A MAJOR PROJECT REPORT ON

APPLICATION OF CALINE 4 MODEL TO PREDICT PM_{2.5} CONCENTRATION IN MEGACITY DELHI

Submitted in partial fulfillment of the requirements For the award of the degree of

> MASTER OF TECHNOLOGY IN ENVIRONMENTAL ENGINEERING

> > Submitted by PRADEEP KUMAR

> > > 2K13/ENE/08

Under the Guidance of Dr. Rajeev Kumar Mishra Assistant Professor Department of Environmental Engineering

DEPARMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING) NEW DELHI - 110042.

CERTIFICATE

This is hereby certify that the major project (II) report entitled "APPLICATION OF CALINE 4 MODEL TO PREDICT PM_{2.5} CONCENTRATION IN MEGACITY DELHI" submitted by PRADEEP KUMAR (ROLL NO: 2K13/ENE/08) as a record of the work carried by him, is accepted as major project (II) work submission in fulfillment of the requirement for the award of degree of Masters of Technology in Environmental Engineering in the Department of Environmental Engineering, Delhi Technological University, Delhi-110042

Dr. Rajeev Kumar Mishra

Assistant Professor, Department of Environmental Engineering Delhi Technological University New Delhi- 110042

CANDIDATES'S DECLARATION

I hereby declare that the work being presented in the dissertation title "APPLICATION OF CALINE 4 MODEL TO PREDICT PM2.5 CONCENTRATION IN MEGACITY DELHI" in partial fulfillment of the requirements for the award of degree of Master of Technology in Environmental Engineering, submitted in the department of Environmental Engineering, Delhi Technological University (formerly Delhi College of Engineering), Delhi, is an authentic record of my own work and carried out by me under the supervision of Dr. Rajeev k. Mishra, Assistant Professor, Department of Environmental Engineering, Delhi Technological University (formerly Delhi.

The matter embodied in this dissertation has not been submitted by me for the award of any other degree or diploma.

Delhi

Dated: May 2017

Pradeep Kumar

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

Dr. Rajeev Kumar Mishra

Assistant Professor, Department of Environmental Engineering Delhi Technological University New Delhi- 110042

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a few people who have supported me with their words and deeds in completion of my dissertation work as part of this course of Master of Technology in Environmental Engineering.

I wish to express my deep sense of gratitude to **Dr. Rajeev Kumar Mishra**, Assistant Professor, Department of Environmental Engineering, Delhi Technological University (formerly Delhi College of Engineering), New Delhi and **Prof. A.K Gupta**, Head of Department, Department of Environmental Engineering, Delhi Technological University (formerly Delhi College of Engineering), Delhi for their kind help, timely suggestions and constant encouragement throughout the course of this thesis work.

I wish to express my sincere thanks to Mr. Amrit kumar Ph.D Research scholar and lab staff of Department of Environmental Engineering, Delhi Technological University (formerly Delhi College of Engineering), Delhi for helping me in various phases of my work.

I also wish my sincere gratitude to the entire faculty of Environmental Engineering for extending all the help possible for me.

I also wish to express my profound gratitude to all my family members and well wishers for the faith imposed in me and without whose patience and blessings this thesis would not have reached its present form.

A word of thanks also goes to my friends who have provided valuable suggestions and inputs during the various phases of my work.

Pradeep Kumar Roll No. 2K13/ENE/08

ABSTRACT

The current trends in urban development, including growth of road transport, increasing energy demand and rising house hold consumption causes severe damage to urban environment, health and quality of life in cities. Rapid increase of the vehicle population in mega cities has results in the poor environmental quality and human health. Ambient concentrations of air pollutants at major traffic intersections are exceeding the National Ambient Air Quality Standards (NAAQS) in Delhi. The people are exposed to higher pollution levels which causes health problems i.e. respiratory diseases. Hence, an attempt was made using CALINE 4 model to estimate fine particulate matter (PM_{2.5}) concentrations at roadways of Madhuban chowk, Janpat, Punjabi Bagh, Karol Bagh, Uttam nagar, Laxmi nagar in Delhi. Traffic analysis of roadways was conducted on hourly basis and traffic volume is found in units of vol./hr. Peak flows of traffic were recorded between 10:00AM to 12.00 Noon at Madhuban Chowk, 11:00 AM to 13.00 Noon at Janpat, 11:00 AM to 13.00 Noon and 17:00 eve to 19.00 eve at Punjabi Bagh, 16:00 noon to 17.00 Eve at Karol Bagh 15:00 noon to 17.00 eve at Uttam Nagar, 17:00 eve to 19.00 eve at Laxmi nagar. Concentraton of PM_{2.5} is measured for every minute time interval. Measured PM_{2.5} with EPAM HAZ-5000 was ranged from 889 μ g/m³ to 399 μ g/m³ at Madhuban Chowk, 842 $\mu g/m^3$ to 102 $\mu g/m^3$ at Janpat, 267 $\mu g/m^3$ to 7 $\mu g/m^3$ at Punjabi Bagh, 410 $\mu g/m^3$ to 21 $\mu g/m^3$ at Karol Bagh, 520 μ g/m³ to 11 μ g/m³ at Uttam Nagar, 514 μ g/m³ to 25 μ g/m³ at Laxmi Nagar. Hourly average measured PM_{2.5} ranged between 680 μ g/m³ to 432 μ g/m³ at Madhuban Chowk, 372 μ g/m³ to 150 μ g/m³ at Janpat, 142 μ g/m³ to 26 μ g/m³ at Punjabi Bagh, 111 μ g/m³ to 57 μ g/m³ at Karol Bagh, 217 μ g/m³ to 38 μ g/m³ at Uttam Nagar, 173 $\mu g/m^3$ to 81 $\mu g/m^3$ at Laxmi Nagar. Estimated PM_{2.5} concentrations using CALINE 4 hourly average ranged from from 680.8 μ g/m³ to 432.7 μ g/m³ at Madhuban Chowk, 379.4 μ g/m³ to 155.4 μ g/m³ at Janpat, 170.8 μ g/m³ to 41.3 μ g/m³ at Punjabi Bagh, 120.7 μ g/m³ to 61.4 μ g/m³ at Karol Bagh, 226.6 μ g/m³ to 42.7 μ g/m³ at Uttam Nagar, 192.1 μ g/m³ to 82.2 μ g/m³ at Laxmi Nagar. Maximum concentrations were observed in evening time than in morning or afternoon time. The estimated concentrations of PM2,5were compared with measured concentrations of PM_{2.5}. The eight hourly average of observed and predicted values are 625 $\mu g/m^3$ and 625.8 $\mu g/m^3$ at Madhuban Chowk, 254.44 $\mu g/m^3$ and 264.48 $\mu g/m^3$ at Janpat, 90.11 μ g/m³ and 114.56 μ g/m³ at Punjabi Bagh, 91.37 μ g/m³ and 98.63 μ g/m³ at Karol bagh, 86.67 μ g/m³ and 92.72 μ g/m³ at Uttam Nagar, 124.44 μ g/m³ and 131.37 μ g/m³ at Laxmi

Nagar. The comparison is done using Normalized Mean Square Error (NMSE), Fractional Bias (FB), and Geometric Mean Bias (GMB) and the results of NMSE, FB and GMB were found to be within prescribed limits as NMSE value is less than 0.50, FB value is from -0.5 to +0.5, and GMB varies between 0.75 to 1.25. Hence, CALINE 4 model is a useful tool to estimate the particulate matter concentrations near roadways in the city like Delhi.

CONTENTS

Candidate's Declaration Acknowledgement Abstract List of Tables List of Figures

1. Introduction	01	
1.1 Background	01	
1.2 Urban areas- the focus of air pollution	03	
1.3 Meteorological influence in urban air pollution	04	
1.4 Health effects associated with PM		
1.5 Sources of particulate matter	07	
1.6 Global scenario of PM _{2.5} pollutant		
1.7 Indian scenario of PM _{2.5} pollutant	09	
1.8 Line source emission modeling	09	
2. Literature Review	11	
2.1 Particulate Matter	11	
2.1.1 National Level	11	
2.1.2 International Level	14	
2.2 CALINE 4 Model	18	
2.3 Health effects due to Particulate Matter	20	
3. Research Methodology	23	
3.1 Methodology	23	
3.2 Study Area		
3.2.1 General	24	
3.2.2 Identification of locations	24	
3.3 Characteristics of instruments	25	
3.4 Determination of the performance of model27		
3.4.1 Geometric Mean Bias		

3.4.2	Fractional Bias	28
3.4.3	Normalized Mean Square Error	.29
3.4.4	Correlation coefficient	29
3.5 Ob	jectives of study	29

4. Data Analysis and Result Discussion	30
4.1 Monitoring and Modeling Analysis of PM _{2.5} at Madhuban Chowk	30
4.2 Monitoring and Modeling Analysis of PM _{2.5} at Janpat	34
4.3 Monitoring and Modeling Analysis of PM _{2.5} at Punjabi Bagh	38
4.4 Monitoring and Modeling Analysis of PM _{2.5} at Karol Bagh	42
4.5 Monitoring and Modeling Analysis of PM _{2.5} at Uttam Nagar	46
4.6 Monitoring and Modeling Analysis of PM _{2.5} at Laxmi Nagar	50

5.	Conclusion5	54

rences

LIST OF TABLES

Table No.	Title	Page No.
1.1	National Ambient Air Quality Standards by CPCB	4
1.2	Air Quality Guidelines (AQG) values for PM by WHO	4
3.1	Selected locations and their land use pattern	24
4.1	Traffic Volume and Weighted Emission Factor for traffic at madhuban Chowk (Towards Kohat Enclave)	31
4.2	Traffic Volume and Weighted Emission Factor for traffic at madhuban Chowk (Towards Rithala)	
4.3	Meteorological data for Madhuban Chowk	31 32
4.4	Receptor location for Madhuban Chowk	32 32
4.5	CALINE 4 results and hourly average measured concentration with performance indicators	
1.5		33
4.6	Traffic Volume and Emission Factor for traffic at Janpat (Towards CP)	35
4.7 4.8	Traffic Volume and Emission Factor for traffic at Janpat (Opposite CP) Meteorological data for Janpat	35
4.8 4.9	Receptor location for Janpat	36
4.9	CALINE 4 results and hourly average measured concentration with	36
4.10	performance indicators	27
4.11	Traffic Volume and Emission Factor for traffic at Punjabi Bagh (Towards Shivaji Metro Station)	37
4.12	Traffic Volume and Emission Factor for traffic at Punjabi Bagh (Towards	39
7.12	Punjabi Bagh metro station)	39
4.13	Meteorological data for Punjabi Bagh	40
4.14	Receptor location for Punjabi Bagh	40
4.15	CALINE 4 results and hourly average measured concentration with performance indicators	41
4.16	Traffic Volume and Emission Factor for traffic at Karol Bagh (Towards Jhandewalan to karol bagh)	43
4.17	Traffic Volume and Emission Factor for traffic at Karol Bagh (Towards Rajiv Chowk)	
4.18	Meteorological data for Karol Bagh	43
4.19	Receptor location for Karol Bagh	44
4.20	CALINE 4 results and hourly average measured concentration with performance indicators	44
4.21	Traffic Volume and Emission Factor for traffic at Uttam Nagar (Towards Nazafgarh)	45
4.22	Traffic Volume and Emission Factor for traffic at Uttam Nagar (Towards Uttam Nagar East)	47
1 22	-	47
4.23 4.24	Meteorological data for Uttam Nagar Receptor location for Uttam Nagar	48
4.24 4.25	CALINE 4 results and hourly average measured concentration with	48
1.20	performance indicators	48

4.26	Traffic Volume and Emission Factor for traffic at Laxmi Nagar (Towards ITO)	51
4.27	Traffic Volume and Emission Factor for traffic at Laxmi Nagar (opposite side)	
		51
4.28	Meteorological data for Laxmi Nagar	52
4.29	Receptor location for Laxmi Nagar	52
4.30	CALINE 4 results and hourly average measured concentration with	
	performance indicators	53

LIST OF FIGURES

Figure No.	Title	Page No.
1.1	Breathing zones of Inhalable, Thoracic, and Respirable dust particles	07
1.2	Pollution sources contribution to Total PM _{2.5}	08
1.3	Estimated 2005 annual average $PM_{2.5}$ concentrations (μ g/m3), presented according to the WHO AQG and interim target values	08
1.4	Annual Mean PM _{2.5} concentration of cities of India as per WHO (Outdoor Air Pollution Database 2011)	09
3.1	Map of Delhi Showing Identified Locations of Study	25
3.2	The principle of near-forward light scattering used in the Haz- Dust	26
3.3	Haz-Dust EPAM-5000 with its accessories	27
4.1	Variation of PM _{2.5} throughout the day at Madhuban Chowk	30
4.2	Linear regration analysis between measured and predicted concentration at Madhuban Chowk	33
4.3	Variation of PM _{2.5} throughout the day at Janpat	34
4.4	Linear regration analysis between measured and predicted concentration at Janpat	37
4.5	Variation of PM _{2.5} throughout the day at Punjabi Bagh	38
4.6	Linear regration analysis at between measured and predicted concentration Punjabi Bagh	41
4.7	Variation of PM _{2.5} throughout the day at Karol Bagh	42
4.8	Linear regration analysis between measured and predicted concentration at Karol Bagh	45
4.9	Variation of PM _{2.5} throughout the day at Uttam nagar	46
4.10	Linear regration analysis between measured and predicted concentration at Uttam Nagar	49
4.11	Variation of PM _{2.5} throughout the day at Laxmi Nagar	50
4.12	Linear regration analysis between measured and predicted concentration at Laxmi Nagar	53