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ABSTRACT 

Vitiligo is a polygenic disorder which results in the progressive loss of functional melanocytes 

and is characterized by the occurrence of depigmented patches on the skin. A comprehensive 

understanding of the molecular mechanisms that determine disease susceptibility, its onset, 

and phenotypic expression remains a challenge since the entire spectrum of this disorder is not 

yet clearly understood. Emerging evidence over the decades underlines the existing connection 

between deregulated miRNA function and disease pathogenesis. Unraveling the genetic 

variants that influence disease development may also provide key insights into the rationale for 

disease susceptibility. In the present work, we applied a systems biology approach to identify 

the role of potential miRNAs and susceptible gene variants associated with vitiligo. We further 

identified the miRNA target genes and constructed a miRNA-target gene network that revealed 

essential miRNAs that might be fundamentally linked to vitiligo. Our protein-protein interaction 

(PPI) network in combination with drug-target network highlighted potential protein targets 

which may be used as novel drug candidates. We also performed functional module and 

pathway analysis of the vitiligo associated proteins to explore their significance in disease 

onset. Furthermore, we investigated the pathogenic effect of the plausible single nucleotide 

polymorphisms (SNPs) that could affect protein structure and function and conducted 

preliminary protein modeling to implicate the role of SNP in disease pathogenesis. Thus, our 

analysis unveiled significant findings that may drive the way towards better therapeutic 

interventions for vitiligo management. 

KEYWORDS: Vitiligo, miRNA, SNP, miRNA-target gene network, PPI network, drug-target 

network 
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CHAPTER 1 

INTRODUCTION 

Vitiligo is a chronic, acquired depigmentation disorder of the skin which results in an 

episodically progressive loss of functional melanocytes causing pigment dilution in the affected 

areas of the skin (Picardo et al., 2015). It is characterized by the appearance of asymptomatic, 

non-scaly white macules with sharply demarcated margins on the skin (Ezzedine et al., 2012). 

Since it involves the follicular melanocyte reservoir, it is also accompanied by whitening of the 

hair (Taïeb and Picardo, 2007; van Geel et al., 2012), although, the skin and hair are affected at 

different degrees depending on the disease duration. The course of the disease is 

unforeseeable with the depigmented patches stabilizing eventually with the duration of the 

disease.  

Affecting 0.5%-1% of the world population (Howitz et al., 1977; Boisseau-Garsaud et al., 2000) 

and with a prevalence rate of 0.5%-2.5% in India (Handa and Kaur, 1999), vitiligo can develop at 

any age irrespective of the type of skin, gender, race or geographical location. Half of the 

population develops the disease before the age of 20 years, and nearly 70% to 80% develops it 

before the age of 30 years (Sehgal and Srivastava, 2007) inflicting significant psychological 

stress and exerting a pernicious influence on the quality of life in patients concerning self-

esteem and social interactions.  

The exact cause of disease onset is yet a topic of debate with a broad range of theories 

implicated in the etiology and pathogenesis of vitiligo including immune-mediated mechanisms 

(Spritz, 2007), increased oxidative stress (Jimbow et al., 2001; Yildirim et al., 2004), melanocyte 

growth factors and defective melanocyte adhesion (Gauthier et al., 2003), genetic susceptibility 

(Spritz 2012), viral infections (Akbayir et al., 2004; Akcan et al., 2006; Toker et al., 2007; Niamba 

et al., 2007), and neurogenic mechanisms (Al'Abadie et al., 1994). However, recent research has 

established the theory of autoimmune-mediated destruction of melanocytes as the current 

leading hypothesis. Therefore, the key to minimizing the impression of vitiligo lies in the better 

understanding and prospective manipulation of biological mechanisms entailing vitiligo 

etiopathogenesis. 

Vitiligo appears to be a multifaceted disorder underlying both genetic and non–genetic 

(environmental) factors in a complex interactive manner. Recent advances in genetic studies 

have led to the considerable progress in defining the genetic epidemiology and pathogenesis of 

vitiligo, and its relationships to other autoimmune diseases offering a real insight into its 

biological framework leading to a more effective treatment approach as well as disease 
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prevention (Spritz, 2013). Almost all genetic studies have been implemented on generalized 

(non-segmental) vitiligo; hence, we considered generalized vitiligo for the present study. 

MicroRNAs have been implicated to have significant roles in regulating various physiological 

and developmental processes in humans (Sayed and Abdellatif, 2011), including the 

development and function of melanocytes as well as immune cells (Mansuri et al., 2016). The 

identification of the miRNAs involved in vitiligo pathogenesis may serve as novel biomarkers for 

disease prognosis. Also, strong evidence for genetic factors in the pathogenesis of generalized 

vitiligo from various gene expression and association studies identified candidate genes, those 

encoding components of biological networks that primarily regulate the elements of the 

immune system and their targeted destruction of melanocytes mediating vitiligo susceptibility 

(Spritz, 2012). Genes tend to work together developing an intricate network of interactions. The 

complete sequencing of several genomes has uncovered that the primary provenance of the 

complexity of human disorders is in parallel with the genetic variations attributable to single 

nucleotide polymorphisms rather than barely protein-protein interactions. The interaction of 

genetic variants and the distribution of SNPs in the genome are firmly believed to contribute to 

the genetic risk of phenotype variation in human complex diseases (Cordell, 2009; Shen et al., 

2016).  

In the present work, we investigated the specific miRNAs reported to be associated with vitiligo 

and identified their target genes along with the susceptible genetic variants and their 

pathogenic effect using computational platforms. The cataloging of susceptible miRNAs and 

SNPs is essential for narrowing down the plausible concomitant genetic determinants of vitiligo. 

Protein-protein interactions are virtually intrinsic for every cellular and regulatory process, and 

a damaging alteration in such interactions have been deduced to cause and sometimes even 

accelerate human diseases. The regulation or impediment of a known detrimental protein-

protein interaction delineates a principal target for drug discovery. Hence, a systems biology 

approach was implemented that unveiled significant interconnections and revealed intricate 

patterns of disease association. Such a network analysis is helpful in studying the gene 

expressions and analyzing a large set of disease-associated proteins. Together with gene 

ontology analysis, it contributes to deciphering the regulatory networks and pathways 

underlying cellular responses and elucidating the mechanisms that underpin complex diseases. 

Furthermore, we prioritized a few proteins in our protein-protein interaction network as 

pertinent hub proteins which may be targeted for treating vitiligo and scrutinized drug-target 

and drug-similarity interactions with an effort to provide potential novel targets for optimal 

therapeutic interventions. The present network integration approach attempts to furnish a 

comprehensive understanding of the biological mechanisms that mediate disease pathogenesis, 

offering novel interventional drug targets for both the treatment and prevention of vitiligo in 

genetically susceptible individuals.   
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CHAPTER 2 

This chapter provides an overview of vitiligo and its types, the pathophysiology of the disease, 

therapeutic options, and management of disease, its association with other diseases, the role of 

miRNAs and genetic variants on disease susceptibility and the importance of interaction 

network studies and polypharmacological studies in disease modules. 

 

REVIEW OF LITERATURE 

 

2.1. Overview 

Evolutionary studies indicated that skin pigmentation was the result of adaptive responses to 

the environment (UV radiation) in humans. Pigmentation provides photoprotection and 

participates in skin barrier function and antimicrobial defenses of the skin, hence, is essential 

for body homeostasis (Jablonski and Chaplin, 2010). Vitiligo is a complex depigmentation 

disorder leading to the selective disappearance of functional melanocytes affecting the life of 

patients both biologically and psychologically. It is characterized by white non-scaly patches 

with distinct sharp margins distributed unilaterally in the skin. The development of new lesions 

resulting in enlarged macules is classified as an active form of the disease (Gawkrodger et al., 

2010). Figure 1 shows the major classifications of vitiligo, namely, non-segmental or generalized 

vitiligo, segmental vitiligo and mixed vitiligo. The onset of mixed vitiligo is the same as 

segmental vitiligo which eventually develops into non-segmental vitiligo; thus, the name mixed 

vitiligo. 

 

 
 Figure 1: Types of vitiligo: a) non-segmental or generalized vitiligo, b) segmental vitiligo and c) 

mixed vitiligo (Picardo et al., 2015). 
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In non-segmental (generalized) vitiligo, which is the most common form of vitiligo, the 

depigmented patches develop on both sides of the body (Taı¨eb and Picardo, 2009). While, in 

segmental vitiligo, the patches are limited to only one side of the body, particularly in the face 

and trunk area and do not usually cross the midline of the body. In segmental vitiligo, typical 

distribution patterns on the face and trunk have been described, which aid in differential 

diagnosis (Kim et al., 2011; Geel et al., 2014). The markedly different distribution patterns aid in 

recognition of the type of vitiligo as the evolution and the kind of treatment is different for the 

different subtypes of vitiligo. Mixed vitiligo, on the other hand, has been described as a rare 

combination of both segmental vitiligo and nonsegmental vitiligo (Ezzedine et al., 2011). 

 

2.2. Pathophysiology of vitiligo 

Though the mechanisms leading to vitiligo is a still a debatable topic, however, several 

hypotheses have been presented signifying its association with the onset of vitiligo. Among the 

different theories developed, namely, oxidative stress, melanocyte growth and defective 

melanocyte adhesion, viral infections and neural mechanisms, the autoimmune theory is 

currently the leading theory.  

 

2.2.1. Autoimmune theory 

The loss of self-tolerance in the pathogenesis of vitiligo is unclear and not yet well understood. 

High levels of circulating melanocyte autoantibodies recognized by T cells have been found in 

many vitiligo patients with their role being linked to the destruction of keratinocytes and 

melanocytes (Le Poole and Luiten, 2008). Several studies have shown the accumulation of T 

helper (TH) and T cytotoxic (TC) cells kill melanocytes in the junction of the dermal and 

epidermal area of vitiligo lesion implying cell-mediated immune response activity (Oyarbide-

Valencia et al., 2006). Certain MHC alleles have been suggested to be associated with vitiligo as 

a vital link between the disease etiology and the aberrant self-antigen presentation to the T 

cells (Spritz, 2012). Also, the fundamental role of regulatory T cells (Tregs) in the pathogenesis 

of vitiligo has been implicated in several reports with a reduction in their number in the blood 

of vitiligo patients (Ben Ahmed et al., 2012; Lili et al., 2012; Dwivedi et al., 2015). Also 

considered as a Th1-related disease, a significant increase in the concentration of the cytokines, 

namely, TNF-α, IFNG, IL-10 and IL-17 have also been reported to be associated with the onset 

as well as persistence of vitiligo in patients (Taher et al., 2009). Therefore, vitiligo serves as an 

eminent disease model to understand the initiation and progression of organ-specific 

autoimmune diseases. 

 

2.2.2. Oxidative stress theory 

Oxidative stress, which is a result of increase in the levels of reactive oxygen species (ROS) 

compromises the function of cellular proteins and membrane lipids, thus, impairing the activity 
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of the antioxidant system in both lesional and non-lesional skin (Maresca et al., 1997; 

Schallreuter et al., 2008). This imbalanced status of the antioxidant system in vitiligo has been 

indicated to cause increased sensitivity of melanocytes to oxidative stress leading to cellular 

death (Jimbow et al., 2001). Superoxide dismutase, an antioxidant enzyme, has been reported 

to be altered in vitiligo skin indicating that ROS generation causes an alteration in the 

expression of the antioxidant system affecting melanocyte function (Sravani et al., 2009). 

Oxidative stress-driven reduction of TRP1 expression triggers the production of intermediates 

of toxic melanin leading to subsequent immune-mediated melanocyte destruction (Dell’anna 

and Picardo, 2006).  

 

2.2.3. Deficient melanocyte adhesion and melanocyte growth theory 

Several evidence of the decreased adhesive property of melanocytes in vitiligo has been 

reported by various research groups (Gauthier et al., 2003). Reduced expression levels of E-

cadherin have been observed in melanocytes prior to depigmentation development in vitiligo 

skin. During oxidative or mechanical stress, an altered E-cadherin expression incites loss of 

adhesion in epidermal melanocytes due to the increased levels of anti-adhesion molecule, 

tenascin (Le Poole et al., 1997; Wagner et al., 2015). Loss of melanocytes from the epidermal 

layer due to deficient adhesion of melanocytes could be an early phenomenon in vitiligo. Also, 

the factors influencing successful differentiation and proliferation of melanocytes, and their 

appropriate migration may also render susceptibility to vitiligo.  

 

2.2.4. Viral theory 

Several studies have depicted a strong association between vitiligo and hepatitis C virus (HCV) 

and hepatitis B virus (HBV) infections in vitiligo patients (Akbayir et al., 2004; Akcan et al., 

2006). Also, the association of cytomegalovirus (CMV) infections with vitiligo was also 

suggested to provoke the deterioration of skin conditions in vitiligo (Toker et al., 2007). 

Furthermore, the suspicious association of herpes virus and the human immunodeficiency virus 

(HIV) infection with vitiligo has also been reported by research groups (Niamba et al., 2007).  

 

2.2.5. Neuronal mechanisms theory 

Clinical observations addressing the correlation of local neurological damage to skin 

depigmentation (whitening) suggests that neuronal mechanisms do have a role to play in 

vitiligo pathogenesis (Al'Abadie et al., 1994). Current evidence of the detection of 

neuropeptides in vitiligo lesions supports the neural hypothesis which might be the effect of 

inflammation rather than a triggering factor. An increased level of neuropeptides such as NPY 

has been observed in the marginal areas of vitiligo lesions triggered under the conditions of 

oxidative stress that is thought as a reason for the induction of disease (Lazarova et al., 2000). 
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2.3. Therapeutic options and management of vitiligo 

The management of vitiligo becomes challenging considering its complex etiopathogenesis. 

Therefore, the current optimal management options of vitiligo according to the recent 

consensus guidelines involves a personalized approach with the therapeutic choice influenced 

by several factors such as disease course and its impact, skin type, age, gender, age, affected 

area and its extent, and social and cultural life influences (Taieb et al., 2013). 

 

2.3.1. Topical corticosteroids, immunomodulators, and antioxidants 

Topical corticosteroids being the first-line of treatment option manages disease progression by 

initiating anti-inflammatory responses with trivial outcomes. Although repigmentation is 

observed in the face and neck, the trunk area and the extremities show limited repigmentation. 

Oral corticosteroid involving moderate dosage of corticosteroids (mini-pulse therapy) is also 

used to arrest disease progression with rare repigmentation outcomes. However, the 

associated side effects limit its long-term use (Njoo et al., 1998). 

Topical immunomodulators such as tacrolimus and pimecrolimus attenuate the production of 

proinflammatory cytokines by inhibiting T cell activity, thereby, enhancing melanocyte 

migration and pigmentation in vitiligo patients. Similar to corticosteroids, the results mostly 

show repigmentation in the face with moderate effects at other sites of the body (Ormerod, 

2005).  

Although, according to the current consensus guidelines, the use of topical antioxidants is not 

recommended, however, they are frequently prescribed in relatively limited trials (Leone and 

Paro, 2015). The use of oral antioxidants in combination therapy is sometimes considered in 

patients undergoing phototherapy. 

 

2.3.2. Phototherapy 

Narrow-band UVB (NB-UVB) phototherapy is an effective treatment choice that has long been 

recognized to induce repigmentation. The majority of the patients are observed to develop the 

signs of repigmentation with phototherapy. Topical treatments are also advised after 

completed phototherapy sessions to prevent recurrence of depigmentation (Sitek et al., 2007). 

Photochemotherapy is also an option, but the recurrent side effects often accompany 

carcinogenic risk along with limited successful outcomes which restrict its use over NB-UVB 

where such risks are less evident (Bhatnagar et al., 2007)  

 

2.3.3. Surgery 

Pigment cell transplantation techniques such as cellular and tissue graft transplantation may 

offer a valuable alternative treatment option. The necessity of the disease stability, which is the 

primary criteria linked to successful outcomes, limits this treatment option to selective patients 

only (van Geel et al., 2010). Regardless of the technique used, the stability of the lesions is a 
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major criterion related to the outcome of the procedure. It is effective in both stable non-

segmental and segmental vitiligo patients. 

 

2.3.4. Combination Therapy 

The complexity of the disease makes it necessary to use a combination of different treatments 

to address both inflammatory responses on melanocyte differentiation and proliferation. 

Currently, NB-UVB is prescribed along with topical corticosteroids and immunomodulators, 

instead of its use as a monotherapy. Such combination therapies have been shown to 

accelerate the repigmentation rates (Nordal et al., 2011). However, the risk of skin cancer due 

to combined use of immunosuppressants is a topic of concern and debate.  

 

2.3.5. Depigmentation and cosmetic camouflage 

In conditions of extensive vitiligo where most parts of the body are affected by depigmentation, 

depigmenting the remaining pigmented areas is considered as a better option instead of 

repigmentation treatments. Bleaching creams, laser therapy, and cryotherapy are some of the 

options for depigmentation therapy. Regardless of this treatment method, repigmentation on 

the treated depigmented areas might occur and as such a permanent cure cannot be assured 

(AlGhamdi and Kumar, 2011). 

Camouflaging the depigmented areas with cosmetic products could aid to reduce the daily 

impact of the disease on social life. Specialized advice is required to be taken before going for 

such alternatives of cosmetic exposure to vitiligo skin (Hossain et al., 2016). 

 

2.4. Association with other diseases 

Due to the polygenic nature of vitiligo, it is frequently associated with several autoimmune or 

autoinflammatory diseases, namely, thyroid disorders (Kasumagic-Halilovic et al., 2011), 

psoriasis, atopic dermatitis (Ezzedine et al., 2011), diabetes mellitus, pernicious anemia and 

Addison’s disease (Rezaei et al., 2007). Antibodies directed against melanocytes and other 

organ-specific tissues have been found in vitiligo patients. Recent observations by genome 

research groups strongly point to vitiligo as an autoimmune disease sharing genes with other 

autoimmune disorders (Jin et al., 2012). Although the definite link between vitiligo and 

melanoma has not been fully elucidated yet, it has been reported that they both share an 

inverse relationship meaning that vitiligo affected people have a much lower risk of developing 

melanoma (Spritz, 2007). 

 

2.5. Role of miRNAs and genetic variants on disease susceptibility 

Various genetic and biological studies have improved our knowledge on vitiligo patho¬genesis 

and have opened up new avenues for novel targeted therapies for lack of melanocyte 

regeneration in vitiligo.  
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Recent studies have shown that miRNAs play prime roles in various cellular, regulatory and 

signaling processes maintaining physiological homeostasis. They are also essential for cellular 

morphogenesis, and any disruption in its architecture leads to disease development and 

progression. Deregulated miRNA metabolism is indicative of inflammatory skin conditions and 

linked to vitiligo pathogenesis (Mansuri et al., 2014). MicroRNAs are conserved, small, 

endogenous non-coding RNA molecules that regulate post-transcriptional gene expression. It 

promotes translational repression by targeting specific mRNAs based on their complementarity 

degree leading to the cleavage and degradation of mRNA. At present, characterization of 

interpretative miRNA expression and function in human melanocytes has elucidated them to be 

promising biomarkers for disease prognosis. 

In the recent years, several genome-wide association and linkage studies have been conducted 

in vitiligo which is a polygenic disorder with a complex mechanism of pathogenesis. 

Accordingly, several potent disease contributing loci has been identified to be associated with 

vitiligo.  The risk of developing vitiligo of the familial first-grade relatives signifies the heritability 

and genetic origin of vitiligo associated genes (Alkhateeb et al., 2003). Various studies and 

reports have identified that the majority of the susceptible gene variants inculpates modulation 

of the immune system along with genes linked with melanocytes proliferation and migration 

(Zhang and Xiang, 2014). It is the modulation and alteration exerted by specific genetic 

variations and their interactions that predispose inflammatory responses targeting melanocyte 

death owing to the onset of vitiligo.  

 

2.6. Importance of interaction network studies and polypharmacological studies 

in disease modules 

Network science and analysis offer unforeseen perspective prospects to understand and 

analyze the internal cellular organization and the interconnections between disease-related 

genes and functional proteins (Barabási and Oltvai, 2004). Protein-protein interaction networks 

composed of multiple nodes connected by edges accommodate better estimation of network 

statistics contributing to a comprehensive assistance in discerning biological mechanisms and 

pathways that dictate the manifestation of a disease cycle. This is particularly propitious when 

interpreting polygenic disorders having intricate patterns. Protein-protein interactions are of 

prime importance for various cellular and regulatory processes. Genetic variation alters or 

damages protein structure inciting disruption in protein-protein interactions constituting the 

pretext of disease development. These interaction networks usually consist of a few essential 

nodes (called hubs) that show maximum interaction to a large number of neighboring nodes. 

According to the phenomena of the centrality-lethality rule, the identification of such hub 

proteins and their inhibition may be lethal for the network. The magnitude of the change in 

structure caused by the removal of a node in a network determines the relative importance of 

the node in the network. Removal of such structurally critical nodes (hubs) in a network is 
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widely believed to reflect the significance of the network architecture to better ascertain the 

network functionality (He and Zhang, 2006). These hubs in a protein-protein interaction 

network may represent potential drug candidates. Since drug discovery and development is a 

complicated and expensive process, polypharmacology has emerged as the next paradigm of 

drug discovery. The transformation in the philosophy of current drug designing from one drug-

one target to multiple targets of a single drug incorporates polypharmacological analysis that 

intends to discover the unknown targets for the existing drugs (Yıldırım et al., 2007). 

Polypharmacology based integrated systems biology approaches along with computational 

modeling, pharmacological and clinical studies are productive for identification of novel 

molecular determinants essential in drug discovery and development. It also aids in unraveling 

the understanding of the significant impact of a new drug on complex human diseases. A drug 

showing connections with multiple nodes (targets) in a network implies its high efficacious 

potential to control or inhibit the function of the particular target that is detrimental for 

regulatory pathways (Boran and Iyengar, 2010). The identification of such hub proteins in a 

disease network together with polypharmacological studies serves as an effective practical 

approach towards better therapeutic interventions. 
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CHAPTER 3 

This chapter provides an overview of the dataset collection, data sources and software used, 

and a detailed explanation of the methods used in the analysis as well as the reasons behind 

using those methods. 

METHODOLOGY 

In the present work, we implemented a systems biology approach to explore the role of 

miRNAs and its target genes, and genetic variants on the onset and progression of vitiligo and 

analyzed the biological and molecular activities and signaling pathways of the proteins 

associated with vitiligo. Computational analysis for harmful SNPs was also carried out followed 

by polypharmacological studies to identify potential drug candidates. A graphical 

representation of the workflow is shown in Figure 2.  

 

Figure 2: Graphical representation of the workflow. 

3.1. Data Collection 

To analyze the role of miRNAs associated with vitiligo, the miRNA information was obtained 

from literature search in NCBI PUBMED server (https://www.ncbi.nlm.nih.gov/pubmed/) and 

publicly available online databases, namely, HMDD v2.0 (the Human microRNA Disease 
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Database)(Li et al., 2014), Entrez GENE database of NCBI (https://www.ncbi.nlm.nih.gov/gene/), 

and miRBase (Griffiths-Jones, 2006). A total of 41 types of miRNAs were found to be associated 

with vitiligo. Information regarding the miRNAs was thus collected and used to develop a data 

sheet consisting information about the following attributes as under: 

 miRNA: The name of the miRNA which is reported to be associated with the disease.     

 PubMed ID (PMID): The reference numbers of the research articles in PubMed, from 

where the information of vitiligo associated miRNAs was retrieved.     

 Expression: It represents the expression of miRNA in disease conditions whether it is 

upregulated or downregulated.     

 p-value: It describes the significance of the results reported in research articles for a 

miRNA-disease association. We have considered p-value ≤ 0.05 to be significant for data 

collection. 

 Chromosome: The chromosome number on which the miRNA gene is reported to be 

present in the Entrez Gene database of NCBI. 

 Chromosome Location: The location of the miRNA gene in the chromosome as reported 

in the Entrez Gene database of NCBI. 

 HGNC Symbol: The HUGO Gene Nomenclature Committee (HGNC) approved gene 

nomenclature for the corresponding miRNA gene as reported in miRBase. 

 miRNA Sequence: The nucleotide sequence of the miRNA as reported in miRBase. 

On the other hand, we extracted the information of genes associated with vitiligo and its SNPs 

from the GENE database and dbSNP of NCBI (https://www.ncbi.nlm.nih.gov/snp/). The build 

141 of NCBI dbSNP database is the latest release containing nearly 44 million validated human 

SNPs (Sherry et al., 2001). A total of 186 genes were reported to be associated with the disease 

among which 134 polymorphisms for 84 genes were reported to be positively associated. 

UnitProt IDs (http://www.uniprot.org/) of the proteins were also noted. Information regarding 

the SNPs having significant p-value was thus collected and used to develop a data sheet 

consisting information about the following attributes as under: 

 Gene Name: The name of the gene in which the SNP is reported to be associated with 

the disease.  

 PubMed ID (PMID): The reference number of the research paper in PubMed, from 

where the information of vitiligo associated genes and SNPs were retrieved. 

 rs ID: The accession number used to refer to specific SNPs as reported in dbSNP build 

141. 

 Odds Ratio (OR): It represents the likelihood of an outcome to occur in the presence of a 

given particular exposure. This field is left blank where the OR for a particular SNP is not 

reported in the particular research article. 
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 Population: The population which was studied in the particular research article.     

 Geographical Location: The location, that is, the country name in which the study or 

research was reported to be conducted in the particular research article.  

 Chromosome: The chromosome number on which the SNP is reported to be present in 

dbSNP build 141.     

 Chromosome Position: The position of the SNP in the chromosome as reported in dbSNP 

build 141. 

 Genotype: It represents the nucleotide change occurring due to polymorphism.     

 Ancestral Allele: The wild-type allele which eventually changes into another due to 

polymorphism.  

 Global MAF: The value of the second most frequent allele in a default global population 

as reported in dbSNP build 141 and is being provided to distinguish common variants 

from rare variants. 

 p-value: It represents the significance of the results reported in research articles for a 

disease-SNP association. We have considered p-value ≤0.05 to be significant for data 

collection.      

 Mutation/Variant: The type of SNP depending on whether it is found in the coding 

region or the non-coding region of the respective gene.     

 SNP Location: The location of the SNP in the respective gene whether it is in the exon, 

intron, UTR or intergenic. 

 Position: The position of the mutated amino acid in the protein. This field is left blank if 

the SNP is in the non-coding region of the corresponding gene. 

 Reference contig: The NT accession numbers of the reference contig in which the SNP 

was reported in dbSNP build 141. 

 Reference mRNA: The NM accession numbers of the reference transcript in which the 

SNP was reported in dbSNP build 141. This field is left blank if the SNP is not found in 

the transcript. 

 Reference protein: The NP accession numbers of the reference protein sequence in 

which the SNP was reported in dbSNP build 141. This field is left blank if the SNP is not 

found in the transcript. 

 Residue Change: The amino acid change occurring due to polymorphism. 

 UniProt ID: The accession number of the protein as reported in UniProt database in 

which the SNP was found. This field is left blank if the SNP is not found in the transcript. 

3.2. Identification of miRNA target genes 

The miRNAs identified to be associated with vitiligo were used to find their respective target 

genes. TargetScanHuman 7.1 (Agarwal et al., 2015), which is free online web tool, was used to 
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detect targets in the 3’UTR of the protein-coding transcripts by base-pairing rules where 

predictions with both broadly conserved and poorly conserved sites are provided. 

These target sites are the conserved sites that match or are complementary to the seed region 

of the miRNA that ultimately facilitates the binding of miRNA with the mRNA to functionally 

degrade the mRNA thereby resulting in gene silencing. 

Information regarding the miRNA target genes was thus collected and used to develop a data 

sheet consisting information about the following attributes as under: 

 miRNA: The name of the miRNA which is reported to be associated with the disease. 

 Target Gene: The name of the gene which has the conserved 8mer or 7mer or 6mer 

target sites matching the seed region of the respective miRNA for miRNA-mRNA 

association to occur as reported in TargetScanHuman 7.1. 

 Target Gene Name: The full name of the gene which is reported to be the target gene of 

the respective miRNA reported in TargetScanHuman 7.1. 

 Representative Transcript ID: The transcript ID of the target gene as reported in 

Ensembl. 

3.3. Construction of miRNA-target gene network 

A structured network layout explaining network integrity is the core requirement to justify the 

interaction between miRNA and disease. A miRNA-target gene interaction network was 

constructed and analyzed to understand the miRNA-target gene relationship and validate the 

miRNA-disease association. The miRNA-target gene bipartite network consists of two sets of 

nodes-one set represents the miRNAs, and the other set represents the target genes. Nodes 

from the two sets were connected if a particular miRNA is associated with a particular target 

gene. The datasheet prepared which included all the miRNAs associated with vitiligo along with 

their target genes was used to generate the network in Cytoscape (Shannon et al., 2003). 

Cytoscape, which is a software package, was used for modeling, visualizing, and analyzing 

genetic and molecular interaction network. It offers a variety of plugins and applications 

relating to the different aspects of systems biology.  

Cytoscape’s software probes the network and provides a basic functionality layout to visually 

assimilate and understand the network with phenotypes, expression profiles, relevant 

molecular states, and targets. This results in a swift development of supplementary 

computational analysis and topographies linking the network to functional annotations 

databases. After obtaining a miRNA-disease bipartite network, the hub miRNA analysis for the 

identification of essential miRNAs was performed. 
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3.4. Construction of vitiligo associated protein-protein interaction network 

Interactions between genes whose expression profiles are correlated with disease pathogenesis 

may contribute to the progression of the disease. To identify such interactions, we constructed 

the protein-protein interaction network using STRING (The Search Tool for the Retrieval of 

Interacting Genes) (Von Mering et al., 2005). 

It is a comprehensive database capable of providing an overall view of all the known and 

predicted protein-protein interactions of physical and functional associations.  The data 

compiled in the database emerges from various computational predictions, conserved co-

expressions of genes, experimental studies, and from interactions aggregated from other 

(primary) databases. It consists of approximately 9.6 million proteins in over more than 2000 

organisms. The PPI network generated based on STRING online database was then visualized in 

Cytoscape whose common feature lies in combing biological interaction networks with relevant 

large databases into a unified framework. 

3.5. Functional module and enrichment analysis 

Considering the connectivity properties of a network, we resolved to identify the significant 

clusters or modules enriched in biological processes from the complex bipartite network to 

extract biologically meaningful interactions. The modular analysis can provide a better insight 

into the relationship of the interconnected proteins assuming that the highly connected nodes 

in a network could form a cluster. As we know, cellular processes and functions are modular; 

therefore, it is more feasible to predict the structural and functional behavior of a particular 

module than that of an individual gene. Such module analysis has played a significant role in the 

past in determining disease mechanisms (Mitra et al., 2013). 

We used Markov Clustering Algorithm (MCL) method among the other clustering algorithms 

provided in Cytoscape as it is the most commonly used unsupervised clustering algorithms for 

functional module analysis and assigns a fast and reliable scalable method for finding 

functionally enriched clusters in complex networks. The granularity parameter for MCL 

clustering was kept at 1.8. 

To measure the individual relationship of the genes based on the degrees of their co-

association with diseases, we further performed functional enrichment analysis of the clustered 

groups of genes in the network using DAVID (The Database for Annotation, Visualization and 

Integrated Discovery) database 6.8 (Huang et al., 2009), to interpret their biological impetus. 

Functional enrichment analysis, also known as gene enrichment analysis is a method which uses 

statistical approaches to identify the clusters or classes of genes or proteins that are highly 

expressed or enriched in a large set of genes or proteins and these clusters may have an 
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association with disease phenotypes (Huang et al., 2008). For researchers performing high-

throughput experiments that generate large sets of genes, for example, genes that are 

differentially expressed under different conditions, it becomes necessary for them to retrieve a 

functional profile of that gene set to generate a better understand the underlying biological 

processes. 

All the genes were mapped into the DAVID which is an online free database of web-accessible 

programs that delivers a comprehensive set of functional annotation tools for researchers to 

evaluate the biological meaning behind large list of genes. The default settings with ‘Homo 

sapiens’ was selected as the species background as well as the current background for the 

analysis. 

3.6. Ontology analysis 

Gene ontology analysis describes gene products in context to their association in the biological 

processes (pathways and greater routes made up of the activities of numerous gene products), 

cellular components (functional site of the gene products) and molecular functions (molecular 

activities of associated gene products) in a species-independent manner. The gene ontology 

outlines concepts or classes which are used to define gene function and the relationships 

between these concepts considering that a significant fraction of the genes specific for the core 

biological functions is shared by all eukaryotes (Mi et al., 2017). This information about the 

shared genes and proteins facilitates and contributes to our apprehension of all the diverse 

organisms that share them. 

Central Gene Ontology Consortium server is a widely accepted source of functional gene 

annotation, collaborating many databases that facilitate uniform queries across all of them. 

Thus, it was used to describe and analyze the molecular functions and biological processes and 

pathways for the selected target gene set of interest in which they were significantly involved. 

For gene ontology analysis, the default settings with ‘Homo sapiens’ was selected as the species 

background as well as the current background. Also, PANTHER (Protein Analysis Through 

Evolutionary Relationship) (Mi et al., 2013), classification system which also offers spontaneous 

visualization of images of GO analysis was used. It categorized the vitiligo associated genes 

simplifying a high throughput analysis for better understanding of the biological processes and 

molecular functions relationships in which these genes were involved.  

3.7. Pathway analysis 

To analyze the pathways in which these genes are involved, we conducted a pathway analysis 

using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways in DAVID 6.8. KEGG Pathway 

database is the most comprehensive and widely used database of annotation information. The 
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pathway classification with p≤0.001 and Benjamini-Hochberg FDR ≤0.01 was considered to have 

the most biological significance. Pathway analysis helps to interpret the data in the context of 

biological interactions and identify related proteins within a pathway.  

A single protein may be involved in multiple pathways that are of importance to many 

biological processes. The biological cause of a disease can be explored by examining the 

changes in gene expression in a pathway. Also, the same pathway can be targeted for novel 

drug candidates (Wang et al., 2010). Deciphering the pathways which are explicitly targeted by 

the essential proteins may provide insight into their regulatory mechanisms. To better analyze 

the pathway analysis results, we constructed a protein pathway network to elucidate which 

pathways were eminently targeted by the proteins, specifically, the hub proteins. Such 

pathways, in turn, can be targeted for therapy and treatment approaches. 

3.8. SNP analysis 

The feasibility of the identification of the nsSNPs that vest susceptibility or resistance to human 

diseases has been improved with the use of in silico tools. To elucidate of the function of 

mutations in vitiligo susceptible genes, we investigated the pathogenic effect of 134 SNPs which 

were reported to be associated with vitiligo. Among the 134 SNPs, the functional context of 36 

nsSNPs was analyzed by employing various computational platforms. We used a combination of 

computational tools, namely, SIFT (Kumar et al., 2009), PolyPhen 2.0 (Adzhubei et al., 2010), 

PROVEAN (Choi et al., 2012), SNPs&GO (Magesh and Doss, 2014), I-Mutant Suite 3.0 (Capriotti 

et al., 2008), and PANTHER Evolutionary Analysis of Coding SNP (Mi et al., 2005) to identify the 

nsSNPs that potentially affect the structure and function of proteins associated with vitiligo. 

 SIFT (Sorting Intolerant from Tolerant): A sequence-homology-based tool to predict 

whether an amino acid substitution would be tolerated or damaging in a protein (Kumar 

et al., 2009). The SNP IDs were queried and the tool considers SNPs as deleterious 

variants whose tolerance index score is ≤0.05. Available from: (http://sift.bii.a-

star.edu.sg/index.html). 

 PolyPhen 2.0 (Polymorphism Phenotyping v2): A software tool that predicts the likely 

impact of an amino acid substitution on the structure and function of a protein by 

comparing the structural and evolutionary information (Adzhubei et al., 2010). The 

protein sequence along with their amino acid substitution is queried to generate an 

output score ranging from 0 to 1. A zero indicates a neutral effect, whereas, a high score 

represents a variant that has a damaging effect of amino acid substitutions on the 

protein. Available from: (http://genetics.bwh.harvard.edu/pph2/). 

 PROVEAN (Protein Variation Effect Analyzer): A software tool that predicts the 

functional impact of nsSNPs in a protein sequence (Choi et al., 2012). PROVEAN 
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prediction analysis in based on a cutoff score (=0.05) which indicates a deleterious 

substitution. Variants with a score above the threshold are considered to be neutral 

(Manickam et al., 2014). Available from: (http://provean.jcvi.org/index.php). 

 SNPs&GO: A web server that predicts the probability of a protein variation to be 

significantly associated with a disease (Magesh and Doss, 2014). The queried protein 

sequence along with the mutational substitution and position yields a probability score. 

A score above 0.5 is considered to be deleterious. Available from: 

(http://snps.biofold.org/snps-and-go/snps-and-go.html). 

 I-Mutant Suite 3.0: A support vector machine (SVM)-based prediction tool to predict the 

change in protein stability according to change in free energy, enthalpy, heat capacity, 

and temperature (Capriotti et al., 2008). The protein sequence along with the 

substitution position and the correlated new residue was queried for the analysis. The 

output result predicts the free energy change (DDG) and classifies it into any three of 

the mentioned classes, namely, largely unstable (DDG < −0.5 kcal/mol), largely stable 

(DDG>0.5 kcal/mol), or neutral (-0.5≤ DDG≤0.5 kcal/mol). The output result of a protein 

as largely unstable indicates the effect of a deleterious nsSNP. Available from: 

(http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi). 

 PANTHER Evolutionary Analysis of Coding SNP: A comprehensive system that evaluates 

the likelihood of a particular nsSNP to cause an impact on the function and activity of 

protein. The prediction is based on a method called PANTHER-PSEP (position-specific 

evolutionary preservation) that calculates the preservation time, that is, how long a 

given amino acid substitution has been conserved in the lineage (Mi et al., 2005). A 

longer preservation time implies a greater possibility of functional impact on a protein. 

Available from: (http://pantherdb.org/tools/csnpScoreForm.jsp). 

Additionally, MutPred 2 (http://mutpred.mutdb.org/) (Pejaver et al., 2017) was used to 

interpret the possible molecular cause of disease-inducing amino acid substitutions. 

Furthermore, NetSurfP (http://www.cbs.dtu.dk/services/NetSurfP/) (Petersen et al., 2009) was 

used to analyze the effect of such mutations in the stability of the protein by predicting the 

solvent accessibility of the substituted residue.  Since UTRs have an extensive role in the post-

transcriptional regulation of gene expression which may affect the degradation or translational 

suppression of mRNA, UTRScan (Pesole et al., 1999) was carried out for the 24 UTR SNPs and 

PolymiRTS (Bhattacharya et al., 2013) was used to predict the effect of 3' UTR SNPs in 

regulatory mechanisms  

 UTRScan: A program that identifies functional SNPs in the 5’ and 3’ UTRs. It searches the 

user submitted query FASTA sequence and looks for patterns defined in the UTRsite 

database which is a collection of experimentally determined regulatory elements 

located in the 5′ and 3′UTRs. A particular UTR SNP is predicted to have functional 
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significance if a mutational substitution results in a change in the functional patterns in 

the UTR. Available from: http://itbtools.ba.itb.cnr.it/utrscan. 

 PolymiRTS: A database specifically designed for the analysis of non-coding SNPs, namely 

3′ UTR. It predicts the variations in microRNA seed regions and target sites providing a 

more complete and accurate output. The results generated are assigned into four 

classes: ‘D’ (the SNP disrupts a conserved microRNA site); ‘N’ (the SNP disrupts a non-

conserved microRNA site), ‘C’ (the SNP creates a new microRNA site); and ‘O’ (other 

cases when the ancestral allele cannot be determined). The class ‘C’ may cause 

abnormal gene repression whereas the class ‘D’ may cause the loss of normal repression 

control (Bhattacharya et al., 2013). Hence, they are most likely to have a functional 

impact. Available from: http://compbio.uthsc.edu/miRSNP/. 

The information from different computational platforms was combined to prioritize the 

deleterious SNPs to increase the predictive power and accuracy of the results of the in silico 

techniques.  

3.9. Construction of drug-target network 

A single drug can target multiple proteins. To analyze this relationship between drug and 

protein targets (disease-gene products) and to understand how they intervene therapeutically 

in disease processes, we constructed a drug-target network (Yıldırım et al., 2007). We extracted 

information about drugs with respect to our drug candidates from DrugBank (Knox et al., 2011), 

which is a chemoinformatics resource that is updated and maintained with The Food and Drug 

Administration (FDA) information.  

DrugBank combines extensive information on the chemical, pharmacological and 

pharmaceutical nature of drugs with comprehensive drug-target information about their 

mechanisms and targets. Currently, this database covers 8261 drug entries including 2254 FDA-

approved drugs, 2021 FDA-approved small molecule drugs, 336 FDA-approved biotech 

(protein/peptide) drugs, 94 nutraceuticals and over 5019 experimental drugs. It supports a 

broad range of commercial drug names and its corresponding chemical composition. It even 

includes drugs that are at their investigational or experimental stages and specifically mentions 

the drugs that are illicit or withdrawn. It also provides information on drug metabolism, 

absorption, distribution, metabolism, excretion, and toxicity (ADMET) and other categories of 

quantitative structure-activity relationships (QSAR) with a purpose to encourage research in 

pharmacokinetics, pharmacodynamics, and drug design and discovery. 

We used known FDA drugs (approved and approved-investigational) with respect to the protein 

targets to generate the drug-target bipartite network. 
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3.10. Construction of drug-similarity network 

To identify which drugs act similarly on the same target, we constructed a drug-similarity 

network to analyze the interactions of drugs and its action on protein targets. DrugBank 

provides clinically relevant drug interactions, and the information of the interacting drugs and 

its interacting mechanism with respect to a particular drug was taken from DrugBank. Such a 

network can provide insights on drug-drug interaction for a potential drug candidate where an 

interacting drug can act synergistically or antagonistically with another drug altering the benefit 

or effectiveness of the drug on disease conditions. An interacting drug of a particular drug can 

also pose as a potential drug for the protein targeted by that drug. 

3.11. Protein modeling of TLR2 

Finding the 3D structure of proteins is helpful in predicting the impact of SNPs on the structural 

level and in showing the degrees of alteration. To elucidate the molecular dynamic behavior of 

the SNP in TLR2 protein, we performed preliminary protein modeling by G23D (Genomic variant 

to 3D protein data) (http://www.sheba-cancer.org.il/G23D) (Solomon et al., 2016) which is a 

tool for the conversion of human genomic coordinates to protein structures.  

G23D allows the mapping of evolutionary related as well as identical protein of genomic 

variants in a 3D model structure assisting in the feasibility of structural insight. Along with the 

mutated sites, it also displays the wild type residue and other functional sites on the modeled 

3D protein structure to facilitate better interpretation of the variant. The UniProt ID of the 

protein is submitted as the query along with the substitution position and the residual change. 

The genomic coordinates are converted to protein coordinates (models) using dbNSFP which 

are retrieved from ModBase, which is a database of theoretical models. BLAST search is then 

carried out for the input protein sequence with the amino acid substitution against the 

structures available in PDB. The sequence position is converted to structure coordinates within 

PDB files using S2C, a database correlating sequence with atomic residue and the side chains 

are modeled according to the mutation. The modeled 3D structure of the protein with its wild 

type and mutant residue is visualized in JSmol by the link generated in the results (Solomon et 

al., 2016). 

We further carried out TLR2 protein-protein interaction analysis to analyze its interaction with 

other proteins which might be influenced by the mutation in TLR2 protein. 
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CHAPTER 4 

This chapter provides an overview of the results obtained in the present work. 

RESULTS 

4.1. Data Collection 

The datasheet comprising of 41 entries which include the collection of miRNAs associated with 

vitiligo is given in Figure 3. All the miRNA genes were present in the locus of almost all the 

chromosomes except for chromosome 9, 10, 13, 18, X and Y. 

Figure 3: Datasheet of miRNAs. 

A total of 134 polymorphisms for 84 genes were found to be associated with vitiligo. Among the 

134 SNPs, 36 are nsSNPs, 7 are coding synonymous SNPs, and 68 SNPs were found in the non-

coding region.  

All the SNPs were found to be at the locus of almost all the chromosomes except for 

chromosome 13, 18, 20 and Y. The datasheet consisting of 134 SNPs associated with vitiligo is 

given in Figure 4. 
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Figure 4: Datasheet of SNPs. 

4.2. Identification of miRNA target genes 

The respective target genes of the miRNAs were identified to explicate the biological targets of 

these miRNAs whereby they control gene expression and ultimately regulate the cellular and 

molecular responses during disease development and progression. The following datasheet 

comprises of the potential miRNA targets genes associated with vitiligo as identified by 

TargetScanHuman 7.1. 

Figure 5: Datasheet of miRNA target genes. 
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4.3. miRNA-target gene network 

The miRNA-target gene bipartite network represented a total of 41 miRNAs and 98 unique 

target genes consisting of 139 nodes and 220 edges. The target genes are considered to be 

connected in the network if they share a common miRNA.  

 

 

 

Figure 6: miRNA-target genes interaction network. The green colored nodes represent the 

miRNAs, the white colored nodes represents the target genes, and yellow colored nodes 

represent the hub miRNAs along with the target genes of the highest degree in the network.  

To identify the hub miRNAs and target genes associated with vitiligo, we used cytoHubba app in 

Cytoscape. Among the number of methods available for hub identification, we chose Maximum 

Clique Centrality (MCC) for identification of hubs along with two other topological parameters, 

namely, betweenness centrality and bottleneck, and normalized the data to identify the top 
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hubs in the network. MCC is the latest and comparatively better than all other methods 

available in Cytoscape. In our analysis, we found 7 hub miRNAs (hsa-miR-99b, hsa-miR-577, hsa-

miR-9, hsa-miR-155, hsa-miR-211, hsa-miR-10a, hsa-miR-145). 

Network diameter 9 

Network density 0.023 

Number of nodes 139 

Number of edges` 220 

Clustering coefficient 0 

Network heterogeneity 0.949 

Average number of neighbours 3.165 

Hub miRNAs 
hsa-miR-99b, hsa-miR-577, hsa-miR-9, hsa-miR-155, hsa-miR-211, 
hsa-miR-10a, and hsa-miR-145 

Table1: miRNA-target gene interaction network characteristics. 

4.4. Protein-protein interaction network 

Protein-protein interaction network of vitiligo associated proteins exhibited significant 

interconnections between the proteins. It comprised of 71 nodes and 322 edges. The proteins 

are considered to be connected in the network if they interact with each other. If each protein 

is not inclined to interact with another protein or specifically interacts with a single protein, 

then the bipartite network would be disconnected into many single nodes corresponding to 

specific or unique proteins with few or no edges between the nodes. Rather, the protein-

protein interaction network generated displayed many interactions between the proteins. 
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Figure 7: Protein-protein interaction network. The purple nodes represent the hub proteins in 

the network. 

Network diameter 6 

Network density 0.13 

Number of nodes 71 

Number of edges` 322 

Clustering coefficient 0.478 

Network heterogeneity 0.925 

Average number of neighbours 9.07 

Hub Proteins 
IL10, IFNG, IL4, CD44, IL1B, CTLA4, GZMB, FOXP3, TNF, IL2RA, 

CAT, ESR1, TLR2, HLA-A, GSTP1 

Table 2: Protein-protein interaction network characteristics. 
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For prioritizing proteins as hubs, we used cytoHubba app in Cytoscape to identify the hubs or 

essential proteins to be associated with vitiligo. We chose MCC for identification of hubs along 

betweenness centrality and bottleneck as topological parameters, and normalized the data to 

identify the top 15 hubs in the network. These 15 essential (hub) proteins are IL10, IFNG, IL4, 

CD44, IL1B, CTLA4, GZMB, FOXP3, TNF, IL2RA, CAT, ESR1, TLR2, HLA-A, and GSTP1.  

4.5. Functional module and enrichment analysis 

The functional module analysis of vitiligo associated proteins revealed 4 functional modules. 

The average size of the clusters was 17.75, and they were ranked by their modularity score of 1. 

The majority of the proteins were found to form a single large cluster. This implies that these 

proteins have a biological similarity in their functions.  

 

Figure 8: Functional module (clusters) network. The shades of green color, from light to dark, 

represent the decrease in the number of interactions. The genes with the maximum number of 

interactions show lighter shades in the cluster. 

We performed functional enrichment analysis of the larger functional module consisting of 64 

proteins using DAVID 6.8. Keeping the classification stringency at highest and considering the 

enrichment score value ≤1.3 to be significant, DAVID classified the given set of target genes into 

9 functionally enriched clusters that involved 15 genes from the given set of miRNA target 

genes [Table 3].  
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All the 9 clusters were observed to be primarily associated with the immune system regulatory 

processes, such as, MHC class I/II-like antigen recognition protein, conserved site of 

immunoglobulin/major histocompatibility complex, conserved site of interleukin-10, positive 

regulation of JAK-STAT cascade, apoptotic signaling, chemokines and TNF. 

Cluster 1-Enrichment Score: 6.23 

Term Count Genes p-value Benjamini 

MHC class I, alpha chain, 

alpha1/alpha2 
6 

HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
2.75E-10 5.30E-08 

MHC class I-like antigen recognition 6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
3.27E-08 1.58E-06 

integral component of lumenal side 

of endoplasmic reticulum 

membrane 

6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
4.68E-08 3.23E-06 

domain:Ig-like C1-type 6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
4.90E-08 4.07E-06 

region of interest:Connecting 

peptide 
6 

HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
6.74E-08 4.47E-06 

MHC classes I/II-like antigen 

recognition protein 
6 

HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
3.89E-07 1.25E-05 

ER to Golgi transport vesicle 

membrane 
6 

HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
9.63E-07 3.32E-05 

Immunoglobulin/major 

histocompatibility complex, 

conserved site 

6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
1.67E-06 3.59E-05 

Viral myocarditis 6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
8.85E-05 5.31E-04 

Golgi membrane 6 
HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
0.053271 0.302141 

Cluster 2-Enrichment Score: 5.48 

Term Count Genes p-value Benjamini 

Interleukin-10, conserved site 4 IL10, IL19, IL22, IL26 7.05E-07 1.94E-05 

Interleukin-10/19/20/24 4 IL10, IL19, IL22, IL26 7.05E-07 1.94E-05 

positive regulation of JAK-STAT 

cascade 
4 IL10, IL19, IL22, IL26 7.02E-05 0.002365 
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Cluster 3-Enrichment Score: 4.51 

Term Count Genes p-value Benjamini 

MHC class II, beta chain, N-terminal 4 
HLA-A, HLA-C, HLA-DQB1, 

HLA-DRB1 
1.57E-05 3.03E-04 

MHC class II, alpha/beta chain, N-

terminal 
4 

HLA-A, HLA-C, HLA-DQB1, 

HLA-DRB1 
4.52E-05 7.93E-04 

MHC class II protein complex 4 
HLA-A, HLA-C, HLA-DQB1, 

HLA-DRB1 
5.79E-05 8.87E-04 

Table 3: Functional enrichment analysis of the large cluster of 64 proteins (data shown for 3 

clusters).  

4.6. Ontology analysis 

The gene ontology analysis results showed the distribution of 84 genes classified in the three 

aspects of ontology analysis which were considered, that is, biological process, molecular 

function, and cellular component.  

4.6.1. Biological process analysis 

Out of the total 84 genes, 36 genes (42.9%) were shown to take part in cellular processes (cell 

communication, cell cycle, cell proliferation and cellular component movement), and 26 genes 

(31.0%) were shown to be involved in metabolic processes (primary metabolic process, 

biosynthetic process, catabolic process, nitrogen compound metabolic process, and phosphate-

containing compound metabolic process). 

Figure 9: Bar graph of biological process analysis. 
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Table 4 presents the biological processes in which the genes were shown to be involved. 

Category Name 
Number 

of Genes 
Genes 

Percentage of 

Genes 

cellular process 

(GO:0009987) 
36 

VDR, CAT, TNF, FASLG, ESR1, NOS2, LPP, CLNK, 

TLR4, SLC1A2, MTHFR, IFNE, NPY, BACH2, FOXD3, 

KZF4, IL1B, FOXP3, FOXO3, ATX2, CDH1, ZNRD1, 

CASP7, SH2B3, UVRAG, FOXP1, TLR2, SOD3, RERE, 

EDNRA, LTA, HERC2, AHR, FAS, NOS2, APEX1 

42.90% 

metabolic 

process 

(GO:0008152) 

26 

CAT, NLRP1, GPX1, NOS2, CAT, ERCC1, SLC1A2, FAS, 

IFNE, BACH2, PTPN22, GZMB, FOXD3, IKZF4, FOXP3, 

FOXO3, ZMIZ1, ZNRD1, FOXP1, EDNRA, HERC2, 

AHR, CAT, NOS2, APEX1, UBASH3A 

31.00% 

response to 

stimulus 

(GO:0050896) 

20 

CAT, TNF, FASLG, NLRP1, GPX1, NPY, HLA-DQB1, 

IFNAR1, IL1B, BTNL2, SH2B3, SOD3, EDNRA, IL2RA, 

LTA, AHR, FAS, NOS2, APEX1, HLA-DRB1 

23.80% 

developmental 

process 

(GO:0032502) 

18 

VDR, TNF, FASLG, NLRP1, NOS2, LPP, TGFBR2, IFNE, 

FOXD3, FOXP3, FOXO3, CDH1, BTNL2, CASP7, 

FOXP1, EDNRA, LTA, FAS 

21.40% 

immune 

system process 

(GO:0002376) 

17 

TNF, FASLG, NLRP1, GPX1, CLNK, IFNE, IFNG, HLA-

DQB1, HLA-G, GZMB, HLA-C, SH2B3, HLA-B, IL2RA, 

LTA, FAS, HLA-DRB1 

20.20% 

biological 

regulation 

(GO:0065007) 

10 
CLNK, NPY, IFNAR1, IL1B, ATX2, UVRAG, EDNRA, 

IL2RA, FAS, NOS2 
11.90% 

multicellular 

organismal 

process 

(GO:0032501) 

10 
C1QTNF6, TLR4, SLC1A2, IFNE, IL1B, CDH1, TLR2, 

EDNRA, FAS, NOS2 
11.90% 
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cellular 

component 

organization or 

biogenesis 

(GO:0071840) 

2 ATX2, UVRAG 2.40% 

localization 

(GO:0051179) 
2 SLC1A2, UVRAG 2.40% 

biological 

adhesion 

(GO:0022610) 

1 TLR2 1.20% 

Table 4: Biological process analysis. 

 

4.6.2. Molecular function analysis 

Out of the 84 genes, 30 genes (35.7%) were shown to participate in binding activity (protein 

binding, nucleic acid binding, antigen binding and calcium ion binding), and 21 genes (25.0%) 

were shown to be involved in catalytic activity (hydrolase activity, transferase, activity, 

oxidoreductase activity, ligase activity and lyase activity). 

Figure 10: Bar graph of molecular function analysis. 

Table 5 presents the molecular functions of the genes along with their percentage. 
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Category Name 
Number 

of Genes 
Genes 

Percentage 

of Genes 

binding 

(GO:0005488) 
30 

VDR, CAT, TNF, FASLG, NLRP1, ESR1, NOS2, LPP, 

SMOC2, ERCC1, IFNE, IFNG, NPY, HLA-G, BACH2, 

IFNAR1, FOXD3, HLA-C, IKZF4, IL1B, FOXP3, FOXO3, 

CDH1, UVRAG, HLA-B, FOXP1, SOD3, IL2RA, LTA, FAS  

35.70% 

catalytic activity 

(GO:0003824) 
21 

CAT, BCHE, GPX1, NOS2, LPP, CAT, ERCC1, FAS, 

MTHFR, COMT, BACH2, PTPN22, GZMB, ZMIZ1, 

ZNRD1, CASP7, SOD3, SOD2, CAT, NOS2, APEX1 

25.00% 

receptor activity 

(GO:0004872) 
10 

TNF, FASLG, TLR4, TGFBR2, IFNAR1, TLR2, EDNRA, 

IL2RA, LTA, FAS 
11.90% 

signal transducer 

activity 

(GO:0004871) 

3 IFNAR1, IL2RA, FAS 3.60% 

antioxidant 

activity 

(GO:0016209) 

3 CAT, GPX1, SOD3 3.60% 

structural 

molecule activity 

(GO:0005198) 

1 LPP 1.20% 

transporter 

activity 

(GO:0005215) 

1 SLC1A2 1.20% 

Table 5: Molecular function analysis. 

 

4.6.3. Cellular component analysis 

Out of the 84 genes, 19 genes (22.6%) were shown to be distributed in the cell part 

(intracellular part and plasma membrane), and 11 genes (13.1%) were shown to be distributed 

in the cell organelle (nucleus, mitochondrion, endosome, and vacuole). 
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Figure 11: Pie chart of cellular component analysis. 

Table 6 presents the cellular component distribution of the gene products. 

Category Name 
Number of 

Genes 
Genes 

Percentage of 

Genes 

cell part (GO:0044464) 19 

CAT, LPP, MTHFR, BACH2, PTPN22, GZMB, 

FOXD3, IKZF4, FOXP3, FOXO3, ATX2, ZNRD1, 

CASP7, UVRAG, FOXP1, SOD3, HERC2, AHR, 

FAS 

22.60% 

organelle 

(GO:0043226) 
11 

BACH2, GZMB, FOXD3, IKZF4, FOXP3, FOXO3, 

ATX2, UVRAG, FOXP1, AHR, FAS 
13.10% 

extracellular region 

(GO:0005576) 
7 TLR4, IFNE, IFNG, NPY, IL1B, TLR2, SOD3 8.30% 

membrane 

(GO:0016020) 
7 LPP, HLA-G, IFNAR1, HLA-C, HLA-B, FAS, HLA-A 8.30% 

macromolecular 

complex (GO:0032991) 
6 

HLA-DQB1, BACH2, ATX2, ZNRD1, AHR, HLA-

DRB1 
7.10% 

extracellular matrix 

(GO:0031012) 
1 TLR2 1.20% 

Table 6: Cellular component analysis. 
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4.7. Pathway analysis 

According to the threshold of hypergeometric test p≤0.001 and Benjamini-Hochberg FDR ≤0.01, 

the mapped genes were found to be enriched in a total of 30 pathways as listed in Table 7, 

which involved a total of 40 genes from the given genes set. The most significant pathway was 

found to be the allograft rejection pathway with a p-value of 5.70E-17 and FDR value of 1.51E-

14 involving 13 genes.  

Among these 30 pathways, almost half of the pathways (15 pathways) were associated with 

immune system responses and related disorders, and autoimmunity. While, 14 pathways were 

associated with infectious (viral, bacterial and parasitic) disease pathways that have been 

reported to impair the proper regulation of the immune system.  

Term Count Genes p-value Benjamini 

hsa05330:Allograft 

rejection 
13 

FAS, FASLG, GZMB, IFNG, IL10, IL4, 

HLA-A, HLA-B, HLA-C, HLA-G, HLA-

DQB1, HLA-DRB1, TNF 

5.70E-17 1.51E-14 

hsa04940:Type I diabetes 

mellitus 
13 

FAS, FASLG, GZMB, IFNG, IL1B, LTA, 

HLA-A, HLA-B, HLA-C, HLA-G, HLA-

DQB1, HLA-DRB1, TNF 

3.29E-16 2.26E-14 

hsa05332:Graft-versus-

host disease 
12 

FAS, FASLG, GZMB, IFNG, IL1B,  HLA-

A, HLA-B, HLA-C, HLA-G, HLA-DQB1, 

HLA-DRB1, TNF 

8.89E-16 4.03E-14 

hsa05320:Autoimmune 

thyroid disease 
12 

FAS, FASLG, GZMB, IL10, IL4, HLA-A, 

HLA-B, HLA-C, HLA-G, HLA-DQB1, 

HLA-DRB1, TG 

2.49E-13 8.48E-12 

hsa05168:Herpes simplex 

infection 
17 

FAS, FASLG, IFNAR1, IFNG, IFIH1, 

IL1B, LTA, HLA-A, HLA-B, HLA-C, HLA-

G, HLA-DQB1, HLA-DRB1, TLR2, 

TICAM1, TAP1, TNF 

9.20E-13 2.50E-11 

hsa05321:Inflammatory 

bowel disease (IBD) 
11 

FOXP3, IFNG, IL1B, IL10, IL22, IL4,  

HLA-DQB1, HLA-DRB1, TLR2, TLR4, 

TNF 

8.25E-11 1.87E-09 

hsa04060:Cytokine-

cytokine receptor 

interaction 

16 

CCR6, FAS, FASLG, IFNAR1, IFNE, 

IFNG, IL1B, IL10, IL2RA, IL22, IL26, IL4, 

LTA, TSLP, TGFBR2, TNF 

3.61E-10 7.01E-09 

hsa05140:Leishmaniasis 10 
IFNG, IL1B, IL10, IL4,  HLA-DQB1, HLA-

DRB1, NOS2, TLR2, TLR4, TNF 
5.41E-09 9.19E-08 

hsa05142:Chagas disease 

(American 

trypanosomiasis) 

11 
FAS, FASLG, IFNG, IL1B, IL10, NOS2, 

TLR2, TLR4, TICAM1, TGFBR2, TNF 
1.10E-08 1.66E-07 
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hsa04612:Antigen 

processing and 

presentation 

9 
IFNG, HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1, TAP1, TNF 
1.81E-07 2.47E-06 

hsa05162:Measles 10 
FAS, FASLG, IFNAR1, IFNG, IFIH1, 

IL1B, IL2RA, IL4, TLR2, TLR4 
1.32E-06 1.64E-05 

hsa05164:Influenza A 11 

FAS, FASLG, IFNAR1, IFNG, IFIH1, 

IL1B,  HLA-DQB1, HLA-DRB1, TLR4, 

TICAM1, TNF 

1.45E-06 1.65E-05 

hsa05143:African 

trypanosomiasis 
6 FAS, FASLG, IFNG, IL1B, IL10, TNF 6.93E-06 7.25E-05 

hsa05152:Tuberculosis 10 
IFNG, IL1B, IL10, HLA-DQB1, HLA-

DRB1, NOS2, TLR2, TLR4, TNF, VDR 
1.40E-05 1.36E-04 

hsa04630:Jak-STAT 

signaling pathway 
9 

IFNAR1, IFNE, IFNG, IL10, IL19, IL2RA, 

IL22, IL4, TSLP 
2.45E-05 2.22E-04 

hsa05133:Pertussis 7 
CASP7, IL1B, IL10, NOS2, TLR4, 

TICAM1, TNF 
3.46E-05 2.94E-04 

hsa04145:Phagosome 9 
HLA-A, HLA-B, HLA-C, HLA-G, HLA-

DQB1, HLA-DRB1, TLR2, TLR4, TAP1 
3.61E-05 2.89E-04 

hsa05166:HTLV-I 

infection 
11 

XBP1, IL2RA, LTA, HLA-A, HLA-B, HLA-

C, HLA-G, HLA-DQB1, HLA-DRB1, 

TGFBR2, TNF 

4.43E-05 3.35E-04 

hsa05144:Malaria 6 IFNG, IL1B, IL10, TLR2, TLR4, TNF 5.03E-05 3.60E-04 

hsa05145:Toxoplasmosis 8 
IFNG, IL10, HLA-DQB1, HLA-DRB1, 

NOS2, TLR2, TLR4, TNF 
5.18E-05 3.52E-04 

hsa05323:Rheumatoid 

arthritis 
7 

IFNG, IL1B, HLA-DQB1, HLA-DRB1, 

TLR2, TLR4, TNF 
8.55E-05 5.54E-04 

hsa05310:Asthma 5 IL10, IL4, HLA-DQB1, HLA-DRB1, TNF 1.04E-04 6.43E-04 

hsa05416:Viral 

myocarditis 
6 

HLA-A, HLA-B, HLA-C, HLA-G, HLA-

DQB1, HLA-DRB1 
1.05E-04 6.20E-04 

hsa05161:Hepatitis B 8 
FAS, FASLG, IFNAR1, IFIH1, TLR2, 

TLR4, TICAM1, TNF 
1.90E-04 0.001078 

hsa05146:Amoebiasis 7 
IFNG, IL1B, IL10, NOS2, TLR2, TLR4, 

TNF 
2.40E-04 0.001303 

hsa04640:Hematopoietic 

cell lineage 
6 

CD44, IL1B, IL10, NOS2, TLR2, TLR4, 

TNF 
6.87E-04 0.003589 

hsa05134:Legionellosis 5 CASP7, IL1B, TLR2, TLR4, TNF 0.001034 0.005198 
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hsa04514:Cell adhesion 

molecules (CAMs) 
7 

CDH1, HLA-A, HLA-B, HLA-C, HLA-G, 

HLA-DQB1, HLA-DRB1 
0.001139 0.005519 

hsa04620:Toll-like 

receptor signaling 

pathway 

6 
IFNAR1, IL1B, TLR2, TLR4, TICAM1, 

TNF 
0.001857 0.008679 

Table 7: KEGG pathway analysis. 

 

In the protein-pathway network, a protein is connected to a pathway if the protein is known to 

be involved in that particular pathway. The network consisted of 71 nodes and 270 interactions 

representing 40 proteins and 30 pathways.  

 

 

Figure 12: Protein pathway network. The red colored nodes represent the proteins, the dark 

blue colored nodes represents the pathways, and the light blue colored nodes represents the 

hub proteins. 
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Based on degree value, TNF showed maximum interaction in the network implying its 

participation in most of the pathways. Among the 30 pathways, TNF was found to be associated 

with 24 pathways. Similarly, IL1B, IFNG, IL10, and TLR2 were found to be involved in 19, 18, 15 

and 14 pathways respectively. It was also observed that TLR2 was specifically associated with 

the infectious disease pathways that were responsible for deregulating the immune system 

processes as depicted in the results of KEGG pathway analysis.  

Table 8 lists the pathways in which the hub proteins are involved. Among the 15 hub proteins 

identified in the protein-protein interaction network, 11 were found in this network suggesting 

that these 11 essential proteins are involved in the filtered significant pathways.  

Hub Proteins Pathways 
Number of 

Pathways 

TNF 

Allograft rejection, Type I diabetes mellitus, Graft-versus-host 

disease, Herpes simplex infection, Inflammatory bowel disease 

(IBD), Cytokine-cytokine receptor interaction, Leishmaniasis, 

Chagas disease (American trypanosomiasis), Antigen processing 

and presentation, Influenza A, African trypanosomiasis, 

Tuberculosis, Pertussis, HTLV-I infection, Malaria, Toxoplasmosis, 

Rheumatoid arthritis, Asthma, Hepatitis B, Amoebiasis, 

Hematopoietic cell lineage, Legionellosis, Toll-like receptor 

signaling pathway, TNF signaling pathway 

24 

IL1B 

Type I diabetes mellitus, Graft-versus-host disease, Herpes 

simplex infection, Inflammatory bowel disease (IBD), Cytokine-

cytokine receptor interaction, Leishmaniasis, Chagas disease 

(American trypanosomiasis), Measles, Influenza A, African 

trypanosomiasis, Tuberculosis, Pertussis, Malaria, Rheumatoid 

arthritis, Amoebiasis, Hematopoietic cell lineage, Legionellosis, 

Toll-like receptor signaling pathway, TNF signaling pathway 

19 

IFNG 

Allograft rejection, Type I diabetes mellitus, Graft-versus-host 

disease, Herpes simplex infection, Inflammatory bowel disease 

(IBD), Cytokine-cytokine receptor interaction, Leishmaniasis, 

Chagas disease (American trypanosomiasis), Antigen processing 

and presentation, Measles, Influenza A, African trypanosomiasis, 

Tuberculosis, Jak-STAT signaling pathway, Malaria, 

Toxoplasmosis, Rheumatoid arthritis, Amoebiasis 

18 
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Table 8: The pathways of the hub proteins in the protein-pathway network.  

 

TLR2 

Herpes simplex infection, Inflammatory bowel disease (IBD), 

Leishmaniasis, Chagas disease (American trypanosomiasis), 

Measles, Tuberculosis, Phagosome, Malaria, Toxoplasmosis, 

Rheumatoid arthritis, Hepatitis B, Amoebiasis, Hematopoietic cell 

lineage, Legionellosis, Toll-like receptor signaling pathway 

15 

IL10 

Autoimmune thyroid disease, Inflammatory bowel disease (IBD), 

Cytokine-cytokine receptor interaction, Leishmaniasis, Chagas 

disease (American trypanosomiasis), African trypanosomiasis, 

Tuberculosis, Jak-STAT signaling pathway, Pertussis, Malaria, 

Toxoplasmosis, Asthma, Amoebiasis, Hematopoietic cell lineage 

14 

IL4 

Autoimmune thyroid disease, Inflammatory bowel disease (IBD), 

Cytokine-cytokine receptor interaction, Leishmaniasis, Measles, 

Jak-STAT signaling pathway, Asthma 

7 

HLA-A 

Allograft rejection, Type I diabetes mellitus, Graft-versus-host 

disease, Autoimmune thyroid disease, Herpes simplex infection, 

Antigen processing and presentation, Phagosome, HTLV-I 

infection, Viral myocarditis, Cell adhesion molecules (CAMs) 

10 

IL2RA 
Cytokine-cytokine receptor interaction, Measles, Jak-STAT 

signaling pathway, HTLV-I infection 
4 

GZMB 
Type I diabetes mellitus, Graft-versus-host disease, Autoimmune 

thyroid disease 
3 

CD44 Hematopoietic cell lineage 1 

FOXP3 Inflammatory bowel disease (IBD) 1 
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4.8. SNP analysis 

Among the 134 SNPs, 36 (26.9%) are nsSNPs and 7 (5.2%) are sSNPs, while, 68 (50.8%) SNPs 

were found in the non-coding region. SNPs in the non-coding region comprises of 44 (32.8%) 

SNPs in the intronic region, 19 (14.2%) in the near-gene region, and 5 (3.8%) in the mRNA UTR 

region. Rest 23 (17.1%) among 134 SNPs are intergenic. The distribution of the SNPs is shown in 

Figure 13. 

 

  

Figure 13: Graph of the distribution of SNPs. 

 

For our analysis, we selected the nsSNPs and UTR-region SNPs since UTRs are central for the 

post-transcriptional regulation of gene expression and alterations in the functional UTR region 

can lead to serious pathology (Conne et al., 2000). The 36 nsSNPs were analyzed by using a 

combination of SIFT, PolyPhen, PROVEAN, SNPs&GO, I-Mutant Suite and PANTHER Evolutionary 

Analysis of Coding SNP tools.  

Table 9 and 10 presents the deleterious SNPs obtained through the SIFT, PolyPhen, PROVEAN, 

SNPs&GO, I-Mutant Suite and PANTHER Evolutionary Analysis of Coding SNP analysis of the 

vitiligo associated nsSNPs. 
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SNP Genes 
SIFT 

Score 
SIFT Prediction 

PolyPhen 

Score 

PolyPhen 

Prediction 

PROVEAN 

Score 

PROVEAN 

Prediction 

rs1801133 MTHFR 0.053 DELETERIOUS 0.998 
probably 

damaging 
0.002 Damaging 

rs5743708 TLR2 0.016 DELETERIOUS 1 
possibly 

damaging 
0 Damaging 

rs11575993 SOD2 0.014 DELETERIOUS 1 
possibly 

damaging 
0.001 Damaging 

Table 9: nsSNPs found to be deleterious by SIFT, PolyPhen, and PROVEAN. 

 

SNP Genes 
I MUTANT 

Score 

I MUTANT 

Prediction 

SNPs&GO 

Score 

SNPs&GO 

Prediction 
PANTHER 

rs1801133 MTHFR -0.78 

Disease-

Related 

Mutation 

0.88 

Disease 

associated 

variation 

probably 

damaging 

rs5743708 TLR2 -2.78 

Disease-

Related 

Mutation 

0.7 

Disease 

associated 

variation 

possibly 

damaging 

rs11575993 SOD2 -1.4 

Disease-

Related 

Mutation 

0.66 

Disease 

associated 

variation 

probably 

damaging 

Table 10: nsSNPs found to be deleterious by SNPs&GO, I-Mutant Suite and PANTHER. 

SIFT predicted 6 nsSNPs (16.7%) to be deleterious with a tolerance score cut off which is ≤0.05. 

Further analysis of the nsSNPs using PolyPhen predicted 2 nsSNPs to be “probably damaging”, 

and 5 nsSNPs to be “possibly damaging” with a tolerance cut off score ≥0.5. Consequently, 7 

nsSNPs (19.4%) were characterized as damaging. 

Analysis using PROVEAN revealed a similar result as that of Polyphen tool. Based on a tolerance 

cut off score value ≤0.05, it predicted 7 nsSNPs (19.4%) to be damaging. Of these 7 nsSNPs, one 

(rs5743708) was reported to be highly damaging with a tolerance score of 0. 

To improve the prediction accuracy, we used I-Mutant Suite and SNPs&GO tool for further 

analysis. In the I-Mutant Suite results, we found that 11 nsSNPs (30.6%) exhibited a DDG value 

of less than -0.5, which indicates that these are largely unstable resulting in disease-associated 
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mutations. Whereas, SNPs&GO predicted 10 nsSNPs (27.8%) to be related to disease-associated 

mutations by using a tolerance cut off score ≥0.5. 

A disease causing mutation in the highly conserved regions of the genome may pose a high risk 

of that particular mutation to be damaging which is why we decided to carry out SNP 

conservation analysis. The probability of a mutation to cause a disease increases monotonically 

with the increase in the degree of site conservation (Vitkup et al., 2003). Conservation analysis 

by PANTHER Evolutionary Analysis of Coding SNP predicted 14 nsSNPs (38.9%) to be deleterious 

based on their preservation time. 

Since different in silico tools have a diverse set of alignments and molecular characteristics, the 

results of the six tools were slightly different. Accordingly, we combined the results of SIFT, 

PolyPhen, PROVEAN, SNPs&GO, I-Mutant Suite and PANTHER Evolutionary Analysis of Coding 

SNP to predict the deleterious nsSNPs common in all the analysis. 

Figure 14 shows the distribution of deleterious and benign nsSNPs obtained using SIFT, 

PolyPhen, and I-Mutant Suite.  

 

Figure 14: Graph of the distribution of the deleterious and benign nsSNPs as predicted by SIFT, 

PolyPhen, PROVEAN, I-Mutant Suite, SNPs&GO, and PANTHER. 

Of all of the predictions, 16.7%, 19.4%, 19.4%, 30.6%, 27.8% and 38.9% deleterious nsSNPs 

were specifically found by SIFT, PolyPhen, PROVEAN, SNPs&GO, I-Mutant Suite and PANTHER 
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Evolutionary Analysis of Coding SNP respectively. Combining the results of all the six tools, 

three nsSNPs, namely, rs1801133 (MTHFR), rs5743708 (TLR2) and rs11575993 (SOD2) were 

predicted to be functionally significant.  

MutPred predicted the molecular cause of the nsSNPs to become deleterious in MTHFR 

(rs1801133), TLR2 (rs5743708) and SOD2 (rs11575993) [Table 12]. Analysis of the results 

showed an interrelation of the SNPs to be damaging with the solvent accessibility of the 

protein. The type of mutated residue and its position in the sequence affect the stability of the 

protein and the stability of the protein due to mutation decreases with the decrease in solvent 

accessibility of a residue (Vitkup et al., 2003). 

Genes 
Amino Acid 

Substitution 
MutPred Score Molecular Mechanisms with p-values ≤ 0.05 

MTHFR  A222V 0.831 

Loss of relative solvent accessibility (P = 8.3e-03) 

Altered ordered interface (P = 0.03) 

Loss of helix (P = 0.03) 

Altered metal binding (P = 0.01) 

Gain of strand (P = 0.04) 

Loss of allosteric site at F224 (P = 0.02) 

Altered transmembrane protein (P = 0.01) 

TLR2 R753Q 0.518 

Gain of relative solvent accessibility (P = 0.03) 

Altered transmembrane protein (P = 5.8e-04)  

Altered ligand binding (P = 0.01) 

SOD2 L84F 0.712 

Altered ordered interface (P = 0.01)  

Altered transmembrane protein (P = 9.6e-04) 

Loss of relative solvent accessibility (P = 0.03) 

Altered DNA binding (P = 0.03) 

Table 11: Mutational analysis by MutPred. 

NetSurfP predicted the surface solvent accessibility of amino acids by using the protein FASTA 

sequence as a query. The solvent accessibility is predicted to be buried or exposed, based on 

the accessibility of the amino acid residues to the solvent. The reliability of relative surface 

accessibility is verified in the form of Z-score which highlights the surface prediction reliability.  

As given in Table 13, the class assignment does not change for the 3 nsSNPs. Although there 

were very minimal changes in the Relative Surface Accessibility (RSA) values for the 3 nsSNPs, a 
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considerable drift in the Z-score was not observed between the wild type and mutant type 

proteins.  

Genes Type 
Class 

assignment 

Relative Surface Accessibility 

(RSA) 

Z-fit score for RSA 

prediction 

MTHFR 

Wild B 0.027 0.617 

Mutant B 0.026 0.781 

TLR2 

Wild E 0.244 1.46 

Mutant E 0.243 1.527 

SOD2 

Wild B 0.2 -0.736 

Mutant B 0.166 -0.705 

Table 12: Solvent accessibility analysis of the mutated proteins by NetSurfP. 

UTRScan results predicted 2 UTR SNPs to cause functional pattern change after comparing the 

functional patterns of each UTR SNP. The 2 SNPs, namely, rs1129038 (HERC2) and rs10768122 

(SLC1A2) exhibited a functional pattern change of the upstream open reading frame (uORF). 

Alterations in the uORF region within the disease-associated genes have been reported to 

silence the expression of the downstream ORF influencing the protein expression which in turn 

influences human phenotype and disease (Calvo et al., 2009). 

Further analysis of the 3’UTR SNPs using PolymiRTS predicted rs1129038, rs10768122, and 

rs4946936 to profoundly affect the microRNA binding target sites in HERC2, SLC1A2, and 

FOXO3 mRNA transcripts respectively. 

Genes rs ID PolymiRTS miR ID Function Class 

HERC2 rs1129038 hsa-miR-3194-3p, hsa-miR-5691 , hsa-miR-6805-3p C 

SLC1A2 rs10768122 hsa-miR-369-3p, hsa-miR-374a, hsa-miR-374b D 

FOXO3 rs4946936 hsa-miR-548av-3p D 

Table 13: SNP analysis of 3’UTRs by polymiRTS. 
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4.9. Drug-target network 

The bipartite network of drug–protein target interaction consisted of 109 nodes and 84 

interactions. A drug and protein are considered to be connected to each other if the protein is a 

known target of the drug, giving rise to a drug–target network.  

 

Figure 15: Drug–target network. The cyan colored nodes represents the hub protein targets, 

the dark blue colored nodes represents the protein targets, and the pink colored nodes 

represents the drugs. 

Network diameter 3 

Network density 0.014 

Number of nodes 109 

Number of edges` 84 

Clustering coefficient 0 

Network heterogeneity 1.77 

Average number of neighbours 1.541 

Table 14: Drug-target network characteristics. 
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In our analysis, we found that the most of the drugs targeting a particular protein did not show 

any interaction with other protein targets in the network except for the two drugs, Etanercept 

and Carfilzomib. Etanercept targets both TNF and LTA while Carfilzomib targets PSMB8 as well 

as PSMB9. Also, we found that out of the 15 hub proteins, only 9 protein targets were found to 

be present in this network. This illustrates the other 6 hub proteins (IL10, IL4, GZMB, FOXP3, 

TLR2, AND HLA-A) as potential drug candidates for which drug information is currently not 

available. Also, we found that 4 hub proteins, namely, CD44, CD152, CAT, and GSTP1 were 

targeted by a single drug. This highlights the imperative need to discover more effective drugs 

that target these proteins which may play a major role in therapeutics to alleviate disease 

conditions in patients. 

Another notable finding in our analysis was that the drugs which showed a high degree in the 

network were mostly indicated for the treatment of autoimmune diseases and deregulated 

immune responses. One of them is Etanercept that targets TNF, a major proinflammatory 

cytokine that affects various aspects of the immune response. Etanercept is a genetically 

engineered decoy receptor that consists of the ligand-binding domain of TNFR2 and the Fc 

component of human IgG1. It competitively binds with high affinity to TNFR2 inhibiting the 

binding of both TNF-α and TNF-β to the cell surface receptors, consequently, inhibiting 

inflammation induced melanocyte death. It has been indicated to be clinically used for 

rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn’s disease (Nanda and 

Bathon, 2004). However, Etanercept has been reported to be less efficient as a monotherapy in 

vitiligo patients requiring the need of a combinative therapy (Rigopoulos et al., 2007).  

LTA is involved in the follicular dendritic cells development and has been observed to induce 

signals leading to lymphoid neo-organogenesis driving the inflammatory responses in 

autoimmune diseases like rheumatoid arthritis (Takemura et al., 2001). This suggests that 

etanercept may suppress lymphoid neo-organogenesis and reduce the proliferation of mature 

dendritic cells in vitiligo lesions (Wang et al., 2011). 

The other drug, Carfilzomib, is a tetrapeptide epoxy ketone based proteasome inhibitor that 

targets PSMB9 and PSMB8. Peptides generated from ubiquitin-tagged cytosolic proteins are 

presented to CTLs by MHC class-I molecules which are degraded by multi-catalytic, cytosolic 

immune-proteasome complex called LMP2 and LMP7 encoded by PSMB9 and PSMB8 genes 

respectively (Cresswell et al., 2005). This intrinsic enzymatic activity of immune-proteasomes 

may be altered by genetic variations which reduce the expression of PSMB8 and PSMB9 in 

vitiligo PBMCs after IFNG stimulation. This leads to defective proteolytic degradation and 

accumulation of ubiquitinylated proteins in the epidermis of vitiligo patients leading to ROS 

production and auto-inflammatory immune responses which may be detrimental for the 

manifestation of vitiligo (Dani et al., 2017). Carfilzomib targets the catalytic activity of immune-
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proteasomes and irreversibly inactivates the proteasome thereby, inhibiting aberrant immune 

function (Miller et al., 2013).  

4.10. Drug-similarity network 

The drug similarity tripartite network of protein targets, drugs and interacting drugs comprised 

of 178 nodes and 1331 interactions. A drug and its interacting drug are considered to be 

connected if they share a common protein target. Interacting drug partners of a particular drug 

may enhance the efficacy of the drug or may even target the same protein. Such interacting 

drugs may represent themselves as potential drug repositioning candidates. With this concept, 

we constructed the drug-similarity network that displayed interconnections between drugs and 

their interacting drug partners. 

 

Figure 16: Drug-similarity network. The pink colored nodes represents the hub protein targets, 

the yellow colored nodes represents the protein targets, the green colored nodes represents 

the drugs, and the blue colored nodes represent the interacting drugs. 
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Network diameter 4 

Network density 0.076 

Number of nodes 178 

Number of edges` 1331 

Clustering coefficient 0.534 

Network heterogeneity 1.213 

Average number of neighbours 13.517 

Table 15: Drug similarity network characteristics. 

 

Apart from the drugs Etanercept and Carfilzomib targeting more than one protein as shown in 

the drug-target network, we found two other drugs showing interaction with another protein 

target in the network. Both Diethylstilbestrol and Conjugated equine estrogens targeting ESR1, 

which is one of the hub protein identified in the protein-protein interaction network analysis, 

were found to be interacting with the drug Entacapone targeting COMT. This signifies that the 

two drugs interacting with Entacapone might target COMT which is targeted by Entacapone 

alone with no interacting drugs reported yet. Also, we found that there are no interacting drugs 

reported for Etanercept targeting LTA and our drug similarity network analysis suggests that the 

interacting drugs for Etanercept targeting TNF might as well target LTA. 

Etanercept has been less efficient as a monotherapy as mentioned earlier; therefore the 

interacting drugs for Etanercept as shown in the network might catalyze its efficacy when used 

in combination. Thus, further comprehensive study is required to validate the effectiveness of 

these drugs in combinative therapy.    

In addition, GSTP1, also a hub protein, is targeted by a single drug (Clomipramine), but 7 

interacting drugs were shown to be connected to this drug in the network. These interacting 

drugs can be further studied to investigate their potential as drug repositioning candidates for 

vitiligo treatment. 
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4.11. Protein modeling of TLR2 

The G23D tool generated a full-length protein model for the TLR2 protein based on E-value 

which was 0.001 by default as generated from the PDB library and ModBase hits. Since we did 

not perform any molecular dynamics simulation studies for protein structure optimization, 

therefore, the 3D homology model generated by G23D is a preliminary model implicating the 

disruptive role of the SNP (rs5743708) on TLR2 protein. 

Figure 17 shows the cartoon representation of the modeled protein structure including both 

the wild-type (green) and the mutant (light blue) amino acid. The backbone, which is the same 

for each amino acid, is colored gray. It also displayed the other variants as reported in ClinVar, 

COSMIC, and dbSNP for TLR2 which is colored as red, yellow and dark green respectively in stick 

representation in the 3D structure. 

 

 

Figure 17: 3D structure of modeled mutant (R753Q) TLR2 protein. The wild type residue is 

represented in green color and the mutant residue is colored cyan. Other variants are also 

displayed in this structure with the dbSNP variant colored dark green, COSMIC variants colored 

orange, and ClinVar variant is represented in red color. The backbone of the protein is shown in 

gray color.   
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An A/G mutation (rs5743708) caused the substitution of the amino acid from Arginine into 

Glutamine at position 753 (R753Q) of the protein. The mutation was identified to be located 

within the TIR domain as annotated in UniProt. Since it is a membrane protein, it is exposed on 

the surface which is in agreement with the previous NetSurfP results. 

Analysis of the 3D structure suggests that the residue glutamine in position 753 is located in the 
middle of a helix. There was a difference in the size observed in the wild-type and mutant 
amino acids with the mutant residue being smaller than the wild-type residue causing 
conformational changes on the DD loop which might lead to loss of interactions. Also, the wild-
type residue is positively charged, but the amino acid substitution leads to a decrease in the 
positive charge that changes the interaction surface within the TIR domain via altered 
electrostatic potential. These may affect TLR2 dimerization causing loss of interactions with 
other molecules or residues affecting the functional activity of the protein (Xiong et al., 2012). 

 

 

Figure 18: TIR domain in TLR2 protein. The TIR domain is represented in pink color, while the 

wild type and mutant residue in the domain is represented in green and cyan colors 

respectively. 

The R753Q polymorphism compromises the TLR2/1 or TLR2/6 assembly resulting in deficient 

tyrosine phosphorylation and impaired recruitment of Myd88. This reduces the 

phosphorylation of IRAK1 and diminishes the activation of MAPKs and NF-κB resulting in the 

deficient production of cytokines thus altering TLR2 signaling competence. The reduced 

activation of NF-κB signaling pathway results in melanocyte apoptosis suggesting their decisive 

role in the increased risk for the development of vitiligo (Karaca et al., 2013; Traks et al., 2015). 
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The protein-protein interaction analysis of TLR2 showed its interaction with TLR1, TLR6, LY96, 

MyD88, IRAK4, TRAF6, NFKB1, TIRAP, CD14, and HMGB1. All these proteins were found to have 

a fundamental role in regulating the innate immune responses. 

 

Figure 19: PPI network of TLR2. 

The amino acid substitution of arginine to glutamine at position 753 has been reported to be 

located in the TIR domain. The TIR domain of TIRAP binds the TIR domain of TLR2 which then 

recruits MyD88. MyD88 facilitates the recruitment of IRAK4 which activates TRAF6 leading to 

the translocation of activated NF-κB to the nucleus where it induces target gene expression 

generating inflammatory responses (Oliveira-Nascimento et al., 2012). Mutations in the TIR 

domain tend to have more severe impact on signaling than those affecting the extracellular 

domain (Karaca et al., 2013). This implicates the possible detrimental effect of this mutation on 

the interaction of TLR2 with TIRAP, MyD88, IRAK4, TRAF6 and the consequent signal 

transduction.  

TLR2 activates NF-κB in combination with either TLR1 or TLR6 by bringing together the TIR 

domains and triggering tyrosine phosphorylation whereby it extends a docking platform for 

MyD88 recruitment. Genetic alterations in TLR2 might affect its interaction with both TLR1 and 

TLR6 consequently affecting NF-κB activation (Brown et al., 2006).  It was also found that this 

mutation significantly reduced NF-κB activation by about 50 and 75% (Merx et al., 2007; Ben-Ali 

et al., 2011). In the case of vitiligo, altered NF-kB signaling results in impaired melanogenesis 

inciting human melanocytes susceptible to TNF-α-induced apoptosis (Shang et al., 2002).  
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Figure 20: Disease mechanism influenced by R753Q TLR2 polymorphism. 

 

HMGB1 has been found to upregulate the expression of TLR2 of the NK cells and promote NK 

cell activation mediating inflammatory responses (Qiu et al., 2014), while, CD14 (a co-receptor 

of TLR2) accelerates the microbial ligand transfer from CD14 to TLR2, resulting in an increased 

TLR2 signaling (Raby et al., 2013). 

LY96 have been found to enhance the expression of both TLR2 and TLR4 and vice-versa 

enabling them to generate highly sensitive responses to a broad range of microbial 

lipopolysaccharide (LPS) structures (Dziarski et al., 2001). Altered expression of TLR2 will 

invariably affect the interaction of TLR2 with these proteins thereby influencing TLR2 signaling 

and inflammatory responses resulting in defective immune response to some antigens such as 

viruses in the case of vitiligo (Karaca et al., 2013). 
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CHAPTER 5 

This chapter discusses the main results of the present work. 

DISCUSSION  

Vitiligo is a result of convoluted interactions of biological, environmental and immunological 

events; hence, a single concept cannot be attributable to all the conditions of functional 

melanocyte loss. Intense studies and characterization of miRNAs have elucidated their 

interpretative functions in growth and development, in the transformation of cellular responses 

to extracellular signals facilitating signal transduction. Having a cardinal role in maintaining 

physiological homeostasis and disease development and progression, miRNAs are significant for 

melanocyte development and survival (Mansuri et al., 2016).  Most of the vitiligo associated 

genes are plausible biological candidate genes that are responsible for stimulating melanocyte-

specific immune response. These candidate genes encode immunoregulatory and melanocyte 

proteins constituting a dense immunoregulatory network that highlights the systems and 

pathways mediating vitiligo susceptibility (Spritz, 2013). Network-based studies of these 

interacting proteins may impart an insight into disease pathogenesis initiating better diagnosis 

and the feasibility of personalized treatment for vitiligo patients in the future. 

Our miRNA-target genes network analysis revealed 7 hub miRNAs, namely, hsa-miR-99b, hsa-

miR-577, hsa-miR-9, hsa-miR-155, hsa-miR-211, hsa-miR-10a and hsa-miR-145 implicating their 

role in vitiligo pathogenesis. The upregulation of hsa-miR-99b reduces the cytotoxic activity 

(cytokine effector functions) of NK cells which are crucial for the normal BCR signaling and 

proliferation of B-cells. This causes deregulation of genes involved in B-cell maturation and 

development resulting in the dysfunctioning of the immune system indicating them to be 

important players in vitiligo immunopathogenesis (Nandgopal et al., 2014; Šahmatova et al., 

2016).  

TYRP1 is targeted by hsa-miR-577, and its reduced expression as induced by miR-577 leads to 

increased sensitivity of melanocytes to oxidative stress causing early cell death of vitiligo 

melanocytes (Manga et al., 2006; Sturm and Duffy, 2012). Also, the down-regulation of PTPN22 

was observed to be influenced by miR-577 which triggers the overexpression of T-cells and 

suppresses anti-apoptotic AKT kinase inducing melanocyte destruction, thereby, rendering 

susceptibility to autoimmunity in vitiligo patients (Mansuri et al., 2016).  Elevated levels of 

SIRT1 have been reported to protect cells from oxidative stress and inflammatory 

microenvironment (Han et al., 2008). Increased expression of miR-9 downregulates SIRT1 

resulting in melanocytes apoptosis in vitiligo (Saunders et al., 2010). SIRT1 has been shown to 

regulate stress-activated MAPK pathway via Akt and ASK1 in vitiligo keratinocytes (Becatti et al., 
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2014). Previous studies have demonstrated the influence of miR-145 on the genes involved in 

the pigmentation process (Dynoodt et al., 2013). The genes targeted by miR-145 also regulates 

MAPK pathway along with JNK and TGFB signaling pathway and are related to the functional 

groups that might indirectly influence cellular processes in vitiligo wherefore they interfere with 

melanocytes function and viability (Šahmatova et al., 2016) suggesting the role of both miR-9 

and miR-145 in the destruction of melanocytes in vitiligo.  

TGFBR2 is targeted by miR-211 and downregulated miR-211 increases the expression of 

TGFBR2 which in turn downregulates MITF. MITF is a known primary regulator of melanocyte 

development and its survival (Levy et al., 2010), thus, deregulated MITF will considerably affect 

melanocyte development implying the role of miR-211 in vitiligo pathogenesis. Overexpression 

of miR-155 was found to modulate the levels of several interferon-regulated genes, such as 

SOCS1, IFITM1 and IRF1 that inhibits the expression of melanogenesis associated genes, such 

as, TYRP1, YWHAE, SDCBP and SOX10 in melanocytes and particularly YWHAE in keratinocytes. 

This suggests that upregulated miR-155 is associated with vitiligo pathogenesis which alters 

interferon signaling as well as targets melanogenesis associated genes (Šahmatova et al., 2016). 

Both miR-155 and miR-10a are on their own largely dispensable for regulatory T cell (Treg) 

function and stability which is responsible for suppressing autoimmune pathology. Inhibition of 

miR-10a expression leads to reduced FOXP3 expression levels which subsequently decrease the 

stability of Treg cells (Jeker et al., 2012) resulting in the insufficient suppression of inflammation 

in autoimmune diseases which could likely happen in vitiligo patients. 

Genetic variation alters or damages protein structure disrupting protein-protein interactions 

which are otherwise essential for regulatory processes constituting the pretext of disease 

development. Our PPI network analysis results identified 15 hub proteins, namely, IL10, IFNG, 

IL4, CD44, IL1B, CTLA4, GZMB, FOXP3, TNF, IL2RA, CAT, ESR1, TLR2, HLA-A, and GSTP1 to be 

associated with vitiligo. The balance between pro and anti-inflammatory cytokines plays a 

significant role in the pathogenesis of vitiligo. Higher concentrations of IFNG, a pro-

inflammatory cytokine enhances T cell-melanocyte attachment in the skin initiating T cell 

mediated apoptosis of melanocytes in vitiligo. On the other hand, reduced concentrations of IL-

10, a potent regulator of anti-inflammatory immune responses was observed in vitiligo patients 

(Singh et al., 2012). An increased IL-10 concentration with an increase in the IFNG levels 

exhibited a positive correlation with disease duration as reported in vitiligo patients (Ala et al., 

2015). IL-4, an immunomodulatory cytokine, stimulates B-cell proliferation and T cell 

development that leads to the elevation of baseline IgE levels inducing inflammation (Del Prete 

et al., 1988). Polymorphisms in the IL4 gene are known to increase its expression increasing the 

lgE levels thereby implicating its role in autoimmunity mediated vitiligo susceptibility (Imran et 

al., 2012). CTLA4 expressed by Tregs is a negative regulator of T-cell function and foster 

tolerance to self-antigens. Decreased levels of CTLA4 mRNA and deregulated CTLA4 expression 
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due to genetic variations have been found in vitiligo patients (Dwivedi et al., 2011) suggesting 

its involvement in susceptibility to vitiligo.  Also, upregulated CD44 expression in response to 

naive T cell proliferation as induced by autoimmune melanocyte destruction concomitantly 

increases T cell development implicating the complex regulation of self-reactive T cells in vitiligo 

(Byrne et al., 2014). 

Increased mRNA levels of IL1B increases SOD levels leading to increased H2O2 production as 

observed in vitiligo patients. Genetic variability in IL1B resulting in altered IL1B transcript levels 

might be associated with elevated NPY levels in patients with vitiligo whose synthesis is 

governed by IL1B (Laddha et al., 2014). Increased NPY levels lead to epidermal and dermal 

hypoxia which might potentiate melanocyte death in vitiligo (Tu et al., 2001). Alterations in CAT 

have been reported to result in the reduction of the catalase enzyme activity and consequently 

evoke excess H2O2 accumulation in the entire epidermis of vitiligo patients (Casp et al., 2002). 

Although the genetic mechanisms of estrogen in increased pigment cell activity are not largely 

known yet, ESR1 expression on human melanocytes has been demonstrated to have specific 

actions in human pigmentation (Im et al., 2002). Also, genetic variation in ESR1 gene has been 

reported to show its association with vitiligo (Jin et al., 2004). Additionally, GSTP1 is broadly 

expressed in defense against oxidative stress wherein they detoxify a variety of electrophilic 

compounds generated by ROS-induced damaged cells (Nebert and Vasiliou, 2004). Altered 

GSTP1 expression fails to protect cells against chemical toxicity and stress contributing to 

melanocyte death in vitiligo patients (Dušinská et al., 2001; Liu et al., 2009). 

Effector functions of IL2RA and GZMB in the target cell killing by cytotoxic T cells (CTLs) and NK 

cells activation-induced cell death terminate immune responses and mediate melanocyte killing 

in vitiligo (Spritz, 2010). GZMB also have a role to play in cleaving melanocyte proteins that 

constitute vitiligo auto-antigens activating auto-antigens that initiate and propagate 

autoimmunity directed against melanocytes (Darrah and Rosen, 2010). FOXP3, the master 

regulator of Treg cells, have a vital role in maintaining immune balance and its alteration 

triggers autoimmune diseases including vitiligo (Jahan et al., 2015). TNF down-regulates MITF 

affecting melanocyte development and proliferation, and ultimately affecting melanogenesis. 

Also, TNF-α downregulates MSHR binding activity and reduces MC1-R expression, both of which 

are known inducers of melanogenesis (Camara-Lemarroy et al., 2013). TRAIL, a TNF-family 

death receptor, activates caspases and cleaves melanocyte proteins and also promotes 

dendritic cell-mediated melanocyte death eliciting apoptosis of primary human melanocytes 

(Larribere et al., 2004). TNF, thus, acts as the central regulatory effector in the 

immunopathological mechanisms involved in vitiligo. 

Among TLRs, TLR2 is fundamental for immune responses against mycobacterial infections, in 

sensing oxidative stress and cellular necrosis and, also in inducing apoptosis. (Petry and Gaspari, 
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2009). It also has the propensity to recognize a wide array of antigens evincing its instrumental 

role in the evolution of self-reactive diseases (Borrello et al., 2011). Altered expression and 

signaling due to TLR2 polymorphism have been proposed to be the reason for inadequate 

immune responses to viral or pathogenic antigens in vitiligo (Karaca et al., 2013; Traks et al., 

2015). 

The functional enrichment analysis result of the single large cluster consisting of 64 proteins 

demonstrated the vitiligo associated genes to be primarily involved in immune response 

regulation by cytokines and oxidative stress, and apoptotic processes. Oxidative stress in the 

melanocytes stimulates local inflammatory responses whereby it leads to the activation of 

innate immune processes as a result of which melanocyte-specific cytotoxic immune responses 

are evoked in vitiligo patients. Vitiliginous melanocytes show increased surface expression of 

HLA-A, a class I MHC receptor, which enables it to present multiple autoantigens to T cells 

destroying skin melanocytes (Hayashi et al., 2016). Also, increased expression levels of HLA 

class II molecules triggers an increased production of immunostimulatory cytokines that may 

act as an adjuvant during the presentation of autoantigens (Cavalli et al., 2016), tying together 

with HLA class I molecules in the development of autoimmunity in vitiligo patients. Also, 

alteration in the concentration of various pro-inflammatory and anti-inflammatory cytokines 

such as IL-10, IL-2, TNF, and IFNG has been associated with many autoimmune disorders (Singh 

et al., 2012).  

Apart from exhibiting pathways associated with immune responses and autoimmunity, our 

pathway analysis results also consisted of pathways corresponding to infectious diseases, 

particularly viral infections. Several studies have implicated the etiopathogenesis of vitiligo to 

multiple viral infections as epidermal melanocytes are important targets of viruses (Duvic et al., 

1987; Grimes et al., 1996). Also, viral infectious diseases, in most cases, impair the body’s 

systemic immune response. This explains the reason why the pathways associated with 

infectious diseases were also observed to be significant in the results. In the protein-pathway 

network, TNF was found to be involved in 24 out of 30 significant pathways indicating it to be a 

prime regulator of vitiligo immunopathogenesis (Birol et al., 2006). 

There is no definite cure available for vitiligo. The various treatment options available merely 

aim to improve skin appearance by repigmentation or stabilizing depigmentation without the 

assurance of reoccurrence or extension of depigmentation (Njoo et al., 1999). Our drug-target 

network analysis revealed novel potential drug candidates which could be explored for 

improved therapeutics for vitiligo. It is noteworthy that most of the drugs defined for the 

protein targets, even a few hub protein targets, are not indicated to be used for the treatment 

of vitiligo as reported in DrugBank. Monobenzone and Hydroquinone which targets TYR are the 

only drugs reported to be used in vitiligo with the latter being preferably used in 
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hyperpigmentation conditions. This indicates a pressing need to evaluate these drugs and 

perform investigational studies to identify new indications and elucidate the efficiency of these 

drugs for the treatment of vitiligo. This would lead to significant contributions in drug discovery 

complementing the existing drug pipelines, thereby, improving the quality of life in vitiligo 

patients. Additionally, some of the hub proteins are targeted by a single drug which can be 

further examined to contrive better effective drugs to enhance the success rate of treatments. 

Interacting drug partners of a particular drug targeting a particular protein might either directly 

target that protein or enhance the efficacy of the drug. With this concept, we constructed the 

drug-similarity network and found interacting drugs for those proteins which were previously 

shown to be targeted by a single drug in the drug-target network. These interacting drugs might 

function as an alternative to the native drug with enhanced efficacy.  

Polymorphism in TLR2 (rs5743708) was found to be deleterious in our SNP analysis results 

indicating its potentiality to induce vitiligo. TLR2 was also found to be one of the hub protein 

targets for which no drug information is available yet. The R753Q mutation was identified to be 

located within the TIR domain, an intracellular signaling domain, which compromises the 

signaling capacity of TIR domain impairing MyD88-TLR2 assembly. This inactivates NF-κB 

signaling pathway which can invariably influence the regulation of inflammatory processes and 

can even impair melanogenesis suggesting its role in vitiligo pathogenesis (Karaca et al., 2013; 

Traks et al., 2015). Our PPI network of TLR2 shows its interacting proteins suggesting that an 

altered TLR2 might have an impact on its interaction with other proteins essential for many 

biological functions and signaling processes. This indicates the need to analyze the structural 

details of the protein and the effect of mutation on its structure and function, and carry out 

various experimental studies to discover new drugs targeting the mutated TLR2 protein 

associated with vitiligo.  
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CHAPTER 6 

This chapter summarizes the present work and provides avenues and insights for future work. 

CONCLUSION AND FUTURE PERSPECTIVES 

A large-scale analysis and integration of miRNA-disease associations will offer a platform to 

investigate the patterns of the miRNAs and its associations with diseases. Molecular signature 

of miRNAs as reported in vitiligo patients suggests that these are actively involved and have a 

significant role in disease pathogenesis. Also, identifying the susceptible genes and their 

variants which drive the way to the onset of disease is of fundamental to unravel their 

contribution in disease induction. We identified vitiligo associated miRNAs and their targets, 

and susceptible genes, and carried out a comprehensive network analysis of these data which 

revealed the association of significant hub miRNAs and proteins with disease susceptibility. We 

validated their functional role and interpreted the biological activities and pathways in which 

they are involved. We also carried out SNP analysis and identified mutation in TLR2 (R753Q 

position) as deleterious. Our drug-target network and drug-similarity network unveiled novel 

molecular determinants and drug repositioning candidates for vitiligo. Our approach can 

provide an insight of the mechanisms of vitiligo development and progression, thereby, 

implicating its role in therapeutic as well as diagnostic applications. Furthermore, molecular 

dynamic simulation studies can provide a practical insight into the influence of SNPs on the 

TLR2 protein structure and function that ultimately initiates disease mechanisms. Further 

analysis can be carried out in inferring repositioning candidates based on the similarities 

between the prescribed (available) drugs and targets. Also, molecular docking studies can be 

performed to evaluate the efficacy of novel drugs for the identified unknown drug targets of 

vitiligo for improved therapeutic modalities. 
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