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ABSTRACT 

 

Association rule mining remains a very popular and effective method to extract meaningful 

information from large datasets. It tries to find possible associations between items in large 

transaction based datasets. In order to create these associations, frequent patterns have to be 

generated. Apriori and FP Growth are the two most popular algorithms for frequent itemset 

mining. To enhance the efficiency and scalability of Apriori and FP Growth, a number of 

algorithms have been proposed addressing the design of efficient data structures, minimizing 

database scan and parallel and distributed processing. MapReduce is the emerging parallel and 

distributed technology to process big datasets on Hadoop Cluster. To mine big datasets it is 

essential to re-design the data mining algorithm on this new paradigm. However, the existing 

parallel versions of Apriori and FP-Growth algorithm implemented with the disk-based 

MapReduce model are not efficient enough for iterative computation.  

Hence a number of map reduce based platforms are being developed for parallel computing in 

recent years. Among them, two platforms, namely, Spark and Flink have attracted lot of 

attention because of their inbuilt support to distributed computations. But, not much work has 

been done to test the capabilities of these two platforms in the field of parallel and distributed 

mining. Therefore, this work helps us to better understand, how the two algorithms perform on 

three different platforms. We conducted an in-depth experiment to gain insight into the 

effectiveness, efficiency and scalability of the Apriori and Parallel FP Growth algorithm on 

Hadoop, Spark and Flink. 
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CHAPTER 1 

 

INTRODUCTION 

This chapter briefly introduces the research work proposed in the thesis. Section 1.1 gives an 

overview of the research undertaken. Section 1.2 briefly explains the Big data, followed by its 

techniques in section 1.3. The applications and challenges of big data are explored in section 

1.4 & 1.5 respectively. Section 1.6 discusses motivation and scope. Section 1.7 enlightens the 

research objectives. Section 1.8 presents an outline of this thesis and labeling the remaining 

chapters. Finally, Section 1.9 gives the summary of the chapter. 

 

1.1 Introduction 
 
 

Internet has become an amalgamated, impeccable and a necessary part of our lives. It is 

changing swiftly so are we. As more and more people have started using it, Web is also going 

through a paramount expedient. In the past few years, web based documents are achieving 

popularity as a way that portraits individual experience and sentiments. According to 

www.worldwidewebsize.com, the indexed Web contains at least 4.5 billion pages (Monday, 

20 March, 2017). With the massive proliferation in the velocity, volume and variety of 

information accessible online and the consequent need to develop viable paradigms which 

facilitate better techniques to access this information, there has been a strong resurgence of 

interest in Big data analysis research in recent years.  

 

With the growth of Web 2.0, which emphasis user-generated content, the way people used to 

express their views and opinions has also changed prominently. Ideas, comments, views, 

suggestion, feedbacks are shared by the users. Better methods are now used to make decisions. 

Earlier, people use to conduct surveys but now online reviews are studied to make a conclusion 

from the opinions given by the user. As with the increase of amount of data on the Web, it is 

impossible for an individual to study, examine such a large amount of data. 

 

Earlier, an amount of data generated was not that high and we kept archiving the data as there 

was just need of historical analysis of data. But today data generation is in petabytes that it is 

not possible to archive the data again and again and retrieve it again when needed as data 



scientists need to play with data now and then for predictive analysis unlike historical as used 

to be done with traditional. 80% of the data getting generated today is unstructured and cannot 

be handled by our traditional technologies. According to the statistics the percentage of data 

that has been generated from last two years is 90%. This data comes from many industries like 

climate information collects by the sensor, different stuff from social media sites, digital 

images and videos, different records of the purchase transaction. This data is big data. 

 

1.2  Big Data  

As stated on www.gartner.com, Big data is huge-volume, fast-velocity, and different variety 

information assets that demand innovative platform for enhanced insights and decision making. 

In other words, big data gets generated in multi-terabyte quantities, changes fast and comes in 

varieties of forms that is difficult to manage and process using RDBMS or other traditional 

technologies. Big Data solutions provide the tools, methodologies, and technologies that are 

used to capture, store, search & analyses the data in seconds to find relationships and insights 

for innovation and competitive gain that were previously unavailable. 

In simple terms, Big Data is an idea that the amount of data that we generate (and more 

importantly, collect) is increasing extremely quickly. More importantly, companies are 

recognizing that this data can be used to make more accurate predictions, and therefore, make 

them more money. Facebook, for example, knows how often you visit many websites (due to 

the pervasive Like on Facebook buttons) and wants to use that information to show you ads 

you are more likely to click on.  

As Gary King stated, “There is a big data revolution”, as now we can use this data to get some 

meaningful information and utilize it in so many ways, that can change the way we conceive 

things now. Big data is used in multiple domains like  

• Netflix Uses Big Data to Improve Customer Experience 

• Promotion and campaign analysis by Sears Holding 

• Sentiment analysis 

• Customer Churn analysis 

• Predictive analysis 

• Real-time ad matching and serving 



To analyze such an unstructured data to get the information we want using computers is not 

easy. Like in sentiment analysis field, computers still cannot get the exact emotion of a person 

from their tweets or status like a human can get. But, at the same time a human being even for 

a large group of humans it is not possible to analyze the whole data available over the web to 

understand the patterns, behaviors etc. The information extracted from every second increasing 

data helps enhance the business, a shopping website can recommend the products which a 

person will likely buy on the basis of his mood, his location, events happening in his life, as all 

such information are easily available on the social networking sites, but to analyze them is not 

easy. So, big data technologies are the center of the attraction of researchers these days, a lot 

of work has been done, but still none of the method is like a ‘silver bullet’ which can solve the 

problems faced by big data analytics. Some of the Big data technologies are discussed in next 

section. 

 

1.3 Big Data Technologies 

With the fast changing world, many techniques have been proposed to handle the big data. The 

most famous technologies used for big data analytics are Apache Hadoop, Apache Spark and 

Apache Flink. Big data is creating Big Impact on industries today. World’s 50% of the data 

has already been moved to Hadoop – The Heart of Big Data. It is predicted that by 2017, more 

than 75% of the world’s data will be moved to Hadoop and this technology will be the most 

demanding in the market as it is now. Further enhancement of this technology has led to an 

evolution of Apache Spark – lightning fast and general-purpose computation engine for large-

scale processing. It can process the data up to 100 times faster than MapReduce. While Apache 

Flink is a streaming engine that can also do batches. So, at its core, Flink is more efficient in 

terms of low latency. 



 

Fig 1. Big Data Technologies 

Apache Hadoop: Hadoop is an open source tool from the ASF – Apache Software Foundation, 

which is used to store large amount of data sets. Hadoop is provided for data storage, data 

access, data processing and security operations. It is flexible enough to be able to work with 

multiple data sources, either aggregating multiple sources of data in order to do large scale 

processing, or even reading data from a database in order to run processor-intensive machine 

learning jobs. It has several different applications, but one of the top use cases is for large 

volumes of constantly changing data, such as location-based data from weather or traffic 

sensors, web-based or social media data, or machine-to-machine transactional data. 

Apache Spark: It provides faster and more general-purpose data processing engine. It is 

basically designed for fast computation. It covers a wide range of workloads Such as batch, 

interactive, iterative and streaming. Easy to program and does not require any abstractions. 

Programmers can perform streaming, batch processing and machine learning, all in the same 

cluster. It has in-built interactive mode. Spark is highly fault-tolerant, no need to restart the 

application from scratch in case of any failure. 

Apache Flink: Apache Flink is called 4G of Big Data. It is an open source framework that can 

handle streaming as well as batch data. Apache Flink is a streaming engine that can also do 

batches. Apache Spark is a batch engine that emulates streaming by micro batches. So, at its 

core, Flink is more efficient in terms of low latency. 

 

Big	Data	
Technologies

Apache	
Hadoop

Apache	
Spark Apache	Flink



1.4 Applications of Big Data 

IT organizations have started considering Big data initiative for managing their data in a better 

manner, visualizing this data, gaining insights of this data as and when required and finding 

new business opportunities to accelerate their business growth. Every CEO wants to transform 

his company, enhance their business models and identify potential revenue sources whether he 

being from telecom domain, banking domain, retail or healthcare domain etc. Such business 

transformation requires right tools and hiring the right people to ensure right insights are 

extracted at right time from the available data. Some of the applications of big data in various 

sectors are as follows: 

• Big data in manufacturing sector: Big data can be used to identify machinery and 

process variations that may be indicators of quality problems. 

• Big data for product distribution: Based on data available, its analysis could be done to 

ensure proper distribution in proper market. 

• Big data in Marketing field: Big data helps in knowing better marketing strategy that 

could increase ale. 

• Price Management using Big data: To maintain position in market, price management 

plays a key role and Big data helps business in knowing market trend for it. 

• Merchandising: Big Data plays a major role in sales for retail market also. 

• Big data in Sales: It helps in increasing sale for the business. It also helps in optimizing 

assignment of sales resources and accounts, product mix and other operations. 

Big data has enormous potential to improve the human condition, with emphasis on health and 

productivity. Less people will be needed to provide for a healthier, ageing population. Big data 

analysis can help by identify productive, or at least non-destructive occupations in the changing 

demographic where there won't be enough conventional "employment" to go around. 

1.5 Challenges of Big Data 

The single greatest challenge facing data analytics in the 21st century is the so-called 

“utilization gap.” Every major company has vast stores of information in increasingly complex 

databases. However, despite having more data than ever before, most data analytics still fail to 

provide actionable insights.  

 



Efforts to bridge the utilization gap extend to BI platforms as well with business intelligence 

becoming more user friendly with each iteration, allowing the typical business user to query 

data themselves. For example, every popular BI platform provides reasonably intuitive UIs that 

allow normal users to find basic visualizations and charts (Tableau, Birst, etc.). However, 

visualizations are often not enough. Some other challenges faced by organization are: 
• Tools are too expensive to acquire, deploy and maintain. 

• Solutions are too complicated for normal business users to use. 

• Most vendors have legacy business AND technology approaches that limit the 

potential for customers to succeed with Data. 

 
Fig 2. Top Big Data Challenges 

 

Figure 2 shows the challenges of big data faced by multiple organization as per the data 

collected by www.gartner.com in 2013 by collecting the data from various industries to 

understand the issues which are becoming hurdles in the way of using big data analytics by 

most of the companies world-wide. 



Big data is a fascinating area that holds a lot of promise, but investment in big data is not like 

investing in a financial investment where you put in some money, perhaps pay a financial 

specialist to manage it, and wait for it to grow. It is a lot more like investing in a gym 

membership where the whole organisation needs to change their lifestyle to reap the benefits.  
 
 

1.6 Motivation and Scope  
Increment of Web 2.0 gives the abundance services which can be helpful for user’s awareness. 

Big Data is a way to solve all the unsolved problems related to data management and handling, 

an earlier industry was used to live with such problems. With Big data analytics, you can unlock 

hidden patterns and know the 360-degree view of customers and better understand their needs. 

 

Web 2.0 has involved quite a large number of people to use these services. As almost every 

type of public is concerned, we need to have refined data which may not offend someone 

sentiments. So, to detect the patterns in this large amount of data multiple algorithms has been 

proposed. Some of the algorithms perform closed item set mining, some weighted itemset 

mining. Multiple big data techniques are available each having their own plus points like Spark 

can handle the iterative algorithms very well, while Hadoop can’t. Similarly, there are multiple 

algorithms available for association rule mining, like Apriori, Eclat, FP-Growth, Relim etc. 

But each handle different types of data more precisely than other algorithms. Apriori and FP-

growth are the oldest and most often used algorithms for frequent itemset mining.  

 

There exists a study showing the comparison of Apriori and Fp-growth on Hadoop, and another 

study has also shown the comparison of two MapReduce frameworks Hadoop and spark for 

Apriori algorithm. No one has still explored the behavior of these two algorithms on all the 

three MapReduce frameworks with 3 datasets of different sizes. 

 

This work helps us to better understand, how the two algorithms perform in different 

environments. And it also clear that which algorithm is good for large datasets and which is 

better for small or medium datasets. How much time does different MapReduce platforms take 

to run the same algorithm also determines the effectiveness of the MapReduce framework. 

 

 



1.7 Research Objectives 
The main research objectives of the work done in this thesis are: 

 

Research objective 1 – To study the different techniques that has been used for Parallel Apriori 

and FP Growth. 

Research objective 2 – To study the MapReduce frameworks that has been used for 

implementing Distributed Apriori and FP Growth. 

Research objective 3 – Checking the performance of Apriori and FP growth algorithm under 

different environment. 

 

The objective of this thesis is to analyze the two of the famous association rule based mining 

algorithms on different MapReduce frameworks. 

 

 

1.8 Organization of Report 
This thesis is structured into 5 Chapters followed by references and appendix. 

Chapter 1 provides the overview of the research work done, about the big data, research 

objectives, scope and motivation of the project. Finally, analyzing the need for solution for 

which research is done. 

 

Chapter 2 provides the essential background and context for this thesis and provides a complete 

justification for the research undertaken in this thesis. 

 

Chapter 3 gives the details of the methodology employed and outlines the uses of algorithms 

and MapReduce platforms. 

 

Chapter 4 describes the implementation. It discusses all the input sets, platform and tool used 

to implement and to compare the results. 

 

Chapter 5 describes the experimental results obtained from the given datasets. It presents the 

analysis of tests performed. 

 

Chapter 6 presents future scope and conclusions based on the contribution made by this thesis. 



 

1.9 Chapter Summary 

This chapter presents the idea used in this thesis. It discusses research problem, objectives, 

goals and motivation for the research. Justification for the research problem is outlined, 

together with an explanation of the research methodology used. The next chapter describes the 

literature survey and relevant background work done till date in context of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

 

  LITERATURE REVIEW 

This Chapter first discusses the technologies and algorithms used in detail with their 

applications and challenges. In last section, the overview of the work done on this field is 

discussed. 

2.1  Association Rules 

The building blocks of a market basket analysis are the items that may appear in any given 

transaction. Groups of one or more items are surrounded by brackets to indicate that they form 

a set, or more specifically, an itemset that appears in the data with some regularity. Transactions 

are specified in terms of itemset, such as the following transaction that might be found in a 

typical grocery store: 

                                            

The result of a market basket analysis is a collection of association rules that specify patterns 

found in the relationships among items he itemsets. Association rules are always composed 

from subsets of itemsets and are denoted by relating one itemset on the left-hand side (LHS) 

of the rule to another itemset on the right-hand side (RHS) of the rule. The LHS is the condition 

that needs to be met in order to trigger the rule, and the RHS is the expected result of meeting 

that condition. A rule identified from the example transaction might be expressed in the form: 

                                      

In plain language, this association rule states that if peanut butter and jelly are purchased 

together, then bread is also likely to be purchased. In other words, "peanut butter and jelly 

imply bread." Developed in the context of retail transaction databases, association rules are not 

used for prediction, but rather for unsupervised knowledge discovery in large databases. 

Because association rule learners are unsupervised, there is no need for the algorithm to be 

trained; data does not need to be labelled ahead of time. The program is simply unleashed on a 

dataset in the hope that interesting associations are found. The downside, of course, is that there 



isn't an easy way to objectively measure the performance of a rule learner, aside from 

evaluating them for qualitative usefulness—typically, an eyeball test of some sort. 

Although association rules are most often used for market basket analysis, they are helpful for 

finding patterns in many different types of data. Other potential applications include: 

1. Searching for interesting and frequently occurring patterns of DNA and protein 

sequences in cancer data 

2. Finding patterns of purchases or medical claims that occur in combination with 

fraudulent credit card or insurance use 

3. Identifying combinations of behavior that precede customers dropping their cellular 

phone service or upgrading their cable television package 

Association rule analysis is used to search for interesting connections among a very large 

number of elements. Human beings are capable of such insight quite intuitively, but it often 

takes expert-level knowledge or a great deal of experience to do what a rule learning algorithm 

can do in minutes or even seconds. Additionally, some datasets are simply too large and 

complex for a human being to find the needle in the haystack. 

 

2.2 Hadoop 

Hadoop is an open source tool from the ASF – Apache Software Foundation. Open source 

project means it is freely available and even its source code can be changed as per the 

requirements. If certain functionality does not fulfil our requirement, we can change it 

according to our need. Most of Hadoop code is written by Yahoo, IBM, Facebook, Cloudera. 

It provides an efficient framework for running jobs on multiple nodes of clusters.  Cluster 

means a group of systems connected via LAN.  Hadoop provides parallel processing of data as 

it works on multiple machines simultaneously. 

It is inspired by Google, which has written a paper about the technologies it is using like Map-

Reduce programming model as well as its file system (GFS). Hadoop was originally written 

for the Nutch search engine project when Doug cutting and his team were working on it but 

very soon, it became a top-level project due to its huge popularity. 



Hadoop is an open source framework which is written in Java. But this does not mean you can 

code only in Java. You can code in C, C++, Perl, python, ruby etc. You can code in any 

language but it is recommended to code in java as you will have lower level control of the code. 

It efficiently processes large volumes of data on a cluster of commodity hardware. Hadoop is 

developed for processing of huge volume of data. Commodity hardware is the low-end 

hardware, they are cheap devices which are very economic. So, Hadoop is very economic. 

Hadoop can be setup on a single machine (pseudo-distributed mode), but the real power of 

Hadoop comes with a cluster of machines, it can be scaled to thousand nodes on the fly i.e., 

without any downtime. We need not make any system down to add more systems in the cluster. 

To learn installation of Hadoop on a multi-node cluster, follow this installation guide. 

Hadoop consists of three key parts – Hadoop Distributed File System (HDFS), Map-Reduce 

and YARN. HDFS is the storage layer, Map Reduce is the processing layer and YARN is the 

resource management layer. 

Why Hadoop 

Hadoop is not only a storage system but is a platform for data storage as well as processing. It 

is scalable (more nodes can be added on the fly), Fault tolerant (Even if nodes go down, data 

can be processed by another node) and Open source (can modify the source code if required). 

Following characteristics of Hadoop make is a unique platform: 

1. Flexibility to store and mine any type of data whether it is structured, semi-structured 

or unstructured. It is not bounded by a single schema. 

2. Excels at processing data of complex nature, its scale-out architecture divides 

workloads across multiple nodes. Another added advantage is that its flexible file-

system eliminates ETL bottlenecks. 

3. Scales economically, as discussed it can be deployed on commodity hardware. Apart 

from this its open-source nature guards against vendor lock. 

Hadoop works in master – slave fashion. There is a master node and there are n numbers of 

slave nodes where n can be 1000s. Master manages, maintains and monitors the slaves while 

slaves are the actual worker nodes. Master should be deployed on good configuration hardware 

and not just any commodity hardware as it is the centerpiece of Hadoop cluster. 



Master just stores the meta-data (data about data) while slaves are the nodes which store the 

data. Data is stored distributed in the cluster. The client connects with master node to perform 

any task. 

How Hadoop Works 

Step1: Input data is broken into blocks of size 128 Mb (by default) and then blocks are 

moved to different nodes. 

Step 2: Once all the blocks of the file are stored on data nodes, a user can process the 

data. 

Step 3: master, then schedules the program (submitted by the user) on individual nodes. 

Step 4: Once all the nodes process the data, output is written back to HDFS 

Hadoop Flavor’s 

Below are the various flavors of Hadoop. 

• Apache – Vanilla flavour, the actual code is residing in apache repositories. 

• Hortonworks – Popular distribution in the industry. 

• Cloudera – It is the most popular in the industry. 

• MapR – It has rewritten HDFS and its HDFS is faster as compared to others. 

• IBM – Proprietary distribution is known as Big Insights. 

All the databases have provided native connectivity with Hadoop for fast data transfer. For 

example, to transfer data from Oracle to Hadoop, you need a connector. Figure 3 shows the 

ecosystem of Hadoop. 



 

Fig 3. Hadoop Ecosystem 

Hadoop Features and Characteristics 

Apache Hadoop is the most popular and powerful big data tool, Hadoop provides world’s most 

reliable storage layer – HDFS, a batch Processing engine – MapReduce and a Resource 

Management Layer – YARN.  

1. Open-source – Apache Hadoop is an open source project. It means its code can be 

modified according to business requirements. 

2. Distributed Processing – As data is stored in a distributed manner in HDFS across the 

cluster, data is processed in parallel on a cluster of nodes. 

3. Fault Tolerance – By default 3 replicas of each block is stored across the cluster in 

Hadoop and it can be changed also as per the requirement. So, if any node goes down, 

data on that node can be recovered from other nodes easily. Failures of nodes or tasks 

are recovered automatically by the framework. This is how Hadoop is fault tolerant. 

4. Reliability – Due to replication of data in the cluster, data is reliably stored on the cluster 

of machine despite machine failures. If your machine goes down, then also your data 

will be stored reliably. 

5. High Availability – Data is highly available and accessible despite hardware failure due 

to multiple copies of data. If a machine or few hardware crashes, then data will be 

accessed from another path. 



6. Scalability – Hadoop is highly scalable in the way new hardware can be easily added 

to the nodes. It also provides horizontal scalability which means new nodes can be 

added on the fly without any downtime. 

7. Economic – Apache Hadoop is not very expensive as it runs on a cluster of commodity 

hardware. We do not need any specialized machine for it. Hadoop provides huge cost 

saving also as it is very easy to add more nodes on the fly here. So, if requirement 

increases, you can increase nodes as well without any downtime and without requiring 

much of pre-planning. 

8. Easy to use – No need of client to deal with distributed computing, the framework takes 

care of all the things. So, it is easy to use. 

9. Data Locality – Hadoop works on data locality principle which states that move 

computation to data instead of data to computation. When a client submits the 

MapReduce algorithm, this algorithm is moved to data in the cluster rather than 

bringing data to the location where the algorithm is submitted and then processing it. 

Limitation of Hadoop 

• Issues with small files 

• Processing speed. 

• High latency 

• Supports only batch processing 

• Vulnerable by nature 

 

2.3 HDFS 

Hadoop Distributed Filesystem (HDFS) is the world’s most reliable storage system. HDFS is 

a Filesystem of Hadoop designed for storing very large files running on a cluster of commodity 

hardware. HDFS is designed on principle of storage of less number of large files rather than 

the huge number of small files. It provides fault tolerant storage layer for Hadoop and its other 

components. Replication of data helps us to attain this feature. It stores data reliably even in 

the case of hardware failure. It provides high throughput access to application data by providing 

the data access in parallel. 



Hadoop works in master-slave fashion, HDFS also has 2 types of nodes that work in the same 

manner. There is name node(s) and data nodes in the cluster. 

1. Master node (Also called Name node) – As the name suggests, this node manages all 

the slave nodes and assign work to slaves. It should be deployed on reliable hardware 

as it is the centerpiece of HDFS.  

2. Slave node (Also called data node) – Data nodes are the slaves which are deployed on 

each machine and provide the actual storage. They are the actual worker nodes. These 

are responsible for serving read and write requests from the clients. They can be 

deployed on commodity hardware. If any slave node goes down, name node 

automatically replicates the blocks which were present at that data node to other nodes 

in the cluster. 

Data storage in HDFS 

Whenever any file has to be written in HDFS, it is broken into small pieces of data known as 

blocks. HDFS has a default block size of 128 MB which can be increased as per the 

requirements. These blocks are stored in the cluster in distributed manner on different nodes. 

This provides a mechanism for MapReduce to process the data in parallel in the cluster.  

Multiple copies of each block are stored across the cluster on different nodes. This is a 

replication of data. By default, HDFS has a replication factor of 3. It provides fault tolerance, 

reliability, and high availability. 

A Large file is split into n number of small blocks. These blocks are stored at different nodes 

in the cluster in a distributed manner. Each block is replicated and stored across different nodes 

in the cluster. 

Rack Awareness in Hadoop HDFS 

Hadoop runs on a cluster of computers which are commonly spread across many racks. Name 

Node places replicas of a block on multiple racks for improved fault tolerance. Name Node 

tries to place at least one replica of a block in each rack, so that if a complete rack goes down 

then also system will be highly available Optimizing replica placement distinguishes HDFS 

from most other distributed file systems. The purpose of a rack-aware replica placement policy 

is to improve data reliability, availability, and network bandwidth utilization. 



 

Fig 4. Hadoop Distributed Filesystem 

There is a single name node which stores metadata and there are multiple data nodes which do 

actual storage work. Nodes are arranged in racks and Replicas of data blocks are stored on 

different racks in the cluster to provide fault tolerance. To read or write a file in HDFS, the 

client needs to interact with Name node. HDFS applications need a write-once-read-many 

access model for files. A file once created and written cannot be edited. There are several data 

nodes in the cluster which store HDFS data in the local disk. Data node sends a heartbeat 

message to name node periodically to indicate that it is alive. Also, it replicates data to other 

data node as per the replication factor. 

Features of HDFS 

• Distributed Storage – Data is stored in distributed manner 

• Blocks – Data is split into blocks 

• Replication – Blocks are replicated at different nodes 

• High Availability – Data is highly available due to replication 

• Data Reliability – Data is stored reliably in HDFS 

• Fault tolerant – Data replication provides fault tolerance feature 

• Scalability – Nodes in HDFS cluster can be increased on the fly 

• High throughput access to application – Parallel processing provides high throughput 

access to application 

 

2.4 Hadoop MapReduce 



Map-Reduce is the data processing layer of Hadoop. Map-Reduce is a product system for 

effortlessly composing applications that process the vast amount of structured and unstructured 

data stored in the HDFS. It processes the huge amount of data in parallel by dividing the job 

(submitted job) into a set of independent tasks. By this parallel processing, speed and reliability 

of cluster is improved. We just need to put the custom code (business logic) in the way map 

reduce works and rest things will be taken care by the engine. 

MapReduce programs are composed in a specific style influenced by useful programming 

builds, specifically figures of speech for processing data. Here in map reduce we get input as a 

list and it changes over it into yield which is again a list. It is the heart of Hadoop. Hadoop is 

so much intense and productive because of map reduce function as parallel handling of data is 

carried out. 

Hadoop Map-Reduce is exceedingly versatile and can be utilized across numerous PCs. 

Numerous little machines can be utilized to process jobs that ordinarily couldn't be processed 

by a huge machine. Conceptually, Map-Reduce programs transform lists of input data elements 

into lists of output data elements. A Map-Reduce program will do this twice, using two 

different list processing idioms 

1. Map 

2. Reduce 

Basic Terminologies used in Map Reduce are 

Job – A “full program” – an execution of a Mapper and Reducer across a data set. It is an 

execution of 2 processing layers i.e. mapper and reducer. A Map-Reduce job is a work that the 

client desires to be performed. It comprises of the input data, the Map-Reduce Program, and 

configuration info. So, client needs to submit input data, he needs to write Map Reduce 

program and set the configuration info. 

Task – An execution of a Mapper or a Reducer on a piece of data. It is additionally called Task-

In-Progress (TIP). It implies processing of data is in progress either on mapper or reducer. 

Task Attempt - A specific example of an endeavor to execute a task on a node. There is a 

possibility that anytime any machine can go down. For example, while processing data if any 

node goes down, framework reschedules the task to some other node. This rescheduling of the 

task cannot be infinite. There is an upper limit for that as well. The default value of task attempt 



is 4. If a task (Mapper or reducer) fails 4 times, then the job is considered as a failed job. For 

high priority job or huge job, the value of this task attempt can be increased as well. 

Working of MapReduce 

Map-Reduce divides the work into small parts, each of which can be done in parallel on the 

cluster of servers. A problem is divided into a large number of smaller problems each of which 

is processed independently to give individual outputs. These individual outputs are further 

processed to give final output. Figure 5 shows the working outline of MapReduce. 

 

Fig 5. Working of MapReduce 

 

Mapper: 

Mapper task processes each input record and it generates a new <key, value> pairs. The <key, 

value> pairs can be completely different from the input pair. In mapper task, the output is the 

full collection of all these <key, value> pairs. Before writing the output for each mapper task, 

partitioning of output take place on the basis of the key and then sorting is done. This 

partitioning specifies that all the values for each key are grouped together. 

Map-Reduce frame generates one map task for each InputSplit generated by the InputFormat 

for the job. Mapper only understands <key, value> pairs of data, so before passing data to the 

mapper, data should be first converted into <key, value> pairs. 

Reducer 



The output of the mapper is processed by the Reducer. After processing the data, it produces a 

new set of output, which will be stored in the HDFS. 

Reducer takes a set of an intermediate key-value pair produced by the mapper as the input and 

runs a Reducer function on each of them. This data (key, value) can be aggregated, filtered, 

and combined in a number of ways, and it requires a wide range of processing. Reducer first 

processes the intermediate values for particular key generated by the map function and then 

generates the output (zero or more key-value pair). One-one mapping takes place between keys 

and reducers. Reducers run in parallel since they are independent of one another. The user 

decides the number of reducers. By default, number of reducers is 1. 

 

Fig 6. Reducer in Hadoop 

Phases of Reducer: 

1. Shuffle Phase: In this phase, the sorted output from the mapper is the input to the 

Reducer. In this phase, with the help of HTTP, the framework fetches the relevant 

partition of the output of all the mappers. 

2. Sort Phase: In this phase, the input from different mappers is again sorted based on the 

similar keys in different Mappers. The shuffle and sort phases occur concurrently. 

3. Reduce Phase: In this phase, after shuffling and, sorting, reduce task aggregates the key 

value pairs. By OutputCollector.collect(), the output of the reduce task is written to the 

File-system. Reducer output is not sorted. 

Key Value Pair Generation: 

InputSplit – It is the logical representation of data. It describes a unit of work that contains a 

single map task in a Map-Reduce program. 



Record Reader- It communicates with the InputSplit and it converts the data into key value 

pairs suitable for reading by the Mapper. By default, it uses TextInputFormat for converting 

data into key value pair. RecordReader communicates with the InputSplit until the file reading 

is not completed. 

In Map-Reduce, map function processes a certain key-value pair and emits a certain number of 

key-value pairs and the Reduce function processes values grouped by the same key and emits 

another set of key-value pairs as output.  The output types of the Map should match the input 

types of the Reduce as shown below: 

Map: (K1, V1) -> list (K2, V2) 

Reduce: {(K2, list (V2}) -> list (K3, V3) 

Generation of key-value pair depends on the data set and the required output. In general, the 

key-value pair is specified in 4 places: Map input, Map output, reduce input and Reduce output. 

 

Fig 7. Key Value Pairing in Hadoop MapReduce 

1. Map Input: Map-input by default will take the line offset as the key and the content of 

the line will be the value as Text. By using custom input format, we can modify them.  

2. Map Output: Map basic responsibility is to filter the data and provide the environment 

for grouping of data based on the key. 

Key – It will be the field/ text/ object on which the data has to be grouped and 

aggregated of     the reducer side. 

Value – It will be the field/ text/ object which is to be handled by each individual 

reduce method. 



3. Reduce Input: The output of Map is the input for reduce, so it is same as Map-Output. 

4. Reduce Output: It depends on the required output. 

Partitioner 

Partitioning of the keys of the intermediate map output is controlled by the Partitioner. By hash 

function, key (or a subset of the key) is used to derive the partition. According to the key value 

each mapper output is partitioned and records having the same key value go into the same 

partition (within each mapper), and then each partition is sent to a reducer. Partition class 

determines which partition a given (key, value) pair will go. Partition phase takes place after 

map phase and before reduce phase. 

 

Fig 8. Partitioner in Hadoop 

Map-Reduce job takes an input data set and produces the list of key value pair which is the 

result of map phase in which input data is split and each task processes the split and each map, 

output the list of key value pairs. Then, the output from the map phase is sent to reduce task 

which processes the user-defined reduce function on map outputs. But before reduce phase, 

partitioning of the map output take place on the basis of the key and sorted. 

This partitioning specifies that all the values for each key are grouped together and make sure 

that all the values of a single key go to the same reducer, thus allows even distribution of the 

map output over the reducer. Partitioner in Hadoop Map-Reduce redirects the mapper output 

to the reducer by determining which reducer is responsible for the particular key. 

Combiner  



On a large dataset when we run Map-Reduce job, so large chunks of intermediate data are 

generated by the Mapper and this intermediate data is passed on the Reducer for further 

processing, which leads to enormous network congestion. Map-Reduce framework provides a 

function known as Combiner that plays a key role in reducing network congestion. 

The combiner in Map-Reduce is also known as ‘Mini-reducer’. The primary job of Combiner 

is to process the output data from the Mapper, before passing it to Reducer.  It runs after the 

mapper and before the Reducer and its usage is optional 

 

Fig 9. Combiner in Hadoop. 

The working of combiner in Hadoop is shown in figure 10 & 11. In the Figure 10, no combiner 

is used. Input is split into two mappers and 9 keys are generated from the mappers. Now we 

have (9 key/value) intermediate data, further mapper will send directly this data to reducer and 

while sending data to reducer, it consumes some network bandwidth (bandwidth means time 

taken to transfer data between 2 machines). It will take more time to transfer data to reducer if 

the size of data is big. 



 

Fig 10. Working of MapReduce in Hadoop with combiners 

Now in between mapper and reducer if we use a combiner, then combiner shuffles intermediate 

data (9 key/value) before sending it to reducer, and generates 4 key/value pair as an output. 

 

Fig 11. Working of MapReduce in Hadoop with combiners 



Reducer now needs to process only 4 key/value pair data which is generated from 2 combiners. 

Thus, reducer gets executed only 4 times to produce final output, which increases the overall 

performance. 

Shuffle & Sort 

Shuffle phase in Hadoop transfers the map output from Mapper to a Reducer in Map-Reduce. 

Sort phase in Map-Reduce covers the merging and sorting of map outputs. Data from the 

mapper are grouped by the key, split among reducers and sorted by the key. Every reducer 

obtains all values associated with the same key. Shuffle and sort phase in Hadoop occur 

simultaneously and are done by the Map-Reduce framework. 

The process of transferring data from the mappers to reducers is known as shuffling i.e. the 

process by which the system performs the sort and transfers the map output to the reducer as 

input. So, shuffle phase is necessary for the reducers, otherwise, they would not have any input 

(or input from every mapper). As shuffling can start even before the map phase has finished so 

this saves some time and completes the tasks in lesser time. 

The keys generated by the mapper are automatically sorted by Map-Reduce Framework, i.e. 

Before starting of reducer, all intermediate key-value pairs in Map-Reduce that are generated 

by mapper get sorted by key and not by value. Values passed to each reducer are not sorted; 

they can be in any order. Learn Hadoop Map-Reduce job optimization and performance tuning 

techniques. 

Sorting in Hadoop helps reducer to easily distinguish when a new reduce task should start, thus 

saves time for the reducer. Reducer starts a new reduce task when the next key in the sorted 

input data is different than the previous. Each reduce task takes key – value pairs as input and 

generates key-value pair as output. 

Note that shuffling and sorting in Hadoop Map-Reduce are not performed at all if you specify 

zero reducers (setNumReduceTasks(0)). Then, the Map-Reduce job stops at the map phase, 

and the map phase does not include any kind of sorting (so even the map phase is faster). 

 

 

 



2.5 YARN 

YARN is Yet Another Resource Negotiator, the cutting-edge computation technology and 

cluster administration innovation. YARN gives a stage to build/run numerous distributed 

applications in Hadoop. YARN was released in the Hadoop 2.0 version. In 2012, denoting a 

noteworthy change in Hadoop design. YARN delegates and parts up the obligation into 

different daemons and accomplishes better execution and adaptation to non-critical failure. 

Because of YARN, Hadoop, which could work only as a batch process, can now be designed 

to process interactive and real-time processing systems. This is a huge advantage as many 

systems, machines, sensors, and other sources generate huge data continuously streaming and 

YARN can process this data. YARN architecture is extremely scalable, fault tolerant, and 

processes data faster as compared to MapReduce 1.x. YARN focuses on high availability and 

utilization of resources in the cluster. YARN architecture has the following three components: 

Resource Manager 

In YARN, Resource Manager is the master process manager responsible for resource 

management among the applications in the system. Resource Manager has a scheduler, which 

only allocates the resources to the applications and resource availability which Resource 

Manager gets from containers that provide information such as memory, disk, CPU, network, 

and so on. 

Node Manager 

In YARN, Node Manager is present in all the nodes, which is responsible for containers, 

authentication, monitoring resource usage, and reports the information to Resource Manager. 

Similar to Task Tracker, Node Manager sends heartbeats to Resource Manager. 

Application Master 

Application Master is present for each application, responsible for managing each and every 

instance of applications that run within YARN. Application Master coordinates with Resource 

Manager for the negotiation of the resources and coordinates with the Node Manager to 

monitor the execution and resource consumption of containers, such as resource allocations of 

CPU, memory, and so on. 

 



2.6 Spark 

Apache Spark is a general-purpose & lightning fast cluster computing system. It provides high-

level API. For example, Java, Scala, Python and R. Apache Spark is a tool for Running Spark 

Applications. Spark is 100 times faster than Bigdata Hadoop and 10 times faster than accessing 

data from disk. Spark is written in Scala but provides rich APIs in Scala, Java, Python and R. 

It can be integrated with Hadoop and can process existing Hadoop HDFS data. Apache Spark 

was introduced in 2009 in the UC Berkeley R&D Lab, later it becomes AMP Lab. It was open 

sourced in 2010 under BSD license. In 2013 spark was donated to Apache Software Foundation 

where it became top-level Apache project in 2014. 

The reason why spark came into picture while Hadoop is performing well is because, in the 

industry, there is a need for general purpose cluster computing tool as: 

1. Hadoop MapReduce can only perform batch processing. 

2. Apache Storm / S4 can only perform stream processing. 

3. Apache Impala / Apache Tez can only perform interactive processing 

4. Neo4j / Apache Giraph can only perform to graph processing 

Hence in the industry, there is a big demand for a powerful engine that can process the data in 

real-time (streaming) as well as in batch mode. There is a need for an engine that can respond 

in sub-second and perform in-memory processing. Apache Spark is a powerful open source 

engine that provides real-time stream processing, interactive processing, graph processing, in-

memory processing as well as batch processing with very fast speed, ease of use and standard 

interface. 

Features of Spark 

Spark has numerous features and capabilities worth mentioning, as follows: 

1. Runs 100 times faster than MapReduce when running in-memory and 10 times faster 

when running on disk. 

2. Can process iterative and interactive analytics. 

3. Many functions and operators available for data analysis. 

4. DAG framework to design functions easily. 

5. In-memory based intermediate storage. 

6. Easy to use and maintain.  



7. Written in Scala and runs in JVM environment; applications using Spark can be written 

in Scala, Java, Python, R, Clojure. 

8. Runs in environments such as Hadoop and Mesos, or standalone, or in cloud. 

Limitations of Spark 

1. Problem with small file 

2. No File management system 

3. Expensive 

4. Manual optimization  

5. Iterative processing 

6. Latency 

7. Window Criteria 

8. Less number of algorithms 

9. Does not support real-time processing. 

10. Back pressure handling. 

 

2.7 Flink 

Apache Flink is an open source platform which is a streaming data flow engine that provides 

communication, fault-tolerance, and data-distribution for distributed computations over data 

streams. Flink is a top-level project of Apache. Flink is a scalable data analytics framework 

that is fully compatible to Hadoop. Flink can execute both stream processing and batch 

processing easily. 

The development of Flink is started in 2009 at a technical university in Berlin under the 

stratosphere. It was incubated in Apache in April 2014 and became a top-level project in 

December 2014. Flink is a German word meaning swift/Agile. The logo of Flink is a squirrel, 

in harmony with Hadoop ecosystem. 

The key vision for Apache Flink is to overcome and reduces the complexity that has been faced 

by other distributed data-driven engines. It is achieved by integrating query optimization, 

concepts from database systems and efficient parallel in-memory and out-of-core algorithms, 

with the MapReduce framework. As Apache Flink is mainly based on the streaming model, 

Apache Flink iterates data by using streaming architecture. The concept of an iterative 



algorithm is tightly bounded into Flink query optimizer. Apache Flink’s pipelined architecture 

allows processing the streaming data faster with lower latency than micro-batch architectures 

(Spark). An apache Flink ecosystem is shown in figure 12 and working of Flink is shown in 

figure 13. 

Features of Flink 

1. High performance  

2. Low latency  

3. Lightning fast speed  

4. Fault Tolerance  

5. Stream processing  

6. Scalable 

 

 

Fig 12. Apache Flink Ecosystem 

 



 

Fig 13. Flink Execution Model 

 

 

2.8 Apriori Algorithm 

Just as it is challenging for humans, transactional data makes association rule mining a 

challenging task for machines as well. Transactional datasets are typically extremely large, 

both in terms of the number of transactions as well as the number of items or features that are 

monitored. The problem is that the number of potential itemsets grows exponentially with the 

number of features. Given k items that can appear or not appear in a set, there are 2^k possible 

itemsets that could be potential rules. A retailer that sells only 100 different items could have 

on the order of 2^100 = 1.27e+30 itemsets that an algorithm must evaluate—a seemingly 

impossible task.  

Rather than evaluating each of these itemsets one by one, a smarter rule learning algorithm 

takes advantage of the fact that, in reality, many of the potential combinations of items are 

rarely, if ever, found in practice. For instance, even if a store sells both automotive items and 

women's cosmetics, a set of {motor oil, lipstick} is likely to be extraordinarily uncommon. By 

ignoring these rare (and, perhaps, less important) combinations, it is possible to limit the scope 

of the search for rules to a more manageable size. 

Much work has been done to identify heuristic algorithms for reducing the number of itemsets 

to search. Perhaps the most-widely used approach for efficiently searching large databases for 



rules is known as Apriori. Introduced in 1994 by Rakesh Agrawal and Ramakrishnan Srikant, 

the Apriori algorithm has since become somewhat synonymous with association rule learning. 

The name is derived from the fact that the algorithm utilizes a simple prior (that is, a priori) 

belief about the properties of frequent itemsets. 

 

Table 1. Strengths and Weakness of Apriori Algorithm 

The Apriori algorithm employs a simple a priori belief to reduce the association rule search 

space: all subsets of a frequent itemset must also be frequent. This heuristic is known as the 

Apriori property. Using this astute observation, it is possible to dramatically limit the number 

of rules to be searched. For example, the set {motor oil, lipstick} can only be frequent if both 

{motor oil} and {lipstick} occur frequently as well. Consequently, if either motor oil or lipstick 

is infrequent, any set containing these items can be excluded from the search. 

Now let's consider a simple transaction database. The following table shows five completed 

transactions in an imaginary hospital's gift shop: 

 

By looking at the sets of purchases, one can infer that there are a couple of typical buying 

patterns. A person visiting a sick friend or family member tends to buy a get-well card and 

flowers, while visitors to new mothers tend to buy plush toy bears and balloons. Such patterns 



are notable because they appear frequently enough to catch our interest; we simply apply a bit 

of logic and subject matter experience to explain the rule. 

In a similar fashion, the Apriori algorithm uses statistical measures of an itemsets 

"interestingness" to locate association rules in much larger transaction databases. In the 

sections that follow, we will discover how Apriori computes such measures of interest and how 

they are combined with the Apriori property to reduce the number of rules to be learned. 

Measuring Support & Confidence 

Whether or not an association rule is deemed interesting is determined by two statistical 

measures: support and confidence measures. By providing minimum thresholds for each of 

these metrics and applying the Apriori principle, it is easy to drastically limit the number of 

rules reported, perhaps even to the point where only the obvious or common-sense rules are 

identified. 

The support of an itemset or rule measures how frequently it occurs in the data. For instance, 

the itemset {get well card, flowers}, has support of 3 / 5 = 0.6 in the hospital gift shop data. 

Similarly, the support for {get well card} → {flowers} is also 0.6. The support can be 

calculated for any itemset or even a single item; for instance, the support for {candy bar} is 2 

/ 5 = 0.4, since candy bars appear in 40 percent of purchases. A function defining support for 

the itemset X can be defined as follows: 

 

Here, N is the number of transactions in the database and count(X) is the number of transactions 

containing itemset X. 

A rule's confidence is a measurement of its predictive power or accuracy. It is defined as the 

support of the itemset containing both X and Y divided by the support of the itemset containing 

only X: 

 



Essentially, the confidence tells us the proportion of transactions where the presence of item or 

itemset X results in the presence of item or itemset Y. Keep in mind that the confidence that X 

leads to Y is not the same as the confidence that Y leads to X. For example, the confidence of 

{flowers} → {get well card} is 0.6 / 0.8 = 0.75. In comparison, the confidence of {get well 

card} → {flowers} is 0.6 / 0.6 = 1.0. This means that a purchase involving flowers is 

accompanied by a purchase of a get-well card 75 percent of the time, while a purchase of a get-

well card is associated with flowers 100 percent of the time. This information could be quite 

useful to the gift shop management. 

 

2.9  FP-Growth Algorithm 

FP-tree based frequent itemset mining technique, called FP-Growth, created by Han et al 

accomplishes high proficiency, in comparison to Apriori-like approach. The FP-Growth 

technique embraces the divide-and-conquer system, utilizes just two full I/O scans of the 

database, and keeps away from iterative candidate generation. Frequent pattern mining consists 

of two steps: 

1. Building a compact data structure, FP Tree (frequent pattern tree), which stores 

more data in less space. 

2. Second is building of a FP-tree based pattern growth (FP-Growth) strategy to reveal 

every frequent pattern recursively. 



 

Fig 14. Construction of FP Tree 

Constructing of FP-tree involves two scans on transaction database. The primary scan aggregates the 

support of every item and afterward chooses items that fulfil minimum support. This strategy produces 

frequent 1-itemsets and after that stores them in frequency descending order. The second scan builds 

FP-tree. 

The FP-Tree is a compressed representation of the input. While reading the data source each transaction 

t is mapped to a path in the FP-Tree. As different transaction can have several items in common, their 

path may overlap. With this it is possible to compress the structure. 

First a transaction t is read from the database. The algorithm checks whether the prefix of t maps to a 

path in the FP-Tree. If this is the case the support count of the corresponding nodes in the tree are 

incremented. If there is no overlapped path, new nodes are created with a support count of 1. Figure 15 

shows the corresponding activity diagram using an UML (Unified Modelling Language) activity 

diagram. 



 

Fig 15. Activity Diagram 

Additional a FP-Tree uses pointers connecting between nodes that have the same items creating 

a singly linked list. The corresponding FP-Tree is used to extract frequent item sets directly 

from this structure. Each node in the tree contains the label of an item along with a counter that 

shows the number of transactions mapped onto the given path. 

In the best-case scenario, there is only a single node, because all transactions have the same set 

of items. A worst-case scenario would be a data source where every transaction has a unique 

set of items. Usually the FP-tree is smaller than the uncompressed one, because many 

transactions share items. 

As already mentioned the algorithm has to scan the data source twice. 

• Pass 1: The data set is scanned to determine the support of each item. The infrequent 

items are discarded and not used in the FP-Tree. All frequent items are ordered based 

on their support. 

• Pass 2: The algorithm does the second pass over the data to construct the FP-tree. 

The following example shows how the algorithm works 



According to Figure 14 the first transaction is {a,b}. Because the tree is empty, two nodes a 

and b with counter 1 are created and the path null→a→b is created. 

After {b, c, d} was read, three new nodes b, c and d have to be created. The value for count is 

1 and a new path null→b→c→d is created.  Because the value b was already in transaction 

one, there is a new pointer between the b's (dashed lines). 

The transaction {a, c, d, e} overlaps with transaction one, because of the a in the first place. 

The frequency count for a will be incremented by 1. Additional pointers between the c's and 

d's are added. 

After each transaction was scanned, a full FP-Tree is created. Now the FP-Growth algorithm 

uses the tree to extract frequent item sets. 

Extract frequent item sets 

A bottom-up strategy starts with the leaves and moves up to the root using a divide and conquer 

strategy. Because every transaction is mapped on a path in the FP-Tree, it is possible to mine 

frequent item sets ending in a particular item, for example e or d. So according to Figure 16, 

the algorithm first searches for frequent item sets ending with e and then with d, c, b and a until 

the root is reached. Using the pointers, each the paths can be accessed very efficient by 

following the list. Furthermore, each path of the tree can be processed recursively to extract 

the frequent item sets, so the problem can be divided into smaller subproblems. All solutions 

are merged at the end. This strategy allows to execute the algorithm parallel on multiple 

machines. 



 

Fig 16. Extraction of frequent items from FP tree 

The FP-Growth algorithm finds all item sets ending with a specified suffix using the divide 

and conquer strategy. Assume the algorithm analyses item sets ending with e. To do so, first 

the item set e has to be frequent. This can be done using the corresponding FP-Tree ending in 

e. If it is frequent, the algorithm has to solve the subproblem of finding frequent item sets 

ending in de, ce, be and ae. These subproblems are solved using the conditional FP-Tree. The 

algorithm for generating FP tree and extracting the frequent itemset are as follows: 

 



2.10 Related Work 

She Xiangyang [6] presents an Apriori enhanced calculation of parallel association rules based 

on MapReduce. The strategy accomplishes its parallelization through the MapReduce 

structure, streamlines unique database to recreate the transaction record database and produces 

the frequent itemsets, and requests in rising the frequent item sets as per the support degree, at 

that point mines frequent item sets in the cluster. 

Dachuan [7] Huang proposes new upgrades to the MapReduce usage of FIM calculation by 

presenting a cache layer and a particular online analyzer. They assessed the adequacy and 

productivity of Smart Cache by means of broad trials on four open datasets. Smart Cache can 

lessen by and large 45.4%, and up to 97.0% of the aggregate execution time compared with the 

state-of-the-art solution. 

Feng Gui [8] proposed DPBM, an appropriated framework construct pruning calculation 

situated in light of Spark, which manage FIM (frequent Itemsets mining). DPBM incredibly 

decrease the measure of candidate itemset by presenting an innovative pruning strategy for 

matrix-based frequent itemset mining algorithm, an enhanced Apriori calculation which just 

needs to check the input data once. What's more, every PC node lessens enormously the 

memory utilization by implementing DPBM under a most recent distributed-environment 

Spark, which is an exceptionally quick distributed computing. The exploratory outcomes 

demonstrated that DPBM have preferable execution time over MapReduce-based calculations 

on frequent itemset mining as far as speed and scalability is concerned. 

Jian Guo [9] presents CMR-Apriori calculation which depends on the conventional Apriori 

calculation that consolidates Map/Reduce parallel execution, with Map/Reduce programming 

model and related encoding operation. Through twice Map/Reduce process, CMR-Apriori 

calculation enormously decreases the running time of the algorithm, tackling issues utilizing 

proficient and exact calculations. 

Yihua Huang [10] proposed YAFIM (Yet Another Frequent Itemsets Mining), a parallel 

Apriori calculation in light of the Spark RDD structure an uncommonly composed in-memory 

parallel processing model to bolster iterative calculations and intuitive information mining. 

Experimental results demonstrate that, contrasted with the calculations implemented with 

MapReduce, YAFIM accomplished 18× speedup in normal for different benchmarks. 



Sheng-Hui Liu [11], introduced an enhanced reformative Apriori calculation that uses the 

length of every transaction to decide the extent of the most extreme candidates itemset. By 

reducing the creation of low frequency itemset in Map function, memory depletion is enhanced, 

incredibly enhancing execution effectiveness. 

Run-Ming Yu [12] changed the conventional Apriori calculation by enhancing the execution 

productivity. Since the single-phase calculation just utilized only one MapReduce operation, it 

will produce unnecessary candidates itemset and result in deficient memory. He outlined and 

implemented a proficient algorithm: FPM (Frequent Patterns Mining) Algorithm solely based 

on MapReduce Framework (FAMR).  

Ning Li [13] implemented a parallel Apriori calculation in light of MapReduce, which is a 

structure for handling tremendous datasets on specific sorts of distributable issues utilizing 

countless number of computer nodes. The test comes about which exhibits that the proposed 

calculation can scale well and proficiently handle substantial large datasets on commodity 

hardware. 

Xueyan Lin [14] presented the MapReduce programming model of Hadoop platform and 

Apriori calculation of data mining, proposes the detailed steps of MR-Apriori calculation. 

Theoretical and experimental results indicated MR-Apriori calculation make a sharp increment 

in proficiency.  

Zhuobo Rong [15] utilizes the possibility of MapReduce parallel programming, the great 

Apriori and FP-Growth calculation are relocated to the MapReduce environment keeping in 

mind the end goal to effectively take care of the current issues of Apriori and FP-Growth 

calculation in the conventional usage techniques, and address the needs of large-scale data 

association rules mining. 

Manoj Sethi [16] proposes a new algorithm for frequent itemset mining called “Sandwich 

Apriori” which is a combination of Apriori and Reverse-Apriori with new improved pruning 

technique. The evaluation results showed that proposed approach is efficient in terms of 

execution time and number of candidate itemsets generated, then traditional Apriori. 

             Table 2 shows the summary of the techniques studied in related work. 

  



Technique Platform Algorithm 

improved 

Achieved Remark 

K-map 

Apriori 

MapReduce Apriori Scalability and works in 

only K phase 

High waiting time 

between two phases 

MR-

Apriori 

MapReduce Apriori Scalability and works in 

only two phases 

Perform 

insignificantly if 

generation of k-

frequent itemset is 

huge, each node 

takes insignificant 

amount of time 

IPARBC MapReduce Apriori Performance is better Permutation 

Process brings large 

complexity 

DPBM MapReduce Apriori Is more efficient  Scope for further 

Improvement 

IMR-

Apriori 

MapReduce Apriori Perform well and much 

scalable 

 

SeaRum MapReduce Apriori Parallelization of 

association rule 

extraction phase and 

provide SaaS platform  

PRAMA MapReduce Apriori Near-Linear speed-up, 

High scalability, reduce 

duplicates, Extract rules 

Directly 

Combines Random 

sampling and 

Parallelization 



YAFIM Spark RDD Apriori Faster computation Faster computation 

than MapReduce 

NIMBLE NIMBLE Apriori Portable, support rapid 

prototyping 

Designed for fast 

and efficient 

implementation of 

MLDM algorithms 

PEMA MapReduce Apriori reduced the response 

time and communication 

cost 

used only for 

homogeneous 

DARM 

environment 

R-Apriori MapReduce Apriori improved performance 

as size of the dataset and 

no. of items increases 

 

FIM using 

distributed 

computing 

MapReduce Apriori Gives better time 

complexity and space 

complexity 

 

DPA  MapReduce Apriori Reduce Processor idle 

time 

Have certain 

limitation 

Table 2. Summary of Techniques 

	

2.11 Chapter Summary 

This chapter identified the features and limitations of MapReduce frameworks and the famous 
Apriori and FP-growth algorithms. The various studies proposing advanced models of these 
two algorithms has been discussed in related work section. 

 

 

 



CHAPTER 3 

 

SYSTEM PARADIGM 

 

This chapter illustrates the approach that helps in understanding the behavior of the Apriori 

and FP-growth algorithm on different MapReduce frameworks while working on variety of 

Datasets. We also compared both the algorithms on different platforms. Section 3.1 gives an 

overview of the research undertaken. Section 3.2 portraits the architectural view of the 

proposed paradigm. Section 3.3 describes each module of the system and how it works. Lastly, 

Section 3.4 gives the summary of the chapter.  

 

3.1  Proposed Framework 
Due to the increase in Web services and use of computers in most of the businesses, the amount 

of data available online and offline has changed drastically in terms of volume as it has become 

a global source of useful information. Analyzing such an amount of data manually is 

impossible, so the researchers has proposed various algorithms to analyses and for mining the 

patterns available in data to predict the current trends in the society going on. Some platforms 

have also been developed to ease this process for organizations. But each organization has 

different type of data in terms of size, rate of increase of data, number of attributes, structured 

or unstructured data. Not every algorithm or platform is suitable in all the circumstances.  

 

Use of association rules in understanding the patterns in data is increasing day by day. 

Association rules are if then statements, which relate two or more terms by analyzing the 

frequent occurrence of the more than two articles together. Association rules has revolutionized 

the Advertising industry, how to make a customer buy a product has become a lot easier than 

earlier times. Earlier, the products were mainly available at the brand’s store, so when a person 

goes to buy a product, say toothpaste, by applying the association mining by the owner, the 

chances of buying the mouth freshener or tooth brush are more than combination of toothpaste 

and room freshener. So, to increase the sale of products the items were arranged in such a 



manner that if person came to buy one thing, his chances of buying other thing rises. This 

method of rising the sales is association rule mining, but was applied manually. 

 

These days, a lot of people do shopping online, so now to analyses that huge data we need 

some code which will automatically detect the frequent items that has been sold together. A lot 

of algorithms has been proposed, the most famous ones are Apriori and FP-growth. In digital 

world, when a customer selects an item to add to his cart, the association rule mining is done 

to suggest the items that they might brought together as indicated by the stored data. For 

example, while purchasing a kurta, the matching lagging will be shown as in recommended 

section, and the earrings of the same color are shown, as it was deducted from previous sales 

data, that a person usually brought matching legging with the kurta. Similarly, when we select 

a pizza for home delivery, it starts suggestions regarding adding cold-drink and other sides like 

garlic bread, but it will not show pasta in the recommendations, as not many people purchase 

pizza and pasta together. So, to upraise the business association rule based algorithms for 

frequent item set mining algorithms are used by most of the organizations these days. 

 

To understand the applicability of MapReduce Frameworks, Apriori and FP-Growth were 

implemented on three different datasets of different sizes on Apache Hadoop, Apache Spark 

and Apache Flink. The results of these two algorithms are compared on all three platforms on 

three different dataset conditions to recognize the conditions suitable for each algorithm in 

different situations. 

In addition to the obvious value to the advertising industry, the research community has long 

sought mechanisms to effectively disseminate new scientific discoveries and technological 

breakthroughs so as to advance our collective knowledge and elevate our civilization.  

 

 

 

 

 
 

 

 



3.2  Architectural View 

 

 
Fig 17. Pictorial view of System paradigm 

The system firstly retrieves the data from online stores. The data is converted into item sets, 

each item set represents items brought together. Both the association rule mining algorithms 

are run on these three datasets separately on each of the MapReduce platforms. The time taken 

to generate the frequent items are recorded for each of the six implementations during the three 

trails for different data sets. The average of the three iterations are averaged to conclude the 

algorithm that performs good in all the conditions.  Figure shows the overview of the system 

proposed in this research. 

 

 

3.3 Chapter Summary 
This chapter explains the work done in this project. 
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CHAPTER 4 

 

IMPLEMENTATION 

 

In this chapter, we will discuss the experimental setup of the research work done. First section 

will discuss the data set followed by programming tools used for programming. In the next 

section, a case study is discussed to elaborate the working. In the last section summary of the 

chapter is given. 

 

4.1. Data Set 
The data set used in this research is collected from SPMF- An open source data mining library. 

It is a repository which specialized in pattern mining. We have taken three data sets from this 

data mining library of different size. The first data set is named as ‘Food Mart’, it is a dataset 

of customer transactions from a retail store, it contains 4141 entries. Entries are regarding 1554 

different items. Second dataset is T1014D100K which contains 870 number of items and 

100000 number of transaction. Third dataset is termed as ‘Online Retail’, it is transformed from 

the Online retail dataset, it contains 541909 transaction entries of 2603 items.  

 

4.2. Programming Tool 

The three MapReduce frameworks- Apache Hadoop, Apache Spark and Apache Flink are used. 

The coding of two algorithms in these three platforms is done in java and python. 

 

4.3. Evaluation Methods 

To evaluate the performance of the different MapReduce frameworks ‘time’ is taken as the 

evaluation metric to fetch the frequent itemset. 

 



4.4. Programming Tools and software used 

Operating System:  Windows 10 

Language used:  Python, Java 

Dependencies:      Maven, Apache Commons Language 3.4 

Mining Tool:        Hadoop, Spark, Flink 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

 

RESULTS & ANALYSIS 

 

In this chapter, we show the results obtained by our work. Section 5.2 analyze the results to 

understand which algorithm perform best in which framework. 

 

5.1 Output 

 

 



 

 

 



 

 

 

 

 



5.2 Analysis 

 For Food Mart dataset with around 4000 transaction and minimum support of 0.1%, Hadoop 

takes approximately 26 seconds whereas Spark and Flink takes 20 and 11 seconds, respectively. For 

T1014D100K dataset with around 100000 transaction and minimum support of 0.3%, Hadoop takes 

approximately 61 seconds whereas Spark and Flink takes 44 and 31 seconds, respectively. 

Figure 20 shows the scalability of MR Apriori algorithm on three different platforms for the Online 

Retail dataset with around 500000 transaction and minimum support of 0.5%. Figure 21 compares the 

performance of Parallel FP Growth algorithm on three different platforms. Figure 22 analyses the 

scalability of PFP on Spark and Flink on dataset T1014D100K with minimum support of 0.5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

 

CONCLUSION  
 

This chapter concludes the contributions made by this thesis. Also figure out the limitation of 

the work done and briefly discuss the future scope of the research.  

 

6.1 Research Summary 

The study in this work presents Flink based MR Apriori and Parallel FP Growth which is 

applied to mine frequent patterns from extensive datasets. It utilizes essential Apriori 

requirement that an itemset must be frequent if only all its non-empty subset is frequent. It is 

executed on Apache Flink, Apache Spark and Apache Hadoop which gives parallel and 

distributed processing condition. Flink is most appropriate for Apriori in light of the fact that 

Apache Flink have local support for iterative calculation and Apriori is based upon iterative 

calculation. Flink's pipelined design enable us to begin another Apriori iteration when few 

results of previous iteration are available. Delta cycle usefulness of Flink makes Apriori 

exceptionally parallel and powerful calculation for colossal datasets. In Summary, we have 

presented an execution of Apriori and FP Growth on Hadoop, Spark and Flink and tried to 

compare with various datasets. We also demonstrated that Flink based Apriori is equipped for 

dealing with extensive transactional-based datasets effortlessly. 

6.2 Limitations 

In this research experiments were conducted in controlled environment and virtual machine 

were used to simulate the behavior of distributed environment. Also, one node cluster was used 

for results.  

 

 

 

 

 

 



6.3 Future Scope 

Since Flink is the one of the most recent advancement in the field of Big data, not much work 

has been conducted to see how it performs with other distributed platforms. Also, not even a 

single algorithm in the field of association rule mining is introduced till date. Our work can be 

extended to cover large computer clusters dataset with more than one tera bytes. Additionally, 

we can apply this parallel version of Apriori and FP Growth to various application domain such 

as weather data, internet traffic, medical information etc. We can also use these algorithms to 

generate different and interesting association rule faster and effectively.  
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