose production are impaired in diabetics,

the effected glucose concentration level are shown with the help of graphs after numerical

simulation of the mathematical model (4.3.1-4.3.2).

It can be seen from the Figure 4.3(a) that after a initial dip in starting, glucose concen-

tration starts increasing and after approximately 1.5 hrs, glucose concentration crossed

the normal glucose level and approaches to 190 mg/dl within 3 hrs of glucose infusion,

which explains the condition of hyperglycemia in and near the CNS compartment of the

diabetic people. Figure 4.3(b) depicts the insulin concentration profile. Our simulation

shows that decreased volume of glucose and insulin space may be one of the major reason

for raised glucose concentration in the CNS. The other possible reasons together with the

decreased volume of glucose and insulin space are discussed further.

(ii) The glucose concentration is already raised in the diabetic people as the glucose

utilization is impaired in diabetic people. The parameter U
′

b denotes the rate of glucose

utilization with respect to glucose concentration i.e non insulin mediated glucose uptake.

The parameter U
′

0 denotes the glucose utilization rate with respect to plasma insulin i.e

insulin mediated glucose uptake in CNS.

The value of Ub is 72 mgmin−1 for normal people [7]. Since the rate of glucose utilization

is lower in diabetics than normal person, hence three smaller values of U
′

b are taken (60

mgmin−1, 50 mgmin−1, 40 mgmin−1) to discuss the glucose - insulin dynamics in CNS of

diabetics as shown in the Figure 4.4. Also three values of U
′

0 are taken (30 mgmin−1, 20

mgmin−1, 10 mgmin−1) for fixed value of U
′

b to discuss the glucose - insulin dynamics in

CNS of diabetics which can be seen in Figure 4.5
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4.9.3 Liver

Liver plays a major role in maintaining the glucose - insulin dynamics of the body. To

the time non suppressed hepatic glucose production was considered as one of the main

reason behind the raised glucose concentration in the body. R
′

m represents the rate of

insulin secretion and R
′

g represents the rate of hepatic glucose production. Figure 4.6(a)

shows the glucose concentration level in liver for different values of R
′

m (20 µUmin−1,

15 µUmin−1, 10 µUmin−1) with fixed value (200 mgmin−1) of the parameter R
′

g. The

reason for taking the value of R
′

m very less compared to normal people is that since

maximum suppression of hepatic glucose production was observed at insulin level of

about 30 µUmin−1 to 50 µUmin−1 and it fails to do so in diabetic people hence a value

near to 20 µUmin−1 is considered. The value of the parameter R
′

g in case of type 2

diabetics is taken as 200 mgmin−1 (12 % more than that of normal) [167], as hepatic

glucose production is increased in type 2 diabetics due to the increased insulin resistance.

The values of the parameters taken to discuss the glucose - insulin dynamics in liver are

given in Table 4.3.

4.9.4 Kidney

Stumvoll [176] shows the renal glucose production (RGP) and hepatic glucose produc-

tion (HGP) in the basal state and the graphs for both production are similar in shape,

only the concentration differs. R
′′

m represents rate of insulin secretion and R
′′

g represents

rate of renal glucose production. Infact glucose concentration produced by renal is ap-

proximately half of the glucose concentration produced by liver. Hence the value of R
′′

g is

taken as 90 mgmin−1 for kidney.

In diabetic people, insulin mediated glucose uptake and glucose production are dis-

turbed due to insulin resistance of the body and hence the raised glucose concentration

in the kidney can be seen in the Figure 4.7(a) for three different values (15 µUmin−1, 10

µUmin−1, 5 µUmin−1) of R
′′

m.

4.10 Results and discussion

Mathematical models for all three compartments are simulated analytically and numer-

ically for the transient behavior of glucose and insulin profiles. The figures illustrate the
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curves of glucose and insulin concentration level in CNS, kidney and liver, corresponding

to the changed value of volume of glucose space and insulin space in the organs.

Compared with the observations obtained by many biologists and researchers, the ob-

tained results confirms most of the known observations and also reveals additional in-

sightful information for type 2 diabetics. The results are concluded in the form of list

given below :

(i) The glucose concentration approaches to 110 mg/dl in 3 hours after glucose infusion,

which lies in the normal physiological range (70 - 110 mg/dl) as shown in the Figure 4.2.

(ii) Figure 4.3 reveals that decreased volume of glucose and insulin space for diabetic

people affect the CNS and may be considered as one of the possible many causes of raised

glucose level which may leads to diabetic comma.

Figure 4.4(a) shows that glucose concentration level in CNS compartment of a diabetic

people may acquire a blood sugar concentration over 200 mg/dl and reached nearly 230

mg/dl if the value of U
′

b decreases and value of U
′

0 kept fixed. The glucose concentra-

tion continuously increases as the rate of glucose utilization decreases (depend upon the

severity of disease) and may leads to diabetic comma sometimes, but never exceeds the

glucose infusion value even for U
′

b tends to zero. Figure 4.4(b) demonstrate the insulin

concentration level in CNS compartment.

It can be concluded from the results that decreased volume of glucose and insulin

space together with the decreased rate of glucose utilization (independent of presence of

insulin) may affect the glucose concentration in the CNS compartment and hence can be

considered as one of the reason for hyperglycemia in the CNS.

Similarly Figure 4.5(a) demonstrate the glucose concentration level in the CNS compart-

ment when the value of U
′

0 varies with fixed value of U
′

b. The glucose concentration in this

case is nearly 270 mg/dl which clearly indicates that hyperglycemia exists and impaired

the functioning of CNS. Also, it can be concluded that since both the uptakes (insulin

mediated and non insulin mediated) affect the glucose concentration but decreased rate

of insulin mediated glucose uptake has more impact than non insulin mediated glucose

uptake in keeping the raised glucose concentration in the CNS. Figure 4.5(b) depicts the

insulin concentration profile.

Figure 4.4 and Figure 4.5 shows that decreased volume of glucose and insulin space

with decreased rate of glucose uptake (insulin mediated and non insulin mediated) also
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intimidate continuous raised blood glucose concentration in CNS. Such condition may

sometime leads to brain damage and some other brain related diseases.

(iii) The glucose level goes up and a risk of diabetic comma may be occurred if the value

of R
′

m reduced further as shown in Figure 4.6(a). It is concluded from the simulation that

impaired insulin production from pancreas together with decreased volume of glucose and

insulin space may be the possible reasons for the raised glucose concentration in the liver.

Figure 4.6(b) demonstrate the insulin concentration level in the liver. Figure 4.6 reveals

that in liver raised glucose concentration are caused by impaired insulin production from

pancreas together with decreased volume of glucose and insulin space.

(iv) To the time, insulin resistance and non suppressed renal glucose production were

supposed to be the reason of hyperglycemia but through this study, it can be concluded

clearly that decreased volume of distribution of glucose and insulin space may be one

of the major reason together with impaired rate of insulin production for raised glucose

concentration in the diabetic people. Figure 4.7(b) demonstrate the insulin concentration

level in the kidney. The values of the parameters taken to discuss the glucose - insulin

dynamics for kidney are given in Table 4.4. Figure 4.7 depicts that impaired insulin

production and decreased volume of glucose and insulin space together raised the glucose

concentration and leads to many diseases related to kidney and sometimes leads to kidney

failure.

4.11 Conclusion and future scope

An attempt has been made to capture the behavior of glucose - insulin dynamics in CNS,

liver and kidney as different organs have different functions to perform and hence their

need of glucose is also different. Separate mathematical models have been developed for

CNS, liver and kidney depending on their response towards glucose and insulin dynamics.

It is concluded that decreased volume of glucose and insulin space may be one of the

major possible reason for the prolonged raised glucose concentration in CNS, liver and

kidney of type 2 diabetics. Other reasons behind the raised glucose concentration may

vary according to the behavior and physiology of affected organs as discussed in the

paper. We hope the results obtained from the analytical and numerical study of the

mathematical models will be the base to explore the role of volume of glucose and insulin

space on diabetes.



86

Parameters Units Values Parameters Units Values
Rm mUmin−1 210 V3 l 3
Rg mgmin−1 180 V2 l 11
Um mgmin−1 940 V1 l 10
U0 mgmin−1 40 ti min 100
Ub mgmin−1 72 a1 mgl−1 300
C1 mgl−1 2000 α lmin−1 0.29
C2 mgl−1 144 E lmin−1 0.2
C3 mgl−1 1000 β 1.77
C4 mUl−1 80 C5 mUl−1 26

Table 4.1: The values of parameters for normal case [7].

Parameters Units Values Parameters Units Values
V

′

1 l 0.8112 V
′

2 l 7.800

Table 4.2: The values of parameters for CNS.

Parameters Units Values Parameters Units Values
V

′′

1 l 8.8765 V
′

2 l 7.800
V

′

3 l 3.131 R
′

g mUmin−1 200

Table 4.3: The values of parameters for liver.

Parameters Units Values Parameters Units Values
V

′′

1 l 8.8765 V
′

2 l 7.800
V

′

3 l 3.131 R
′′

g mUmin−1 90

Table 4.4: The values of parameters for kidney.
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Figure 4.2: Glucose - Insulin dynamics for normal case.
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Figure 4.3: Glucose - Insulin dynamics of CNS for diabetic people with changed volume of
glucose and insulin space.
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′

b.



90

0 20 40 60 80 100 120 140 160 180
50

100

150

200

250

300

time(min)

gl
uc

os
e(

m
g/

dl
)

glucose dynamics

 

 

U
0
’ =30

U
0
’ =20

U
0
’ =10

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

time(min)

in
su

lin
(m

U
/m

l)

insulin dynamics

 

 

U
0
’ =30

U
0
’ =20

U
0
’ =10

Figure 4.5: Glucose - Insulin dynamics of CNS for diabetic people for varyingU
′

0.



91

0 20 40 60 80 100 120 140 160 180
50

100

150

200

250

300

time(min)

gl
uc

os
e(

m
g/

dl
)

glucose dynamics

 

 
R

m
=20

R
m

=15

R
m

=10

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

time(min)

in
su

lin
(m

U
/m

l

insulin dynamics

 

 
R

m
=20

R
m

=15

R
m

=10

Figure 4.6: Glucose - Insulin dynamics of liver.
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Chapter 5

Study of two time delays in IVGTT

The most widely used model in physiological research on the metabolism of glucose

is “minimal model”, which describes intra venous glucose tolerance test (IVGTT) experi-

mental data well with the smallest set of identifiable and meaningful parameters [46,71].

This model was used for the study of time delay occurs in insulin secretion by Li et al.

Literature confirms that delay occurs in insulin action also but not much attention has

been paid on the numerical range of this delay. This motivated us to further extend the

model by incorporated the second time delay for insulin action. In this chapter,1 the

extended model has been analyzed for stability and then numerical simulation is being

carried out using Matlab 2012b. From the simulation results, we have concluded that sus-

tained periodic oscillations are observed for both time delays. Also, the simulation shows

that after introducing the delay in insulin action, the delay length of insulin secretion

proposed by Li et al. has been shortened, which can be proved important in maintaining

the glucose level after delivery of insulin.

1The results of this chapter has been communicated in a research paper entitled “Study of two time delays in
IVGTT glucose - insulin dynamical system”.
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5.1 Introduction

Glucose and insulin are two important factors which maintain the glucose - insulin

regulatory system and also maintain the body homeostasis. In the whole mechanism,

some delays are observed (i) a delay is observed when insulin is released from pancreas

stimulated by raised glucose level (τ1) [74,75] and (ii) also a delay is observed in the action

of insulin to lower the raised glucose concentration (τ2) [17] as shown in Figure 5.1. It

is well known that even if enough insulin is present in our body, glucose concentration

will remain high because of delay in insulin action. Therefore, it is necessary to capture

the delay in insulin action along with in its release from pancreas which motivated us to

include this delay in the model proposed by Li et al [83].

In this chapter, a general mathematical model containing two delay terms for the glucose

insulin interaction is presented. Numerical simulation is performed in Matlab 2012b and

periodic solution are obtained for the various values of τ1 and τ2 as shown in the graphs

for the discrete delay model. Also, the maximum possible value of delay in insulin action

has been calculated which may be proved very useful in programming and designing of

the devices used for external insulin delivery in severely affected diabetics.

5.2 Mathematical model

The general mathematical model for the glucose - insulin dynamics is given as:

dG(t)
dt

= − f1(G(t))− f2(G(t), I(t))+Gin (5.2.1)

dI(t)
dt

= − f3(I(t))+ f4(H(Gt)) (5.2.2)

Where f1 represents glucose utilization independent of insulin, f2 represents insulin medi-

ated glucose utilization, f3 represents insulin disappearance, f4 denotes pancreatic insulin

secretion simulated by raised glucose concentration and Gin is the glucose concentration

in the body.

The functions f1, f2, f3, f4 satisfies the following conditions :

(i) f1(0) = 0, f1(∞) = ∞, f
′

1(x)> 0;

(ii) f2(0,0)= 0, f2x(x,y)> 0, f2y(x,y)> 0, f2(x,0) = 0, f2(0,y)= 0, f2(x,∞) =∞, f2(∞,y)<
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∞ for x= 0;

(iii) f3(0) = 0, f3(∞) = ∞, f
′

3(x)> 0;

(iv) f4(x) = 0 ⇔ x= 0.

We assume that the model (5.2.1-5.2.2) possesses a unique equilibrium point (G∗, I ∗) in

R2
+.

We define a more general mathematical model for the analysis of glucose - insulin dy-

namics :

dG(t)
dt

= −b1G(t)−
b4G(t)I(t− τ2)

αG(t)+1
+b7 (5.2.3)

dI(t)
dt

= −b2I(t)+b6Gt(t− τ1) (5.2.4)

The initial conditions are : G(0) = Gb+b0, I(0) = Ib+b3b0, G(t) ≡ Gb for t ∈ [-τ1, 0],

I(t)≡ Ib for t ∈ [-τ2, 0] and Gt(θ)= G(t + θ), t > 0, θ ∈ [-τ1, 0]. Also, H(Gt) = G(t−τ1)

for τ1 as discrete delay; H(Gt) = 1
τ1

∫ 0
−τ1

G(t + θ)dθ for τ1 as the distributed delay. b0

[mg/dl] is the increment in plasma glucose concentration over basal glucose concentration

at time zero after infusion of intravenous glucose bolus, b1 [min−1] is the rate of glucose

degradation, b2 [min−1] is the rate of insulin degradation, b3 [(mg/dl)−1pM] is the first-

phase insulin concentration increase per mg/dl increase in the concentration of glucose

at time zero due to the injected bolus, b4 [(pM)−1min−1] is the rate of insulin mediated

glucose uptake per pM of plasma insulin concentration, b6 [(mg/dl)−1pMmin−1] is the

constant amount of second-phase insulin release rate per mg/dl of glucose concentration;

b7 [(mg/dl)min−1] is the constant increase in plasma glucose concentration due to hepatic

glucose production [48]. The parameters have the same meaning as in the De Gaetano

and Arino model [48]. We are taking two delays τ1 and τ2 in which τ2 is discrete delay and

τ1 could be discrete or distributed as defined in the model (5.2.3-5.2.4) and (5.2.5-5.2.6).

For the distributed delay (τ1), the model becomes

dG(t)
dt

= −b1G(t)−
b4G(t)I(t− τ2)

αG(t)+1
+b7 (5.2.5)

dI(t)
dt

= −b2I(t)+
b6

τ1

∫ 0

−τ1

G(t+θ)dθ (5.2.6)
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Both the models (5.2.3-5.2.4) and (5.2.5-5.2.6) possesses a unique equilibrium point (G∗,

I ∗) in R2
+. It is also clear that the model (5.2.3-5.2.4) and (5.2.5-5.2.6) are the special

cases of model (5.2.1-5.2.2).

At the equilibrium point (G∗, I ∗), we conclude

I ∗ =
b6

b2
G∗

G∗ = (−b1+

√

b2
1+

4b4b6b7

b2
)/

2b4b6

b2

5.3 Positive and bounded solutions of mathematical model

Proposition 3. : The solutions of model (5.2.1-5.2.2) are positive, bounded and exists for all

t > 0.

Proof. (i) Solutions (G(t), I(t)) are positive.

Consider the model (5.2.1-5.2.2) and let(G(t), I(t)) are the solutions of (5.2.1-5.2.2). For

t0 > 0, G(t0) = 0 thenĠ(t0)≤ 0.

Following the assumptions for the functionsf1(0) = f2(0,y) = 0, we have

Ġ(t0) = − f1(G(t0))− f2(G(t0), I(t0− τ2))+Gin

= Gin > 0

which is a contradiction, henceG(t)> 0 for all t.

For t0 > 0, I(t0) = 0 thenİ(t0)≤ 0.

Hence,

0 ≥ İ(t0) =− f3(I(t0))+ f4H(Gt0)

= f4H(Gt0)> 0

which is a contradiction, asG(t0(θ))> 0 for θ ∈ [−τ1,0), hence impliesI(t)> 0 for all t.

HenceG(t), I(t) are positive for all t.

(ii) Solutions (G(t), I(t)) are bounded.
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Consider the eqn.(5.2.1) of (5.2.1-5.2.2),

˙G(t) = − f1(G(t))− f2(G(t), I(t− τ2))+Gin

≤ − f1(G(t))+Gin

which impliesG(t)≤ f−1
1 (Gin) .

Hence,Gb+b0 ≤ G(t) ≤ f−1
1 (Gin) (by initial conditionG(0) = Gb+b0) which implies that

G(t) is bounded.

Also from eqn.(5.2.2),

İ(t) = − f3(I(t))+ f4H(Gt)

≤ − f3(I(t))+ f4H f−1
1 (Gin)

which impliesI(t)≤ f−1
3 f4H( f−1

1 (Gin)).

Hence,Ib + b3b0 ≤ I(t) ≤ f−1
3 f4H( f−1

1 (Gin)) (by initial condition I(0) = Ib + b3b0) which

implies thatI(t) is bounded.

HenceG(t), I(t) are bounded for all t.

Hence we conclude that the solutions of (5.2.1-5.2.2) are positive, bounded and exists for all

t > 0.

5.4 Linearization of the model

We linearize the model (5.2.1-5.2.2) to check the stability of the model whether the

oscillatory solution will exists for the defined parameter values.

Consider the model (5.2.1-5.2.2), let g(t) = G(t)−G∗ implies G(t) = g(t)+G∗, i(t) =

I(t)− I ∗ implies I(t) = i(t)+ I ∗, where (G∗, I ∗) are the equilibrium point.

Then the model (5.2.1-5.2.2) is translated to

dg(t)
dt

= − f1[g(t)+G∗]− f2[g(t)+G∗, i(t− τ2)+ I ∗]+Gin (5.4.1)

di(t)
dt

= − f3[i(t)+ I ∗]+ f4H(gt +G∗) (5.4.2)



99

having a unique equilibrium point at (0,0).

The linearized system of (5.4.1-5.4.2) is as follows :

dg(t)
dt

= −[ f
′

1(G
∗)+ f2x(G

∗, I ∗)]g(t)− f2y(G
∗, I ∗)i(t− τ2)

di(t)
dt

= − f
′

3(I
∗)i(t)+ f

′

4(G
∗)H(gt)

For convenience, replace g(t) and i(t) by G(t) and I(t).

dG(t)
dt

= −[ f
′

1(G
∗)+ f2x(G

∗, I ∗)]G(t)− f2y(G
∗, I ∗)I(t− τ2)

dI(t)
dt

= − f
′

3(I
∗)I(t)+ f

′

4(G
∗)H(Gt)

Define A = f
′

1(G
∗)+ f2x(G∗, I ∗), B = f2y(G∗, I ∗), C = f

′

3(I
∗), D = f

′

4(G
∗) .

Hence

dG(t)
dt

= −AG(t)−BI(t− τ2) (5.4.3)

dI(t)
dt

= −CI(t)+DH(Gt) (5.4.4)

If H(Gt) takes the discrete delay form, then H(Gt) =G(t−τ1), t > 0 and the characteristic

equation is

λ 2+ pλ +q+ re−λ (τ1+τ2) = 0 (5.4.5)

where p = A + C, q = AC, r = BD.

If H(Gt) takes the distributed delay form, then H(Gt) = 1
τ1

∫ t
t−τ1

G(θ)dθ , t > 0 then the

characteristic equation is

λ 2+ pλ +q+
re−λτ2

τ1

∫ 0

−τ1

eλθ dθ = 0 (5.4.6)

5.5 Delay dependent stability analysis

Case 1 : Discrete delay term

The characteristic equation for discrete delay form is given as :

P(λ ) = λ 2+ pλ +q+ re−λ (τ1+τ2) = 0 (5.5.1)
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The trivial solution of (5.5.1)is unstable for all τ1 ≥ τ0, τ2 ≥ τ0 if there exists τ0 > 0, then

there exists z> 0 such that P(iz) = 0. The equation becomes

z2− pzi−q− rcos(τ1+ τ2)z+ irsin(τ1+ τ2)z= 0

implies z2 = q+ rcos(τ1+ τ2)z and pz= rsin(τ1+ τ2)z.

Since p,z, r > 0 therefore, it implies (τ1+ τ2)≥
p
r .

Hence for H(Gt) =G(t−τ1), t > 0, τ1> 0 and (τ1+τ2)<
p
r , the trivial solution of (5.5.1)

is globally asymptotically stable.

Case 2 : Distributed delay term

Consider the characteristic equation for distribution delay form

P
′
(λ ) = λ 2+ pλ +q+

re−λτ2

τ1

∫ 0

−τ1

eλθ dθ (5.5.2)

The trivial solution of (5.5.2) is unstable for some τ1 > 0 and τ2 > 0, then there exists

γ > 0 and β > 0 such that λ = γ + iβ is a solution of (5.5.2).

(γ + iβ )2+ p(γ + iβ )+q+
re−(γ+iβ )τ2

τ1

∫ 0

−τ1

eγθ (cosβθ + isinβθ)dθ = 0

γ2−β 2+2γβ i + pγ + piβ +q+
re−γτ2(cosβτ2− isinβτ2)

τ1

∫ 0

−τ1

eγθ (cosβθ + isinβθ)dθ = 0

comparing the terms, we get

γ2−β 2+ pγ +q+
re−γτ2

τ1
[cosβτ2

∫ 0

−τ1

eγθ cosβθdθ +sinβτ2

∫ 0

−τ1

eγθ sinβθdθ ] = 0

and

2γβ + pβ +
re−γτ2

τ1
[cosβτ2

∫ 0

−τ1

eγθ sinβθdθ +sinβτ2

∫ 0

−τ1

eγθ cosβθdθ ] = 0

2γβ + pβ =−
re−γτ2

τ1
[cosβτ2

∫ 0

−τ1

eγθ sinβθdθ +sinβτ2

∫ 0

−τ1

eγθ cosβθdθ ] (5.5.3)
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Since β > 0,

2γ + p≤|
re−γτ2

τ1
[cosβτ2

∫ 0

−τ1

eγθ sinβθ
β

dθ +sinβτ2

∫ 0

−τ1

eγθ cosβθ
β

dθ ] |

2γ + p≤|
re−γτ2

τ1
|| cosβτ2 ||

∫ 0

−τ1

eγθ sinβθ
β

dθ |+ |
re−γτ2

τ1
|| sinβτ2 ||

∫ 0

−τ1

eγθ cosβθ
β

dθ |

2γ + p≤
r
τ1

∫ 0

−τ1

| θ | dθ +
r
τ1

∫ 0

−τ1

| θ | dθ = rτ1 (5.5.4)

This shows γ ≤ 1
2(rτ1− p).

Hence for H(Gt) =
∫ 0
−τ1

G(t + θ)dθ , t > 0, τ1 > 0 and τ1 < p
r , the trivial solution of

(5.5.2) is globally asymptotically stable.

5.6 Numerical simulation and results

Ultradian oscillations are observed in the human body in two different ranges : slow

ultradian oscillations (10-15 min) and rapid ultradian oscillations (80-150 min) [184,185].

Often the slow ultradian oscillations are superimposed by rapid ultradian oscillation.

Occurrence of ultradian oscillations due to the interaction between insulin and glucose

were observed by Sturis et al. [6] in non linear mathematical model comprising six ordinary

differential equations. Sustained insulin and glucose oscillations were found numerically

to be dependent on time delay by the effect of insulin on glucose production and effect

of insulin on glucose utilization [83]. Both “minimal model” and “dynamical model” do

not account both the delays and were not constructed for the understanding of insulin

oscillations [83].

In 2001, Li et al. [83] found an alternative way of introducing delay term in the dy-

namical model given by Arino [48] and able to show that the new dynamical model (after

incorporating the parameter α) possesses unstable steady states and produced oscilla-

tory solutions for very large value of delay term b5 (=550 min). Li et al. showed the

periodic oscillations in subjects 6 and 7 (experimental data taken from De Gaetano and

Arino [48]) through the graphs by using XPP for windows 98/NT [83].
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We extended the model given by Li et al. [83] and presented a new model (5.2.3-5.2.4) for

the study of Intravenous glucose tolerance test (IVGTT) which focuses on the metabolism

of glucose. The steady state is globally asymptotically stable for all the meaningful values

of time delays τ1 and τ2 . From our extensive computer simulation using Matlab 2012b,

we found that for first subject, periodic solution can be obtained for τ1 = 480 min, τ2 =

15 min and α = 0.01 and for second subject, periodic solution can be obtained for τ1 =

490 min, τ2 = 15 min and α = 0.05.

Figure 5.2 illustrate the periodic solutions for discrete delay model (5.2.3-5.2.4) for

both subjects using the data given in Table 5.1. It is clearly seen in the Figure 5.2(a)

and Figure 5.2(b) that sustained periodic oscillations for both subjects are obtained at

time delay of length 480 min and 490 min respectively. Also, it is quite noticeable

that since the actual delay length for both the subjects is 23 min [48], hence it is very

unlikely to observe sustained periodic oscillations in real life experiments. No sustainable

and periodic oscillations are observed for short delays, however it may possible for large

enough delays as shown in the Figure 5.2(a) and Figure 5.2(b).

The introduction of τ2 = 15 min in the model helps to lower down the value of τ1 from

550 min to 480 min in first subject and τ1 from 600 min to 490 min in second subject.

Also the number of oscillations increased in large time intervals for both subjects. It can

be considered as an alternative way to deliver insulin in the body by keeping the two

delays in account. Our results also shows that the generalized mathematical model may

produce oscillatory solutions even without considering hepatic glucose production.

5.7 Conclusion and future scope

The present chapter provides an alternative way of delivering insulin and glucose intake

by taking account the necessary delays (τ1 and τ2) which occurs in the glucose - insulin

dynamics. Numerical results of the model provides the range of time delays which produce

periodic solutions and more number of oscillations can be obtained in the same range as

compared with the model of Li et al. [83]. One more important delay which occur in the

hepatic glucose production influenced by insulin presence can be taken into account for

the deep study of glucose - insulin interaction dynamics. No doubt, this will increase the

number of equations in the model and make the system complex, but provide a closer

approach to understand the metabolism of glucose - insulin interaction dynamics.
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P Gb Ib b0 b1 b2 b3 b4 b6 b7

U mg/dl pM mg/dl min−1 min−1 (mg/dl)−1 pM−1min−1 (mg/dl)−1 (mg/dl)
pM pMmin−1 min−1

1 88 68.6 209 0.0002 0.4200 1.64 0.000109 0.033 0.68
2 87 37.9 311 0.0001 0.2196 0.64 0.000373 0.096 1.24

Table 5.1: The values of parameters for first subject and second subject [48], P stands for
parameter, U stands for units, 1 stands for first subject, 2 stands for second subject .
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Figure 5.2: Glucose - Insulin dynamics of first subject having τ1 = 15,τ2 = 480 shown in first
figure and second subject havingτ1 = 15,τ2 = 490 shown in second figure.





Chapter 6

Quantitative analysis of two time delays

using artificial pancreas

In this chapter,1 ranges of time delays in glucose - insulin dynamics of type 1 diabetics

using artificial pancreas has been quantified. Time delay in insulin secretion, its absorp-

tion and action is a point of consideration in artificial pancreas as it may prove fatal in

the extreme situation. The present mathematical model deals with two time delays out of

which one occur in insulin secretion and second in its absorption and action. The model

assess the change in glucose - insulin dynamics after the induction of different values of

these time delays in their respective range. Also, simulation is performed over the model

to quantify the amount of two time delays to avoid diabetic comma, which has not been

explored much.

1The result of this chapter has been published in a research paper entitled “Quantitative analysis of time delays
of glucose - insulin dynamics using artificial pancreas” inDiscrete and continuous dynamical system - series b,
20 (9) (2015) doi:10.3934/dcdsb.2015.20.3115.
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6.1 Introduction

Type 1 diabetes can occur at any age, but it usually starts in early age. Pancreas

of type 1 diabetic people produces almost no insulin and thus such patients have to

undergo intensive insulin therapy. The use of insulin pump, also known as Continuous

Subcutaneous Insulin Infusion (CSII) therapy, has greatly increased for type 1 diabetes

as it also provides a good alternative to insulin injections.

Many endocrine systems show the ultradian rythmetical oscillations. Out of which

hormone insulin also shows the same characteristics. Insulin release from the pancreas in

human body is a multioscillatory process with rapid pulses of about 10 min and slower

oscillation of 50-120 min [12]. For type 1 diabetic people, whole amount of insulin is

given from the outer source, so the insulin secretion from the insulin pump is assumed to

behave in manner of ultradian oscillation.

The Artificial Pancreas (AP), known as closed - loop control of blood glucose in diabetes,

is a system combining a glucose sensor, a control algorithm, and an insulin infusion

device [186]. The term Artificial Pancreas was first introduced in 1974 and PID controller

was considered to be the best controller until the mechanism was not completely known

in application [187].

Hypoglycemia remains a big barrier to the intensification of insulin therapy. Low-

er levels of glycated hemoglobin are unfortunately associated with an increased risk of

hypoglycemia [188]. Continuous glucose monitoring devices measuring ISF (interstitial

fluid) glucose exhibit time delays when compared to capillary blood glucose. Short de-

lays exist due to diffusion through glucose membrane, as the process of diffusion often

depends upon membrane thickness [189]. Sensors measuring ISF glucose will lag blood

glucose by the time, what it takes for glucose to diffuse from the capillary to the inter-

stitial space adjacent to the sensors or sampling device. The relationship between ISF

glucose and plasma glucose has been under debate for some time, whether ISF glucose

leads plasma glucose or plasma glucose leads ISF glucose. The model [190] assumed the

time lag between ISF and plasma glucose concentration is constant. Ward in 2010 [191]

established the consistency with rate parameters unaffected by rising and falling glucose

levels, which holds time for different insulin concentration. Jiaxu in 2006 [74] compared

many models (single and two delays) to find that models which includes two delays are

explicitly more robust and more accurate than model which include single delay.
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Nowadays, model based control are preferred due to various limitations during their

use in subcutaneous systems. These models reflect the physiology of insulin secretion

stimulated by raised level of glucose, and glucose absorption controlled by insulin or

exogenous insulin given by outer source [73]. The first model containing the delay term

for the glucose - insulin dynamics was introduced by Sturis et al. [6] in 1991 for the

normal subjects. After that a lot of work has been done by taking the same model

to discuss various aspects. In 2006, Li et al. [74] introduced two explicit time delays

and proposed a model for better understanding the glucose - insulin regulatory system

and ultradian insulin secretary oscillations in normal subjects for the cases of continuous

enteral nutrition and constant glucose infusion rate. After that in 2007, Li et al. [75]

found the factors which may be responsible for the sustained oscillatory regulation and

insulin secretion taking the same model used in [74]. In 2012, Li et al. [76] modified the

model by taking single delay and the term denotes the Hepatic glucose production (HGP)

as a constant term. He found that HGP is insignificant for type 1 diabetic patients and

obtained the results including exogenous insulin injection and the feedback of monitored

glucose concentration level for the diabetic people by using artificial pancreas but failed

to control the most critical issue of hypoglycemia found in diabetic people.

Time delays that occur in insulin release have been discussed widely in literature but

delay happening in insulin absorption and its action has not been paid much attention

inspite of being an important factor in maintaining glucose - insulin regulatory system.

In this chapter, a model has been developed by considering these two time delays τs

(time delay in insulin secretion) and τa (time delay in insulin absorption and action) to

discuss the physiological changes in glucose - insulin regulatory system that occur in type

1 diabetic people by using artificial pancreas. The schematic diagram is shown in the

Figure 6.1. We tried to quantify the range of time period of both the delays after which

glucose level decreases sharply and thus may lead to diabetic comma.

The purpose of this chapter is to use the model of the glucose - insulin regulatory system

in order to quantify the amount of two time delays observed during insulin secretion and

its absorption and action to avoid diabetic comma.
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6.2 Mathematical model

The two major factors in the regulatory system model are glucose and insulin. Let

G(t) and I(t) represent the glucose and insulin concentration at time t ≥ 0. The model

comprises of : dG
dt = glucose production - glucose utilization and dI

dt = insulin production

- insulin utilization.

Glucose production: Glucose is generated from dietary carbohydrate such as starch or

sucrose obtained from the food we eat. Glucose is taken through meal ingestion, oral

glucose intake, constant glucose infusion which is represented by Gin in the first equation

of the model [6, 7]. Liver also produce glucose and considered as a source of glucose as

glucose is stored mainly in the liver and muscles as glycogen, but in T1DM, working of

α cells which are located in the langerhans islets of the pancreas is impaired and so no

glucagon is secreted from α cells resulting no glucose production by liver.

Glucose utilization: Glucose utilization is of two types - insulin independent and insulin

dependent utilization. Brain is considered as insulin - independent glucose utilizer. The

insulin independent glucose utilization is denoted by f2(G(t)) and is of sigmoidal shape [6].

The insulin dependent utilization is mostly due to muscles, fat cells and other tissues

which is denoted by the function f3(G(t)) and whole glucose utilization is denoted by

f3(G(t)) f4(I(t)) in the first equation of the model.

Insulin production: Insulin is produced from β cells of the pancreas, mainly in response

of elevated glucose concentration in the body. But since we are dealing with type 1

diabetic people and β cells are impaired in action, hence insulin is injected from outer

source through artificial pancreas. The function f1(G(t)) stands for the insulin production

stimulated by glucose concentration and is of sigmoidal shape [6], present in the second

equation of the model.

Insulin utilization: In general, insulin is used when the level of glucose raised in the

body and is cleared by all insulin sensitive tissues. When insulin is not removed by liver

and kidneys, then ultimately it is cleared by muscle cells, adipose cells and other tissues.

The aim is to use the inactive insulin in the body and lower the raised glucose level.

Experiments have shown that insulin degradation is proportional to insulin concentration

[7]. Insulin degradation rate is given by positive constant di ≥ 0.

Two delays: The following feedback loops are present in the system : glucose enhances
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its own uptake, glucose stimulates insulin secretion, insulin stimulates glucose uptake.

The whole system contains 2 significant delays. When the glucose level rises in the

body, glucose sensor becomes activated and directs the insulin pump to inject insulin

subcutaneously. In this process, it has been experimentally observed that a delay of

(5, 15) min occurs in insulin secretion [186]. τs represents the time delay of the insulin

response to the elevated glucose level and time required for the secreted insulin to become

remote insulin and is represented by f1(G(t− τs)).

In the model (6.2.1-6.2.2), τa represents the delay of insulin absorption and insulin

action in the body to lower the glucose level in its normal range and the range of τa

has been observed as (20, 50) min experimentally [186]. This is the delay which will

contribute majorly to the situation of diabetic comma that will be discussed in numerical

simulation. Since f4(I(t)) is a function of insulin and represents the insulin dependent

glucose utilization, hence the delay τa is incorporated in this function and is represented

by f4(I(t− τa)) in the model.

The rate of glucose utilization is not uniform in all bodies and it varies according to the

different glucose - insulin metabolic regulatory system. Hypoglycemia and hyperglycemia

are the most harmful episodes in the insulin therapy treatment (closed loop control sys-

tem or artificial pancreas) and are caused by unbalanced glucose utilization and insulin

production. The objective of the model discussed here is to do the quantitative analysis

of two delays in the glucose - insulin metabolic regulatory system for the diabetic people.

According to normal physiology, insulin secretion is controlled by β cells of islets of

langerhans, which stops secreting insulin as the glucose concentration gets lower than

normal range. As a result of which α cells get activated to release glucagon. This

glucagon leads to hepatic glucose production and it takes some time for HGP to produce

significant effect and a delay in this mechanism is observed [75]. In type 1 diabetes,

this whole phenomena does not take place because of insignificant effect of α and β

cells. Hence, the effect of insulin to control HGP is not significant for diabetic people

using artificial pancreas [76]. So effect of HGP is taken as constant (= c) in the model

(6.2.1-6.2.2) discussed below.

The proposed model with the time delays τs and τa in the glucose - insulin regulatory
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system is given below :

dG
dt

= Gin− f2(G(t))− f3(G(t)) f4(I(t− τa))+c (6.2.1)

dI
dt

= f1(G(t− τs))−di I(t) (6.2.2)

with initial conditions I(0) = I0 ≥ 0, G(0) = G0, G(t)≡ G0 for t ∈ [−τs,0] and I(t)≡ I0 for

t ∈ [−τa,0], τs,τa ≥ 0. The functions fi , i = 1,2,3,4 are defined in (1.7.13-1.7.16) in chapter

1 and their values are taken from Sturis et al. [6] paper as the shape of the functions are

more important than their forms [74] shown in Figure 1.1.

6.3 Positive and bounded solutions of mathematical model

To discuss positive and bounded solution of the model (6.2.1-6.2.2), we assume that all

the functions fi , i = 1,2,3,4 of model (6.2.1-6.2.2) satisfy the following conditions :

(i) Raised glucose concentration in the body stimulate sensor to release insulin, hence

f1(x)> 0 and f
′

1(x)> 0 for x> 0. Since the highly raised glucose concentration saturate

the secretion of insulin, hence the amount of insulin secreted by pancreas is finite and

so we take limx→∞ f1(x) = K1 and f
′

1(x) < K
′

1 for x > 0. It implies the sigmoidal shape

of the function f1(x) > 0 is reasonable. Some amount of insulin can also be secreted by

pancreas without the glucose stimulation, hence we assume f1(0) = k1 > 0.

(ii) The function f2(x) indicates the insulin - independent glucose utilization, it is clear

that f2(0) = 0, f2(x) > 0 and f
′

2(x) > 0 for x > 0. Also as the utilization of glucose is

limited, we assume that limx→∞ f2(x) = K2 and f
′

2(x)< K
′

2 for x> 0.

(iii) The insulin - dependent utilization of glucose in the body is represented by the

function f3(G(t)) f4(I(t)), so it can be written as f3(0) = 0, f
′

3(x) > 0, f4(0) = k4 > 0,

f4(x)> 0 and f
′

4(x)> 0 for x> 0. From Sturis et al. [6] paper, we assume that there exists

constants k3 > 0, K4 > 0 and K
′

4 > 0 such that 0 < f3(x) ≤ k3x, limx→∞ f4(x) = K4 and

f
′

4(x)< K
′

4 for x> 0 and so f4(x) is of sigmoidal shape.

Lemma 6.3.1. [75] Let f : R → R be a differentiable function. If l= limt→∞ inf f (t) <

limt→∞ supf (t) = L, then there are sequences{tk} ↑ ∞, {sk} ↑ ∞ such that for all k, f
′
(tk) =

f
′
(sk) = 0, limk→∞ f (tk) = L and limk→∞ f (sk) = l.

Proposition 4. [75] In model (6.2.1-6.2.2), the following holds:
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(i) If limx→∞ f3(x) > (Gin −K2+ c)/k4, then model (6.2.1-6.2.2) has unique positive steady

state(G∗, I∗) with I∗ = d−1
i f1(G∗). Also, all solutions exist in(0,∞), and are positive and

bounded.

(ii) If limx→∞ f3(x)< (Gin−K2)/k4, thenlimt→∞ supG(t) tends to∞.

Remark 1. Condition (i) indicates that insulin helps the body cells toutilize glucose. If the

condition (ii) holds, the glucose concentration level willnot be bounded and hence not feasible

for the system. Therefore to maintain the feasibility of thesystem, we assume that condition

(i) in Proposition 4 holds throughout this chapter.

Proof. (i) Let

J(x) = Gin− f2(x)− f3(x) f4(d
−1
i f1(x))+c= 0,x≥ 0 (6.3.1)

Uniqueness of solution : Eqn.(6.3.1)has unique root in (0,∞).

Observe thatf
′

1(x)> 0, f
′

2(x)> 0, f
′

3(x)> 0, f
′

4(x)> 0, we have

J
′
(x) =− f

′

2(x)− f
′

3(x) f4(d
−1
i f1(x))− f3(x) f

′

4(d
−1
i f1(x))d

−1
i f1(x)< 0

Also, J(0) = Gin− f2(0)− f3(0) f4(d
−1
i f1(0))+c = Gin+c> 0, and

lim
x→∞

J(x) = Gin− lim
x→∞

f2(x)− lim
x→∞

f3(x) f4(d
−1
i lim

x→∞
f1(x))+c

= Gin−K2− f4(d
−1
i K1) lim

x→∞
f3(x)+c

< Gin−K2−k4 lim
x→∞

f3(x)+c< 0

which impliesJ(0)> 0 and limx→∞ J(x)< 0.

Hence by Mean Value Theorem, eqn.(6.3.1) has unique root in(0,∞).

Solutions (G(t), I(t)) are positive.

It is clear thatG∗ is the root of eqn.(6.3.1) andI ∗ = d−1
i f1(G∗). Note that| f

′

i (x) |, i = 1,2,3,4

are bounded,fi(x), i = 2,3 and f j(xt), j = 1,4 are Lipschitzian and completely continuous in

x≥ 0 andxt ∈C([−max{τs,τa},0]) respectively. Then by theorem 2.1, 2.2 and 2.4 on page 19

and 20 in [192], the solution of model (6.2.1-6.2.2) with given initial condition exists and is

unique for allt ≥ 0. If there exists at0 > 0 such thatG(t0) = 0 andG(t)> 0 for 0< t < t0, then

G
′
(t0)≤ 0.
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Therefore,

0≥ G
′
(t0) = Gin− f2(G(t0))− f3(G(t0)) f4(I(t0− τa))+c

= Gin− f2(0)− f3(0) f4(I(t0)− τa)+c

= Gin+c> 0

this is a contradiction which impliesG(t)> 0 for all t > 0. HenceG(t) is positive.

If there existst
′

0 > 0 such thatI(t
′

0) = 0 andI(t)> 0 for 0< t < t
′

0, thenI(t
′

0)≤ 0.

Therefore,

0> I(t
′

0) = f1(G(t
′

0))−diI(t
′

0− τs)≥ f1(G(t
′

0))> 0.

this is a contradiction which impliesI(t)> 0 for all t > 0. HenceI(t) is positive.

Hence the solution(G(t), I(t)) of model (6.2.1-6.2.2) are positive.

Solutions(G(t), I(t)) are bounded.

If lim t→∞ supG(t) = ∞, then there exist a sequence{tn}∞
n=1↑∞ such that limn→∞ G(tn) = ∞ and

G(t
′

n)≥ 0.

Thus

0< G
′
(tn) = Gin− f2(G(tn))− f3(G(tn)) f4(I(tn− τs))+c

≤ Gin− f2(G(tn))−k4 f3(G(tn))+c

and therefore

0≤ lim
n→∞

G
′
(tn) ≤ Gin− lim

n→∞
f2(G(tn))−k4 lim

n→∞
f3(G(tn))+c

≤ Gin−K2−k4 lim
x→∞

f3(x)+c< 0

This contradiction shows that there exist aKG > 0 such thatG(t) < KG for all t > 0 implies

G(t) is bounded above.

From second equation of model (6.2.1-6.2.2), since| f1(x) |≤ K1, for all ε > 0, 0< I
′
(t) ≤
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f1(KG + ε)− di I(t) for large t > 0 implies limt→∞ supI(t) ≤ d−1
i f1(KG + ε). For ε > 0,

limt→∞ supI(t)≤ d−1
i f1(KG) = KI . This implies I(t) is bounded above.

Hence the solution(G(t), I(t)) of model (6.2.1-6.2.2) are bounded fort > 0.

(ii) If (ii) is not true, let us suppose limt→∞ G(t) = KG < ∞, then there exists{tn}∞
n=1 ↑ ∞

such thatG
′
(tn) = 0, n = 1,2,3,... and limn→∞ G(tn) = KG.

Thus

G
′
(tn) = Gin− f2(G(tn))− f3(G(tn)) f4(I(tn− τa))+c (6.3.2)

⇒ 0 ≥ Gin− f2(G(tn))−k4 f3(G(tn)) (6.3.3)

Now, after taking limn→∞(0 ≥ Gin − f2(G(tn))− k4 f3(G(tn))), eqn.(6.3.3) impliesf3(KG) ≥

(Gin − f2(KG))/k4. While from part (ii) of Proposition1,f3(KG) ≤ limx→∞ f3(x) < (Gin −

K2)/k4 ≤ (Gin− f2(KG))/k4, which is a contradiction, hence (ii) is true.

When limx→∞ f3(x) ≤ (Gin −K2+c)/k4, a continuous decrement in glucose utilization occur

which results into continuous increment in glucose concentration till limx→∞ f3(x) = (Gin −

K2)/k4 and limt→∞ supG(t) tends to∞ when limx→∞ f3(x) < (Gin −K2)/k4, as discussed in

(ii). This situation is in contradiction with the human physiology. Since the steady state is u-

nique for any system which is discussed in condition (i), therefore condition (ii) and inequality

(Gin−K2)/k4 ≤ limx→∞ f3(x)≤ (Gin−K2+c)/k4 become infeasible.

6.4 Stability analysis of mathematical model

The linearized system of model (6.2.1-6.2.2) about the steady point (G∗, I ∗) is given by

:

dG
dt

= −PG(t)−QI(t− τa) (6.4.1)

dI
dt

= RG(t − τs)−diI(t) (6.4.2)

where

P = f
′

2(G
∗) + f

′

3(G
∗) f4(I ∗) > 0, Q = f3(G∗) f

′

4(I
∗) > 0, R = f

′

1(G
∗) > 0
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The characteristic equation is given as

λ 2+(P+di)λ +Pdi +QRe−λ (τs+τa) = 0 (6.4.3)

For λ = 0, characteristic equation reduces to Pdi +QR> 0, hence λ = 0 is not a solution

of (6.4.3).

To analyze the stability of model we define a lemma.

Lemma 6.4.1. [192] Consider the following delay differential equation :

x
′′
(t)+ px

′
(t)+qx(t)+ rx(t− τ) = 0,τ ≥ 0 (6.4.4)

and assume p,q,r> 0, then the number of pairs of pure imaginary roots of the characteristic

equation

λ 2+ pλ +q+ r exp−λτ = 0,τ ≥ 0 (6.4.5)

can be zero, one, or two only.

(i) For q > r, 2q− p2 < 0 and2q− p2 < 2
√

q2− r2, there are no such roots exist forτ > 0

and the trivial (zero) solution of eqn.(6.4.5)is stable for allτ > 0 .

(ii) For q < r and 2q− p2 > 0, then there are one such root exists forτ > 0 and the trivial

(zero) solution of eqn.(6.4.5)is uniformly asymptotically stable forτ < τ0, and unstable

for τ > τ0, whereτ0 > 0 is a constant.

(iii) For q > r, 2q− p2 > 0 and 2q− p2 > 2
√

q2− r2, there are two such roots forτ > 0

and the stability of the trivial (zero) solution of eqn.(6.4.5)can change a finite number of

times asτ is increased, and eventually it becomes unstable.

A theorem is given below in which stability of the mathematical model (6.2.1-6.2.2) has

been analyzed in four cases.

Theorem 6.4.2.Consider the model (6.2.1-6.2.2), then we have

(1) If τs = 0 andτa = 0, then (G∗, I ∗) is stable.
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Proof. : τs= τa = 0

The characteristic equation is given by :

λ 2+(P+di)λ +Pdi +QR= 0 (6.4.6)

andP+di > 0, Pdi +QR> 0 implies (G∗, I ∗) is stable.

(2) For τs> 0 and τa = 0, and

(2.a) if Pdi > QR, then (G∗, I ∗) is stable.

Proof. τs> 0, τa = 0

The characteristic equation is

λ 2+(P+di)λ +Pdi +QRe−λτs = 0 (6.4.7)

Here, 2q− p2 = −P2− d2
i < 0, thenPdi > QR implies that the trivial solution of linearized

model (6.4.1-6.4.2) is always stable forτs> 0 (By Lemma 6.4.1(i)).

(2.b) if Pdi < QR, then ∃ τs,0 > 0 such that (G∗, I ∗) is stable when τs ∈ (0,τs,0) and

unstable when τs≥ τs,0.

Proof. From the Lemma 6.4.1(ii), we can see that the trivial solution of the linearized system

(6.4.1-6.4.2) is stable whenτs ∈ (0,τs,0) and unstable whenτs≥ τs,0. Now we need to findτs,0

andτa,0 for the sustained oscillations if exists for the model (6.2.1-6.2.2).

Putλ = iz, z> 0 be an eigenvalue of eqn.(6.4.5), we have

−z2+(P+di)iz+Pdi +QR(cosτsz− isinτsz) = 0 (6.4.8)

That is,

−z2+Pdi +QRcosτsz= 0

(P+di)z−QRsinτsz= 0
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This leads to

z4+(P2+d2
i )z

2+P2d2
i = Q2R2 (6.4.9)

Now the roots are given by :

z2
1+ =

1
2
{−(P2+d2

i )+ [(P2−d2
i )

2+Q2R2]1/2} (6.4.10)

z2
2+ =

1
2
{−(P2+d2

i )− [(P2−d2
i )

2+Q2R2]1/2} (6.4.11)

Based on the arguments (3.12) - (3.17) from [ [192], pg 74 - 77], From eqn.(6.4.9), we get

τs,0 =
θ1

z1+

τa,0 =
θ2

z2+

wherez1+ andz2+ are the roots of eqn.(6.4.5).

For 0≤ θ1 ≤ 2π , we have

cosτsz1+ =
z2
1+−Pdi

QR

sinτsz1+ =
(P+di)z1+

QR

and for 0≤ θ2 ≤ 2π , we have

cosτaz2+ =
z2
2+−Pdi

QR

sinτaz2+ =
(P+di)z2+

QR

It is found from computational results that forτa = 0, sustained oscillations exist forτs ∈

(40,48) min and no sustained oscillations exists ifτs≥ 48 min.

Hence the system (G∗, I ∗) is stable whenτs∈ (40,48) min and unstable whenτs≥ 48 min.

(3) For τs = 0 and τa > 0, and

(3.a) if Pdi > QR, then (G∗, I ∗) is stable.
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(3.b) if Pdi < QR, then ∃ τa,0 > 0 such that (G∗, I ∗) is stable when τa ∈ (0,τa,0) and

unstable when τa ≥ τa,0.

Proof. Proof of (3.a) is same as proof of (2.a) which is discussed above. For (3.b), computa-

tional result shows that sustained oscillations occurred for τa ∈ (43,48) min and no sustained

oscillations exists ifτa ≥ 48 min atτs= 0.

Hence the system (G∗, I ∗) is stable whenτa ∈ (43,48) min and unstable whenτa ≥ 48 min.

(4) If τs > 0 and τa > 0, then (G∗, I ∗) is stable..

Proof. τs> 0, τa > 0

Let λ = iz, z> 0 be an eigenvalue of eqn.(6.4.5), then we have,

−z2+(P+di)iz+Pdi +QR(cos(τs+ τa)z− isin(τs+ τa)z) = 0 (6.4.12)

That is, we have

−z2+Pdi +QRcos(τs+ τa)z= 0 (6.4.13)

(P+di)z−QRsin(τs+ τa)z= 0 (6.4.14)

This leads to

z4+(P2+d2
i )z

2+P2d2
i = Q2R2 (6.4.15)

The above equation is not possible forPdi > QR i.e. q> r therefore, the steady state (G∗, I ∗)

is stable.

From the analysis of all four cases, we conclude that eqn.(6.4.15)is a biquadratic equation

and is stable for all values of z. Also, since it is not possible to bifurcate the equation by

varying any of the parameters, it does not create any type of chaos which may disturb

the stability of the system. It confirms that the given model with two explicit delays is

more stable than other predefined models. The numerical results and simulation of the

model discussed in the next section also supports the same.
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6.5 Numerical simulation and results

Numerical Simulation has been carried out by using matlab 2012b [193] to simulate the

model consisting of two time delays. Insulin secretion in the glucose - insulin dynamics

occurs in an oscillatory manner over a range of (50 - 150) min and is usually referred to as

ultradian oscillations in the normal people. The ultradian oscillations of insulin secretion

are assumed to result from an instability in the glucose - insulin endocrine dynamical

system [6]. We observed the same ultradian oscillation of insulin secretion over a range

of (50 - 200) min in type 1 diabetic people, which is shown through the graphs. The

focus of this simulation therefore is to find the range of two time delays for which the

sustained and ultradian oscillations occurred for people having type 1 diabetes using

artificial pancreas. The significant impact of two time delays in generating ultradian

oscillation of insulin secretion is also explained and discussed below.

The values of parameter used in the simulation are taken from [6,7] which were exper-

imentally estimated. Units of glucose and insulin are converted into glucose and insulin

concentration to plot the graphs. As already mentioned in Section 6.2 of the chapter,

the effect of insulin to control HGP is not significant for diabetic people, hence effect of

HGP is taken as constant (c = 150) in the first equation of the model (6.2.1-6.2.2). The

value of glucose infusion rate (Gin = 0.54) and insulin degradation rate (di = 0.06) are

fixed throughout the simulation.

The differences in glucose - insulin concentration for different values of time delays in

their respective ranges are discussed below :

Case 1: τs = 0 and τa ≥ 0 i.e there is no delay in insulin secretion and presence of delay

in insulin absorption and action.

Fixing τs= 0 and varying τa from 0 to 43 min, glucose concentration oscillate between

(79 - 129) mg/dl and may be considered to be in the physiological range for the diabetic

people. Sturis et al. [6] and Tolic et al. [7] reported that the system will have sustained

oscillations at large delay. Our simulation shows that the system attained sustained os-

cillations when τa ≥ 43 min and τa ≤ 48 min as seen in Figure 6.2(a) and Figure 6.2(b)

which confirms the observation of Sturis et al. [6] and Tolic et al. [7].
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Case 2 : τs ≥ 0 and τa = 0 i.e presence of delay in insulin secretion and no delay in

insulin absorption and action.

Fixing τa = 0 and varying τs from 0 to 15 min, damped oscillations are attained which

confirms the finding of Sturis et al. [6] and Tolic et al. [7] according to which the oscilla-

tions become damped if the delay is very short. When τs is between 0 to 15 min, glucose

concentration is slightly below of physiological reasonable range discussed in [74] as shown

in Figure 6.3(a), so we have to increase the time delay to get the physiological glucose

concentration range for the diabetic people. The system attained sustained oscillation

when τs≥ 40 and τs≤ 48 as shown in Figure 6.3(b) and Figure 6.3(c). The value of this

delay is very large here compared to its range (5, 15) min, the reason behind it is that

it is the total time that includes the time of insulin secretion and insulin action to low-

er the glucose level since insulin does not start working instantly even in a normal person.

Case 3 : τs ≥ 0 and τa ≥ 0 i.e presence of delay in both insulin secretion and insulin

absorption and action.

We carried out simulation for various values of τs and τa and found that at τs= 5 min

(minimum value) and τa ∈ (31,35) min, ultradian oscillations are observed for glucose

and insulin concentration each of time period 182 min after ignoring the first oscillation

of time period 166 min. For τa ∈ (36,39) min, ultradian oscillation with time period of

197 min after ignoring the first oscillation of 182 min are observed as shown in Figure

6.4. For τs= 5 min and τa = 43 min, the glucose level oscillates between (68 - 135) mg/dl

which is normal range of glucose concentration for diabetic people.

For τs= 10 min and τa ∈ (26,30) min, ultradian oscillations of glucose and insulin con-

centration, each of time period 182 min after ignoring the time period of first oscillation

which is 166 min, is observed. For τa∈ (31,35) min, ultradian oscillation with time period

of 197 min are observed after ignoring the first oscillation of 182 min as shown in Figure

6.5. For τs = 10 min and τa = 38 min, the glucose level oscillates between (68 - 135)

mg/dl. The range of ultradian oscillations for normal people is (50 - 150) min and we

conclude that maximum value in the range of ultradian oscillation increases for diabetic

people.

One of the most important findings of this study is that delay of more than 43 min in

the insulin action (when τs = 5 min) and a delay of more than 38 min in the insulin action

(when τs = 10 min) bring disturbances in the physiological range of glucose concentration,
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which may lead to diabetic comma shown in Figure 6.4(d) and Figure 6.5(d). The reason

behind it is that in the absence of insulin, glucose will not be converted into glycogen

which force cells to starve [194]. Prolonged cell starvation in the body creates critical

condition in which inspite of hyperglycemic condition, diabetic people feel hungry. This

situation is more dangerous than hyperglycemic condition and has been reported as a

reason behind diabetic comma.

Simulations show that glucose concentration peak leads the insulin concentration by

14 min. This validates the statement of Sturis et al. [6] “advance of glucose oscillations

compared with insulin oscillation”. The reason behind is that raised glucose concentration

stimulates insulin secretion. It is also observed that amplitude of oscillations are larger

with higher rates of glucose infusion and their frequency remains constant which is also

verified from Sturis et al. [6] and the number of oscillations also decreases during the

same time period for either of the value of τs and τa increases.

Another interesting finding is that while earlier it was understood that the delay due

to hepatic glucose production was the reason of oscillations of insulin secretion [6], our

simulations showed that τa may possibly be the reason for such type of oscillations in

absence of HGP delay. If there is a delay in insulin secretion and insulin action, then

glucose - insulin dynamics will be affected in a substantial manner and an increment in

these delays will lead to the condition of diabetic comma. Our model has taken this

condition into account. From the Figure 6.2(b) and 6.3(c) it can be shown that after

τa > 48 min (τs= 0) or τs> 48 min (τa = 0), diabetic comma may occur as glucose level is

reducibly below than basal glucose level. Therefore, it is concluded that to avoid diabetic

comma, total time delay in insulin release and action should not be more than 48 min.

From the simulation and hence figures, it is also found that the sum of both the delays

responsible for the situation of diabetic comma is always constant and delay τa depends

upon the occurrence of delay τs which can be explained physiologically as insulin action

depends upon insulin secretion.

6.6 Conclusion and future scope

In this chapter, we have discussed the effects and quantification of time delays in glucose

- insulin regulatory system for type 1 diabetic people using artificial pancreas. We also

studied the model analytically and numerically. For the first time, delay in insulin action
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has been dealt with mathematically to discuss the situation of diabetes. Our results

reveal that the second delay incorporated in the model may be the cause of ultradian

oscillations of the insulin secretion stimulated by elevated glucose concentration and are

critical for ensuring sustained oscillation of the insulin secretion. The information of the

approximate time after which glucose level decreases and leading to diabetic comma is

the most important factor for the clinical therapy as it proved very useful for the smooth

working of glucose monitoring system. An attempt has been made to quantify two time

delays for the proper functioning of artificial pancreas. The present model can be extend-

ed further to incorporate the delay occurred in insulin absorption and action separately

for the better functioning of artificial pancreas.

Parameters Units Values Parameters Units Values
Rm mUmin−1 210 Vp l 3
Rg mgmin−1 180 Vi l 11
Um mgmin−1 940 Vg l 10
U0 mgmin−1 40 tp min 6
Ub mgmin−1 72 ti min 100
C1 mgl−1 2000 td min 36
C2 mgl−1 140 E lmin−1 0.2
C3 mgl−1 1000 a1 mgl−1 300
C4 mUl−1 80 α lmin−1 0.29
C5 mUl−1 26 β 1.77

Table 6.1: The values of the parameters.
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Figure 6.2: Glucose concentration curve produced by model and the system attained sustained
oscillation whenτa ≥ 43 andτa ≤ 48 for τs= 0.
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Figure 6.3: Glucose concentration curve produced by model and the system attained sustained
oscillation whenτs≥ 40,τs≤ 48 for τa = 0 in second and third graph.
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Figure 6.4: Glucose and insulin concentration curves are shown for fixedτs = 5 and variesτa

from 31 to 43 min.
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Figure 6.5: Glucose and insulin concentration curves are shown for fixedτs= 10 and variesτa

from 26 to 38 min.



Chapter 7

Quantitative analysis of three time delays

using artificial pancreas

In this chapter,1 we continue our attempt to better understand the glucose - insulin

regulatory system via a mathematical model of delay differential equations with three

time delays. With these three time delays, the model is more realistic in physiology, more

accurate in mathematics, and more robust in applications. Several time delays exist in the

glucose - insulin regulatory system, out of which we are considering in the present study

are delay in insulin secretion, delay in inhibition in hepatic glucose production stimulated

by insulin and delay in time taken by insulin to reach interstitial compartment to lower

glucose level (i.e. glucose utilization delay or insulin action delay). None of the time delay

is negligible. Our analytical and numerical results shows that periodic and sustained

oscillations of glucose and insulin concentration exists for type 1 diabetic people and

delay in insulin secretion may be one of the major possible reason behind the occurrence

of ultradian oscillations. We have also found out more practical range of all three time

delays from the simulation of present model, which may be proved very useful in better

designing and improved functioning of artificial pancreas.

1The results of this chapter has been communicated in a research paper entitled “Quantitative and stability
analysis of three time delays in glucose and insulin oscillations profile using artificial pancreas”.
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7.1 Introduction

The goal of this study is to model three time delays for the advancement of artificial

pancreas and to avoid the hypoglycemic condition. Hypoglycemia remains a big barrier

to the intensifications of insulin therapy [187] and timely attempts have been made to

deal with this episode of hypoglycemia. Many mathematical models have been proposed

for artificial pancreas [11, 17, 195–200] and proved useful in improving the designing and

functioning of artificial pancreas to maintain the glucose level in normal range.

According to the literature available, there exists three physiological time delays in the

glucose - insulin regulatory system [6,46,48,77,83]. The first is delay in insulin secretion,

second is delay in inhibition in hepatic glucose production stimulated by insulin and third

is delay in time taken by insulin to reach interstitial compartment to lower glucose level.

A delay in insulin action to lower glucose concentration was observed by Bergman et

al. [46]. Delay in insulin secretion and insulin action is discussed by Cobelli et al. [186].

Sturis et al. [6] noticed the delay in inhibition in hepatic glucose production by insulin.

De Gaetano and Arino in 2000 [48] and Li et al. in 2001 [83] modeled IVGTT protocol by

using single delay. Li and his colleagues [73–75] modeled the glucose - insulin regulatory

system by using two explicit time delays.

We formulate a DDE model for closed - loop control by taking three time delays terms

in account, which are given as : τs - delay in insulin secretion from insulin pump, τh -

delay in inhibition in hepatic glucose production stimulated by insulin and τa - delay in

time taken by insulin to reach interstitial compartment to lower glucose level as shown

in Figure 7.1. Three time delay terms are incorporated simultaneously in mathematical

model to analyse the behavior of oscillations of insulin secretion and glucose concentration

level. The analytical and numerical analysis of the model will provide more insightful

information in the development of artificial pancreas.

7.2 Mathematical model

Glucose and insulin are the two major factors in the glucose - insulin regulatory system.

Let G(t) and I(t) represent the glucose and insulin concentration at time t ≥ 0. The

mathematical model comprises of dG
dt = glucose production - glucose utilization and dI

dt =

insulin production - insulin utilization.
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secretion), Delay 2 (delay in inhibition in hepatic glucoseproduction) and Delay 3 (delay in
insulin action to lower glucose level).



130

The following feedback loops are present in the system : glucose level raised in the

body (either by oral meal infusion or by hepatic production), which stimulates insulin

secretion, and insulin stimulates glucose uptake. In the whole dynamical system three

significant delays are observed. Glucose is produced by meal ingestion, oral glucose intake

or by constant glucose infusion. Glucose is also stored in the liver in glucagon form which

further convert into glucose when body required. In this conversion process a delay is

observed in hepatic glucose production known as τh and is presented by f5(I(t − τh))

in the first equation of model. When glucose level rises in the body, glucose sensor

becomes activated and directs the insulin pump to inject insulin subcutaneously. In

this process, a second delay is occurred in insulin secretion [186] known as τs and is

represented by f1(G(t − τs)) in the second equation of model. τa represents the delay in

insulin absorption and insulin action in the body to lower the glucose level in its normal

range [186]. Since f4(I(t)) represents the insulin dependent glucose utilization, hence the

delay τa is incorporated in this function and is represented by f4(I(t− τa)) in the model.

Closed loop control system requires a perfect algorithm to predict accurate dose and

precise timing of insulin delivery to avoid the most critical episodes of hyperglycemia

and hypoglycemia. Hypoglycemia due to overdose of insulin and hyperglycemia, due

to under dose of insulin, are the two critical episodes occurred in therapies of insulin

infusion [77]. To avoid these two harmful episode, a physiological model is much required

which calculate the exact length of time delays. Our focus here is to find the feasible range

of all time delays so that accurate dose of insulin and exact timing of insulin delivery can

be figured out in the closed loop control system. The length of time delays if known will

helps in proper designing of artificial pancreas and for other clinical applications. Here,

we presented mathematical model by incorporating three time delays : τs, τh and τa to

study the behavior of glucose-insulin regulatory system.

The extended mathematical models of glucose - insulin regulatory system containing three

time delays are given as :

dG
dt

= Gin− f2(G(t))− f3(G(t)) f4(I(t− τa))+ f5(I(t− τh)) (7.2.1)

dI
dt

= f1(G(t− τs))−diI(t) (7.2.2)

with initial conditions: I(0)= I0≥ 0, G(0) =G0 ≥ 0, G(t)≡G0 and I(t)≡ I0 for t ∈ [−τ,0],

where τ = max {τs,τa,τh} and τs,τa,τh ≥ 0. The time delays are defined as τs - delay
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in insulin secretion, τh - delay in inhibition in hepatic glucose production stimulated by

insulin and τa - delay in time taken by insulin to reach interstitial compartment to lower

glucose level.

The functions fi , i = 1,2,3,4,5 are defined in (1.7.13-1.7.17) in chapter 1 and their values

are taken from [6] as shape of the functions are more important than their forms [74].

The values of the parameters are taken from [74] and given in Table 6.1.

7.3 Positive and bounded solutions of mathematical model

In this section, we will show the solutions of mathematical model (7.2.1-7.2.2) are

positive and bounded. To discuss the positive and bounded solution of the model (7.2.1-

7.2.2), we assume that all functions fi , i = 1,2,3,4,5 of model (7.2.1-7.2.2) satisfy the

following conditions :

(i) f1(x)> 0, f1(0) = k1 ≥ 0, f
′

1(x)> 0, f
′

1(x)< K
′

1 for x> 0 and limx→∞ f1(x) = K1.

(ii) f2(x)> 0, f2(0) = 0, f
′

2(x)> 0, f
′

2(x)< K
′

2 for x> 0 and limx→∞ f2(x) = K2.

(iii) f3(x)> 0, f3(0) = 0, f4(x)> 0, f4(0) = k4 > 0 for x> 0. Also 0< k
′

3 < f
′

3(x)< K
′

3 and

f
′

4(x)< K
′

4 for x> 0, limx→∞ f3(x) = K3 and limx→∞ f4(x) = K4

(iv) f5(x)≥ 0, f5(0) = K5, f
′

5(x)< 0, f
′

5(x)>−K
′

5 for x> 0 and limx→∞ f5(x) = 0.

Proposition 5. : Let (G(t), I(t)) is a solution of system (7.2.1-7.2.2) with G(t) = G0 > 0,

I(t) = I0 > 0 for all t ∈ [−τ,0], τ = max{τs,τa,τh} then G(t)> 0, I(t)> 0 for all t > 0.

Proof. (i) G(t) is non-negative.

Let if possibleG(t) is not non-negative, then there existt > 0 such thatG(t)< 0.

Let t1 = inf { t : G(t)< 0}, thenG(t1) = 0, Ġ(t1)< 0.

From eqn.(7.2.1), we have

Ġ(t1) = Gin(t1)+ f5(I(t1− τh))

If I(t) > 0 for all t > 0, thenI(t1− τh) ≥ 0 implies f5(I(t1− τh)) ≥ 0 and henceĠ(t1) > 0,

which is a contradiction.

HenceG(t)≥ 0 for all t ≥ 0 i.eG(t) is non-negative.

(ii) I(t) is non-negative.

Let if possibleI(t) is not nonnegative, then there existt > 0 such thatI(t)< 0.



132

Let t2 = inf { t : I(t)< 0}, then I(t2) = 0, limt→t−2
İ(t1)< 0.

From eqn.(7.2.2) of the system (7.2.1-7.2.2), we have

lim
t→t−2

İ(t) = f1(G(t2− τs))

Now 2 cases arises : whent1 ≤ t2, thent1− τh < t2, I(t1− τh) ≥ 0 and f5(I(t1− τh)) ≥ 0 and

henceĠ(t1)> 0, which is a contradiction.

Whent1 > t2, thent2−τs< t1, G(t2−τs)≥ 0, alsof1(G(t2−τs))≥ 0 implies limt→t−2
İ(t)≥ 0,

which is again a contradiction.

HenceI(t)≥ 0 for all t > 0 i.e I(t) is non-negative.

SinceĠ(t)> 0 whenG(t)= 0 andİ(t)> 0 whenI(t)= 0. We haveG(t)=G0> 0, I(t)= I0> 0

for all t ∈ [−τ,0].

Proposition 6. : The solution(G(t), I(t)) of the system (7.2.1-7.2.2) are bounded (below and

above by some constant).

Proof. (i) Solutions (G(t), I(t)) are bounded above.

From eqn.(7.2.1) of the system (7.2.1-7.2.2), we have

dG
dt

= Gin− f2(G(t))− f3(G(t)) f4(I(t− τa))+ f5(I(t− τh))

≤ Supt∈[0,k]Gin−k3k4+K5

≤ Supt∈[0,k]Gin+K5 = M1(say)

thenG(t)≤ M1 (a positive constant) for allt ≥ 0 i.eG(t) is bounded above byM1.

From eqn.(7.2.1), we have

dI
dt

= f1(G(t− τs))−diI(t)

≤ K1−di I(t)

≤ K1 = M2(say)

thenI(t)≤ M2, for all t ≥ 0 i.e I(t) is bounded above byM2.

HenceG(t) andI(t) are bounded above by some positive number.
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(ii) Solutions (G(t), I(t)) are bounded below.

From eqn.(7.2.1) of the system (7.2.1-7.2.2),

dG
dt

≥ in ft∈[0,k]Gin(t)−K2G(t)−K3K4G(t)

dG
dt

+(K2+K3K4)G(t)≥ in ft∈[0,k]Gin(t)

which implies

G(t) ≥
in ft∈[0,k]Gin(t)

K2+K3K4
+(G0−

in ft∈[0,k]Gin(t)

K2+K3K4
)e−(K2+K3K4)t = M3(say)

HenceG(t)≥ M3 i.e G(t) is bounded below byM3.

From eqn.(7.2.2) of the system (7.2.1-7.2.2), we have

dI
dt

= f1(G(t− τs))−diI(t)

≥ k1−di I(t)

which implies

I(t) ≥
k1

di
+
(

I0−
k1

di

)

e−dit = M4

thenI(t)≥ M4 i.e I(t) is bounded below byM4.

Hence we can conclude from (i) and (ii) that the solution (G(t), I(t)) of the system is bound-

ed.

7.4 Stability analysis of mathematical model

In this section, stability analysis of the system (7.2.1-7.2.2) has been discussed.

Lemma 7.4.1.Let p be a real number and g be a non negative function defined and integrable

on [p,∞) and is uniformly continuous on[p,∞), then limt→∞g(t) = 0 [77].

Lemma 7.4.2.Let f(x) be a continuous function on [a, b] and F
′
(x) = f (x), then there exists

a point c∈ (a,b) such thatF(b)−F(a)
b−a = F

′
(c).
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For T1DM, almost all β - cells secreted by pancreas are not functional and secrete

no insulin. Diabetics rely on exogenous supply of insulin. So we assume the function

f1 = 0 to prove the stability of system (7.2.1-7.2.2). We will show the system is globally

asymptotically stable by using lemma 7.4.1 and 7.4.2.

Theorem 7.4.3.For f1 ≡ 0, the positive solution(G(t), I(t)) of the system (7.2.1-7.2.2) is

unique and globally asymptotically stable.

Proof. For f1 = 0, consider an eqn.(7.2.2) of the system (7.2.1-7.2.2),

dI
dt

= −di I(t)

I(t) = I0e−dit

Let

P1(t) =
1
2
(I(t)− I ∗(t))2 =

1
2
(I0e−dit − I ∗0e−dit)2

=
1
2
(I0− I ∗0)

2e−2di t

= P1(0)e
−2dit ,

where,P1(0) = 1
2(I0− I ∗0)

2

andṖ1(t) =−2diP1(0)e−2dit = −2diP1(t) for t > 0.

Consider

P(t) = αP1(0)e
−2dit +

1
2
(G(t)−G∗(t))2

= αP1(t)+
1
2
(G(t)−G∗(t))2

whereα is a constant.
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Differentiate both sides, we get

Ṗ(t) = −2αdiP1(0)e
−2dit +(G(t)−G∗(t))(Ġ(t)− Ġ∗(t))

= −2αdiP1(0)e
−2dit +(G(t)−G∗(t))[− f2(G(t))− f3(G(t)) f4(I(t− τa))+ f5(I(t− τh))

+ f2(G
∗(t))+ f3(G

∗(t)) f4(I
∗(t − τa))− f5(I

∗(t− τh))]

= −2αdiP1(0)e
−2dit − (G(t)−G∗(t))[{ f2(G(t))− f2(G

∗(t))}+{ f3(G(t)) f4(I(t− τa))

− f3(G
∗(t)) f4(I

∗(t − τa))}−{ f5(I(t− τh))− f5(I
∗(t − τh))}]

By using Lemma 7.4.2, we have

Ṗ(t) = −2αdiP1(0)e
−2dit − (G(t)−G∗(t))2{ f

′

2(β2)+ f
′

3(β3) f4(I(t− τa))}

− (G(t)−G∗(t)) f3(G
∗(t)) f

′

4(β4){I(t− τa)− I ∗(t − τa)}

+ (G(t)−G∗(t)) f
′

5(β5){I(t− τh)− I ∗(t − τh)}

By using the inequality 2ab< γa2+ b2

γ , we have

Ṗ(t) ≤ −2αdiP1(0)e
−2dit − (G(t)−G∗(t))2{ f

′

2(β2)+ f
′

3(β3) f4(I(t− τa))}

+
γ1

2
(G(t)−G∗(t))2 f3(G

∗(t)) f
′

4(β4)+
1

2γ1
(I(t− τa)− I ∗(t− τa))

2 f3(G
∗(t)) f

′

4(β4)

+
γ2

2
(G(t)−G∗(t))2 f

′

5(β5)+
1

2γ2
(I(t− τh)− I ∗(t− τh))

2 f
′

5(β5)

= −(G(t)−G∗(t))2
{

f
′

2(β2)+ f
′

3(β3) f4I(t− τa)−
γ1

2
f3(G

∗(t)) f
′

4(β4)−
γ2

2
f
′

5(β5)
}

− 2αdiP1(0)e
−2dit +

e−2di (t−τa)

γ1
P1(0) f3(G

∗(t)) f
′

4(β4)+
e−2di(t−τh)

γ2
P1(0) f

′

5(β5)

= −(G(t)−G∗(t))2
{

f
′

2(β2)+ f
′

3(β3) f4I(t− τa)−
γ1

2
f3(G

∗(t)) f
′

4(β4)−
γ2

2
f
′

5(β5)
}

+ P1(0)e
−2dit

{

−2αdit +
e2diτa

γ1
f3(G

∗(t)) f
′

4(β4)+
e2diτh

γ2
f
′

5(β5)
}

whereβ2, β3 lie betweenG(t) andG∗(t), β4 lies betweenI(t − τa) andI ∗(t − τa) andβ5 lies

betweenI(t − τh) and I ∗(t − τh). Let γ1 > 0, γ2 > 0 are arbitrary constants. Chooseγ1 > 0,
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γ2 > 0 very small such that

f
′

2(γ2)+ f
′

3(β3) f4(I(t− τa))−
γ1

2
f3(G

∗(t)) f
′

4(β4)−
γ2

2
f
′

5(β5)> δ > 0

whereδ is very small enough positive constant. For givenγ1, γ2, chooseδ > 0 large enough

such that

−2αdi +
e2diτa

γ1
f3(G

∗(t)) f
′

4(β4)+
e2diτh

γ2
f
′

5(β5)<−δ < 0

hence we have

Ṗ(t) < −δ (G(t)−G∗(t))2−δP1(0)e
−2dit

impliesṖ(t)< 0. HenceP(t) is decreasing.

Integrating both sides from 0 tot, we get

P(t)−P(0) < −δ
∫ t

0
(G(x)−G∗(x))2dx−δ

∫ t

0
P1(0)e

−2dixdx

P(t) + δ
∫ t

0
(G(x)−G∗(x))2dx+δP1(0)

∫ t

0
e−2dixdx≤ P(0)

Hence, we get(G(t)−G∗(t))2 ∈ L1(0,∞). (G(t)−G∗(t))2 and its derivative are both bounded

on [0,∞). Hence(G(t)−G∗(t))2 is uniformly continuous on[0,∞). By lemma 7.4.1, we have

limt→∞(G(t)−G∗(t))2 = 0.

Also we have limt→∞(I(t)− I ∗(t))2 = limt→∞ 2P1(t) = limt→∞ 2P1(0)e−2dit = 0.

Hence, the periodic solutions(G∗(t), I ∗(t)) of the system (7.2.1-7.2.2) are globally asymptoti-

cally stable and unique.

7.5 Numerical simulation and results

In this section, numerical analysis of the model (7.2.1-7.2.2) is discussed using Matlab

2012b. In glucose - insulin dynamics, the possibilities of three types of time delays have

been discussed in literature [6,7,77]. Therefore to understand the dynamics more deeply

and for proper designing and functioning of artificial pancreas we have incorporated all

three time delays in the mathematical model (7.2.1-7.2.2) which occurs in the metabolism,

first in insulin secretion, second in inhibition in hepatic glucose production and third in
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insulin action.

Raised blood glucose concentration in the body reglated in three stages : 1) β cells of

the pancreas triggered by raised glucose concentration to secrete insulin (or by artificial

pancreas in case of T1DM and severe T2DM) 2) Hepatic glucose production is inhibited by

secreted insulin 3) Insulin helps the muscles cells and adipose tissues in glucose utilization.

Since all three stages are interlinked, therefore delay in one stage will effect the functioning

of other two stages.

The range of time delays in all three stages have been reported in the literature [6,73,74]

as (5-15) min for delay in insulin secretion, (25-50) min for delay in inhibition in hepatic

glucose production, (43-48) min for delay in insulin action [17]. The main drawback

in the above reported ranges of the delays is that they have been calculated by either

considering one delay or two delays instead of all three delays simultaneously because of

which the range is comes out to be very large and hence infeasible for the human body.

Therefore, to overcome this problem we are considering three time delays simultaneously

to find out more feasible range of time delays at which sustained and ultradian oscillations

of glucose and insulin concentration may be obtained.

Hence the goal of numerical simulation is to find the range of all time delays which will

not only feasible for body but support sustained oscillations also. The range of ultradian

oscillations for normal people is (50, 150) min [17]. We will discuss seven cases in which

different feasible values of time delays will be explored numerically.

Case 1 : τs = 0, τh ≥ 0 and τa ≥ 0 i.e. no delay in insulin secretion but delays will

occur in inhibition in hepatic glucose production and insulin action.

For τs = 0 and τh ∈ (25,50) min, ultradian and sustained oscillations occurred for glu-

cose and insulin concentration at τa ∈ (14,21) min each of time period 125 min. The

system will not attain sustained oscillations for τa ≤ 14 min and τa ≥ 21 min as shown in

Figure 7.2.

Case 2: τh = 0, τs ≥ 0 and τa ≥ 0 i.e. no delay occur in inhibition in hepatic glucose

production and delays will occur in insulin secretion and insulin action.

For τh = 0 and τs ∈ (5,14) min, no oscillations obtained for any positive value of τa.

While for τs = 15 min, ultradian and sustained oscillations will be obtained for glucose

and insulin concentration at τa ∈ (20,36) min. The system will not attain sustained os-
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cillations for τs≤ 20 min and τa ≥ 36 min as shown in the Figure 7.3.

Case 3: τa = 0, τs ≥ 0 and τh ≥ 0 i.e. no delay in insulin action and delays will oc-

cur in inhibition in hepatic glucose production and insulin secretion.

For τa = 0 and τs ∈ (5,15) min, we noticed from numerical simulation that no oscil-

lation occurred for τs ∈ (5,14) min whatever the positive value of τh is considered. For

τs = 15 min and τh ∈ (25,50) min, ultradian and sustained oscillations of glucose and

insulin concentration will occurred. It also confirms the observation observed by Sturis

et al. [6] and Tolic et al. [7] that delay in inhibition in hepatic glucose production belongs

to range (25,50) min and may be the major possible reason for ultradian oscillations as

seen in Figure 7.4.

Case 4: τs = 0, τh = 0 and τa ≥ 0 i.e. no delay in insulin secretion and inhibition in

hepatic glucose production but a delay will occur in insulin action.

For τs = 0 and τh = 0, no ultradian and sustained oscillations of glucose and insulin

concentration will be observed for any positive value of τa. The result also implies that

delay in insulin action is not solely responsible for the oscillations of glucose and insulin

concentration.

Case 5: τs = 0, τa = 0 and τh ≥ 0 i.e. no delay occur in insulin secretion and insulin

action and a delay will occur in inhibition in hepatic glucose production.

For τs= 0 and τa = 0 in the simulation of the system (7.2.1-7.2.2), we observed that no

oscillations of glucose and insulin concentration will be occurred for any positive value of

τh. It also implies that delay in hepatic glucose production is not solely responsible for

the occurrence of oscillations of the glucose and insulin concentration.

Case 6: τh = 0, τa = 0 and τs ≥ 0 i.e. no delay occur in inhibition in hepatic glucose

production and insulin action but a delay will occur in insulin secretion.

In this case, fixing τh = 0 and τa = 0, ultradian and sustained oscillations of glucose

and insulin concentration at τs∈ (22,25) min will be obtained. No sustained oscillations

will be attained for τs≤ 22 min and τs≥ 25 min which can be seen in Figure 7.5. It can

also be concluded from this case that delay in insulin secretion may be one of the ma-

jor possible reason behind the occurrence of ultardian oscillations of glucose and insulin
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concentration in absence of other two delays.

Case 7: τa ≥ 0, τs ≥ 0 and τh ≥ 0 i.e. there is some delay in insulin action, inhibition in

hepatic glucose production and insulin action.

Fixing τs = 5 min and τh ∈ (25, 50) min, we observed that ultradian and sustained

oscillations of glucose and insulin concentration at τa = 10 min are obtained as shown in

the Figure 7.6.

Fixing τs = 10 min and τh ∈ (25, 50) min, we observed that ultradian and sustained

oscillations of glucose and insulin concentration at τa = 5 min are obtained as shown in

the Figure 7.7. A delay of more than 5 min in insulin action (for τs = 10 min) and a delay

of more than 10 min in insulin action (for τs = 5 min) makes the glucose concentration

level high and long persistence of raised glucose concentration level may leads to diabetes.

Periodic and sustained oscillations of glucose and insulin concentration were observed

by many researchers by incorporating one or two time delays term in the mathematical

model [17,73,74]. More number of periodic and sustained oscillations are observed in the

same time intervals if above ranges of three time delays are considered simultaneously

as compared to one or two time delays terms. Also, glucose concentration peak in every

figure leads the insulin concentration by approximately 25 min which validate the state-

ment of Sturis et al. [6] that there is advancement in occurrence of glucose concentration

peak than insulin concentration peak. The reason behind the statement is that insulin

secretion is stimulated by raised glucose concentration level.

Previously it was reported that delay in inhibition in hepatic glucose production was

the reason for ultradian oscillations [6,73,74]. Later delay in insulin action was reported

as the reason for ultradian oscillations of glucose and insulin concentration when two

delays were considered together [17]. Numerical simulation (by considering all the above

7 cases) of the present mathematical model suggests that together with many possible

metabolic and physiological reasons, delay in insulin secretion may be one of the major

possible reasons for the occurrence of ultradian and sustained oscillations. Since insuf-

ficient amount or no secretion of insulin is the main reason behind the occurrence of

diabetes, therefore this finding seems to be more close to real situation.

To the time it was observed and assumed that damped oscillations are attained if the
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delays are short and sustained oscillations were observed only for large delays [6, 7, 17].

Ultradian oscillations were obtained at τa ∈ (43, 48) min [17] and for τh ≥ 46 min or

τs ≥ 18 min [74]. From the present study it can be concluded that if three delays are

considered together then the ultradian and sustained oscillations will be attained for short

delays also (τs∈ (5, 15) min, τh ∈ (25, 50) min and τa ∈ (5, 15) min).

A delay of more than 10 min in τa (when τs= 5 min and τh ∈ (25,50) min) and a delay

of more than 5 min in τa (when τs = 10 min and τh ∈ (25,50) min) raised the glucose

concentration level in the body and which further leads to diabetes if persists for long

duration in the body.

It is also interesting to note from case 7 that the total time delay i.e. delay in insulin

secretion (τs) and delay in insulin action (τa) to lower glucose concentration is constant

i.e. approximately 15 min. Since both the delays τs and τa are interlinked as insulin action

depends upon the time taken by insulin pump (for T1DM and severe T2DM people) or

pancreas (for normal people) to secrete insulin, hence delay in one process affect the

second process. If time delay in insulin secretion is more than 15 min then there should

be no delay occur in the insulin action to maintain the normal glucose level and vice

versa.

7.6 Conclusion and future scope

In this chapter, we studied the glucose - insulin regulatory system for the case of closed

loop delivery system by considering three time delays simultaneously as observed in the

body. The analytical studies of the system (7.2.1-7.2.2) ensures the positive and bounded

(below and above) solutions. The system possesses globally asymptotically stability for

the case of T1DM, where f1 = 0. The range of time delay in insulin action (τa) was

quantified as approximately 48 min [17] by incorporating two time delays (τa i.e. delay in

insulin action and τs i.e. delay in insulin secretion) in the system. Simulation of present

model reveals that range of τa has been reduced and new range is more feasible according

to the physiology of human body. In fact we are able to find the range of τa as (5, 10) min

which is very less as compared to (43, 48) min [17] for τs ∈ (5,10) min and τh ∈ (25,50)

min. Here, we are able to approximate the exact time duration of all the necessary time

delays which will be proved very useful for smooth working of glucose monitoring system

as exact amount of insulin and precise timing of delivery of insulin can be figured out. An
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attempt has been made to provide more feasible ranges of three time delays occurred in

glucose - insulin dynamics which can provide a deep insight into the better management

of artificial pancreas.
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Figure 7.2: Case1 : Profile of glucose and insulin oscillations for τs = 0, τh ∈ (25,50) and
τa ∈ (14,21).
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Figure 7.3: Case 2 : Profile of glucose and insulin oscillations for τs = 15, τh = 0 andτa ∈
(20,36).
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Figure 7.4: Case 3 : Profile of glucose and insulin oscillations for τs = 15, τa = 0 andτh ∈
(25,50).
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Figure 7.5: Case 6 : Profile of glucose and insulin oscillations for τh = 0, τa = 0 andτs ∈
(22,25).
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Figure 7.6: Case 7 : Profile of glucose and insulin oscillations for τs = 5, τa = 10 andτh ∈
(25,50).
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Figure 7.7: Case 7 : Profile of glucose and insulin oscillations for τs = 10, τa = 5 andτh ∈
(25,50).





Chapter 8

Dynamics of insulin analogues using two

explicit time delays

Management of type 1 diabetes and severe type 2 diabetes rely on exogenous insulin or

insulin analogues to control raised blood glucose concentration. Insulin lispro and insulin

aspart are rapid acting insulin analogue which have a shortened delay of onset and are

easily absorbed in the bloodstream. Insulin analogue exists in hexameric, dimeric and

monomeric states and hexameric form dissociates into dimeric and monomeric form which

can penetrate the capillary membrane and can be absorbed into plasma. For different

insulin analogues the transformation of hexameric state into dimeric and monomeric state

takes different time which will be considered as first time delay in the present study.

More the time it will take in this transformation, utilization of insulin in the body will be

delayed which will be termed as second time delay in this chapter 1. Therefore, an attempt

has been made to find the ranges of these two time delays for the concoction of better rapid

acting insulin analogues for better management of glucose and insulin concentration in

diabetics through DDE model. The profile of plasma insulin concentration level obtained

from simulation of the model are in good agreement with previously observed results for

the quantified range of both time delays.

1The results of this chapter has been communicated in a research paper entitled “Modeling the dynamics of
insulin analogues in type 1 diabetes using two explicit timedelays”.
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8.1 Introduction

The absorption kinetics of subcutaneously injected insulin has been widely studied by

many researchers [201–205]. The absorption of insulin from the subcutaneous tissues is

a very complex process and many factors are suppose to influence its absorption rate i.e.

exercise [206–208], rate of injection [209,210], technique of delivering injection [211], hot

water baths, local massage, temperature of the body and smoking [212]. Absorption rate

also depends on injection volume [204] and concentration [209,211]. Inspite of many the-

oretical and experimental research, the mechanism behind the subcutaneous absorption

of insulin are still unknown.

In 1989, Mosekilde et al. [201] proposed a partial differential equation (PDE) mathe-

matical model of the absorption process for soluble insulin by considering some suitable

assumptions. It has been assumed that injected soluble insulin is present in the subcu-

taneous tissue in hexameric and dimeric form. Binder [213] assumed in his study that

only dimeric form can penetrate the capillary membrane. The hypothesis was further

supported by Brange et al. [214] and Kang et al. [215] in their studies. Inspite of con-

siderable assumption, the mathematical model was not able to find widespread clinical

application. Later in 1993, Trajanoski et al. [206] modified the model of Mosekilde et

al. [201] for monomeric insulin analogues and estimated the parametric form, the time

course of plasma insulin following subcutaneous insulin injection.

Normally insulin is secreted from β cells of the pancreas in two time scales in an

oscillatory manner : pulsatile oscillations accounting for the basal insulin and ultradian

oscillations controlled by plasma glucose concentration levels [6, 7, 9, 12, 42, 74]. Several

different types of insulin analogues have been produced and used in clinical practices

[216–219]. Basal dose and bolus dose are the two types of insulin doses which simulate the

insulin pulsatile secretion and ultradian secretion in an oscillatory manner, respectively.

The doses are given to the patients according to their daily physical activities and can

be adjusted manually [42]. Insulin analogue exists in hexameric, dimeric and monomeric

states and hexameric form is the predominant state after the subcutaneous injection

of soluble insulin. The hexameric form dissociates into dimeric and monomeric form

which can penetrate the capillary membrane and can be absorbed into plasma [110]. The

conversion of hexameric into dimeric and monomeric state is shown in Figure 8.1.

Insulin lispro is a rapid acting insulin analogue and it was the first insulin analogue to
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Figure 8.1: Conversion of hexamer to dimeric and monomeric state.

enter in the market in 1996 [42]. Insulin lispro has a shortened delay of onset. Insulin

aspart is also a rapid acting insulin analog and is manufactured from the human insulin

by changing a single amino acid. This helps the rapid acting insulin analog to absorb into

bloodstream. Insulin glargine developed by rDNA technology in 2002 is a long acting

basal insulin analogue, given once daily to help in controlling the raised blood glucose

level. Insulin monomers are the functional and physiologically active unit of insulin. To

mimic the normal physiological insulin secretion in type 1 diabetes, the best way is to

use lispro or aspart as the bolus insulin and glargine as the basal insulin for pulsatile

secretion of insulin stimulated by elevated plasma glucose concentration level [42].

This is clearly seen that insulin analogue are desirable to simulate the physiological

pulsatile insulin secretion that observed in normal subjects [217,218]. Several mathemat-

ical models have been proposed to understand the dynamics of insulin analogues from

the subcutaneous injection to absorption [42, 201, 206, 220–223].

Here, our motive is to model the profile of plasma insulin concentration level by incorpo-

rating two time delay terms in the previously developed insulin analogues model [42,201].

To the time, no one has considered the explicit time delays in model which are very nec-

essary as delays are observed in the whole process from delivery of insulin injection to
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insulin absorption. The first delay is observed in conversion of insulin analogues from hex-

americ state to dimeric and monomeric state and second delay is observed in utilization

of plasma insulin concentration.

8.2 Mathematical model

In 2009, Li et al. [42] proposed an ODE mathematical model to stimulate the dynamics

of rapid acting insulin analogue of the whole metabolic system. In 2009, Li and John-

son [111] considered the explicit delay τ > 0 for transformation of hexameric to dimeric

form. They demonstrate the plasma insulin concentration profile and compared with

the experimental data but the range of the delay term was not figured out in the pa-

per. Here, we will modify the existing mathematical model proposed by Li et al. [42] by

incorporating two explicit time delay terms in the mathematical ODE model.

τt is the time delay observed in the transformation of hexameric state to dimeric state

and is incorporated in eqn.(8.2.2) of the model. τu is the time delay observed in the

utilization of plasma insulin concentration and is incorporated in eqn.(8.2.3) of the model.

We will observe the change in plasma insulin concentration level due to the presence of

these two time delay terms in the model.

The DDE mathematical model containing two explicit delay terms for the insulin ana-

logues is :

dH
dt

= −pH(t)+ pqD3(t) (8.2.1)

dD
dt

= pH(t− τt)− pqD3(t)−
bD(t)

1+ I(t)
(8.2.2)

dI
dt

=
rbD(t)
1+ I(t)

−di I(t− τu) (8.2.3)

with initial conditions: H(0) = H0 > 0, D(0) = 0, I(0) = I0 ≥ 0, τt ≥ 0, τu ≥ 0, where

H(t)(U/ml) represents the insulin analogue concentration in hexameric form, D(t)(U/ml)

represents the insulin analogue concentration in dimeric form, I(t)(U/ml) represents the

plasma insulin concentration at time t ≥ 0, p (min−1) is the transform rate from one

hexameric molecule to three dimeric molecules [223], q (ml2/U2) represents chemical e-

quilibrium constant [223], pq is the transform rate from three dimeric molecules to one

hexameric molecule, b (U/min) is a constant parameter [201, 222, 223], r is the rate at
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which fractional molecules became plasma insulin [222], di(min−1) is the insulin degrada-

tion rate.

Rate of dimers penetrating the capillary is inversely proportional to the plasma insulin

concentration and is depicted by the term bD(t)/(1+ I(t)) in eqn.(8.2.2) and the term

rbD(t)/(1+ I(t)) in eqn.(8.2.3) of the model (8.2.1-8.2.3).

8.3 Stability analysis of mathematical model

We will analyse the model mathematically and prove the analytical results of model.

It can be clearly seen from the model that (0,0,0) is the unique equilibrium.

Proposition 7. The solutions of model (8.2.1-8.2.3) with initial conditions H(0) = H0 > 0,

D(0) = 0 and I(0) = I0 ≥ 0 are positive and bounded.

Proof. (i) All solutions H(t), D(t) and I(t) are positive for all t > 0.

Let us assume thatH(t) or D(t) is not always positive fort > 0. Then there existst1 > 0 such

thatH(t1) = 0, D(t1) = 0 andH(t)> 0 andD(t)> 0 for 0< t < t1.

Let

H
′
(t) = −pH(t)+ pqD3(t)

≥ −pH(t)

which impliesH(t)≥ H0e−pt for 0< t < t1.

Also H(t1)≥ H0e−pt1 > 0 which impliesH(t)> 0 for all t > 0, D(t)> 0 for all τt > 0.

Also if there existst2 > 0 such thatI(t2) = 0, I(t2− τu) = 0 andI(t) > 0 for τu > 0 and

0< t < t2, then 0≥ I(t2) = rbD(t2) > 0, this is a contradiction which implies thatI(t)> 0 for

all t > 0.

Hence all solutionsH(t),D(t) andI(t) are positive and bounded below for allt > 0.

(ii) All solutions H(t),D(t) and I(t) are bounded.

Let

G(t) = rH (t)+ rD(t)+ I(t), f ort > 0 (8.3.1)
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and

G
′
(t) = rH

′
(t)+ rD

′
(t)+ I

′
(t)

= −di I(t)< 0

Also

G
′
(t) = −pr(H(t)−H(t− τt)−diI(t− τu)< 0

for all τt > 0, τu > 0.

Hence there exists a constant sayC1 ≥ 0 such thatlimt→∞G(t) = C1 ≥ 0 which impliesH(t),

D(t) andI(t) are bounded uniformly for allt > 0.

Lemma 8.3.1.: Let f : R→R be a differential function. If l= lim in ft→∞ f (t)< lim supt→∞ f (t)=

L, then there exists sequences{sn} ↑ ∞, {rn} ↑ ∞ such that for all n, f
′
(sn) = f

′
(rn) = 0,

limn→∞ f (sn) = L and limn→∞ f (rn) = l [224].

Theorem 8.3.2.The origin (0,0,0) of model (8.2.1-8.2.3) is a global attractor.

Proof. To prove the theorem we have to showC1 = 0.

Let

P(t) = rH (t)+ rD(t), f ort > 0 (8.3.2)

Then,

P
′
(t) = rH

′
(t)+ rD

′
(t)

= −pr(H(t)−H(t− τt))−
−rbD(t)
1+H(t)

< 0

Hence there exists a constant sayC2 ≥ 0 such thatlimt→∞P(t) =C2 ≥ 0. Thus from eqn.(8.3.1)

and eqn.(8.3.2) we can say thatI(t)= G(t)−P(t)→C1−C2 ast → ∞. Hence for any sequence

{sk} → ∞, I(sk)→C1−C2 ask→ ∞.

Now consider

H = limt→∞supH(t), H = limt→∞in f H(t),
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D = limt→∞supD(t), andD = limt→∞in f D(t).

From Lemma 8.3.1, there exists a sequencerk → ∞ such thatD
′
(rk) = 0 for every k and

limk→∞D(rk) = D.

Eqn.(8.2.2) of model (8.2.1-8.2.3) implies

0 = D
′
(rk) = pH(rk)− pqD3(rk)−

bD(rk)

1+ I(rk)
(8.3.3)

Forε > 0, there existsT > 0 such thatH(t)≤ H +ε whent ≥ T. Then for sufficiently large k,

H(rk)≤ H + ε and eqn.(8.3.3) becomes

0≤ p(H + ε −qD3(rk))−
bD(rk)

1+ I(rk)

Let k→ ∞

0≤ p(H + ε −qD
3
)−

bD
1+C1−C2

which is true for allε > 0, hence

0≤ p(H −qD
3
)−

bD
1+C1−C2

or

qD
3
+

bD
p(1+C1−C2)

≤ H (8.3.4)

Similarly, there exists a sequencer
′

k → ∞ such thatH
′
(r

′

k) = 0 for every k andlimk→∞H(r
′

k) =

H. Hence eqn.(8.2.1) implies

0= H
′
(r

′

k) =−pH(r
′

k)+ pqD3(r
′

k)

Forε > 0, there existsT
′
> 0 such thatD(t)≤ D+ε for all t ≥ T

′
. For sufficiently large value

of k, D(r
′

k)≤ D+ ε and hence

0≤−pH(r
′

k)+ pq(D+ ε)3
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Let k→ ∞

0≤−pH + pq(D+ ε)3

which is true for allε > 0, hence

0≤−pH + pqD
3

or

H ≤ qD
3

(8.3.5)

From eqn.(8.3.4) and eqn.(8.3.5), we conclude that

qD
3
(rk)+

bD
p(1+C1−C2)

≤ qD
3

implies D = 0 andH = 0 i.e limt→∞D(t) = 0 andlimt→∞H(t) = 0, sinceD(t) andH(t) are

positive for allt > 0. From eqn.(8.2.3), we can say thatlimt→∞I(t) = 0.

Hence eqn.(8.3.1) implies,

limt→∞G(t) = rlimt→∞H(t)+ rlimt→∞D(t)+ limt→∞I(t) = 0

i.e

C1 = 0.

Hence the origin (0,0,0) of the model (8.2.1-8.2.3) is a global attractor.

8.4 Numerical simulation and results

In this section, we perform numerical simulation using parameters identified in the

literature. Table 8.1 lists the values of all parameters used in model (8.2.1-8.2.3) and the

related references from which parameter values are determined.

We consider the delay differential equations (DDE) mathematical model to model the

profile of plasma insulin concentration. The calculation is simplified by using Matlab
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2012b. Bolus injection of insulin is the most commonly used in diabetics, but the con-

tinuous subcutaneous injection is more effective region for insulin delivery. Insulin is

secreted from the pancreas in two oscillatory manners. Pulsatile oscillations having s-

mall amplitude and short period of (5, 15) min and ultradian oscillations having large

amplitude and long period of (50, 150) min [6, 7, 17, 42].

We compare the profile of plasma insulin concentration obtained from the numerical

simulation of the model (8.2.1-8.2.3) with the results obtained by Li et al. [42] and found

that after incorporating the necessary time delay terms in the model, the profile of plasma

insulin concentration is compatible with the previous obtained results. Plasma insulin

concentration is considered as a variable in simulation of both the models. The dynamics

of plasma insulin concentration is in agreement with measured data [225, 226].

Insulin lispro and insulin aspart were injected subcutaneously in the experiments per-

formed in [225], while the plasma volume was assumed to be 45 ml/kg [222]. Hence the

initial value of H(0) = H0 = 0.0029 U/ml = 2900 µ U/ml, D(0) = D0 = 0 and I(0) = I0

= 0.000006 U/ml = 6 µ U/ml [227] are considered to model the profile of plasma insulin

concentration.

The values of the parameters used are same as the value taken in [42]. The values

of b= 0.0060, di = 0.0775are considered for simulating insulin lispro and values of b=

0.0068, di = 0.0081are considered for simulating insulin aspart [42]. The range of values

of b and di are selected from range discussed in the best model 9 and model 10 proposed

in [217] from Table III(a). Model is proposed for bolus injection only hence we compare

the plasma insulin concentration of our model with the Li et al. [42] model.

We also quantify the range of two time delays in 3 cases at which the good profile of

plasma insulin concentration is obtained.

Case 1 : τt > 0, τu = 0 i.e delay in transformation of hexameric state to dimeric state but

no delay in insulin utilization.

For τt = 15 min, τu = 0 we observe that I(t) = 10 U/ml. In Figure 8.2 plasma insulin

concentration level are plotted for aspart and lispro insulin which is also compatible to

the profile obtained by previous models [42, 111, 225].

Case 2 : τt > 0, τu > 0 i.e delay in transformation of hexameric state to dimeric state and

delay in insulin utilization.
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For τt = 15min, τu = 425min, we observe that I(t) = 12 U/ml. In Figure 8.3 plasma in-

sulin concentration level are plotted for aspart and lispro insulin which is also compatible

to the profile obtained by previous models [42, 111, 225].

Case 3 : τt = 0, τu > 0 i.e delay in transformation of hexameric state to dimeric state

and delay in insulin utilization.

For τt = 0, τu = 440min, we observe that I(t) = 6 U/ml. Plasma insulin concentration

level are plotted for aspart and lispro insulin which is again compatible to the profile

obtained by previous models [42, 111, 225] as seen in Figure 8.4.

In Figure 8.5, comparison of the simulated plasma insulin concentration produced for

lispro having τt = 15 min, τu = 0 and Li et al. [42] model is shown. In Figure 8.6,

comparison of the simulated plasma insulin concentration produced for aspart having

τt = 15 min, τu = 0 and Li et al. [42] model is shown.

Relationship of hexamer, dimer and plasma insulin concentration (τt = 15min, τu = 425

min) can be seen in Figure 8.7.

Figures demonstrate the plasma insulin concentration after incorporating both the de-

lays in model. It can be seen clearly in figures that plasma insulin concentration profile

given by DDE model is compatible with the profile of the previous models [42, 111].

8.5 Conclusion and future scope

To maintain the normal blood glucose level in the body, regulation of glucose insulin

endocrine system should work continuously. Lispro and aspart as the bolus insulin are

the best form of insulin for the normal physiological secretion stimulated by elevated

blood glucose concentration in type 1 diabetic patients while glargin as the basal insulin

is considered to be the best [42]. To maintain the glucose concentration in physiological

range, the exact timing and doses of subcutaneous insulin injection is required. Here

our purpose is to solve the above problem by discussing the model with the help of two

explicit time delays.

The profile of plasma insulin concentration are modeled by many researchers time to

time but no one has considered the time delays in the previous models. Here, we tried to

make an attempt to model the plasma insulin concentration by incorporating necessary

time delays and the obtained results are compatible with the results obtained by previous



models.

The only limitation we can observe here is that the value of second delay (τu) is very

large and sounds impractical in life. The obtained results also reveals the fact that there

must be some hidden time delays which should also be considered and incorporated in

the model so that more physiological results can be obtained. So in our future study

we tried to deal with more number of time delays so that the range of all delays lies in

physiological range.

The above discussed model having necessary time delay (τt and τu) can form a foun-

dation of an artificial pancreas if integrated with continuous glucose monitoring system.

The above model is simple in nature and can be proved helpful in clinical practices.

Information obtained from the simulation of model may be useful in designing and de-

velopment of artificial pancreas.

Parameters Explanantion Units Values References
p transfer rate of one hexameric molecule min−1 0.5 [206]

to three dimeric molecules
q chemical equilibrium constant ml2U−2 0.13 [223]
r rate at which fractional molecules 0.2143 [222]

became plasma insulin
di insulin degradation rate min−1 0.081 [217]

(lispro)
di insulin degradation rate min−1 0.0775 [217]

(aspart)
b constant parameter min−1 0.0068 [217]

(lispro)
b constant parameter min−1 0.0060 [217]

(aspart)
H0 insulin concentration in hexameric form at t=0Uml−1 0.0029 [225]
D0 insulin concentration in dimeric form at t=0 Uml−1 0 [42]
I0 plasma insulin concentration at t=0 Uml−1 0.000006 [225]

Table 8.1: Parameters used in the mathematical model.
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Figure 8.2: Plasma insulin concentration level having p=0.5, q=0.13, r=0.2143,di=0.0081,
b=0.0068τt = 15, τu = 0 for lispro (dashed line) and p=0.5, q=0.13, r=0.2143,di=0.0775,
b=0.0060,τt = 15,τu = 0 for aspart (solid line).
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Figure 8.3: Plasma insulin concentration level having p=0.5, q=0.13, r=0.2143,di=0.0081,
b=0.0068τt = 15, τu = 425 for lispro (dashed line) and p=0.5, q=0.13, r=0.2143,di=0.0775,
b=0.0060,τt = 15,τu = 425 for aspart (solid line).
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Figure 8.4: Plasma insulin concentration level having p=0.5, q=0.13, r=0.2143,di=0.0081,
b=0.0068,τt = 0, τu = 440 for lispro (dashed line) and p=0.5, q=0.13, r=0.2143,di=0.0775,
b=0.0060,τt = 0, τu = 440 for aspart (solid line).
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Figure 8.5: Comparison of the simulated plasma insulin concentration (solid line) for lispro
havingτt = 15,τu = 0 and dashed line is the simulation by model [42].
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Figure 8.6: Comparison of the simulated plasma insulin concentration (solid line) for aspart
havingτt = 15,τu = 0 and dashed line is the simulation by model [42].
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Figure 8.7: Dynamics of hexamer, dimer and plasma insulin concentration (τt = 15,τu = 425).
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