
A Dissertation
On

"Performance Analysis of Apriori And FP Growth On

Different MapReduce Frameworks"

Submitted in partial fulfillment of the requirement
for the award of degree of

MASTER OF TECHNOLOGY

Software Engineering
Delhi Technological University, Delhi

SUBMITTED BY

Ravi Ranjan

2K15/SWE/14

Under the Guidance of

Mr. Manoj Sethi
Department of Computer Science & Engineering

Delhi Technological University

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
2017

	

	

DECLARATION

I hereby declare that the work entitled “Performance Analysis of Apriori And FP Growth

on Different MapReduce Frameworks” which is being submitted to Delhi Technological

University, in partial fulfilment of requirements for the award of degree of Master of

Technology (Software Engineering) is a bonafide report of thesis carried out by me. The

material contained in the report has not been submitted to any university or institution for the

award of any degree.

Ravi Ranjan

2K15/SWE/14

CERTIFICATE

This is to certify that the dissertation entitled “Performance Analysis of Apriori And FP

Growth On Different MapReduce Frameworks” has been submitted by Ravi Ranjan (Roll

Number: 2K15/SWE/14), in partial fulfillment of the requirements for the award of Master of

Technology degree in Software Engineering at DELHI TECHNOLOGICAL

UNIVERSITY. This work is carried out by him under my supervision and has not been

submitted earlier for the award of any degree or diploma in any university to the best of my

knowledge.

(Mr. Manoj Sethi)

Project Guide

Department of Computer Science & Engineering

Delhi Technological University

 ACKNOWLEDGEMENT

First of all, I would like to thank the Almighty, who has always guided me to work on the

right path of the life. My greatest thanks are to my parents who bestowed ability and

strength in me to complete this work.

I owe a profound gratitude to my project guide Mr. Manoj Sethi who has been a constant

source of inspiration to me throughout the period of this project. It was his competent

guidance, constant encouragement and critical evaluation that helped me to develop a new

insight into my project. His calm, collected and professionally impeccable style of handling

situations not only steered me through every problem, but also helped me to grow as a

matured person.

I am also thankful to him for trusting my capabilities to develop this project under his

guidance.

I would also like to express my gratitude to the university for providing us with the laboratories,

infrastructure, testing facilities and environment which allowed me to work without any

obstructions.

Ravi Ranjan

2K15/SWE/14

	

	

	

	

ABSTRACT

Association rule mining remains a very popular and effective method to extract meaningful

information from large datasets. It tries to find possible associations between items in large

transaction based datasets. In order to create these associations, frequent patterns have to be

generated. Apriori and FP Growth are the two most popular algorithms for frequent itemset

mining. To enhance the efficiency and scalability of Apriori and FP Growth, a number of

algorithms have been proposed addressing the design of efficient data structures, minimizing

database scan and parallel and distributed processing. MapReduce is the emerging parallel and

distributed technology to process big datasets on Hadoop Cluster. To mine big datasets it is

essential to re-design the data mining algorithm on this new paradigm. However, the existing

parallel versions of Apriori and FP-Growth algorithm implemented with the disk-based

MapReduce model are not efficient enough for iterative computation.

Hence a number of map reduce based platforms are being developed for parallel computing in

recent years. Among them, two platforms, namely, Spark and Flink have attracted lot of

attention because of their inbuilt support to distributed computations. But, not much work has

been done to test the capabilities of these two platforms in the field of parallel and distributed

mining. Therefore, this work helps us to better understand, how the two algorithms perform on

three different platforms. We conducted an in-depth experiment to gain insight into the

effectiveness, efficiency and scalability of the Apriori and Parallel FP Growth algorithm on

Hadoop, Spark and Flink.

Contents

Chapter 1. Introduction 1

1.1 Introduction 1

1.2 Big Data 2

1.3 Big Data Technologies 4

1.4 Applications of Big Data 5

1.5 Challenges of Big Data 6

1.6 Motivation and Scope 7

1.7 Research Objectives 8

1.8 Organization Report 8

1.9 Summary 9

Chapter 2. Literature Survey 10

2.1 Association Rules 10

2.2 Hadoop 11

2.3 HDFS 15

2.4 Hadoop MapReduce 18

2.5 YARN 26

2.6 Spark 27

2.7 Flink 29

2.8 Apriori Algorithm 31

2.9 FP-Growth Algorithm 34

2.10 Related Work 37

2.11 Chapter Summary 41

Chapter 3. System Paradigm 42

3.1 Proposed Framework 42

3.2 Architectural View 44

3.3 Chapter Summary 44

Chapter 4. Implementation 45

4.1 Data Set 45

4.2 Programming Tool 45

4.3 Evaluation Framework 45

4.4 Programming Tools And Software Used 46

Chapter 5. Result & Analysis 47

5.1 Output 47

5.2 Analysis 50

Chapter 6. Conclusion 51

6.1 Research Summary 51

6.2 Limitation 51

6.3 Future Scope 52

References 53

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

List of Figures & Tables

FIgure 1. Big Data Technologies.	 	 	 	 	 	 	 4	

FIgure 2. Top Big Data Challenges	 	 	 	 	 	 	 6

FIgure 3. Hadoop Ecosystem 	 	 	 	 	 	 14

FIgure 4. Hadoop Distributed Filesystem	 	 	 	 	 	 17

FIgure 5. Working of MapReduce	 	 	 	 	 	 	 19

FIgure 6. Reducer in Hadoop	 	 	 	 	 	 	 	 20

FIgure 7. Key Value Pairing in Hadoop MapReduce	 	 	 	 	 22

FIgure 8. Partitioner in Hadoop	 	 	 	 	 	 	 	 23

FIgure 9. Combiner in Hadoop	 	 	 	 	 	 	 	 24

FIgure 10. Working of MapReduce in Hadoop without combiners	 	 	 24

FIgure 11. Working of MapReduce in Hadoop with combiners	 	 	 	 25

FIgure 12. Apache Flink Ecosystem	 	 	 	 	 	 	 30

FIgure 13. Flink Execution Model	 	 	 	 	 	 	 30

FIgure 14. Construction of FP Tree 34

FIgure 15. Activity Diagram 	 	 	 35

FIgure 16. Extraction of frequent items from FP tree 37

FIgure 17. Pictorial view of System paradigm 44

FIgure 18. Food Mart with Minimum support 0.1% 47

FIgure 19. T1014D100K with Minimum Support 0.3% 48

FIgure 20. Online retail with Minimum Support 0.5% 48

FIgure 21. Food Mart with Minimum Support 0.3% 49

FIgure 22. T1014D100K with Minimum Support 0.5% 49

Table 1. Strengths and Weakness of Apriori Algorithm 32

Table 2. Summary of Techniques	 	 	 	 	 	 	 41

	

	

	

CHAPTER 1

INTRODUCTION

This chapter briefly introduces the research work proposed in the thesis. Section 1.1 gives an

overview of the research undertaken. Section 1.2 briefly explains the Big data, followed by its

techniques in section 1.3. The applications and challenges of big data are explored in section

1.4 & 1.5 respectively. Section 1.6 discusses motivation and scope. Section 1.7 enlightens the

research objectives. Section 1.8 presents an outline of this thesis and labeling the remaining

chapters. Finally, Section 1.9 gives the summary of the chapter.

1.1 Introduction

Internet has become an amalgamated, impeccable and a necessary part of our lives. It is

changing swiftly so are we. As more and more people have started using it, Web is also going

through a paramount expedient. In the past few years, web based documents are achieving

popularity as a way that portraits individual experience and sentiments. According to

www.worldwidewebsize.com, the indexed Web contains at least 4.5 billion pages (Monday,

20 March, 2017). With the massive proliferation in the velocity, volume and variety of

information accessible online and the consequent need to develop viable paradigms which

facilitate better techniques to access this information, there has been a strong resurgence of

interest in Big data analysis research in recent years.

With the growth of Web 2.0, which emphasis user-generated content, the way people used to

express their views and opinions has also changed prominently. Ideas, comments, views,

suggestion, feedbacks are shared by the users. Better methods are now used to make decisions.

Earlier, people use to conduct surveys but now online reviews are studied to make a conclusion

from the opinions given by the user. As with the increase of amount of data on the Web, it is

impossible for an individual to study, examine such a large amount of data.

Earlier, an amount of data generated was not that high and we kept archiving the data as there

was just need of historical analysis of data. But today data generation is in petabytes that it is

not possible to archive the data again and again and retrieve it again when needed as data

scientists need to play with data now and then for predictive analysis unlike historical as used

to be done with traditional. 80% of the data getting generated today is unstructured and cannot

be handled by our traditional technologies. According to the statistics the percentage of data

that has been generated from last two years is 90%. This data comes from many industries like

climate information collects by the sensor, different stuff from social media sites, digital

images and videos, different records of the purchase transaction. This data is big data.

1.2 Big Data

As stated on www.gartner.com, Big data is huge-volume, fast-velocity, and different variety

information assets that demand innovative platform for enhanced insights and decision making.

In other words, big data gets generated in multi-terabyte quantities, changes fast and comes in

varieties of forms that is difficult to manage and process using RDBMS or other traditional

technologies. Big Data solutions provide the tools, methodologies, and technologies that are

used to capture, store, search & analyses the data in seconds to find relationships and insights

for innovation and competitive gain that were previously unavailable.

In simple terms, Big Data is an idea that the amount of data that we generate (and more

importantly, collect) is increasing extremely quickly. More importantly, companies are

recognizing that this data can be used to make more accurate predictions, and therefore, make

them more money. Facebook, for example, knows how often you visit many websites (due to

the pervasive Like on Facebook buttons) and wants to use that information to show you ads

you are more likely to click on.

As Gary King stated, “There is a big data revolution”, as now we can use this data to get some

meaningful information and utilize it in so many ways, that can change the way we conceive

things now. Big data is used in multiple domains like

• Netflix Uses Big Data to Improve Customer Experience

• Promotion and campaign analysis by Sears Holding

• Sentiment analysis

• Customer Churn analysis

• Predictive analysis

• Real-time ad matching and serving

To analyze such an unstructured data to get the information we want using computers is not

easy. Like in sentiment analysis field, computers still cannot get the exact emotion of a person

from their tweets or status like a human can get. But, at the same time a human being even for

a large group of humans it is not possible to analyze the whole data available over the web to

understand the patterns, behaviors etc. The information extracted from every second increasing

data helps enhance the business, a shopping website can recommend the products which a

person will likely buy on the basis of his mood, his location, events happening in his life, as all

such information are easily available on the social networking sites, but to analyze them is not

easy. So, big data technologies are the center of the attraction of researchers these days, a lot

of work has been done, but still none of the method is like a ‘silver bullet’ which can solve the

problems faced by big data analytics. Some of the Big data technologies are discussed in next

section.

1.3 Big Data Technologies

With the fast changing world, many techniques have been proposed to handle the big data. The

most famous technologies used for big data analytics are Apache Hadoop, Apache Spark and

Apache Flink. Big data is creating Big Impact on industries today. World’s 50% of the data

has already been moved to Hadoop – The Heart of Big Data. It is predicted that by 2017, more

than 75% of the world’s data will be moved to Hadoop and this technology will be the most

demanding in the market as it is now. Further enhancement of this technology has led to an

evolution of Apache Spark – lightning fast and general-purpose computation engine for large-

scale processing. It can process the data up to 100 times faster than MapReduce. While Apache

Flink is a streaming engine that can also do batches. So, at its core, Flink is more efficient in

terms of low latency.

Fig 1. Big Data Technologies

Apache Hadoop: Hadoop is an open source tool from the ASF – Apache Software Foundation,

which is used to store large amount of data sets. Hadoop is provided for data storage, data

access, data processing and security operations. It is flexible enough to be able to work with

multiple data sources, either aggregating multiple sources of data in order to do large scale

processing, or even reading data from a database in order to run processor-intensive machine

learning jobs. It has several different applications, but one of the top use cases is for large

volumes of constantly changing data, such as location-based data from weather or traffic

sensors, web-based or social media data, or machine-to-machine transactional data.

Apache Spark: It provides faster and more general-purpose data processing engine. It is

basically designed for fast computation. It covers a wide range of workloads Such as batch,

interactive, iterative and streaming. Easy to program and does not require any abstractions.

Programmers can perform streaming, batch processing and machine learning, all in the same

cluster. It has in-built interactive mode. Spark is highly fault-tolerant, no need to restart the

application from scratch in case of any failure.

Apache Flink: Apache Flink is called 4G of Big Data. It is an open source framework that can

handle streaming as well as batch data. Apache Flink is a streaming engine that can also do

batches. Apache Spark is a batch engine that emulates streaming by micro batches. So, at its

core, Flink is more efficient in terms of low latency.

Big	Data	
Technologies

Apache	
Hadoop

Apache	
Spark Apache	Flink

1.4 Applications of Big Data

IT organizations have started considering Big data initiative for managing their data in a better

manner, visualizing this data, gaining insights of this data as and when required and finding

new business opportunities to accelerate their business growth. Every CEO wants to transform

his company, enhance their business models and identify potential revenue sources whether he

being from telecom domain, banking domain, retail or healthcare domain etc. Such business

transformation requires right tools and hiring the right people to ensure right insights are

extracted at right time from the available data. Some of the applications of big data in various

sectors are as follows:

• Big data in manufacturing sector: Big data can be used to identify machinery and

process variations that may be indicators of quality problems.

• Big data for product distribution: Based on data available, its analysis could be done to

ensure proper distribution in proper market.

• Big data in Marketing field: Big data helps in knowing better marketing strategy that

could increase ale.

• Price Management using Big data: To maintain position in market, price management

plays a key role and Big data helps business in knowing market trend for it.

• Merchandising: Big Data plays a major role in sales for retail market also.

• Big data in Sales: It helps in increasing sale for the business. It also helps in optimizing

assignment of sales resources and accounts, product mix and other operations.

Big data has enormous potential to improve the human condition, with emphasis on health and

productivity. Less people will be needed to provide for a healthier, ageing population. Big data

analysis can help by identify productive, or at least non-destructive occupations in the changing

demographic where there won't be enough conventional "employment" to go around.

1.5 Challenges of Big Data

The single greatest challenge facing data analytics in the 21st century is the so-called

“utilization gap.” Every major company has vast stores of information in increasingly complex

databases. However, despite having more data than ever before, most data analytics still fail to

provide actionable insights.

Efforts to bridge the utilization gap extend to BI platforms as well with business intelligence

becoming more user friendly with each iteration, allowing the typical business user to query

data themselves. For example, every popular BI platform provides reasonably intuitive UIs that

allow normal users to find basic visualizations and charts (Tableau, Birst, etc.). However,

visualizations are often not enough. Some other challenges faced by organization are:
• Tools are too expensive to acquire, deploy and maintain.

• Solutions are too complicated for normal business users to use.

• Most vendors have legacy business AND technology approaches that limit the

potential for customers to succeed with Data.

Fig 2. Top Big Data Challenges

Figure 2 shows the challenges of big data faced by multiple organization as per the data

collected by www.gartner.com in 2013 by collecting the data from various industries to

understand the issues which are becoming hurdles in the way of using big data analytics by

most of the companies world-wide.

Big data is a fascinating area that holds a lot of promise, but investment in big data is not like

investing in a financial investment where you put in some money, perhaps pay a financial

specialist to manage it, and wait for it to grow. It is a lot more like investing in a gym

membership where the whole organisation needs to change their lifestyle to reap the benefits.

1.6 Motivation and Scope
Increment of Web 2.0 gives the abundance services which can be helpful for user’s awareness.

Big Data is a way to solve all the unsolved problems related to data management and handling,

an earlier industry was used to live with such problems. With Big data analytics, you can unlock

hidden patterns and know the 360-degree view of customers and better understand their needs.

Web 2.0 has involved quite a large number of people to use these services. As almost every

type of public is concerned, we need to have refined data which may not offend someone

sentiments. So, to detect the patterns in this large amount of data multiple algorithms has been

proposed. Some of the algorithms perform closed item set mining, some weighted itemset

mining. Multiple big data techniques are available each having their own plus points like Spark

can handle the iterative algorithms very well, while Hadoop can’t. Similarly, there are multiple

algorithms available for association rule mining, like Apriori, Eclat, FP-Growth, Relim etc.

But each handle different types of data more precisely than other algorithms. Apriori and FP-

growth are the oldest and most often used algorithms for frequent itemset mining.

There exists a study showing the comparison of Apriori and Fp-growth on Hadoop, and another

study has also shown the comparison of two MapReduce frameworks Hadoop and spark for

Apriori algorithm. No one has still explored the behavior of these two algorithms on all the

three MapReduce frameworks with 3 datasets of different sizes.

This work helps us to better understand, how the two algorithms perform in different

environments. And it also clear that which algorithm is good for large datasets and which is

better for small or medium datasets. How much time does different MapReduce platforms take

to run the same algorithm also determines the effectiveness of the MapReduce framework.

1.7 Research Objectives
The main research objectives of the work done in this thesis are:

Research objective 1 – To study the different techniques that has been used for Parallel Apriori

and FP Growth.

Research objective 2 – To study the MapReduce frameworks that has been used for

implementing Distributed Apriori and FP Growth.

Research objective 3 – Checking the performance of Apriori and FP growth algorithm under

different environment.

The objective of this thesis is to analyze the two of the famous association rule based mining

algorithms on different MapReduce frameworks.

1.8 Organization of Report
This thesis is structured into 5 Chapters followed by references and appendix.

Chapter 1 provides the overview of the research work done, about the big data, research

objectives, scope and motivation of the project. Finally, analyzing the need for solution for

which research is done.

Chapter 2 provides the essential background and context for this thesis and provides a complete

justification for the research undertaken in this thesis.

Chapter 3 gives the details of the methodology employed and outlines the uses of algorithms

and MapReduce platforms.

Chapter 4 describes the implementation. It discusses all the input sets, platform and tool used

to implement and to compare the results.

Chapter 5 describes the experimental results obtained from the given datasets. It presents the

analysis of tests performed.

Chapter 6 presents future scope and conclusions based on the contribution made by this thesis.

1.9 Chapter Summary

This chapter presents the idea used in this thesis. It discusses research problem, objectives,

goals and motivation for the research. Justification for the research problem is outlined,

together with an explanation of the research methodology used. The next chapter describes the

literature survey and relevant background work done till date in context of this thesis.

CHAPTER 2

 LITERATURE REVIEW

This Chapter first discusses the technologies and algorithms used in detail with their

applications and challenges. In last section, the overview of the work done on this field is

discussed.

2.1 Association Rules

The building blocks of a market basket analysis are the items that may appear in any given

transaction. Groups of one or more items are surrounded by brackets to indicate that they form

a set, or more specifically, an itemset that appears in the data with some regularity. Transactions

are specified in terms of itemset, such as the following transaction that might be found in a

typical grocery store:

The result of a market basket analysis is a collection of association rules that specify patterns

found in the relationships among items he itemsets. Association rules are always composed

from subsets of itemsets and are denoted by relating one itemset on the left-hand side (LHS)

of the rule to another itemset on the right-hand side (RHS) of the rule. The LHS is the condition

that needs to be met in order to trigger the rule, and the RHS is the expected result of meeting

that condition. A rule identified from the example transaction might be expressed in the form:

In plain language, this association rule states that if peanut butter and jelly are purchased

together, then bread is also likely to be purchased. In other words, "peanut butter and jelly

imply bread." Developed in the context of retail transaction databases, association rules are not

used for prediction, but rather for unsupervised knowledge discovery in large databases.

Because association rule learners are unsupervised, there is no need for the algorithm to be

trained; data does not need to be labelled ahead of time. The program is simply unleashed on a

dataset in the hope that interesting associations are found. The downside, of course, is that there

isn't an easy way to objectively measure the performance of a rule learner, aside from

evaluating them for qualitative usefulness—typically, an eyeball test of some sort.

Although association rules are most often used for market basket analysis, they are helpful for

finding patterns in many different types of data. Other potential applications include:

1. Searching for interesting and frequently occurring patterns of DNA and protein

sequences in cancer data

2. Finding patterns of purchases or medical claims that occur in combination with

fraudulent credit card or insurance use

3. Identifying combinations of behavior that precede customers dropping their cellular

phone service or upgrading their cable television package

Association rule analysis is used to search for interesting connections among a very large

number of elements. Human beings are capable of such insight quite intuitively, but it often

takes expert-level knowledge or a great deal of experience to do what a rule learning algorithm

can do in minutes or even seconds. Additionally, some datasets are simply too large and

complex for a human being to find the needle in the haystack.

2.2 Hadoop

Hadoop is an open source tool from the ASF – Apache Software Foundation. Open source

project means it is freely available and even its source code can be changed as per the

requirements. If certain functionality does not fulfil our requirement, we can change it

according to our need. Most of Hadoop code is written by Yahoo, IBM, Facebook, Cloudera.

It provides an efficient framework for running jobs on multiple nodes of clusters. Cluster

means a group of systems connected via LAN. Hadoop provides parallel processing of data as

it works on multiple machines simultaneously.

It is inspired by Google, which has written a paper about the technologies it is using like Map-

Reduce programming model as well as its file system (GFS). Hadoop was originally written

for the Nutch search engine project when Doug cutting and his team were working on it but

very soon, it became a top-level project due to its huge popularity.

Hadoop is an open source framework which is written in Java. But this does not mean you can

code only in Java. You can code in C, C++, Perl, python, ruby etc. You can code in any

language but it is recommended to code in java as you will have lower level control of the code.

It efficiently processes large volumes of data on a cluster of commodity hardware. Hadoop is

developed for processing of huge volume of data. Commodity hardware is the low-end

hardware, they are cheap devices which are very economic. So, Hadoop is very economic.

Hadoop can be setup on a single machine (pseudo-distributed mode), but the real power of

Hadoop comes with a cluster of machines, it can be scaled to thousand nodes on the fly i.e.,

without any downtime. We need not make any system down to add more systems in the cluster.

To learn installation of Hadoop on a multi-node cluster, follow this installation guide.

Hadoop consists of three key parts – Hadoop Distributed File System (HDFS), Map-Reduce

and YARN. HDFS is the storage layer, Map Reduce is the processing layer and YARN is the

resource management layer.

Why Hadoop

Hadoop is not only a storage system but is a platform for data storage as well as processing. It

is scalable (more nodes can be added on the fly), Fault tolerant (Even if nodes go down, data

can be processed by another node) and Open source (can modify the source code if required).

Following characteristics of Hadoop make is a unique platform:

1. Flexibility to store and mine any type of data whether it is structured, semi-structured

or unstructured. It is not bounded by a single schema.

2. Excels at processing data of complex nature, its scale-out architecture divides

workloads across multiple nodes. Another added advantage is that its flexible file-

system eliminates ETL bottlenecks.

3. Scales economically, as discussed it can be deployed on commodity hardware. Apart

from this its open-source nature guards against vendor lock.

Hadoop works in master – slave fashion. There is a master node and there are n numbers of

slave nodes where n can be 1000s. Master manages, maintains and monitors the slaves while

slaves are the actual worker nodes. Master should be deployed on good configuration hardware

and not just any commodity hardware as it is the centerpiece of Hadoop cluster.

Master just stores the meta-data (data about data) while slaves are the nodes which store the

data. Data is stored distributed in the cluster. The client connects with master node to perform

any task.

How Hadoop Works

Step1: Input data is broken into blocks of size 128 Mb (by default) and then blocks are

moved to different nodes.

Step 2: Once all the blocks of the file are stored on data nodes, a user can process the

data.

Step 3: master, then schedules the program (submitted by the user) on individual nodes.

Step 4: Once all the nodes process the data, output is written back to HDFS

Hadoop Flavor’s

Below are the various flavors of Hadoop.

• Apache – Vanilla flavour, the actual code is residing in apache repositories.

• Hortonworks – Popular distribution in the industry.

• Cloudera – It is the most popular in the industry.

• MapR – It has rewritten HDFS and its HDFS is faster as compared to others.

• IBM – Proprietary distribution is known as Big Insights.

All the databases have provided native connectivity with Hadoop for fast data transfer. For

example, to transfer data from Oracle to Hadoop, you need a connector. Figure 3 shows the

ecosystem of Hadoop.

Fig 3. Hadoop Ecosystem

Hadoop Features and Characteristics

Apache Hadoop is the most popular and powerful big data tool, Hadoop provides world’s most

reliable storage layer – HDFS, a batch Processing engine – MapReduce and a Resource

Management Layer – YARN.

1. Open-source – Apache Hadoop is an open source project. It means its code can be

modified according to business requirements.

2. Distributed Processing – As data is stored in a distributed manner in HDFS across the

cluster, data is processed in parallel on a cluster of nodes.

3. Fault Tolerance – By default 3 replicas of each block is stored across the cluster in

Hadoop and it can be changed also as per the requirement. So, if any node goes down,

data on that node can be recovered from other nodes easily. Failures of nodes or tasks

are recovered automatically by the framework. This is how Hadoop is fault tolerant.

4. Reliability – Due to replication of data in the cluster, data is reliably stored on the cluster

of machine despite machine failures. If your machine goes down, then also your data

will be stored reliably.

5. High Availability – Data is highly available and accessible despite hardware failure due

to multiple copies of data. If a machine or few hardware crashes, then data will be

accessed from another path.

6. Scalability – Hadoop is highly scalable in the way new hardware can be easily added

to the nodes. It also provides horizontal scalability which means new nodes can be

added on the fly without any downtime.

7. Economic – Apache Hadoop is not very expensive as it runs on a cluster of commodity

hardware. We do not need any specialized machine for it. Hadoop provides huge cost

saving also as it is very easy to add more nodes on the fly here. So, if requirement

increases, you can increase nodes as well without any downtime and without requiring

much of pre-planning.

8. Easy to use – No need of client to deal with distributed computing, the framework takes

care of all the things. So, it is easy to use.

9. Data Locality – Hadoop works on data locality principle which states that move

computation to data instead of data to computation. When a client submits the

MapReduce algorithm, this algorithm is moved to data in the cluster rather than

bringing data to the location where the algorithm is submitted and then processing it.

Limitation of Hadoop

• Issues with small files

• Processing speed.

• High latency

• Supports only batch processing

• Vulnerable by nature

2.3 HDFS

Hadoop Distributed Filesystem (HDFS) is the world’s most reliable storage system. HDFS is

a Filesystem of Hadoop designed for storing very large files running on a cluster of commodity

hardware. HDFS is designed on principle of storage of less number of large files rather than

the huge number of small files. It provides fault tolerant storage layer for Hadoop and its other

components. Replication of data helps us to attain this feature. It stores data reliably even in

the case of hardware failure. It provides high throughput access to application data by providing

the data access in parallel.

Hadoop works in master-slave fashion, HDFS also has 2 types of nodes that work in the same

manner. There is name node(s) and data nodes in the cluster.

1. Master node (Also called Name node) – As the name suggests, this node manages all

the slave nodes and assign work to slaves. It should be deployed on reliable hardware

as it is the centerpiece of HDFS.

2. Slave node (Also called data node) – Data nodes are the slaves which are deployed on

each machine and provide the actual storage. They are the actual worker nodes. These

are responsible for serving read and write requests from the clients. They can be

deployed on commodity hardware. If any slave node goes down, name node

automatically replicates the blocks which were present at that data node to other nodes

in the cluster.

Data storage in HDFS

Whenever any file has to be written in HDFS, it is broken into small pieces of data known as

blocks. HDFS has a default block size of 128 MB which can be increased as per the

requirements. These blocks are stored in the cluster in distributed manner on different nodes.

This provides a mechanism for MapReduce to process the data in parallel in the cluster.

Multiple copies of each block are stored across the cluster on different nodes. This is a

replication of data. By default, HDFS has a replication factor of 3. It provides fault tolerance,

reliability, and high availability.

A Large file is split into n number of small blocks. These blocks are stored at different nodes

in the cluster in a distributed manner. Each block is replicated and stored across different nodes

in the cluster.

Rack Awareness in Hadoop HDFS

Hadoop runs on a cluster of computers which are commonly spread across many racks. Name

Node places replicas of a block on multiple racks for improved fault tolerance. Name Node

tries to place at least one replica of a block in each rack, so that if a complete rack goes down

then also system will be highly available Optimizing replica placement distinguishes HDFS

from most other distributed file systems. The purpose of a rack-aware replica placement policy

is to improve data reliability, availability, and network bandwidth utilization.

Fig 4. Hadoop Distributed Filesystem

There is a single name node which stores metadata and there are multiple data nodes which do

actual storage work. Nodes are arranged in racks and Replicas of data blocks are stored on

different racks in the cluster to provide fault tolerance. To read or write a file in HDFS, the

client needs to interact with Name node. HDFS applications need a write-once-read-many

access model for files. A file once created and written cannot be edited. There are several data

nodes in the cluster which store HDFS data in the local disk. Data node sends a heartbeat

message to name node periodically to indicate that it is alive. Also, it replicates data to other

data node as per the replication factor.

Features of HDFS

• Distributed Storage – Data is stored in distributed manner

• Blocks – Data is split into blocks

• Replication – Blocks are replicated at different nodes

• High Availability – Data is highly available due to replication

• Data Reliability – Data is stored reliably in HDFS

• Fault tolerant – Data replication provides fault tolerance feature

• Scalability – Nodes in HDFS cluster can be increased on the fly

• High throughput access to application – Parallel processing provides high throughput

access to application

2.4 Hadoop MapReduce

Map-Reduce is the data processing layer of Hadoop. Map-Reduce is a product system for

effortlessly composing applications that process the vast amount of structured and unstructured

data stored in the HDFS. It processes the huge amount of data in parallel by dividing the job

(submitted job) into a set of independent tasks. By this parallel processing, speed and reliability

of cluster is improved. We just need to put the custom code (business logic) in the way map

reduce works and rest things will be taken care by the engine.

MapReduce programs are composed in a specific style influenced by useful programming

builds, specifically figures of speech for processing data. Here in map reduce we get input as a

list and it changes over it into yield which is again a list. It is the heart of Hadoop. Hadoop is

so much intense and productive because of map reduce function as parallel handling of data is

carried out.

Hadoop Map-Reduce is exceedingly versatile and can be utilized across numerous PCs.

Numerous little machines can be utilized to process jobs that ordinarily couldn't be processed

by a huge machine. Conceptually, Map-Reduce programs transform lists of input data elements

into lists of output data elements. A Map-Reduce program will do this twice, using two

different list processing idioms

1. Map

2. Reduce

Basic Terminologies used in Map Reduce are

Job – A “full program” – an execution of a Mapper and Reducer across a data set. It is an

execution of 2 processing layers i.e. mapper and reducer. A Map-Reduce job is a work that the

client desires to be performed. It comprises of the input data, the Map-Reduce Program, and

configuration info. So, client needs to submit input data, he needs to write Map Reduce

program and set the configuration info.

Task – An execution of a Mapper or a Reducer on a piece of data. It is additionally called Task-

In-Progress (TIP). It implies processing of data is in progress either on mapper or reducer.

Task Attempt - A specific example of an endeavor to execute a task on a node. There is a

possibility that anytime any machine can go down. For example, while processing data if any

node goes down, framework reschedules the task to some other node. This rescheduling of the

task cannot be infinite. There is an upper limit for that as well. The default value of task attempt

is 4. If a task (Mapper or reducer) fails 4 times, then the job is considered as a failed job. For

high priority job or huge job, the value of this task attempt can be increased as well.

Working of MapReduce

Map-Reduce divides the work into small parts, each of which can be done in parallel on the

cluster of servers. A problem is divided into a large number of smaller problems each of which

is processed independently to give individual outputs. These individual outputs are further

processed to give final output. Figure 5 shows the working outline of MapReduce.

Fig 5. Working of MapReduce

Mapper:

Mapper task processes each input record and it generates a new <key, value> pairs. The <key,

value> pairs can be completely different from the input pair. In mapper task, the output is the

full collection of all these <key, value> pairs. Before writing the output for each mapper task,

partitioning of output take place on the basis of the key and then sorting is done. This

partitioning specifies that all the values for each key are grouped together.

Map-Reduce frame generates one map task for each InputSplit generated by the InputFormat

for the job. Mapper only understands <key, value> pairs of data, so before passing data to the

mapper, data should be first converted into <key, value> pairs.

Reducer

The output of the mapper is processed by the Reducer. After processing the data, it produces a

new set of output, which will be stored in the HDFS.

Reducer takes a set of an intermediate key-value pair produced by the mapper as the input and

runs a Reducer function on each of them. This data (key, value) can be aggregated, filtered,

and combined in a number of ways, and it requires a wide range of processing. Reducer first

processes the intermediate values for particular key generated by the map function and then

generates the output (zero or more key-value pair). One-one mapping takes place between keys

and reducers. Reducers run in parallel since they are independent of one another. The user

decides the number of reducers. By default, number of reducers is 1.

Fig 6. Reducer in Hadoop

Phases of Reducer:

1. Shuffle Phase: In this phase, the sorted output from the mapper is the input to the

Reducer. In this phase, with the help of HTTP, the framework fetches the relevant

partition of the output of all the mappers.

2. Sort Phase: In this phase, the input from different mappers is again sorted based on the

similar keys in different Mappers. The shuffle and sort phases occur concurrently.

3. Reduce Phase: In this phase, after shuffling and, sorting, reduce task aggregates the key

value pairs. By OutputCollector.collect(), the output of the reduce task is written to the

File-system. Reducer output is not sorted.

Key Value Pair Generation:

InputSplit – It is the logical representation of data. It describes a unit of work that contains a

single map task in a Map-Reduce program.

Record Reader- It communicates with the InputSplit and it converts the data into key value

pairs suitable for reading by the Mapper. By default, it uses TextInputFormat for converting

data into key value pair. RecordReader communicates with the InputSplit until the file reading

is not completed.

In Map-Reduce, map function processes a certain key-value pair and emits a certain number of

key-value pairs and the Reduce function processes values grouped by the same key and emits

another set of key-value pairs as output. The output types of the Map should match the input

types of the Reduce as shown below:

Map: (K1, V1) -> list (K2, V2)

Reduce: {(K2, list (V2}) -> list (K3, V3)

Generation of key-value pair depends on the data set and the required output. In general, the

key-value pair is specified in 4 places: Map input, Map output, reduce input and Reduce output.

Fig 7. Key Value Pairing in Hadoop MapReduce

1. Map Input: Map-input by default will take the line offset as the key and the content of

the line will be the value as Text. By using custom input format, we can modify them.

2. Map Output: Map basic responsibility is to filter the data and provide the environment

for grouping of data based on the key.

Key – It will be the field/ text/ object on which the data has to be grouped and

aggregated of the reducer side.

Value – It will be the field/ text/ object which is to be handled by each individual

reduce method.

3. Reduce Input: The output of Map is the input for reduce, so it is same as Map-Output.

4. Reduce Output: It depends on the required output.

Partitioner

Partitioning of the keys of the intermediate map output is controlled by the Partitioner. By hash

function, key (or a subset of the key) is used to derive the partition. According to the key value

each mapper output is partitioned and records having the same key value go into the same

partition (within each mapper), and then each partition is sent to a reducer. Partition class

determines which partition a given (key, value) pair will go. Partition phase takes place after

map phase and before reduce phase.

Fig 8. Partitioner in Hadoop

Map-Reduce job takes an input data set and produces the list of key value pair which is the

result of map phase in which input data is split and each task processes the split and each map,

output the list of key value pairs. Then, the output from the map phase is sent to reduce task

which processes the user-defined reduce function on map outputs. But before reduce phase,

partitioning of the map output take place on the basis of the key and sorted.

This partitioning specifies that all the values for each key are grouped together and make sure

that all the values of a single key go to the same reducer, thus allows even distribution of the

map output over the reducer. Partitioner in Hadoop Map-Reduce redirects the mapper output

to the reducer by determining which reducer is responsible for the particular key.

Combiner

On a large dataset when we run Map-Reduce job, so large chunks of intermediate data are

generated by the Mapper and this intermediate data is passed on the Reducer for further

processing, which leads to enormous network congestion. Map-Reduce framework provides a

function known as Combiner that plays a key role in reducing network congestion.

The combiner in Map-Reduce is also known as ‘Mini-reducer’. The primary job of Combiner

is to process the output data from the Mapper, before passing it to Reducer. It runs after the

mapper and before the Reducer and its usage is optional

Fig 9. Combiner in Hadoop.

The working of combiner in Hadoop is shown in figure 10 & 11. In the Figure 10, no combiner

is used. Input is split into two mappers and 9 keys are generated from the mappers. Now we

have (9 key/value) intermediate data, further mapper will send directly this data to reducer and

while sending data to reducer, it consumes some network bandwidth (bandwidth means time

taken to transfer data between 2 machines). It will take more time to transfer data to reducer if

the size of data is big.

Fig 10. Working of MapReduce in Hadoop with combiners

Now in between mapper and reducer if we use a combiner, then combiner shuffles intermediate

data (9 key/value) before sending it to reducer, and generates 4 key/value pair as an output.

Fig 11. Working of MapReduce in Hadoop with combiners

Reducer now needs to process only 4 key/value pair data which is generated from 2 combiners.

Thus, reducer gets executed only 4 times to produce final output, which increases the overall

performance.

Shuffle & Sort

Shuffle phase in Hadoop transfers the map output from Mapper to a Reducer in Map-Reduce.

Sort phase in Map-Reduce covers the merging and sorting of map outputs. Data from the

mapper are grouped by the key, split among reducers and sorted by the key. Every reducer

obtains all values associated with the same key. Shuffle and sort phase in Hadoop occur

simultaneously and are done by the Map-Reduce framework.

The process of transferring data from the mappers to reducers is known as shuffling i.e. the

process by which the system performs the sort and transfers the map output to the reducer as

input. So, shuffle phase is necessary for the reducers, otherwise, they would not have any input

(or input from every mapper). As shuffling can start even before the map phase has finished so

this saves some time and completes the tasks in lesser time.

The keys generated by the mapper are automatically sorted by Map-Reduce Framework, i.e.

Before starting of reducer, all intermediate key-value pairs in Map-Reduce that are generated

by mapper get sorted by key and not by value. Values passed to each reducer are not sorted;

they can be in any order. Learn Hadoop Map-Reduce job optimization and performance tuning

techniques.

Sorting in Hadoop helps reducer to easily distinguish when a new reduce task should start, thus

saves time for the reducer. Reducer starts a new reduce task when the next key in the sorted

input data is different than the previous. Each reduce task takes key – value pairs as input and

generates key-value pair as output.

Note that shuffling and sorting in Hadoop Map-Reduce are not performed at all if you specify

zero reducers (setNumReduceTasks(0)). Then, the Map-Reduce job stops at the map phase,

and the map phase does not include any kind of sorting (so even the map phase is faster).

2.5 YARN

YARN is Yet Another Resource Negotiator, the cutting-edge computation technology and

cluster administration innovation. YARN gives a stage to build/run numerous distributed

applications in Hadoop. YARN was released in the Hadoop 2.0 version. In 2012, denoting a

noteworthy change in Hadoop design. YARN delegates and parts up the obligation into

different daemons and accomplishes better execution and adaptation to non-critical failure.

Because of YARN, Hadoop, which could work only as a batch process, can now be designed

to process interactive and real-time processing systems. This is a huge advantage as many

systems, machines, sensors, and other sources generate huge data continuously streaming and

YARN can process this data. YARN architecture is extremely scalable, fault tolerant, and

processes data faster as compared to MapReduce 1.x. YARN focuses on high availability and

utilization of resources in the cluster. YARN architecture has the following three components:

Resource Manager

In YARN, Resource Manager is the master process manager responsible for resource

management among the applications in the system. Resource Manager has a scheduler, which

only allocates the resources to the applications and resource availability which Resource

Manager gets from containers that provide information such as memory, disk, CPU, network,

and so on.

Node Manager

In YARN, Node Manager is present in all the nodes, which is responsible for containers,

authentication, monitoring resource usage, and reports the information to Resource Manager.

Similar to Task Tracker, Node Manager sends heartbeats to Resource Manager.

Application Master

Application Master is present for each application, responsible for managing each and every

instance of applications that run within YARN. Application Master coordinates with Resource

Manager for the negotiation of the resources and coordinates with the Node Manager to

monitor the execution and resource consumption of containers, such as resource allocations of

CPU, memory, and so on.

2.6 Spark

Apache Spark is a general-purpose & lightning fast cluster computing system. It provides high-

level API. For example, Java, Scala, Python and R. Apache Spark is a tool for Running Spark

Applications. Spark is 100 times faster than Bigdata Hadoop and 10 times faster than accessing

data from disk. Spark is written in Scala but provides rich APIs in Scala, Java, Python and R.

It can be integrated with Hadoop and can process existing Hadoop HDFS data. Apache Spark

was introduced in 2009 in the UC Berkeley R&D Lab, later it becomes AMP Lab. It was open

sourced in 2010 under BSD license. In 2013 spark was donated to Apache Software Foundation

where it became top-level Apache project in 2014.

The reason why spark came into picture while Hadoop is performing well is because, in the

industry, there is a need for general purpose cluster computing tool as:

1. Hadoop MapReduce can only perform batch processing.

2. Apache Storm / S4 can only perform stream processing.

3. Apache Impala / Apache Tez can only perform interactive processing

4. Neo4j / Apache Giraph can only perform to graph processing

Hence in the industry, there is a big demand for a powerful engine that can process the data in

real-time (streaming) as well as in batch mode. There is a need for an engine that can respond

in sub-second and perform in-memory processing. Apache Spark is a powerful open source

engine that provides real-time stream processing, interactive processing, graph processing, in-

memory processing as well as batch processing with very fast speed, ease of use and standard

interface.

Features of Spark

Spark has numerous features and capabilities worth mentioning, as follows:

1. Runs 100 times faster than MapReduce when running in-memory and 10 times faster

when running on disk.

2. Can process iterative and interactive analytics.

3. Many functions and operators available for data analysis.

4. DAG framework to design functions easily.

5. In-memory based intermediate storage.

6. Easy to use and maintain.

7. Written in Scala and runs in JVM environment; applications using Spark can be written

in Scala, Java, Python, R, Clojure.

8. Runs in environments such as Hadoop and Mesos, or standalone, or in cloud.

Limitations of Spark

1. Problem with small file

2. No File management system

3. Expensive

4. Manual optimization

5. Iterative processing

6. Latency

7. Window Criteria

8. Less number of algorithms

9. Does not support real-time processing.

10. Back pressure handling.

2.7 Flink

Apache Flink is an open source platform which is a streaming data flow engine that provides

communication, fault-tolerance, and data-distribution for distributed computations over data

streams. Flink is a top-level project of Apache. Flink is a scalable data analytics framework

that is fully compatible to Hadoop. Flink can execute both stream processing and batch

processing easily.

The development of Flink is started in 2009 at a technical university in Berlin under the

stratosphere. It was incubated in Apache in April 2014 and became a top-level project in

December 2014. Flink is a German word meaning swift/Agile. The logo of Flink is a squirrel,

in harmony with Hadoop ecosystem.

The key vision for Apache Flink is to overcome and reduces the complexity that has been faced

by other distributed data-driven engines. It is achieved by integrating query optimization,

concepts from database systems and efficient parallel in-memory and out-of-core algorithms,

with the MapReduce framework. As Apache Flink is mainly based on the streaming model,

Apache Flink iterates data by using streaming architecture. The concept of an iterative

algorithm is tightly bounded into Flink query optimizer. Apache Flink’s pipelined architecture

allows processing the streaming data faster with lower latency than micro-batch architectures

(Spark). An apache Flink ecosystem is shown in figure 12 and working of Flink is shown in

figure 13.

Features of Flink

1. High performance

2. Low latency

3. Lightning fast speed

4. Fault Tolerance

5. Stream processing

6. Scalable

Fig 12. Apache Flink Ecosystem

Fig 13. Flink Execution Model

2.8 Apriori Algorithm

Just as it is challenging for humans, transactional data makes association rule mining a

challenging task for machines as well. Transactional datasets are typically extremely large,

both in terms of the number of transactions as well as the number of items or features that are

monitored. The problem is that the number of potential itemsets grows exponentially with the

number of features. Given k items that can appear or not appear in a set, there are 2^k possible

itemsets that could be potential rules. A retailer that sells only 100 different items could have

on the order of 2^100 = 1.27e+30 itemsets that an algorithm must evaluate—a seemingly

impossible task.

Rather than evaluating each of these itemsets one by one, a smarter rule learning algorithm

takes advantage of the fact that, in reality, many of the potential combinations of items are

rarely, if ever, found in practice. For instance, even if a store sells both automotive items and

women's cosmetics, a set of {motor oil, lipstick} is likely to be extraordinarily uncommon. By

ignoring these rare (and, perhaps, less important) combinations, it is possible to limit the scope

of the search for rules to a more manageable size.

Much work has been done to identify heuristic algorithms for reducing the number of itemsets

to search. Perhaps the most-widely used approach for efficiently searching large databases for

rules is known as Apriori. Introduced in 1994 by Rakesh Agrawal and Ramakrishnan Srikant,

the Apriori algorithm has since become somewhat synonymous with association rule learning.

The name is derived from the fact that the algorithm utilizes a simple prior (that is, a priori)

belief about the properties of frequent itemsets.

Table 1. Strengths and Weakness of Apriori Algorithm

The Apriori algorithm employs a simple a priori belief to reduce the association rule search

space: all subsets of a frequent itemset must also be frequent. This heuristic is known as the

Apriori property. Using this astute observation, it is possible to dramatically limit the number

of rules to be searched. For example, the set {motor oil, lipstick} can only be frequent if both

{motor oil} and {lipstick} occur frequently as well. Consequently, if either motor oil or lipstick

is infrequent, any set containing these items can be excluded from the search.

Now let's consider a simple transaction database. The following table shows five completed

transactions in an imaginary hospital's gift shop:

By looking at the sets of purchases, one can infer that there are a couple of typical buying

patterns. A person visiting a sick friend or family member tends to buy a get-well card and

flowers, while visitors to new mothers tend to buy plush toy bears and balloons. Such patterns

are notable because they appear frequently enough to catch our interest; we simply apply a bit

of logic and subject matter experience to explain the rule.

In a similar fashion, the Apriori algorithm uses statistical measures of an itemsets

"interestingness" to locate association rules in much larger transaction databases. In the

sections that follow, we will discover how Apriori computes such measures of interest and how

they are combined with the Apriori property to reduce the number of rules to be learned.

Measuring Support & Confidence

Whether or not an association rule is deemed interesting is determined by two statistical

measures: support and confidence measures. By providing minimum thresholds for each of

these metrics and applying the Apriori principle, it is easy to drastically limit the number of

rules reported, perhaps even to the point where only the obvious or common-sense rules are

identified.

The support of an itemset or rule measures how frequently it occurs in the data. For instance,

the itemset {get well card, flowers}, has support of 3 / 5 = 0.6 in the hospital gift shop data.

Similarly, the support for {get well card} → {flowers} is also 0.6. The support can be

calculated for any itemset or even a single item; for instance, the support for {candy bar} is 2

/ 5 = 0.4, since candy bars appear in 40 percent of purchases. A function defining support for

the itemset X can be defined as follows:

Here, N is the number of transactions in the database and count(X) is the number of transactions

containing itemset X.

A rule's confidence is a measurement of its predictive power or accuracy. It is defined as the

support of the itemset containing both X and Y divided by the support of the itemset containing

only X:

Essentially, the confidence tells us the proportion of transactions where the presence of item or

itemset X results in the presence of item or itemset Y. Keep in mind that the confidence that X

leads to Y is not the same as the confidence that Y leads to X. For example, the confidence of

{flowers} → {get well card} is 0.6 / 0.8 = 0.75. In comparison, the confidence of {get well

card} → {flowers} is 0.6 / 0.6 = 1.0. This means that a purchase involving flowers is

accompanied by a purchase of a get-well card 75 percent of the time, while a purchase of a get-

well card is associated with flowers 100 percent of the time. This information could be quite

useful to the gift shop management.

2.9 FP-Growth Algorithm

FP-tree based frequent itemset mining technique, called FP-Growth, created by Han et al

accomplishes high proficiency, in comparison to Apriori-like approach. The FP-Growth

technique embraces the divide-and-conquer system, utilizes just two full I/O scans of the

database, and keeps away from iterative candidate generation. Frequent pattern mining consists

of two steps:

1. Building a compact data structure, FP Tree (frequent pattern tree), which stores

more data in less space.

2. Second is building of a FP-tree based pattern growth (FP-Growth) strategy to reveal

every frequent pattern recursively.

Fig 14. Construction of FP Tree

Constructing of FP-tree involves two scans on transaction database. The primary scan aggregates the

support of every item and afterward chooses items that fulfil minimum support. This strategy produces

frequent 1-itemsets and after that stores them in frequency descending order. The second scan builds

FP-tree.

The FP-Tree is a compressed representation of the input. While reading the data source each transaction

t is mapped to a path in the FP-Tree. As different transaction can have several items in common, their

path may overlap. With this it is possible to compress the structure.

First a transaction t is read from the database. The algorithm checks whether the prefix of t maps to a

path in the FP-Tree. If this is the case the support count of the corresponding nodes in the tree are

incremented. If there is no overlapped path, new nodes are created with a support count of 1. Figure 15

shows the corresponding activity diagram using an UML (Unified Modelling Language) activity

diagram.

Fig 15. Activity Diagram

Additional a FP-Tree uses pointers connecting between nodes that have the same items creating

a singly linked list. The corresponding FP-Tree is used to extract frequent item sets directly

from this structure. Each node in the tree contains the label of an item along with a counter that

shows the number of transactions mapped onto the given path.

In the best-case scenario, there is only a single node, because all transactions have the same set

of items. A worst-case scenario would be a data source where every transaction has a unique

set of items. Usually the FP-tree is smaller than the uncompressed one, because many

transactions share items.

As already mentioned the algorithm has to scan the data source twice.

• Pass 1: The data set is scanned to determine the support of each item. The infrequent

items are discarded and not used in the FP-Tree. All frequent items are ordered based

on their support.

• Pass 2: The algorithm does the second pass over the data to construct the FP-tree.

The following example shows how the algorithm works

According to Figure 14 the first transaction is {a,b}. Because the tree is empty, two nodes a

and b with counter 1 are created and the path null→a→b is created.

After {b, c, d} was read, three new nodes b, c and d have to be created. The value for count is

1 and a new path null→b→c→d is created. Because the value b was already in transaction

one, there is a new pointer between the b's (dashed lines).

The transaction {a, c, d, e} overlaps with transaction one, because of the a in the first place.

The frequency count for a will be incremented by 1. Additional pointers between the c's and

d's are added.

After each transaction was scanned, a full FP-Tree is created. Now the FP-Growth algorithm

uses the tree to extract frequent item sets.

Extract frequent item sets

A bottom-up strategy starts with the leaves and moves up to the root using a divide and conquer

strategy. Because every transaction is mapped on a path in the FP-Tree, it is possible to mine

frequent item sets ending in a particular item, for example e or d. So according to Figure 16,

the algorithm first searches for frequent item sets ending with e and then with d, c, b and a until

the root is reached. Using the pointers, each the paths can be accessed very efficient by

following the list. Furthermore, each path of the tree can be processed recursively to extract

the frequent item sets, so the problem can be divided into smaller subproblems. All solutions

are merged at the end. This strategy allows to execute the algorithm parallel on multiple

machines.

Fig 16. Extraction of frequent items from FP tree

The FP-Growth algorithm finds all item sets ending with a specified suffix using the divide

and conquer strategy. Assume the algorithm analyses item sets ending with e. To do so, first

the item set e has to be frequent. This can be done using the corresponding FP-Tree ending in

e. If it is frequent, the algorithm has to solve the subproblem of finding frequent item sets

ending in de, ce, be and ae. These subproblems are solved using the conditional FP-Tree. The

algorithm for generating FP tree and extracting the frequent itemset are as follows:

2.10 Related Work

She Xiangyang [6] presents an Apriori enhanced calculation of parallel association rules based

on MapReduce. The strategy accomplishes its parallelization through the MapReduce

structure, streamlines unique database to recreate the transaction record database and produces

the frequent itemsets, and requests in rising the frequent item sets as per the support degree, at

that point mines frequent item sets in the cluster.

Dachuan [7] Huang proposes new upgrades to the MapReduce usage of FIM calculation by

presenting a cache layer and a particular online analyzer. They assessed the adequacy and

productivity of Smart Cache by means of broad trials on four open datasets. Smart Cache can

lessen by and large 45.4%, and up to 97.0% of the aggregate execution time compared with the

state-of-the-art solution.

Feng Gui [8] proposed DPBM, an appropriated framework construct pruning calculation

situated in light of Spark, which manage FIM (frequent Itemsets mining). DPBM incredibly

decrease the measure of candidate itemset by presenting an innovative pruning strategy for

matrix-based frequent itemset mining algorithm, an enhanced Apriori calculation which just

needs to check the input data once. What's more, every PC node lessens enormously the

memory utilization by implementing DPBM under a most recent distributed-environment

Spark, which is an exceptionally quick distributed computing. The exploratory outcomes

demonstrated that DPBM have preferable execution time over MapReduce-based calculations

on frequent itemset mining as far as speed and scalability is concerned.

Jian Guo [9] presents CMR-Apriori calculation which depends on the conventional Apriori

calculation that consolidates Map/Reduce parallel execution, with Map/Reduce programming

model and related encoding operation. Through twice Map/Reduce process, CMR-Apriori

calculation enormously decreases the running time of the algorithm, tackling issues utilizing

proficient and exact calculations.

Yihua Huang [10] proposed YAFIM (Yet Another Frequent Itemsets Mining), a parallel

Apriori calculation in light of the Spark RDD structure an uncommonly composed in-memory

parallel processing model to bolster iterative calculations and intuitive information mining.

Experimental results demonstrate that, contrasted with the calculations implemented with

MapReduce, YAFIM accomplished 18× speedup in normal for different benchmarks.

Sheng-Hui Liu [11], introduced an enhanced reformative Apriori calculation that uses the

length of every transaction to decide the extent of the most extreme candidates itemset. By

reducing the creation of low frequency itemset in Map function, memory depletion is enhanced,

incredibly enhancing execution effectiveness.

Run-Ming Yu [12] changed the conventional Apriori calculation by enhancing the execution

productivity. Since the single-phase calculation just utilized only one MapReduce operation, it

will produce unnecessary candidates itemset and result in deficient memory. He outlined and

implemented a proficient algorithm: FPM (Frequent Patterns Mining) Algorithm solely based

on MapReduce Framework (FAMR).

Ning Li [13] implemented a parallel Apriori calculation in light of MapReduce, which is a

structure for handling tremendous datasets on specific sorts of distributable issues utilizing

countless number of computer nodes. The test comes about which exhibits that the proposed

calculation can scale well and proficiently handle substantial large datasets on commodity

hardware.

Xueyan Lin [14] presented the MapReduce programming model of Hadoop platform and

Apriori calculation of data mining, proposes the detailed steps of MR-Apriori calculation.

Theoretical and experimental results indicated MR-Apriori calculation make a sharp increment

in proficiency.

Zhuobo Rong [15] utilizes the possibility of MapReduce parallel programming, the great

Apriori and FP-Growth calculation are relocated to the MapReduce environment keeping in

mind the end goal to effectively take care of the current issues of Apriori and FP-Growth

calculation in the conventional usage techniques, and address the needs of large-scale data

association rules mining.

Manoj Sethi [16] proposes a new algorithm for frequent itemset mining called “Sandwich

Apriori” which is a combination of Apriori and Reverse-Apriori with new improved pruning

technique. The evaluation results showed that proposed approach is efficient in terms of

execution time and number of candidate itemsets generated, then traditional Apriori.

 Table 2 shows the summary of the techniques studied in related work.

Technique Platform Algorithm

improved

Achieved Remark

K-map

Apriori

MapReduce Apriori Scalability and works in

only K phase

High waiting time

between two phases

MR-

Apriori

MapReduce Apriori Scalability and works in

only two phases

Perform

insignificantly if

generation of k-

frequent itemset is

huge, each node

takes insignificant

amount of time

IPARBC MapReduce Apriori Performance is better Permutation

Process brings large

complexity

DPBM MapReduce Apriori Is more efficient Scope for further

Improvement

IMR-

Apriori

MapReduce Apriori Perform well and much

scalable

SeaRum MapReduce Apriori Parallelization of

association rule

extraction phase and

provide SaaS platform

PRAMA MapReduce Apriori Near-Linear speed-up,

High scalability, reduce

duplicates, Extract rules

Directly

Combines Random

sampling and

Parallelization

YAFIM Spark RDD Apriori Faster computation Faster computation

than MapReduce

NIMBLE NIMBLE Apriori Portable, support rapid

prototyping

Designed for fast

and efficient

implementation of

MLDM algorithms

PEMA MapReduce Apriori reduced the response

time and communication

cost

used only for

homogeneous

DARM

environment

R-Apriori MapReduce Apriori improved performance

as size of the dataset and

no. of items increases

FIM using

distributed

computing

MapReduce Apriori Gives better time

complexity and space

complexity

DPA MapReduce Apriori Reduce Processor idle

time

Have certain

limitation

Table 2. Summary of Techniques

	

2.11 Chapter Summary

This chapter identified the features and limitations of MapReduce frameworks and the famous
Apriori and FP-growth algorithms. The various studies proposing advanced models of these
two algorithms has been discussed in related work section.

CHAPTER 3

SYSTEM PARADIGM

This chapter illustrates the approach that helps in understanding the behavior of the Apriori

and FP-growth algorithm on different MapReduce frameworks while working on variety of

Datasets. We also compared both the algorithms on different platforms. Section 3.1 gives an

overview of the research undertaken. Section 3.2 portraits the architectural view of the

proposed paradigm. Section 3.3 describes each module of the system and how it works. Lastly,

Section 3.4 gives the summary of the chapter.

3.1 Proposed Framework
Due to the increase in Web services and use of computers in most of the businesses, the amount

of data available online and offline has changed drastically in terms of volume as it has become

a global source of useful information. Analyzing such an amount of data manually is

impossible, so the researchers has proposed various algorithms to analyses and for mining the

patterns available in data to predict the current trends in the society going on. Some platforms

have also been developed to ease this process for organizations. But each organization has

different type of data in terms of size, rate of increase of data, number of attributes, structured

or unstructured data. Not every algorithm or platform is suitable in all the circumstances.

Use of association rules in understanding the patterns in data is increasing day by day.

Association rules are if then statements, which relate two or more terms by analyzing the

frequent occurrence of the more than two articles together. Association rules has revolutionized

the Advertising industry, how to make a customer buy a product has become a lot easier than

earlier times. Earlier, the products were mainly available at the brand’s store, so when a person

goes to buy a product, say toothpaste, by applying the association mining by the owner, the

chances of buying the mouth freshener or tooth brush are more than combination of toothpaste

and room freshener. So, to increase the sale of products the items were arranged in such a

manner that if person came to buy one thing, his chances of buying other thing rises. This

method of rising the sales is association rule mining, but was applied manually.

These days, a lot of people do shopping online, so now to analyses that huge data we need

some code which will automatically detect the frequent items that has been sold together. A lot

of algorithms has been proposed, the most famous ones are Apriori and FP-growth. In digital

world, when a customer selects an item to add to his cart, the association rule mining is done

to suggest the items that they might brought together as indicated by the stored data. For

example, while purchasing a kurta, the matching lagging will be shown as in recommended

section, and the earrings of the same color are shown, as it was deducted from previous sales

data, that a person usually brought matching legging with the kurta. Similarly, when we select

a pizza for home delivery, it starts suggestions regarding adding cold-drink and other sides like

garlic bread, but it will not show pasta in the recommendations, as not many people purchase

pizza and pasta together. So, to upraise the business association rule based algorithms for

frequent item set mining algorithms are used by most of the organizations these days.

To understand the applicability of MapReduce Frameworks, Apriori and FP-Growth were

implemented on three different datasets of different sizes on Apache Hadoop, Apache Spark

and Apache Flink. The results of these two algorithms are compared on all three platforms on

three different dataset conditions to recognize the conditions suitable for each algorithm in

different situations.

In addition to the obvious value to the advertising industry, the research community has long

sought mechanisms to effectively disseminate new scientific discoveries and technological

breakthroughs so as to advance our collective knowledge and elevate our civilization.

3.2 Architectural View

Fig 17. Pictorial view of System paradigm

The system firstly retrieves the data from online stores. The data is converted into item sets,

each item set represents items brought together. Both the association rule mining algorithms

are run on these three datasets separately on each of the MapReduce platforms. The time taken

to generate the frequent items are recorded for each of the six implementations during the three

trails for different data sets. The average of the three iterations are averaged to conclude the

algorithm that performs good in all the conditions. Figure shows the overview of the system

proposed in this research.

3.3 Chapter Summary
This chapter explains the work done in this project.

	

Item
Sets	

	 	

Evaluation
subsystem

FP-Growth

Apriori

Apache Flink	

Apache Spark

Apache Hadoop

Association Rule
Mining Algorithms	

MapReduce
Platforms

Comparative
Scores

Data Base 	

CHAPTER 4

IMPLEMENTATION

In this chapter, we will discuss the experimental setup of the research work done. First section

will discuss the data set followed by programming tools used for programming. In the next

section, a case study is discussed to elaborate the working. In the last section summary of the

chapter is given.

4.1. Data Set
The data set used in this research is collected from SPMF- An open source data mining library.

It is a repository which specialized in pattern mining. We have taken three data sets from this

data mining library of different size. The first data set is named as ‘Food Mart’, it is a dataset

of customer transactions from a retail store, it contains 4141 entries. Entries are regarding 1554

different items. Second dataset is T1014D100K which contains 870 number of items and

100000 number of transaction. Third dataset is termed as ‘Online Retail’, it is transformed from

the Online retail dataset, it contains 541909 transaction entries of 2603 items.

4.2. Programming Tool

The three MapReduce frameworks- Apache Hadoop, Apache Spark and Apache Flink are used.

The coding of two algorithms in these three platforms is done in java and python.

4.3. Evaluation Methods

To evaluate the performance of the different MapReduce frameworks ‘time’ is taken as the

evaluation metric to fetch the frequent itemset.

4.4. Programming Tools and software used

Operating System: Windows 10

Language used: Python, Java

Dependencies: Maven, Apache Commons Language 3.4

Mining Tool: Hadoop, Spark, Flink

CHAPTER 5

RESULTS & ANALYSIS

In this chapter, we show the results obtained by our work. Section 5.2 analyze the results to

understand which algorithm perform best in which framework.

5.1 Output

5.2 Analysis

 For Food Mart dataset with around 4000 transaction and minimum support of 0.1%, Hadoop

takes approximately 26 seconds whereas Spark and Flink takes 20 and 11 seconds, respectively. For

T1014D100K dataset with around 100000 transaction and minimum support of 0.3%, Hadoop takes

approximately 61 seconds whereas Spark and Flink takes 44 and 31 seconds, respectively.

Figure 20 shows the scalability of MR Apriori algorithm on three different platforms for the Online

Retail dataset with around 500000 transaction and minimum support of 0.5%. Figure 21 compares the

performance of Parallel FP Growth algorithm on three different platforms. Figure 22 analyses the

scalability of PFP on Spark and Flink on dataset T1014D100K with minimum support of 0.5%.

CHAPTER 6

CONCLUSION

This chapter concludes the contributions made by this thesis. Also figure out the limitation of

the work done and briefly discuss the future scope of the research.

6.1 Research Summary

The study in this work presents Flink based MR Apriori and Parallel FP Growth which is

applied to mine frequent patterns from extensive datasets. It utilizes essential Apriori

requirement that an itemset must be frequent if only all its non-empty subset is frequent. It is

executed on Apache Flink, Apache Spark and Apache Hadoop which gives parallel and

distributed processing condition. Flink is most appropriate for Apriori in light of the fact that

Apache Flink have local support for iterative calculation and Apriori is based upon iterative

calculation. Flink's pipelined design enable us to begin another Apriori iteration when few

results of previous iteration are available. Delta cycle usefulness of Flink makes Apriori

exceptionally parallel and powerful calculation for colossal datasets. In Summary, we have

presented an execution of Apriori and FP Growth on Hadoop, Spark and Flink and tried to

compare with various datasets. We also demonstrated that Flink based Apriori is equipped for

dealing with extensive transactional-based datasets effortlessly.

6.2 Limitations

In this research experiments were conducted in controlled environment and virtual machine

were used to simulate the behavior of distributed environment. Also, one node cluster was used

for results.

6.3 Future Scope

Since Flink is the one of the most recent advancement in the field of Big data, not much work

has been conducted to see how it performs with other distributed platforms. Also, not even a

single algorithm in the field of association rule mining is introduced till date. Our work can be

extended to cover large computer clusters dataset with more than one tera bytes. Additionally,

we can apply this parallel version of Apriori and FP Growth to various application domain such

as weather data, internet traffic, medical information etc. We can also use these algorithms to

generate different and interesting association rule faster and effectively.

REFERENCES	

[1] Apache Hadoop, http://hadoop.apache.org/

[2] Apache Spark, http://spark.apache.org/

[3] Apache Flink, https://flink.apache.org/

[4] http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

[5] http://fimi.ua.ac.be/data/

[6] She Xiangyang, Zhang Ling "Apriori Parallel Improved Algorithm Based on
MapReduce Distributed Architecture" Published in: Instrumentation &
Measurement, Computer, Communication and Control (IMCCC), 2016 Sixth
International Conference on July 2016 DOI: 10.1109/IMCCC.2016.59

[7] Dachuan Huang, Yang Song, Ramani Routray, Feng Qin "Smart Cache: An
Optimized MapReduce Implementation of Frequent Itemset Mining" Cloud
Engineering (IC2E), 2015 IEEE International Conference on March 2015
DOI: 10.1109/IC2E.2015.12

[8] Feng Gui, Yunlong Ma, Feng Zhang, Min Liu, Fei Li, Weiming Shen, Hua Bai
"A distributed frequent itemset mining algorithm based on Spark” Computer
Supported Cooperative Work in Design (CSCWD), 2015 IEEE 19th
International Conference on May 2015 DOI: 10.1109/CSCWD.2015.7230970

[9] Jian Guo, Yong-gong Ren "Research on Improved A Priori Algorithm Based
on Coding and MapReduce" Published in: Web Information System and
Application Conference (WISA),on Nov.2013 DOI: 10.1109/WISA.2013.62

[10] Hongjian Qiu, Rong Gu, Chunfeng Yuan, Yihua Huang "YAFIM: A Parallel
Frequent Itemset Mining Algorithm with Spark" Parallel & Distributed
Processing Symposium Workshops (IPDPSW), 2014 IEEE International
Conference on May 2014 DOI: 10.1109/IPDPSW.2014.185

[11] Sheng-Hui Liu, Shi-Jia Liu, Shi-Xuan Chen, Kun-Ming Yu "IOMRA - A High
Efficiency Frequent Itemset Mining Algorithm Based on the MapReduce
Computation Model " Computational Science and Engineering (CSE), 2014
IEEE 17th International Conference on Dec 2014 DOI:
10.1109/CSE.2014.247

[12] Run-Ming Yu, Ming-Gong Lee, Yuan-Shao Huang, Shi-Xuan Chen "An
efficient Frequent Patterns Mining Algorithm based on MapReduce

Framework" Published in Software Intelligence Technologies and
Applications & International Conference on Frontiers of Internet of Things
2014, International Conference on Dec. 2014 DOI: 10.1049/cp.2014.1525

[13] Ning Li, Li Zeng, Qing He, Zhongzhi Shi "Parallel Implementation of Apriori
Algorithm Based on MapReduce" Published in Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed Computing
(SNPD), 2012 13th ACIS International Conference on Aug. 2012 DOI:
10.1109/SNPD.2012.31

[14] Xueyan Lin "MR-Apriori: Association Rules algorithm based on MapReduce"
Published in Software Engineering and Service Science (ICSESS), 2014 5th
IEEE International Conference on June 2014 DOI:
10.1109/ICSESS.2014.6933531

[15] Zhuobo Rong, Dawen Xia, Zili Zhang "Complex statistical analysis of big data:
Implementation and application of Apriori and FP-Growth algorithm based on
MapReduce" Published in Software Engineering and Service Science
(ICSESS), 2013 4th IEEE International Conference on May 2013 DOI:
10.1109/ICSESS.2013.6615467

[16] Tarinder Singh; Manoj Sethi, "Sandwich-Apriori: A combine approach of

Apriori and Reverse-Apriori 2015 Annual IEEE India Conference (INDICON)

Year: 2015 Pages: 1 - 4, DOI: 10.1109/INDICON.2015.7443786

[17] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules Between

Sets of Items in Large Databases,” in ACM SIGMOD Conf. Management of

Data, Washington, D.C., pp. 207–216, (1993).

[18] Kitchenham and Charters, “Guidelines for performing Systematic Literature Reviews
in Software Engineering”, 2007, Elsevier

[19] Honglie Yu, Jun Wen and Hongmei Wang. An Improved Apriori Algorithm
Based On the Boolean Matrix and Hadoop. In International Conference on
Advanced in Control Engineering and Information Science (CEIS), pp.1827-
1831, 2011.

[20] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. In Proc. OSDI. USENIX Association, 2004.

[21] J. Han, H. Pei and Y. Yin. Mining Frequent Patterns without Candidate
Generation. In Proc. Conf. on the Management of Data (SIGMOD’00, Dallas,
TX), ACM Press, New York, NY, USA 2000.

[22] Lan Vu and Gita Alaghband. Novel Parallel Method for Mining Frequent
Patterns on Multi-core Shared Memory Systems. In ACM conference , Denver
USA , 49-54, 2013.

[23] Li N., Zeng L., He Q. & Shi Z. Parallel Implementation of Apriori
Algorithm Based on MapReduce. In Proc. of the

[24] 13th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel & Distributed Computing (SNPD ‘12),
Kyoto, IEEE: 236 – 241, 2012.

[25] Li N., Zeng L., He Q. & Shi Z. Parallel Implementation of Apriori Algorithm
Based on MapReduce. In Proc. of the 13th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel &
Distributed Computing (SNPD ‘12), Kyoto, IEEE: 236 – 241, 2012.

[26] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara and Wei Li.
New algorithms for fast discovery of association rules. Technical Report 651,
Computer Science Department, University of Rochester, Rochester, NY
14627. 1997.

[27] Yang X.Y., Liu Z. & Fu Y. MapReduce as a Programming Model for
Association Rules Algorithm on Hadoop. In Proceedings of the 3rd
International Conference on Information Sciences and Interaction Sciences
(ICIS ‘10), Chengdu, China, IEEE: 99 – 102, 2010.

[28] Yeal Amsterdamer, Yeal Grossman, Tova Milo and Pierre Senellart.
CrowdMiner: Mining association Rules from the crowd.In Proceedings of
VLDB Endowment, 2013.

[29] Zahra Farzanyar and Nick Cercone. Efficient Mining of Frequent Itemsets in
Social Network Data based on Mapreduce Framework. In 2013 IEEE/ACM
International Conference on Advances in Social Network Analysis and
Mining, 1183-1188, 2013

[30] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: Parallel fp-
growth for query recommendation,” in Proceedings of the 2008 ACM
Conference on Recommender Systems, ser. RecSys ’08. New York, NY, USA:
ACM, 2008, pp. 107–114. [Online]. Available:
http://doi.acm.org/10.1145/1454008.1454027

[31] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Huang, and S. Feng, “Balanced parallel
fp-growth with mapreduce,” in Information Computing and
Telecommunications (YC-ICT), 2010 IEEE Youth Conference on, Nov 2010,
pp. 243–246.

[32] I. Pramudiono, K. Takahashi, A. KH Tung, and M. Kitsuregawa, “Procssing
Load Prediction for Parallel FP-Growth,” in Proc. 16th Institute of Electronics,
Information and Communication Engineers Data Engineering Workshop
(DEWS2005), 2005.

[33] Rini Joy; K. K. Sherly "Parallel frequent itemset mining with spark RDD
framework for disease prediction" 2016 International Conference on Circuit,
Power and Computing Technologies (ICCPCT) Year: 2016 Pages: 1 - 5, DOI:
10.1109/ICCPCT.2016.7530360

[34] Xiaoting Wei; Yunlong Ma; Feng Zhang; Min Liu; Weiming Shen
"Incremental FP-Growth mining strategy for dynamic threshold value and
database based on MapReduce" In Proceedings of the 2014 IEEE 18th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD) Year: 2014 Pages: 271 - 276, DOI:
10.1109/CSCWD.2014.6846854.

	

	

