
Android Malware Detection Using
Neural Networks with NEAT

A Dissertion submitted in the partial fulfilment for the award of

Degree of Master of Technology

in

Software Engineering

by

Shubham Jain

(2K15/SWE/17)

Under the Guidance of

Dr.Kapil Sharma

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

Bhawana Road, Delhi

Certificate

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

Bhawana Road, Delhi

It is certified that the work contained in this thesis entitled ”Android Malware Detection

Using Neural Networks with NEAT” by ”Shubham Jain” is an authentic work

which has been carried out under my supervision. The content embodied in this thesis

has not been submitted elsewhere for the award of any degree to the best of my knowledge

and belief.

Dr. Kapil Sharma

Head of Department

Department of Information Technology

Delhi Technological University

Bhawana Road, Delhi

i

http://www.dtu.ac.in
http://www.dtu.ac.in

Declaration

I hereby want to declare that the thesis entitled ”Android Malware Detection Using

Neural Networks with NEAT” which is being submitted to the Delhi Technological

University , in the partial fulfilment of the requirements for the award of degree in

Master of Technology in Software Engineering is an authentic work carried out

by me. The material contained in the thesis has not been submitted to any institution

or university for the award of any degree.

Shubham Jain

Department of Computer Engineering

Delhi Technological University

Bhawana Road, Delhi

ii

http://www.dtu.ac.in
http://www.dtu.ac.in

Acknowledgement

I take this opportunity to express my deep sense of gratitude and respect towards my

guide Dr.Kapil Sharma Department of Information Technology.

I am very much indebted for his generosity, expertise and guidance I have received

from him while working on this project. Without his support and timely guidance the

completion of the project would not be possible. In this respect I find myself blessed to

have my guide. He have guided not only with the subject matter, but also taught the

proper style and techniques of documentation and presentation.

I would like to express my gratitude to the university for providing us with the laboratories,

infrastructure, testing facilities and environment which allowed us to work without any

obstructions.

I would also like to thanks to the Almighty God with his blessings I had an opportunity

and strength to do this wonderful project and studies, as well as to my parents who always

support me and guide me in the right direct direction with their incredible experiences

of life.

Shubham Jain

2K15/SWE/17

M.Tech Software Engineering

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Related Work . 2

1.3 Problem Statement . 3

1.4 Scope of Work . 4

1.5 Organization of Thesis . 5

2 Literature Review 6

2.1 Android System Architecture . 6

2.1.1 Linux kernel . 6

2.1.2 Libraries . 7

2.1.3 Android runtime . 8

2.1.4 Application framework . 8

2.1.5 Applications . 9

2.2 Dalvik Virtual Machine . 9

2.2.1 Hardware Constarints . 10

2.2.2 Bytecode . 11

2.2.3 Register-based Architecture . 11

2.3 Android Application . 12

2.3.1 Application components . 15

2.3.2 Distribution . 15

2.4 Malware . 16

2.4.1 Spywares . 16

2.4.2 Graywares . 17

2.4.3 Fraudwares . 17

2.4.4 Trojans . 17

2.4.5 Root exploits . 17

2.4.6 Bots . 18

2.4.7 Malware with Privilege Escalation Exploits 18

2.4.8 Types of Malware Penetration Techniques 19

2.4.9 Malware Datasets . 19

3 Machine Learning in Android Malware Detection 20

3.1 Android Application Structure . 20

iv

Contents v

3.1.1 Android Security Mechanism . 21

3.1.2 Android Permission Setting . 23

3.1.3 Android API calls . 27

3.2 Extracting the features using Static Analysis from the Android Application 27

3.2.1 Androguard . 28

3.2.2 APK Tool . 28

3.3 Machine learning Techniques Used . 29

3.3.1 Decision Trees . 29

3.3.2 Support Vector Machine . 32

3.3.3 Artificial Neural Networks . 34

3.4 Performance Measure of Different Techniques 39

3.4.1 Precision . 39

3.4.2 Recall . 39

3.4.3 Accuracy . 40

3.4.4 F1-score . 40

3.4.5 ROC Curve . 40

4 Artificial Neural Networks with NEAT 41

4.1 Background . 41

4.1.1 TWEANN Encoding . 42

4.1.2 Binary Encoding . 42

4.1.3 Graph Encoding . 42

4.1.4 Nominating . 42

4.1.5 Indirect Encoding . 43

4.2 NeuroEvolution of Augmenting Topologies 43

4.2.1 Genetic Encoding . 43

4.2.2 Mutation . 44

4.2.3 Steps involved in NEAT . 49

4.3 Analysis of NEAT & Backpropagation Algorithm 49

5 Results and Evaluation 50

5.1 Implementaion . 50

5.1.1 Results . 50

5.2 Evaluation . 55

6 Conclusion and Future Work 58

6.1 Conclusion . 58

6.2 Future Work . 58

Bibliography 60

List of Figures

1.1 Mobile Operating System Market Share 2

1.2 Android Malware Expected Growth . 4

2.1 Android Platform Low Level System Architecture 7

2.2 DEX file creation . 11

2.3 Dex file creation . 12

2.4 Android APK build process . 14

3.1 Android App asking for permissions . 23

3.2 Most permission requested by the android applications 24

3.3 Steps in Feature Extraction from Android APK 29

3.4 Decision tree with its components . 30

3.5 Iris Decision Tree . 31

3.6 Linear SVM and its hyperplane on left and non linear separable space
separated using the polynomial kernel on right 33

3.7 Transformation of the feature training data 34

3.8 Derivation of ANN from a biological Neuron 35

3.9 Effects of different learning rates . 38

3.10 ROC curves . 40

4.1 Genome of the topology of Neural Network by NEAT 44

4.2 Point Mutate by NEAT . 45

4.3 Link Mutate by NEAT . 46

4.4 Node Mutate by NEAT . 47

4.5 Enable/Disable mutate by NEAT . 47

4.6 Crossover between Genome in NEAT . 48

5.1 Decision tree with gini index . 51

5.2 Decision tree with information gain . 52

5.3 Neat with the average and best fit generation 54

5.4 ROC of Decision Tree . 56

5.5 ROC of SVM . 56

5.6 ROC of Neural Networks . 56

5.7 ROC of NEAT . 56

5.8 ROC of Different Techniques . 56

5.9 Accuracy rate Different Techniques . 57

vi

List of Tables

3.1 Android Permission and Description . 25

3.2 Android APIs and Description . 27

5.1 Output using Decision Tree with the Gini Index 51

5.2 Output using Decision Tree with the Information Gain 52

5.3 Output using SVM using Linear Kernel 53

5.4 Output using SVM using Gaussian Kernel 53

5.5 Output using SVM using Sigmoid Kernel 53

5.6 Output using Neural Networks . 54

5.7 Output using NEAT . 54

5.8 Average classification score of different techniques 55

vii

Abbreviations

API Application Program Interface

GPS Global Positing System

APK Android Package Kit

XML eXtensible Markup Language

SMO Seqential Mining Optimization

IMEI International Mobile Equipment Identity

ARM Advanced RISC Machines

JVM Java Virtual Machine

SDK Standard Development Kit

GUI Graphical User Interface

IDE Integrated Developmet Eviroment

ANN Artficial Neural Network

viii

Abstract

The Google’s Android mobile platform is today’s one of the most popular operating

system of the smartphones in the market with the shipment of over 1 billion android

device in the year 2016, so with the increasing popularity naturally cyber criminal has

extended their vicious activities towards Android Operating system. Security researchers

had reported the alarming increase in the Android malware detection in 2015. Everyday

700 new applications are released for android platform, so there is the need for a some

way of an automated analysis to detect and isolate new malware instantly.

Google provides android as the linux based open source mobile operating system platform

to the developer which allows them to take full advantage of operating system and to

develop system level application but on the other side it is a suitable prone for some

users to develop malicious application so that they can be inserted as a safe application

in the Google Play Store[1] or over web for their vicious benefits.

The increasing popularity of this android platform is making it a primary target for

privacy and security violations. Confidential and highly sensitive data such a text

message, contacts, reminder data etc can be accessed through the application and can

be leaked through maliciously crafted application. As well as hardware sensors such as

GPS can also be privacy concerns by exploiting its data for tracking and monitoring of

a person’s location.

Android security model is based on the permission system, there are over 300 permissions

that controls the various resources. Whenever a user tries to install an application the

system ask the user to grant the permission of resouces needed by the application which

it will be accessing.

In this work we use the permission and API calls from the android apps to be used as the

features for machine learning methods such as decision tree, Support Vector Machines

and Neural Networks. We learn these classifier to identify wether an application is

malicious or benign. The inherent advantage of this that there no dynamical tracing of

the system by execution of application rather it uses simple static analysis to find the

functions involved with the application.

Secondly we have used the NEAT algorithm to develop and evolute the best topology

of neural network and achieved the good detection rate of 95% with standard deviation

of 0.299% with the ideal structure of neural networks which provides faster processing

ix

during the detection. As well we have used the Androguard[2] and APK Tool [3] to

extract the permission and API from the APK[4] package to use it as feature set to test

wether the application is malware or benign and used the dataset from Kaggle[5] to train

our classifiers.

x

To my Parents and little Sister

Chapter 1

Introduction

With an estimated market share over 73%,Android had become the most popular operating

system for the smartphones and mobile computing devices[6].The popularity of smartphone

and mobiles devices has risen significantly. Several other operating system are also

available in the market today, with the Android and iOS being the most popular one[7]

as shown in Figure 1.1.In order to provide the application for their operating system the

companies had developed their centralised application market place like Google’s Play

and Apple’s App Store. These market places allows the developer to develop application

and upload on it and allows user to download it on their mobile platform beside this these

market places analyse and check the application for the integrity that they are benign

and safe.But Android platform allows also third party open installation (unsigned) of

the application which are not analysed and checked by the Google’s Play.

Over 50 billion of the total apps were downloaded since the first android operating

system was released in the year 2008, with the increasing popularity and allowing third

party insecure installation of the application cyber criminals had increased their vicious

activities towards android platform. Mobile threats researchers reported an alarming

increase in the Android malware from the year 2013 to 2104 and estimated that the

known malicious applications of the android system is now in the range of 120,000 to

718,000[8]. In summers of 2102, the sophisticated Euro grabber attack shows that the

mobile malware is a very attractive business as it steals about 36 billion Euro from the

customers of the banks of Italy, Germany, Spain and Netherlands [9].

1

Chapter 1. Introduction 2

1.1 Motivation

Android’s open source design which give user to install unsigned application, allows the

users to install applications which are not on the Google’s Play [1] or processed by it.

With over 1.2 million apps available for the download from Google’s official application

market Google Play, and another 1 million of them spread from the third party app

stores such as 9apps and other, According to an estimate there are over 20,500 new apps

which are being released every single month. This requires app store administrators and

the malware researchers to have access to the scalable and effective solution for quickly

analysing new applications to identify and isolate them from malicious applications.

Google reacts to the increasing interest of the miscreants in Android platform by its

program called Bouncer in Feb 2012, which is a service on the Google Play that checks for

the malware and the other hazards, when an application that is submitted to the Google

Play Store by the developer [10] . However, researchers has shown that Bouncer has the

very low detection rate and can be bypassed easily [11]. A large number of the similar

kind of research for the malware of Android has been proposed, but neither of them

provide a effective and the comprehensive solution to gather the thorough understanding

of the unknown and new applications. Blasing et al. limited their research to the system

call analysis [12, 13], Rastogi and Spreitzenbarth track only the specific APIs invocations

[14, 15], and Yan and Yin work is to use an emulator or the virtual enviroment [16].

Figure 1.1: Mobile Operating System Market Share

1.2 Related Work

Samra and Yim [17] used the permission from the XML-files which is extracted from

the apk files, and applied the unsupervised learning techniques such as K-means on it

to group them in malicious and benign apps. This techniques achieved a fairly good

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 1. Introduction 3

detection ratio with the average precision, recall and F-measure of 0.71, 0.71 and 0.71.

Salehi, Ghiasi and Sami [18] applied the mining techniques on the API function calls

and their arguments by portable executable as features on classifiers such as Random

Forests, J48 decision tree, HyperPipes, SMO and Naive Bayes and obtained a accuracy

92.1 %.

Sahs and Khan [19] extract the permission and control flow graphs from the android

application files and use them as the features train one-class Support Vector Machine

with different Kernels [20] to classify the application wether malicious or not.

Peiravian and Zhu [21] use the combination of the permission and API and use the

machine learning methods.In their design they extract permission from the app’s profile

information and the API is extracted from packed apk [4] by using classes and packages.

And used Support Vector Machine , Decision Tree and Bagging ensemble Machine

learning classification technique.They had obtained accuracy of 96.88 %.

1.3 Problem Statement

A recent report in the field of application has shown that there are near about 2,987,387

Android applications with 12% low quality apps which are currently available on the

android market [22]. The popularity of the Android operating system has lead spiking

increase in the spread of the Android malware as shown in Figure 1.2 which demonstrates

the Android malware growth Q1 2017 and expected growth in 2017. These malware are

mainly distributed through the third party market and platforms such as 9Apps, but even

the Google’s Play[1] cannot promise that all of its available applications are threat free.

Examples of Android malware include the Phishing Apps, Banking-Trojans, Spywares,

Bot, Root Exploit, SMS Fraud’s, Premium Dialer and Fake Installer. Download Trojans

are the applications which download their malicious code after the installation of it,

which means that these application will not be detected by Googles technology during

publication or uploaded by the developer on Android market Google Play [1].

Most of the malware detection methods are based on the traditional signature based

approaches in which they use a database of malware signature definitions, and compare

application against this databases of the known malware signatures by extracting the

sequence of bytes of code from the application. The major disadvantage of this detection

method is that user is protect from those malware whose recent signature has been

uploaded to the malware signature database, not from the new malware, zero day attack

and not even from application which encode and change it code . A previous study of

the malware patterns has concludes that the “Signature-based approaches never keep up

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 1. Introduction 4

with the rate at which malware is created and evolved” [23] . In this thesis, our goal is

to find out solution that can process an application, extract features and try to predict

whether the application is Malware or Benign. Focus of our research is exploration of

neural network in the domain of malware detection.

“ Extract features from Android applications and use them to train Neural

Networks and its variants for malware detection problem and evaluate its

performance against other machine learning algorithms. ”

Figure 1.2: Android Malware Expected Growth

1.4 Scope of Work

Malware analysis is the challenging problem in the field of Computer Science. A. Moser

et al. state that it is a NP-hard problem [24]. There are two major techniques for analysis

namely Static Analysis and Dynamic Analysis. We have used the static analysis

technique and merged it with the machine learning techniques to make our detection

model more accurate and reliable by learning from the previous examples.

We extract the features such as the permission asked by the application and API calls

by the application, use them for the learning algorithms. We had used the Decision

tree, Support Vector Machines, Artificial Neural Networks [25] with NEAT [26] and

Backpropogation training methods to train our model. For the implementation we

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 1. Introduction 5

had used the Python with Scikit-learn module [27]. Hence our scope of works can be

summarised as

• Static analysis of Android application to extract features such as permission and

API using Androguard [2].

• Train the Artificial Neural Networks with NEAT and Backpropogartion algorithm.

• Compared their result with other machine learning techniques such as Decision

tree, Support Vector Machines and evaluated their performance.

1.5 Organization of Thesis

Rest of our work can be summarised as below :-

Chapter 2 discuss about the android architecture and types of malware with their

characteristics.

Chapter 3 discuss application of the machine learning techniques used in the android

malware detection.

Chapter 4 explains the new variants artificial neural networks i.e NEAT and its working

and application.

Chapter 5 explains about the implementation the NEAT, comparison, experiments and

results.

Chapter 6 is about conclusion and paves way for future work.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2

Literature Review

This chapter will give a short description of the fundamental concepts and the terminology

related to the Android Operating System Architecture, Android application structure,

Linux system calls, the components of the Android applications and the building blocks

framework such as activities, the services, receivers and the intents of the Android

applications. Finally about the malware what is it, its various types and how it take

advantage of the android platform.

2.1 Android System Architecture

The software stack of the Android platform is shown in Figure 2.1. The violet items are

the libraries and components which are native code(C/C++), green items in the Java

language components which are executed and interpreted by the Dalvik Virtual Machine

[28].The last red bottom layer represent the components of Linux kernel and execute in

the kernel space of the Android operating system. In the following subsection, we will

discuss about the different abstraction layer of the android system architecture. For the

more detail overview of it, we refer to the earlier studies [28].

2.1.1 Linux kernel

Android use a special version of the Linux’s Kernel written by the Linus Torvolds with

the special additions to cope with the various requirement of the embedded system.

It include wakelocks i.e it is the mechanisms which indicate that the application want

that the screen should keep on displaying and does not goes off, the Binder IPC driver,

6

Chapter 2. Literature Review 7

a memory management system more insistent in preserving memory, and various other

features which are very important for the mobile embedded platform having low hardware

resources.

Figure 2.1: Android Platform Low Level System Architecture

2.1.2 Libraries

Application Framework contains set of the native libraries which are written in C/C++

and these libraries are also available to the Android Runtime by the Libraries Component.

These are generally open source external libraries such as OpenSSL , WebKit and

bzip2 with only very minor modifications. The essential C/C++ libraries codename

as Bionic were derived from the BSD’s libc and were written again for to support the

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 8

ARM hardware instruction set and implementation of the pthreads based on Linux

futexes(“fast userspace mutex”) by Android.

2.1.3 Android runtime

The Component in the middleware of the android system is called Android Runtime

which consists of the Dalvik Virtual Machine (DVM)[29] and had the set of the Core

Libraries. Dalvik Virtual Machine is like the JVM which is responsible for interpretation

and execution of the applications that are written in the Java programming language

and discussed in detail in Section 2.2. The core libraries lay the foundation for the

implementation of the general purpose API for the applications that are executed by

Dalvik Virtual Machine. Android distinguishes between the two categories of the core

libraries.

1. Dalvik Virtual Machine specified libraries.

2. Java or Java driven interoperability libraries.

The first one allow in modifying or processing Virtual Machine specific information and

is mainly used when instructions or bytecodes are need to be loaded on the memory. The

second one provides the friendly environment for the Java programmers and is derived

from the Apaches Harmony. It implements the most of the popular Java language

packages like java.lang and java.util.

2.1.4 Application framework

The Application Framework of the android platform provides a building blocks of high

level or the abstraction to the applications in form of various packages of android. Most

of these components in this layer are implemented as the applications which runs in the

background as the background processes on the mobile device. Other components are

responsible for the management of basic phone functionality like receiving phone calls,

text messages or monitoring power usage etc. A couple of components which are more

important are such as:

1. Activity Manager : The Activity Manager is process, which keeps the track

applications which are currently active. It kills the background processes if the

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 9

device is out of memory. It also had the capability for detection of the non-responsive

applications i.e when an application does not give response to the input event in

5-10 seconds (like a key pressed or screen is touch). It thus prompts an dialog for

the Application Not Responding.

2. Content Providers: These acts as the primary building blocks for the android

application. They can share the data between the various multiple applications.

Address book data, for example, need to be accessed by the different applications

and thus it is stored in the content provider.

3. Telephony Manager: The Telephony Manager provides the access to the telephony

services’s information of the device such as the phone’s unique device identification

number (IMEI), the cell current location or serial number. It is also responsible

for management of the phone calls.

4. Location Manager: The Location Manager provide the system location services

access to the android application which allow the applications to receive updates

of device’s geographical location periodically by the help of device’s GPS sensor.

2.1.5 Applications

Applications are responsible for the interaction between device and user, and are built

upon the top of the Application Framework. It is very unlikely that the average user of

the android ever have to deal with the components are not in this layer. Pre-installed

applications which come with bundled android system offer numerous basic tasks to the

user like to perform like surfing web, reading text, making phone calls etc., but user

is free to install the third party applications to use other features like (e.g., gaming,

watching videos, reading news, navigation through GPS, reading books, etc.).

2.2 Dalvik Virtual Machine

The Dalvik VM [29], is like a Java Virtual Machine specially designed and modified

for memory optimisation and reduce energy consumption in the embedded systems like

smartphones, tablets and smartTVs. It was designed and created by the Dan Bornstein,

with collaboration and contribution with Google engineers. This virtual machine is

optimized to requires a low level of the memory usage and enables multiple virtual

machine instances which can run simultaneously with little additional load on processor.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 10

The Dalvik VM uses register-based architecture[30] explained in Section 2.2.3, which

is faster and more efficient than the stack-based architecture[31] used in other virtual

machines.

Every application in the android system runs its own process, with its very own instance

of the Dalvik Virtual Machine inside the secure environment, called Sandbox [15]. The

Dalvik Virtual Machine executes files which is in the Dalvik VM executable format (DEX

Format) shown in Figure 2.2, which is the optimized version of the Java code file for the

systems with constrained memory and slow processor speeds.

2.2.1 Hardware Constarints

The Android platform is especially designed to operate on the mobile device and thus

it has to come over the challenging hardware restrictions which when compared to the

regular personal computer operating systems environment, the mobile phones are small

in the size and powered by the small source generally a battery. Due to this, the initial

mobile devices contained a very slow CPU relatively and had very little amount of the

memory left once the system is booted. Despite of these ancient and low specifications,

the Android operating system does rely on the modern Operating System principles:

each application is supposed to run by creating it own process and has the memory

space of its own which means that each application on android should run in its own

virtual machine.

It is argued that the security requirements will not be satisfied with these limited

hardware constraints with the use of the existing Java virtual machines which is ported

to the android system. To overcome this, Android had used the Dalvik Virtual Machine.

A special instance of the Dalvik Virtual Machine is started during the boot time which

later acts as the parent of all the future Virtual Machines. This Virtual Machine is

called Zygote process which preloads and pre-initializes all the system classes and the

core libraries. Once it is started it listens on fork() command and local socket, whenever

a new application execution is requested instead of creating a new Virtual Machine from

the scratch it uses the fork() command to create a virtual machine with the copied

structure, thus it reduces memory footprint for running the applications and increases

the speedup time by sharing memory pages which contain the preloaded system classes.

Furthermore, opposed to the Stack-based virtual machines a mechanism which can be

ported to the any platform of the Dalvik Virtual Machine is Register-based virtual

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 11

machine and is designed to run on the ARM processors specifically. This allows the

Virtual Machines developers to add more speedup optimisations.

2.2.2 Bytecode

The bytecode is interpreted by the Dalvik Virtual Machine therefore it is called DEX

bytecode or Dalvik Executable Code.Figure 2.2 shows that the DEX code is obtained by

conversion of the Java language bytecode using the DX tool. One of the main difference

between the Java language bytecode and DEX file format is that all of code is repacked

into single output file (classes.dex), and duplicate functions, strings and code blocks

are removed. Naturally, this results in the more use of the pointers within the DEX

bytecode itself than in Java .class files. In general, .dex files are about 6% smaller than

the compressed .jar files.

During the Android application installation, classes.dex file which is included with the

application is optimised and verified by the android operating system. Verification is

done in order to make sure that the program must behave normally by reducing the

runtime bugs. Optimisation involves inlining of special methods, static linking and

pruning empty methods.

Figure 2.2: DEX file creation

2.2.3 Register-based Architecture

Virtual machine developers have always been in the argument of implementing a virtual

machines with stack-based architecture [31] rather than register-based architecture [30].

The very simple implementation of the stack-based architecture leads the developers

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 12

to prefer it use. Obviously, this simple implementation of the stack-based machine

comes with performance cost. Executables for stack-based architecture are compressed

than executables for register-based architecture due to more use of the POP and PUSH

operations. Which leads to higher memory consumption, leading to the worse performance

of the virtual machine. Register based architecture generally requires an average of 48%

fewer executed virtual machine instructions than the Stack based architecture, which

considerably improves performance of the device. While on the other hand, the register

code used by register-based architecture is larger than stack-based architecture code.

Although, the processing load generated by the Register-based architecture is still lower

than that of the Stack-based architecture. Taking into account the fact that the Dalvik

Virtual Machine runs smoothly on the embedded devices with constrained memory and

processing power, the use of the register-based architecture is the much more appropriate

choice.

2.3 Android Application

The android applications are coded in the Java programming language. Android uses

Java’s programming IDE and Android’s Software Development Kit (SDK), such as

Android Studio [32], to create an Android application installation APK file by the

compilation Java code. These APK files can then be later install on Android devices by

the Android Debug Bridge tool called ADB or or from the Google’s Play. Figure 2.3

shows the basic structure of an APK file.

Figure 2.3: Dex file creation

An APK file is composed of the three main groups: AndroidManifest.xml, Classes.dex

and Resources, which are packaged into a single file.

• AndroidManifest.xml: The Android manifest file contains the most important

information of the Android application. It describes the application features such

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 13

as the package name, application name and the permissions used by the application

as well the minimum version of the Android Operating System which is required

by the application to run.

• Classes.Dex: This file is output of compilation of source code in the Android Java

language. It contains optimised Dex Bytecode of Android application and runs on

the Dalvik Virtual Machine.

• Resources: This group contains the pictures, media, libraries and the layout files

used by android application.

One of the most important elements of creating an APK file is the compilation of the

Java source code. The process of generating the APK file is described in figure 2.4. The

files undergoes to a series of transformations during the process of the creation of the

Android APK file. The transformations comprise of the compilation process required to

the generate APK files that will run on the Android devices.

The first step of process of the creation an Android application is to create an Android

project, in which Java source code, Android manifest and resource files will be generated

by Android Studio.

The next step is to program and configure the code to suit the purpose and to compile

the project. The Java’s compiler in the SDK programming environment will generate the

class files from the Java’s source code and the aapt will transform the AndroidManifest.xml

and resource files into the adequate format so that they can be interpreted by the Dalvik

Virtual Machine. The generated class files cannot be interpreted by the Dalvik Virtual

Machine so in order to convert these class files into Dex files, Android SDK provides a

tool called DX. This tool converts class files into the Dex format. When all the files are

compiled, the final task of aapt is to compile and generate the Android APK file.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 14

Figure 2.4: Android APK build process

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 15

2.3.1 Application components

We discuss the core application components thats are required to build android applications.

Activities

It represents the single screen with the particular interface for the user. Applications

can have any number of the activities for the different purpose. Like a web browser, for

an instance, may have one of the activity to shows the list of history items while another

activity to manage the setting of the web browser. Each activity is independent of the

other activity and can be started by the other applications. An e-mail application, for

example, can start the web browser activity to preview of received hyperlink.

Services

Services are the components which run to perform the long running operations while

running in background and do not have a interface for the user. The email application,

for example, will have a socket service which is responsible for downloading emails from

the server in the background simultaneously the user is interacting with the different

application. Services can be started by the other components of applications like activity

or by the broadcast receiver.

Content Providers

Content Providers provide access of the data between multiple applications of the android

applications. They use to manage shared set containing the application data. Reminder

Information, for example, is stored inside the content provider and other application can

access it when required.

Broadcast Receivers

It listens to the particular broadcast announcements from the system and react on these.

Generally most of the broadcast are from the system and it receives them and announce

them. They don’t have a user interface and act as the gateway to send information to

the other components of the android system. For example if battery is low then system

send the broadcast and then the broadcast receiver will announce it and the activity will

capture it and alert the user by displaying a alert box on the screen.

2.3.2 Distribution

Android users can install applications either it is from google or its from other developers

or via the Google Play. Google Play is an authenticated online distribution platform of

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 16

application of Google from which user can download the free and paid application from

the developer. Google has build an in-house fully automated antivirus system called

Google Bouncer which scan the uploaded application and checker wether they may not

contain malicious code .

Users can install the application from the the other sources than the Google Play, for this

installation the user must enable the allow installation from the unknown source option

in the settings. By this user can install the external APK files downloaded from the web

as well as the third party markets. The third party markets like 9apps, Mikandi’s app

store, Xiaomi app store give user specialised offers.

2.4 Malware

A malware or the application which is malicious could be referred as the application

which contains the malicious code which does not follow the ethnicity can compromise

the device operation like the computer will not be able to boot, steal users data, bypass

the control of the access and cause damage to the host. Normal application also called

benign application does not perform any operation which could be dangerous to the

system or to the user data and follow ethnicity. We will now discuss the various types

of malware which could be found on the android operating system.

2.4.1 Spywares

The most common type of the android malware application is the spyware, the reason

for its more occurrence is that the android platform is generally on mobile phone and

the large amount of the person private data and activity could be found on the mobile

phones. So, therefore attackers target the mobile phones with the spyware. It just simply

transfer the user information to the attacker. Spyware are also commercially available

to provide the user to spy on other’s phones.

Spywares are installed on the victim phone either manually or by sending a link of

attractive application to the target user and when spyware is active it just simply start

to send the information like call records, voice mails, mails, passwords, screenshot to

the third party.Example of the Commercial Spyware is CarrierIQ [33], it logs everything

that is done on the mobile phone including call logs, web browsing and send those log

over HTTPS protocol.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 17

2.4.2 Graywares

Grayware is similar to the spyware but the difference is that the user itself installed that

application and thought that the application legitimate. As these application provide

some basic functions but secretly the send the user data like user address book, browsing

history to the server and this information is used for the marketing purposes like the

Filebrowser application which provide the basic file explorer service to the user but also

send the collect user data secretly.

2.4.3 Fraudwares

Fraudware application gets installed on the user phone by tricking the user by some

hyperlink, which user thinks some legitimate application and then they will do frauds

such like doing a premium sms or the premium calls, although they informs user about

the charge but the information is hidden or not mind by the user.

2.4.4 Trojans

Trojans are the malicious application which as usual in the desktop operating system

will perform the dangerous activities like modify the file system, downloading the other

malware, altering the system setting, making the device to act as a zombie by performing

the DDos attack to the server, making multiple copies of it in the file system. The attack

vector are unavailable to the attackers due to the sandboxing model therefore malicious

code is merged with the some genuine app and then that application is distributed by

the third party markets.

2.4.5 Root exploits

Root exploits are used to gain the root access also called sudo, super user access to the

android filesystem, these are like the two side edged sword which allows user to have

the full control to the devices but at the same time the same level of control is available

to the application which are running on the system. Root access if available to the

malware application could completely compromise the system, the malware can have

the hardware access, boot access and file system access. Advance malware comes in with

the root exploit to attack the user device, if there is security flaw in the system then

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 18

this exploit may be successful and the malware will be running with the root privileges.

An application with root access can install, modify and replace the applications. The

DroidKungFu Trojan [34] is an example of it .It installs backdoor on the system which

runs with root access and could send data or provide the shell access to the attacker.

2.4.6 Bots

Bots is the new trend emerged in the field of the mobile malware. It communicate

with the send and receive message with the command and control centre usually the

attackers servers. Bot here means that the user mobile device is acting like a Bot which

is taking the command with the send and receive instruction from the server. With

these commands the malware can install specific application, do the DDos[35] attack

to particular server, execute some arbitrary process etc. Attackers obfuscate their code

with the encoding or encryption techniques to hide the information which could help in

bypassing the detection of the malware. Some examples of Bot malware are DroidDream

and jSMSHider[36]. The recent version of DroidKungFu Trojan [34], can also create the

bots.

2.4.7 Malware with Privilege Escalation Exploits

These are the part of the application usually the malicious application which use the

the vulnerabilities or the security flaws in the System which runs the application in the

sandbox or the secure environment. Every Android application use to run in the security

sandbox, however, if malware is successful to get the root privileges, then it is able to

do the actions which are not generally allowed to the application to perform, like the file

system access. The malware DroidDream[37] which contains two exploits, first one is

Exploid and second is RageAgainstTheCage[38] which is used to take the advantage of

the vulnerability present in the android kernel and get the root privileges and then install

an application that allows the malware to install the additional applications without the

knowledge of the user. jSMSHider, was signed with a compromised key that allows the

installation of the applications without intervention of the user on any mobile device

which contains the firmware builds that is also signed with that compromised key.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 2. Literature Review 19

2.4.8 Types of Malware Penetration Techniques

Repackaging is techniques which is most commonly used in malicious application

installation, The developer normally downloads a legitimate application and dissemble

it and add malicious code of their own in it and then re-assemble and upload to the

application market. Updating instead of adding the code the developer include places a

update component which will download the malicious code at the run time. Downloading

app will make user lucrative and attract them to download other malicious applications.

2.4.9 Malware Datasets

The access to the known or analysed Android malware is mainly provided through the

Contagio Mobile platform and Android Malware Genome Project [39]. The malgenome

is the project which was the result of the work done by the Zhou and Jiang [39] and

contains over 2000 Android malware samples, classified in 57 malware families and were

gathered in the interval from Aug 2010 to Oct 2011. As well the Contagiodump also

offers an upload the dropbox service to share mobile malware samples among the security

and malware researchers and hosts 144 items presently.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3

Machine Learning in Android

Malware Detection

In this chapter we discuss about the application of the machine learning classification

algorithms in the android malware detection. We discuss about the android file structure

and procedure to extract features such as permission and API calls from the android

applications. Then use these features to train the different models and discuss about

them, such as Decision trees, Support Vector Machines and Neural Networks. Finally

we present the different methods how to evaluate the performance of these models in

classification.

3.1 Android Application Structure

The structure of Android application is of uttermost importance in order to do the

static analysis of the android malware application, this will help in the preliminary

understanding of the android application and gain the knowledge about the android

application, through which we can extract the important facts from these application

which could be used as the feature for the machine learning algorithm and help in

development of the model for the detection of the malware. The structure of the android

application is as follows:

APK: As discussed in Section 2.3 apk is the android application installation package

file. Every android application is compiled and packed into the single .apk file which

contains the all of the application code in the .dex format, the resources which are image

and graphic and other media used by the application and the android manifest file in the

20

Chapter 3. Machine Learning in Android Malware Detection 21

.xml format named as AndroidManifest.xml and these apk are uploaded to the Google

Play or third party market or shared on the web.

Androidmanifest.xml is the one of the important file in the android application package,

it defines the structure and the layout of the android application. Whenever the application

is launched the android system look for the manifest file and start reading it and this file

provide the roadmap to the application to make sure that the application will function

properly in the android system.

It is considered that the Android system will not allow the application the access to the

any resource, permission and the features which are not mentioned in the Manifest file.

So the basic characteristic of the AndroidManifest file with the android mechanism of

security is as follows:

3.1.1 Android Security Mechanism

The model of the Android Security is dependent on the permission based mechanism

which includes about over 324 permissions that controls the access to the different

resources on the android system. Therefore android application requires the certain

permission to access the resource on the android system to execute. The important step

in the installation of the application on a mobile device is to allow the permission request

by that application.Before an application is installed the system read the permission

which are request by the application and asks the user to confirm these setting show in

figure 3.1 . Although these permission make sure that the application does not misuses

the resource of the system but the user often have the rare knowledge to determine

that the particular application is harmful or not. For example, requesting the wifi and

cellular data service seem to be normal to the user but the malware can use to steal

the bandwidth or other information. So therefore it is very difficult for the user to the

determine by the request of the permission that the application is malicious or not.

At the level of the system, Google announce that it had implement a security mechanism

called Bouncer which scan and analyse the application which are uploaded to their

market Goole Play. The open design of the Android Operating System allows the

installation of the application which are from the unknown sources. Nevertheless, the

permission request by the application is the low level defence in the protection of the

protection of the user from the harmful applications. In this way user can denies a

application which ask for the address book access.

Google categorise the android permission request into the following levels:

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 22

Normal Permissions: includes the lower level permissions that are the access to the API

calls which are not harmful. The system automatically allows the application have the

access with the user intervention. like the android.permission.SET ALARM.

Dangerous Permissions: it is the access to the API calls which are potentially harmful

which give the access to the user private data such as the android.permission. WRITE

CONTACTS or android.permission.ACCESS MOCK LOCATION.

Signature Permissions: is the most protected access, the system which declared permission

had a certificate and the application which wants those permission should have the same

certificate like android.permission.ACCESS DRM CERT.

System Permissions: Only system application are allowed to have these permission.

A simple idea to determine wether an application is malicious or not is to see that

application is requesting the permissions which are of dangerous or system level. Although

application is following an authorised method for requesting the permission to have the

access to the components of the android system, there is no clear evidence by which we

can say that the particular application is harmful or not. It should be considered that

the permission which are shown at the time of the installation are the requested one not

the required one. The requested permission are declared by the application developer

itself. If the request application are not the super or equal set of required permission

than application will not have access to that resource.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 23

Figure 3.1: Android App asking for permissions

3.1.2 Android Permission Setting

AndroidManifest.xml file is present in the root directory of the APK package of the

android application. This manifest .xml contains the important information about the

application for the android system and as well for the android user. Android operating

system process retrives the information about the application from this .xml file before

it run the application’s code.

The manifest file contains the permission which the android application must have

granted from the user to access the protect parts of the API and interact with the

other application of the android system. Structure for the android’s components access

is defined in this manifest file, Apktool[3] is the reverse engineering tool for the apk files

and it generates the AndroidManifest .xml file, once the Manifest file is generated the

android permission can be extracted from it.

Permission request are having the high relevance to the malware or the benign application,

Figure 3.2 shows the comparison between the top set of the permission requested by the

both malware and benign application.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 24

Figure 3.2: Most permission requested by the android applications

From the comparison, INTERNET, READ PHONE STATE , ACCESS NETWORK

STATE and WRITE EXTERNAL STORAGE are the most frequently requested permission

by the malware application, as it obvious that the malicious application will send the

data from the internet or download the package from the internet, and read phone state

to know the status of that the user is not currently using the system, if user is using the

system that malware generally pause it malicious activity as user may feel suspicious

that there may have a malware in their system. Hence for our dataset we will use each

permission as the feature for the classification model.

Every application will be represented as the binary vector, namely P, where Pi=1 if

the particular application has the ith permission request and 0 if the permission is not

request by the application or permission is present in the AndroidManifest.xml file and

Table 3.1 shows different permissions and description of it .

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 25

Table 3.1: Android Permission and Description

PERMISSION STATUS INFO DESCRIPTION

android.permission.

CHANGE NETWORK STATE

dangerous change network

connectivity

Allows an application to

change the state of network

connectivity.

android.permission. DISABLE KEYGUARD dangerous disable key lock Allows an application to

disable the key lock and

any associated password

security. A legitimate

example of this is the

phone disabling the key

lock when receiving an

incoming phone call, then

re-enabling the key lock

when the call is finished.

android.permission.

KILL BACKGROUND PROCESSES

normal kill background processes Allows an application to

kill background processes

of other applications, even

if memory is not low.

com.android.launcher.permission.

UNINSTALL SHORTCUT

dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission. READ LOGS dangerous read sensitive log data Allows an application to

read from the system’s

various log files. This

allows it to discover

general information about

what you are doing with

the phone, potentially

including personal or

private information.

android.permission. ACCESS WIFI STATE normal view Wi-Fi status Allows an application to

view the information about

the status of Wi-Fi.

android.permission. INTERNET dangerous full Internet access Allows an application to

create network sockets.

android.intent.action. BOOT COMPLETED dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission. WAKE LOCK dangerous prevent phone from

sleeping

Allows an application to

prevent the phone from

going to sleep.

com.android.launcher.permission.

INSTALL SHORTCUT

dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission.

ACCESS NETWORK STATE

normal view network status Allows an application to

view the status of all

networks.

android.permission. GET TASKS dangerous retrieve running

applications

Allows application to

retrieve information

about currently and

recently running tasks.

May allow malicious

applications to discover

private information about

other applications.

android.permission. DELETE PACKAGES SignatureOrSystem delete applications Allows an application to

delete Android packages.

Malicious applications

can use this to delete

important applications.

android.permission.

WRITE EXTERNAL STORAGE

dangerous read/modify/delete SD

card contents

Allows an application to

write to the SD card.

android.permission. GET PACKAGE SIZE normal measure application

storage space

Allows an application to

retrieve its code, data and

cache sizes

android.permission.

READ EXTERNAL STORAGE

dangerous read SD card contents Allows an application to

read from SD Card.

android.permission.

RECEIVE BOOT COMPLETED

normal automatically start at boot Allows an application to

start itself as soon as

the system has finished

booting. This can make

it take longer to start

the phone and allow the

application to slow down

the overall phone by always

running.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 26

PERMISSION STATUS INFO DESCRIPTION

android.permission. INSTALL PACKAGES SignatureOrSystem directly install applications Allows an application to

install new or updated

Android packages.

Malicious applications

can use this to add

new applications with

arbitrarily powerful

permissions.

android.permission. ACCESS MTK MMHW dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission. WRITE SETTINGS dangerous modify global system

settings

Allows an application

to modify the system’s

settings data. Malicious

applications can

corrupt your system’s

configuration.

android.permission. READ PHONE STATE dangerous read phone state and

identity

Allows the application

to access the phone

features of the device.

An application with this

permission can determine

the phone number and

serial number of this

phone, whether a call is

active, the number that

call is connected to and so

on.

android.permission.

MOUNT UNMOUNT FILESYSTEMS

dangerous mount and unmount file

systems

Allows the application

to mount and unmount

file systems for removable

storage.

android.permission. VIBRATE normal control vibrator Allows the application to

control the vibrator.

android.permission.SYSTEM OVERLAY

WINDOW

dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission.

SYSTEM ALERT WINDOW

dangerous display system-level alerts Allows an application

to show system-alert

windows. Malicious

applications can take over

the entire screen of the

phone.

android.permission. CAMERA dangerous take pictures and videos Allows application to take

pictures and videos with

the camera. This allows

the application to collect

images that the camera is

seeing at any time.

android.permission.ACCESS WAKE LOCK dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission.

ACCESS DOWNLOAD MANAGER

dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission. CHANGE WIFI STATE dangerous change Wi-Fi status Allows an application to

connect to and disconnect

from Wi-Fi access points

and to make changes to

configured Wi-Fi networks.

android.permission.

PACKAGE USAGE STATS

signature update component usage

statistics

Allows the modification of

collected component usage

statistics. Not for use by

common applications.

com.android.permission.

UNINSTALL SHORTCUT

dangerous Unknown permission from

android reference

Unknown permission from

android reference

android.permission. RESTART PACKAGES normal kill background processes Allows an application to

kill background processes

of other applications, even

if memory is not low.

android.permission. GET ACCOUNTS normal discover known accounts Allows an application to

access the list of accounts

known by the phone.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 27

3.1.3 Android API calls

Android platform provides a variety of the API of the framework which allows the android

application to interact with the android system and to perform the certain functions.

API of the frameworks consists of the set of packages and the classes.

Every application use the large numbers of the APIs, therefore the malware application

also uses a variety of the APIs of the android platform, thus these can be also merged

with feature for the classification model to add more dimension to the training set. Using

the MobSF [40] framework to extract the API and similarly like the permission we can

represent it as the binary vector namely as A, where Ai =1 represent that the particular

ith API is called by the application.

The combined API and permission are used as the features for the classification model

and the training is done using the dataset of the malware and benign application, we

had used the 440 samples of malware and benign application in this work.

Table 3.2: Android APIs and Description

API Description

android.content.Content() used for retrieving resource data associated

with an application.

android.content.Intent() an action to be performed

android.app.Activity() initialise create pause the activity

android.view.View() change the view of the activity layout

android.os.Handler() handle the document or the media

android.os.Bundle() get the version of the bundle of the OS

android.graphics.Bitmap() get the pixel bitmap of the graphic or

image

android.content.res.Resources() get the resouces of the application

android.graphics.Canvas() access the canvas to draw on the screen

3.2 Extracting the features using Static Analysis from

the Android Application

We had discussed that what are the different features which can be used for the classification

models from the android application. Now we will discuss how we will extract these

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 28

features with the help of the tools such as the Androguard [2] and APK tool [3] with

the technique called static analysis. Static analysis in which we analyse the strings and

Bytecode and structure of the particular application with its any kind of execution.

Figure 3.3 that how the APK is processed to extract the API and Permission to be used

as features.

3.2.1 Androguard

Androguard [2] is the command line interactive oriented tool written in the python

language which perform the static analysis of the android applications. It can do

the disassembly of the apps and access their various components such as permissions,

receivers, activities, classnames. It also contains tools such DEX to Jar, smali, API

extractor. Some of the commands of the Androguard are

a,d,dx = AnalyzeAPK(”malware.apk”,decompiler=”dad”)

a.get permissions()

a.get packages()

a.get appname()

a.get mainactivity()

a.get activities()

a.get classes names()

d.get class.source()

a.get recievers()

3.2.2 APK Tool

APK Tool is tool for reverse engineering application of the android platform which is

written in Java programming language. It uses the Smali [41] which uses to convert the

Dalvik Virtual Machine [29] DEX code into jar code which can be used for the analysis

and the reverse engineering the application. It produce the extracted folder of the .apk

file and AndroidManifest .xml file and can also reverse the class and function in the

jar format which can be used to modifies the application and add the new code before

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 29

repackaging it. It can Decompile and Recompile the application using the Smali to

convert the DEX to jar and then again jar to the DEX.

Figure 3.3: Steps in Feature Extraction from Android APK

3.3 Machine learning Techniques Used

We now had the features and data for the classification models extracted with the static

analysis using Androguard [2] or APK Tool [3]. We will discuss the classification machine

learning technique which we had used for the classification of the android malware and

benign application and then compare these with the Neural Network NEAT variant.

3.3.1 Decision Trees

Classification can be done asking the series of the question about the attributes of the

features dataset. Suppose we do the classification of the mammals and the non-mammals.

To determine wether the specie is mammal or non mammal the series of question are

asked like is the specie warm blooded or cold blooded?, If it is cold blooded then definitely

the specie is not mammal. Do the female of the specie give birth ?, Those species who

give birth to the animals are definitely mammals. Each time the question is asked and

then follow up is made till one reaches to the class label of record. When all these

question are label to a directed tree then it becomes a Decision tree[42].

Decision tree represent those question and does the classification by traversing through

the tree where every branch represent the question related to the attribute of the data

set. Decision tree is the directed tree which contains the root, internal nodes and leaf

nodes. All nodes other than the leaf nodes are called decision nodes. The internal node

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 30

splits into the two or more subspaces with respect to the certain function applied on the

input attributes values figure 3.4 show a decision tree. Various terminologies related to

the decision tree are :

Root node its represent the entire population of the dataset and further divided

into two or more sets.

Decision node nodes divide into sub tree, and contains the criteria for selecting

the follow branch.

Leaf node Represent the class label.

Splitting is the process of dividing a node into sub-nodes.

Pruning removal of the sub nodes from the decision tree.

Figure 3.4: Decision tree with its components

How to decide when to split?

Accuracy of the decision tree is heavily dependent on the split of the tree. There are

multiple ways by which the splitting of the tree can be done, the creation of the sub-nodes

increases the homogeneity of the output sub-node. Decision tree select the split which

has the highest homogeneity. Following are examples of measures for the split as quoted

by the Quinlan [42].

Gini Index

Gini impurity measure can be used as hyperparameter for the splitting of the tree into

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 31

the sub-nodes. Before any split on the particular attribute the Gini impurity is measured

by the help of the given formula and the Gini impurity is measured and the attribute is

select which as had the high score of the Gini impurity.

Gi = 1−
n∑

k=1

P 2
i,k

where Gi stands for the Gini score and i is the particular node and n stands for the

number of nodes.Pi,k is the ratio class k with all the classes.

Information Gain and Entropy

Entropy can be also be used at the measure for the checking the split for the particular

attribute, similarly like the Gini index the entropy or the information gain the attribute

having maximum entropy is used for the splitting. Entropy Hi can be measured as

Hi = −
n∑

k=1
Pi,k 6=0

log(Pi,k)

where n stands for the number of nodes. Pi,k is the ratio class k with all the classes.

Figure 3.5: Iris Decision Tree

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 32

3.3.2 Support Vector Machine

Support Vector Machines is the algorithm or the classification techniques by which the

hyperplane can be obtain which can distinguish between the n dimensional data set. It

is intended to maximise the margin between them which are separated by the derived

hyperplane which represent the two different classes [43]. SVM is also called large margin

classifier because of it property to separate the two classes with the maximum distance.

There are two types of the SVM namely the

Linear Support Vector Machine which generate the linear hyperplane to separate

the two classes

α1w1 + α2w2 + α3w3....αnwn = +1/− 1 (3.1)

w̃ =
∑
i

αs̃i (3.2)

the above equation represent the linear SVM and the weight for the each parameter or

attribute of the equation.

f(x) = σ(
∑
i

αiΦ(si).Φ(x)) (3.3)

equation 3.3 represent the hyperplane of the classifier where αi represent the attributes

and x is the input to the equation.

Non-linear Support Vector Machine generate the polynomial hyperplane to classify.

Equation 3.4 and 3.5 represent the polynomial and multiple attribute equation for the

Support Vector Machine.

α1α2w1 + α1α2w2 = +1 (3.4)

α2
1w1 + α2

1w2 = +1 (3.5)

Support Vector Machines although are very power and can separate the linear and

quadratic separable data. Figure 3.6 show the linear SVM on left side but on the right

side the data is not linear separable so the non-linear hyperplane is constructed or the

Kernel is used.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 33

Kernel

Kernel are use to convert the input feature space into the space which become the linearly

separable. It is kind of similarity function which maps the data from the one feature

space to another feature space with the aim that the transformed space become the

linearly separable. Figure 3.7 represent the transformation using the kernel.

Figure 3.6: Linear SVM and its hyperplane on left and non linear separable space
separated using the polynomial kernel on right

The Radial Basis Function model is

f(x) =
n∑

i=1

αig(x− xi) (3.6)

The output is a linear combination of non-linear functions of the input. The non-linearity

is a function of distance only.

An Radial Basis Function or the Gaussian is the solution to the following interpolation

problem:

min
n∑

i=1

L(f(xi), yi) + λfH . (3.7)

min fH st. f(xi) = yi, i = 1, 2, ..., n. (3.8)

This is similar to a kernel density, except that the coefficients αi are not restricted to a

convex combination, and the basis function g does not have to be a density. following

are the different kernel function for Support Vector Machine

Gaussian Kernel

K(xi,xj) = e
−‖xi−xj‖

2

2σ2 (3.9)

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 34

Polynomial

K(xi,xj) = (xixj)
p (3.10)

Sigmoid

K(xi,xj) = tanh(ηxixj − δ)p (3.11)

Figure 3.7: Transformation of the feature training data

3.3.3 Artificial Neural Networks

Artificial Neural Networks is the type of the machine learning models which are derived

from the human brain’s neuron. They were first introduced by Warren McCulloh who

was a neurophysiologist and Walter Pits who was a mathematician [44]. ANN are

inspired by the biological neuron and work in the similar fashion. Figure 3.8 label

A shows a biological neuron which is consists of centre and long tail. It had branching

extensions called dendrites, which receives the signal from the other neurons, a long

tail like structure called axon which had the terminal and send the signal to the other

neurons and the intersection of the two neurons is called synapse.

Similarly like the biological neuron the ANN has the structure in which it receives the

input as x1, x2...xn and applied the activation function and produce the output yi which

later act as the input of the other neurons.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 35

Figure 3.8: Derivation of ANN from a biological Neuron

Perceptons

The perceptron was the earliest and the most simplest ANN architecture. It is the basic

building block of the ANN which was introduced by the Frank Rosenblatt in 1957. It

take the input x1, . . . , xn and then produce the single output, weight introduced at the

each input as w1, . . . , wn which express the importance of each of the input, more the

weight more importance to the particular input is given, then output which is given as

0 or 1 by input the (z = w1x1 + w2x2 + . . . + wnxn) into the function and the learning

is done by adjusting the weight w so the accuracy of the prediction is increased

y(x1, . . . , xn) = f(w1x1 + w2x2 + . . .+ wnxn + b) (3.12)

output =

1, if z < 0.

0, if z ≥ 0 .
(3.13)

the output of the perceptron is only 0 or 1, making it not possible to work on the

classification of the multiple categories or classes. Hence the solution to this problem

is Multi-Layer Perceptrons, in which the output of one perceptron act as the input to

the other perception and a structure is generated which comprises of input layer, hidden

layer and output layer, but the complex algorithm have been proposed which has the

most optimised structure of the neural network(e.g. NEAT Neuro Evolution through

Augmenting Topologies). Artificial Neural Networks are the layers of perceptions which

work simultaneously to do classification.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 36

Sigmoid neuron

The main limitation of perceptrons is that there are very difficult to tune, because

minimum changes in the weights and bias of any single perceptron can cause the output

to change drastically by completely flip, from 0 to 1 or vice versa. And if we have a

network of perceptrons, a single flip can completely change the behaviour of the rest of

the network.This problem was solved by the introduction of the sigmoid neuron. Exactly

as the perceptron, a sigmoid neuron has inputs (x1, . . . , xn) and it also has weights for

each input and a bias, but the output can be a real number. The sigmoid function is given

in equation 3.14 and it is notable that the sigmoid function is having a property that

f ′(z) = f(z)(1− f(z)) which easy calculation of adjusted in backpropagation algorithm.

σ(z) =
1

1 + e−z
(3.14)

Loss Function

To measure the performance of the neural network it is defined a function, typically

named cost or loss function which given a prediction or set of predictions and a label

or a set of labels measures the discrepancy between the algorithms prediction and the

correct label. There are various cost functions but the most common and simple in

neural networks is the mean squared error (MSE) which can be given by equation 3.15.

E =
1

m

m∑
i=1

‖oi − ti‖2 (3.15)

where:

- oi actual outputs

- ti desired outputs

- m number of training examples

The goal in training neural networks is to find weights and biases that minimises some

cost/loss function. For that, it is used an algorithm called gradient descent.

Gradient Descent Algorithm

Gradient descent algorithm is an algorithm for minimising the loss function. It is used

to find the local minimum of the loss function. The gradient can be defined as follow

∇E[~w] ≡
[
∂E

∂w0

,
∂E

∂w1

, · · · ∂E
∂wn

]

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 37

this gradient is used to find the minimum of the loss function, the outline of the algorithm

can be give as

1. Start with the random initialisation of the weight and bias in the ANN. It is important

to initialise all the value randomly, as if they are initialise to particular value then they

all will end up in the learning in the same way again and again. Random initialisation

breaks the symmetry of the learning.

2. Keep iterating to update the parameters W,b as follows until it hopefully ends up at

a minimum.The following equation represent the calculation of adjusted weights.

∆~w = −α∇E[~w] (3.16)

i.e.,

∆wi = −α ∂E
∂wi

(3.17)

∆bi = −α∂E
∂bi

(3.18)

where α is the learning rate and W l
i,j and bli,j denote each weight and bias in a particular

layer l in the Neural Network, respectively.

The derivative of the overall loss function can be computed as:

∂E

∂wi

=
∂

∂wi

1

2

∑
d

(td − od)2

=
1

2

∑
d

∂

∂wi

(td − od)2

=
1

2

∑
d

2(td − od)
∂

∂wi

(td − od)

=
∑
d

(td − od)
∂

∂wi

(td − ~w · ~xd)

∂E

∂wi

=
∑
d

(td − od)(−xi,d)

The learning rate is used to control how big a step is taken downhill with gradient

descent. Selecting the correct learning rate is critical. On one hand, if α is too small,

gradient descent can be slow. On the other hand, if α is too large, gradient descent can

overstep the minimum and even diverge.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 38

Figure 3.9: Effects of different learning rates

Backpropagation

The key step is to compute all those partial derivatives presented before. Therefore,

to compute efficiently backpropagation algorithm. Steps involve in the backpropagation

are

1. For each training example, Do

2. Input the training example to the network and compute the network outputs

3. For each output unit k

δk ← ok(1− ok)(tk − ok)

4. For each hidden unit h

δh ← oh(1− oh)
∑

k∈outputs

wh,kδk

5. Update each network weight wi,j

wi,j ← wi,j + ∆wi,j

where

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 39

∆wi,j = αδjxi,j

Regularization

Weight of the neural network can grow uncontrollably so in order to regularise those

weight and extra term is added called regularization term shown in equation 3.19 that

opposes weight growth. It also avoid the overspecialisation means to divert the output

towards only a particular input by increasing its weight very tremendously

∆wi = −γ ∂E
∂wi

− αwi (3.19)

3.4 Performance Measure of Different Techniques

There are many different techniques by which the performance of the classification model

could be measured. In most of the techniques the trained model is taken and the test set

created either by the cross fold or by newly selected test set and then the prediction is

done on the trained model and then the output are recored to measure the performance

such as precision, recall, accuracy and f-score which are defined by the true positive

which means the input which are true or belong to the class are correctly predicted by

model, true negative means the input which does not belong to the class is correctly

predict out of that class , false positive means the input does not belong to that class

but classifier model incorrectly predict that it belong to that class and false negative

means that the input sample which does belong to that class is predict not belonging to

that class.

3.4.1 Precision

PRECISION =
TRUE POSITIV E

TRUE POSITIV E + FALSE POSITIV E
(3.20)

3.4.2 Recall

RECALL =
TRUE POSITIV E

TRUE POSITIV E + FALSE NEGATIV E
(3.21)

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 3. Machine Learning in Android Malware Detection 40

3.4.3 Accuracy

ACCURACY =
T P + T N

T P + F P + T N + F N
(3.22)

where T P is TRUE POSITIV E, T N is TRUE NEGATIV E, F P

is FALSE POSITIV E and F N is FALSE NEGATIV E respectively.

3.4.4 F1-score

F1− SCORE = 2
PRECISION ∗RECALL
PRECISION +RECALL

(3.23)

3.4.5 ROC Curve

Receiver Operating Characteristic curve is the curve which is plot against true positive

rate or Sensitivity as Y axis and false positive rate 100-specificity as X axis for the

different points of test set result. The more the area under the curve more the classification

is better. The “steepness” with respect to the Y equal to X axis plays a significant role

in performance of the classifier. Figure 3.10 shows the ROC curves with the perfect

classifier which is always 1, good classifier which above the random guessing line and the

worse classifier which is below the random guessing.

Figure 3.10: ROC curves

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4

Artificial Neural Networks with

NEAT

Although Artificial Neural Network can classifies the highly complex input vector and the

accuracy of the classification increases with the increase in the number of the layers and

the number of the neurons, the complexity of the neural and the dilemma for choosing

the structure of the neural network and Zhang et al. [45] argued that the speed and

accuracy of the learning is greatly affected by the network complexity and proposed the

approach to select the optimal neural network by genetic algorithm [46].

NeuroEvolution of Augmenting Topologies(NEAT) is designed to take the benefit of the

minimisation of the dimensionality of the search space for the weight of the connection

in the neural network by Genetic Algorithm. If the structure of the neural network is

minimised then the speed of learning is increased significantly.

4.1 Background

Angeline et al.[47] suggest the neuroevolution approach for the recuurent neural networks,

Dasgupta et al. design the application specific neural networks using the genetic algorithm

[48], Fullmer et al.[49] uses the marker genetic encoding creating a finite state automata,

Gruau et al.[50] compared the cellular and direct encoding of genetic algorithm for

neural networks, Lee et al.[51] uses the link list structure for the neural network’s

structure, Mandisher did work on representation and evolution of neural network in

better way[52], Maneizzo[53] uses the genetic evolution for topology and weight selection

of neural networks and Yao ate al.[54] design the neural network using evolution by

41

Chapter 4. Artificial Neural Networks with NEAT 42

genetic algorithm. The work can explained in detail in different section of encoding of

network.

4.1.1 TWEANN Encoding

TWEANN encoding use the efficient genetic representation of the nodes. It can represent

both the direct encoding and indirect encoding schemes, in direct encoding every connection

and the node which will appear in the phenotype is specified in the genome, while in

indirect encoding which is the compact representation of the phenotype as the every

connection and node is not specified in the genome rather they can be derived from it.

4.1.2 Binary Encoding

Like the traditional string representation in the genetic algorithm similarly the direct

encodings and indirect encoding are represented as the bit string, Dasgupta at el. [48]

uses the bit string to represent the connection matrix of the network of the ANN. But

this representation is become huge string when the number of nodes are very large and

the crossover to the string may or may not represent the correct structure of the ANN.

4.1.3 Graph Encoding

Graph structure is use to represent the structure of the ANN [55], Subgraph is used to

be passed to another during the crossover to make the breeding of the new generation

of the ANN structure. Graph can be represented as the two by two matrix and the

crossover could not be easily done on that to produce the new graph .

4.1.4 Nominating

As the crossover of the different network could lead to loss of functinality, Yao et al. [54]

had proposed the there will no crossover between the different network rather than new

links and nodes are address to the network structure of the ANN.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 43

4.1.5 Indirect Encoding

Gruau et.al [50] Cellular Encoding is used in the indirect encoding scheme in which

genomes can be written with the help of the graph transformation language where

transformation are motivated by the cell divisions and generations, similarly the new

generation are produced.

4.2 NeuroEvolution of Augmenting Topologies

Aritifical neural networks is a type of supervised classification technique in which the

learner is present which teaches the ANN to adjust it weights but the Evolution of the

neural network structure with the help of the genetic algorithm is a type of reinforcement

learning in which model i.e neural network structure and weights are created and destroyed

like the generation of species, and the best model(generation) is selected as the classification

model.

The NEAT algorithm uses the genetic algorithm searching through the space for the

network weight and structures.It has the following properties:

1. Genetic representation of the structure such that it can be easily processed and

the genetic operators like mutate and crossover can applied easily.

2. Protect the innovation (means the new structure or the node added to the topology

or to the structure of the ANN) from repeating again and again by marking them

as the innovation number.

3. Minimise the topology throughout the training without using complex function

like gradient descent and backpropagation.

4.2.1 Genetic Encoding

The topology or the structure can be represented as shown in the figure 4.1. The

information of the network can be represented by the genome which contains the connection

genes and node genes. The connection gene represent the connection between the

different node by input coming from the node as InNode and output to the node as

OutNode, the weight of the link as Weight, is it Enabled and the innovation number.

Every connection gene has the corresponding innovation number which is used to track

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 44

the history of the genes evolution.

Figure 4.1: Genome of the topology of Neural Network by NEAT

4.2.2 Mutation

The NEAT algorithm has the structure dependent mutation which is similar to the

genetic algorithm like in genetic algorithm the particular bit of the string is changed

similarly here the connection genome is altered.

Point Mutate

Point mutate is the mutation in which the weight of the connection genome is changed by

the some factor. Like in genetic algorithm the mutation binary bit is selected randomly

similarly the connection genome is selected randomly for the mutation.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 45

Figure 4.2: Point Mutate by NEAT

Link Mutate

In this mutation the new connection genome is produced, the new connection is tracked

to the history by the searching it in the previous connection genome and then innovation

number is allotted to it as shown in figure 4.3. The list of the innovation is kept and every

time the genome is produced it is check in this list wether the genome is produced earlier

or not, if not then new number is allocated to it and is added to the list, if produced

earlier then the genome is discarded and again new genome is produced.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 46

Figure 4.3: Link Mutate by NEAT

Node Mutate

In the Node mutate shown in figure 4.4 the new node genome is added or the randomly

selected previous node genome is deleted and the equivalent connection genome of the

node are added or deleted.

Enable/Disable Mutate

In this mutation the randomly selected connection genome is enabled or disabled. The

connection genome is selected randomly and it is enabled or disabled by changing the

value for Enabled in the list of connection genomes.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 47

Figure 4.4: Node Mutate by NEAT

Figure 4.5: Enable/Disable mutate by NEAT

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 48

Figure 4.6: Crossover between Genome in NEAT

Crossover

Crossover or mating takes place between the two parent genomes. Both the parent

genome use to lined up using the innovation number, and a particular innovation of the

parent genome is copied to the child genome which is most fit, if both parents are fit

equally then the innovation is randomly selected from either of the parent genome and

if the innovation is only present in one of the parent genome means it is disjoint then it

simply copied to the child genome.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 4. Artificial Neural Networks with NEAT 49

4.2.3 Steps involved in NEAT

- Pool of the genome is created with k random genomes, where k is the initial

population of the genomes.

- Calculate the fitness of the genome apply the training dat or the simulation.

- Assign each genome to the species.

- Produce the offspring species by doing the crossover and mutation.

- Repeat till the desired fitness is not achieved or number of species are not generated.

4.3 Analysis of NEAT & Backpropagation Algorithm

The backpropagation algorithm is the one of the learning algorithm for the neural

network, therefore we can only consider it in the case of the speed of learning because

the network topology is selected in advance and weights are calculated with minimised

error. For the backpropagation algorithm, the gradient at each layer of the neurons is

calculated and then it error is propagate to the whole network and the weights at each

edges of the neural network are adjusted.

The complexity for the backpropagation training algorithm and weight adjustment is

O(2n) where n is the number of edges in the neural network. While the complexity of

the model generation with the weight by NEAT is O(n3 f) where n is the number of

nodes in final network and f is the number of iteration done to produce the structure of

the neural network.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5

Results and Evaluation

We have used the different classification techniques and use the Android application

permission and APIs as the features for classification model. We have collected the 440

sample of the malware and the benign application, used the Androguard [56] and Mosf

[40] to extract the permission and API from the android application package namely

.apk file and created a dataset for the classification model such as Decision tree, Support

Vector Machine, Neural Networks and NEAT.

5.1 Implementaion

The android application package .apk file are processed with Androguard to extract the

features Android permission and APIs and collected the permission to create a dataset

and collective have the 330 features. We have use the Rapid Miner tools [57], the python

Scikit-learn [27] and NEAT-python to perform the classification on the feature dataset

of the permissions and APIs. Now we will discuss results and evaluation

5.1.1 Results

We had applied theDecision tree, Support Vector Machine, Neural Networks and NEAT

classification methods, we had used the dataset as for the training and testing is done

10 cross fold. We discuss the result of each techniques one by one and them compare

them with the NEAT techniques

Decision Tree

Using Gini Index

50

Chapter 5. Results and Evaluation 51

Figure 5.1: Decision tree with gini index

Table 5.1: Output using Decision Tree with the Gini Index

Itr no. Accuracy Precision Recall F1-score

1 89.0 88.000 89.759 88.888
2 98.0 100.000 95.918 97.916
3 92.0 96.078 89.090 92.452
4 90.0 100.000 81.481 89.795
5 90.0 89.130 89.130 89.130
6 93.0 100.000 86.274 92.631
7 86.0 88.000 84.615 86.274

Using Information Gain

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 52

Figure 5.2: Decision tree with information gain

Table 5.2: Output using Decision Tree with the Information Gain

Itr no. Accuracy Precision Recall F1-score

1 88.0 87.755 87.755 87.755
2 96.0 97.872 93.877 95.833
3 92.0 97.959 87.272 92.307
4 91.0 100.000 83.333 90.909
5 89.0 90.697 84.782 87.640
6 92.0 95.744 88.235 91.836
7 88.0 92.478 82.692 87.755

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 53

Support Vector Machine

Using Linear Kernel

Table 5.3: Output using SVM using Linear Kernel

Itr no. Accuracy Precision Recall F1-score

1 96.0 90.153 96.153 96.153
2 92.0 94.000 90.384 92.156
3 97.0 98.000 96.078 97.029
4 95.0 95.740 93.750 94.736
5 89.0 88.461 90.196 89.230
6 93.0 89.361 95.454 92.307
7 95.0 96.226 94.444 95.327

Using Gaussian Kernel

Table 5.4: Output using SVM using Gaussian Kernel

Itr no. Accuracy Precision Recall F1-score

1 92.0 94.000 90.384 92.156
2 88.0 85.714 92.303 88.888
3 91.0 87.500 96.078 91.588
4 94.0 93.750 93.750 93.750
5 86.0 83.636 90.196 86.792
6 87.0 79.245 95.545 86.597
7 95.0 94.545 96.296 95.412

Using Sigmoid Kernel

Table 5.5: Output using SVM using Sigmoid Kernel

Itr no. Accuracy Precision Recall F1-score

1 93.0 97.872 88.461 92.929
2 87.0 93.333 80.769 86.597
3 91.0 93.750 88.235 90.909
4 93.0 97.674 87.500 92.307
5 91.0 95.652 86.274 90.721
6 90.0 88.636 88.636 88.636
7 96.0 98.076 94.444 96.226

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 54

Neural Network

Table 5.6: Output using Neural Networks

Itr no. Accuracy Precision Recall F1-score

1 94.0 92.452 96.078 94.230
2 96.0 93.877 97.872 95.833
3 90.0 92.452 89.090 90.740
4 92.0 95.918 88.679 92.156
5 92.0 94.339 90.909 92.592
6 92.0 91.836 91.836 91.836
7 92.0 100.000 96.551 98.245

Neural Network with NEAT

Table 5.7: Output using NEAT

Itr no. Accuracy Precision Recall F1-score

1 93.0 92.307 94.117 93.203
2 94.0 91.071 95.918 94.444
3 95.0 95.652 93.6170 94.623
4 95.0 98.039 92.592 95.238
5 95.0 98.254 100.000 99.115
6 94.0 93.023 93.023 93.023
7 93.0 95.454 89.361 92.307

Figure 5.3: Neat with the average and best fit generation

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 55

5.2 Evaluation

We have compared the classification results of the various techniques with NEAT, we

have measured Accuracy,Precision, Recall and F1-score of the each classification with

the NEAT. Table 5.8 show the average score of the each techniques we have applied

in the series of experiment performed and found that the NEAT had the maximum of

94.142 % of accuracy from all the other one is best from rest of techniques.

The ROC curve was used shown in figure 5.8 to measure the score for the different

techniques, we find that the Support Vector Machine was having the curve very close to

the NEAT outstanding from the Decision tree and Neural Network, but it was not able

to get the same closeness to the 1 like as of the NEAT.

We have also plotted the graph to measure the accuracy rate for each of the techniques

and find that the NEAT had the accuracy curve which is consistent and is more frequently

touching the maximum value of 100% in figure 5.9, thus have the maximum probability

of getting the prediction with maximum accuracy.

Table 5.8: Average classification score of different techniques

Decision Tree SVM Neural Networks NEAT
Accuracy 92.571 93.857 92.571 94.142
Precision 94.458 94.410 93.134 94.827

Recall 88.043 93.002 93.779 94.383
F1-Score 91.012 93.660 93.861 94.567

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 56

Figure 5.4: ROC of Decision Tree

Figure 5.5: ROC of SVM

Figure 5.6: ROC of Neural Networks

Figure 5.7: ROC of NEAT

Figure 5.8: ROC of Different Techniques

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 5. Results and Evaluation 57

Figure 5.9: Accuracy rate Different Techniques

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Malware of any platform either on regular desktop computer or mobile platform like

android, iOS etc., are very difficult to detect in the real world scenario, the standard

signature based techniques are not that much effective and become useless when the new

zero day attack comes in. Although the dynamic analysis are better than the signature

based one but they requires the cloud service or the other virtual environment to execute

the malware , but there is meagreness of service which could do automated dynamic

analysis of malware. Also the malware are able to detect the virtual environment and

change their behaviour. In this work we propose a schema for the detection of android

malware by using the API and Permission of the android applications and used the far

more advance technique for machine learning than the standard techniques called NEAT,

which is a type of reinforcement learning which has a high detection(classification) rate

and produce a optimised structure which provide the faster detection due to faster

processing. Experiment on the real world demonstrate the good performance of the

NEAT with respect to the neural networks, Support vector machines and Decision trees

using the android permission and API as the features.

6.2 Future Work

In future we will like to extend our work by adding and finding the new feature from the

application of the android as well can use more advance machine learning techniques.

For the features we can use the hexdump image of the apk, jar file in the apk, database

58

Chapter 6. Conclusion and Future Work 59

file if present in the apk, process dump of the application in various time interval during

execution, and then represent them as the image of NxN matrix. We can use this image

as the feature for the machine learning. For the machine learning technique we can

use the Deep Learning technique by applying the convolution networks on those images

and other processing and perform the training, with this techniques we can use the

computational power of Graphic Processing Unit along with Central Processing Unit to

increase the rate of learning, and then we can port this model to the android device

which can detect the malware.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Bibliography

[1] Wikipedia, “Google Play — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/w/index.php?title=Google%20Play&oldid=785033684, 2017.

[2] Androguard, “androguard - github.com/androguard/androguard.”

[3] iBotpeaches, “Apk tool: A tool for reverse engineering android apk files.”

[4] Wikipedia, “Android application package — Wikipedia, the free encyclopedia.”

http://en.wikipedia.org/w/index.php?title=Android%20application%

20package&oldid=782491961, 2017.

[5] “Dataset malware/beningn permissions android — kaggle.”

[6] “Over 1 billion android-based smart phones to ship in 2017 -canalys.com.”

[7] “Operating system market share - netmarketshare.com.”

[8] alcatel lucent, “Kindsight security labs malware report,” tech. rep., Kindsight

security labs, Q3 2013.

[9] E. Kalige, “A case study of eurograbber: How 36 million euros was stolen via

malware,” tech. rep., Head of Security Operation Center, Versafe, 2012.

[10] H. Lockheimer, “Android and security..” http://googlemobile.

blogspot.nl/2012/02/android-and-security.html, Feb 2012.

[11] X. Jiang, “An evaluation of the application (”app”) verification service in android

4.2.” Department of Computer Science, NC State University.

[12] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An android

application sandbox system for suspicious software detection.,” in Malicious and

unwanted software (MALWARE), 2010 5th international conference on, pp. 55–62,

IEEE, 2010.

60

http://en.wikipedia.org/w/index.php?title=Google%20Play&oldid=785033684
http://en.wikipedia.org/w/index.php?title=Google%20Play&oldid=785033684
http://en.wikipedia.org/w/index.php?title=Android%20application%20package&oldid=782491961
http://en.wikipedia.org/w/index.php?title=Android%20application%20package&oldid=782491961

Bibliography 61

[13] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis and

stimulation technique to automatically reconstruct android malware behaviors,”

EuroSec, April, 2013.

[14] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic security analysis

of smartphone applications,” in Proceedings of the Third ACM Conference on Data

and Application Security and Privacy, CODASPY ’13, (New York, NY, USA),

pp. 209–220, ACM, 2013.

[15] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,

“Mobile-sandbox: Having a deeper look into android applications,” in Proceedings

of the 28th Annual ACM Symposium on Applied Computing, SAC ’13, (New York,

NY, USA), pp. 1808–1815, ACM, 2013.

[16] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os and dalvik

semantic views for dynamic android malware analysis,” in Proceedings of the 21st

USENIX Conference on Security Symposium, Security’12, (Berkeley, CA, USA),

pp. 29–29, USENIX Association, 2012.

[17] A. A. A. Samra and O. A. Ghanem, “Analysis of clustering technique in android

malware detection,” in 2013 Seventh International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing, pp. 729–733, July 2013.

[18] Z. Salehi, M. Ghiasi, and A. Sami, “A miner for malware detection based on api

function calls and their arguments,” in The 16th CSI International Symposium on

Artificial Intelligence and Signal Processing (AISP 2012), pp. 563–568, May 2012.

[19] J. Sahs and L. Khan, “A machine learning approach to android malware detection,”

in 2012 European Intelligence and Security Informatics Conference, pp. 141–147,

Aug 2012.

[20] J. Platt, B. Schölkopf, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,

“Estimating the support of a high-dimensional distribution,” tech. rep., November

1999.

[21] N. Peiravian and X. Zhu, “Machine learning for android malware detection using

permission and api calls,” in 2013 IEEE 25th International Conference on Tools

with Artificial Intelligence, pp. 300–305, Nov 2013.

[22] “Number of available android applications - appbrain.”

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Bibliography 62

[23] M. Christodorescu and S. Jha., “Static analysis of executables to detect malicious

patterns,” tech. rep., DTIC Document, 2006.

[24] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware

detection,” in Twenty-Third Annual Computer Security Applications Conference

(ACSAC 2007), pp. 421–430, Dec 2007.

[25] R. Rojas, Neural Networks: A Systematic Introduction. New York, NY, USA:

Springer-Verlag New York, Inc., 1996.

[26] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting

topologies,” Evol. Comput., vol. 10, pp. 99–127, June 2002.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine

learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830,

2011.

[28] “Platform architecture - developer.android.com.”

[29] “Dalvik virtual machine - www.dalvikvm.com.”

[30] J. A. Bergstra and A. Ponse, “Register-machine based processes,” J. ACM, vol. 48,

pp. 1207–1241, Nov. 2001.

[31] Wikipedia, “Stack machine — Wikipedia, the free encyclopedia.” http://en.

wikipedia.org/w/index.php?title=Stack%20machine&oldid=780705727, 2017.

[32] A. Gerber and C. Craig, Learn Android Studio: Build Android Apps Quickly and

Effectively. Berkely, CA, USA: Apress, 1st ed., 2015.

[33] CarrierIQ, “Carrieriq: Know your customer experience.”

[34] F-secure, “Threat description: Trojan:android/droidkungfu.c.”

[35] B. Dixon, Y. Jiang, A. Jaiantilal, and S. Mishra, “Location based power analysis to

detect malicious code in smartphones,” in Proceedings of the 1st ACM Workshop on

Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, (New York,

NY, USA), pp. 27–32, ACM, 2011.

[36] K. Savage, “Android.jsmshider is a trojan horse that opens a back door on android

devices..”

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

http://en.wikipedia.org/w/index.php?title=Stack%20machine&oldid=780705727
http://en.wikipedia.org/w/index.php?title=Stack%20machine&oldid=780705727

Bibliography 63

[37] “Droiddream : Malware become nightmare for the android platform.”

[38] M. Zheng, M. Sun, and J. C. Lui, “Droidray: A security evaluation system for

customized android firmwares,” in Proceedings of the 9th ACM Symposium on

Information, Computer and Communications Security, ASIA CCS ’14, (New York,

NY, USA), pp. 471–482, ACM, 2014.

[39] Y. Zhou and X. Jiang, “Android malware genome project.”

[40] Mobsf, “Mobile security framework is an intelligent, all-in-one open source mobile

application (android/ios/windows) automated pen-testing framework capable of

performing static, dynamic analysis and web api testing..”

[41] J. Freke, “smali/baksmali is an assembler/disassembler for the dex format used by

dalvik, android’s java vm implementation..”

[42] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp. 81–106, Mar.

1986.

[43] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,

pp. 273–297, Sept. 1995.

[44] W. S. McCulloch and W. Pitts, “Neurocomputing: Foundations of research,” ch. A

Logical Calculus of the Ideas Immanent in Nervous Activity, pp. 15–27, Cambridge,

MA, USA: MIT Press, 1988.

[45] B. tak Zhang and H. Muhlenbein, “Evolving optimal neural networks using genetic

algorithms with occam’s razor,” Complex Systems, vol. 7, pp. 199–220, 1993.

[46] J. H. Holland, “Genetic algorithms.,” Scholarpedia, vol. 7, no. 12, p. 1482, 2012.

[47] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm

that constructs recurrent neural networks,” IEEE Transactions on Neural Networks,

vol. 5, pp. 54–65, Jan 1994.

[48] D. Dasgupta and D. R. McGregor, “Designing application-specific neural

networks using the structured genetic algorithm,” in [Proceedings] COGANN-92:

International Workshop on Combinations of Genetic Algorithms and Neural

Networks, pp. 87–96, Jun 1992.

[49] B. Fullmer and R. Miikkulainen, “Using marker-based genetic encoding of neural

networks to evolve finite-state behaviour,” in In Proceedings of the first European

Conference on Artificial Life (ECAL-91, pp. 255–262, MIT Press, 1991.

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

Bibliography 64

[50] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular encoding

and direct encoding for genetic neural networks,” in Proceedings of the 1st Annual

Conference on Genetic Programming, (Cambridge, MA, USA), pp. 81–89, MIT

Press, 1996.

[51] J.-H. Kim and C.-H. Lee, “Evolutionary ordered neural network and its application

to robot manipulator control,” in Proceedings of the 1996 IEEE IECON. 22nd

International Conference on Industrial Electronics, Control, and Instrumentation,

vol. 2, pp. 876–880 vol.2, Aug 1996.

[52] M. Mandischer, Representation and Evolution of Neural Networks, pp. 643–649.

Vienna: Springer Vienna, 1993.

[53] V. Maniezzo, “Genetic evolution of the topology and weight distribution of neural

networks,” IEEE Transactions on Neural Networks, vol. 5, pp. 39–53, Jan 1994.

[54] X. Yao and Y. Liu, “Towards designing artificial neural networks by evolution,”

Appl. Math. Comput., vol. 91, pp. 83–90, Apr. 1998.

[55] J. a. C. F. Pujol and R. Poli, “Evolving the topology and the weights of neural

networks using a dual representation,” Applied Intelligence, vol. 8, pp. 73–84, Jan.

1998.

[56] A. Desnos., “Androguard: tool to reverse engineer apk.”

[57] I. RapidMiner, “Rapidminer studio:real data science, fast and simple..”

Shubham Jain “Android malware detection using neural networks with NEAT”, 2017

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Problem Statement
	1.4 Scope of Work
	1.5 Organization of Thesis

	2 Literature Review
	2.1 Android System Architecture
	2.1.1 Linux kernel
	2.1.2 Libraries
	2.1.3 Android runtime
	2.1.4 Application framework
	2.1.5 Applications

	2.2 Dalvik Virtual Machine
	2.2.1 Hardware Constarints
	2.2.2 Bytecode
	2.2.3 Register-based Architecture

	2.3 Android Application
	2.3.1 Application components
	2.3.2 Distribution

	2.4 Malware
	2.4.1 Spywares
	2.4.2 Graywares
	2.4.3 Fraudwares
	2.4.4 Trojans
	2.4.5 Root exploits
	2.4.6 Bots
	2.4.7 Malware with Privilege Escalation Exploits
	2.4.8 Types of Malware Penetration Techniques
	2.4.9 Malware Datasets

	3 Machine Learning in Android Malware Detection
	3.1 Android Application Structure
	3.1.1 Android Security Mechanism
	3.1.2 Android Permission Setting
	3.1.3 Android API calls

	3.2 Extracting the features using Static Analysis from the Android Application
	3.2.1 Androguard
	3.2.2 APK Tool

	3.3 Machine learning Techniques Used
	3.3.1 Decision Trees
	3.3.2 Support Vector Machine
	3.3.3 Artificial Neural Networks

	3.4 Performance Measure of Different Techniques
	3.4.1 Precision
	3.4.2 Recall
	3.4.3 Accuracy
	3.4.4 F1-score
	3.4.5 ROC Curve

	4 Artificial Neural Networks with NEAT
	4.1 Background
	4.1.1 TWEANN Encoding
	4.1.2 Binary Encoding
	4.1.3 Graph Encoding
	4.1.4 Nominating
	4.1.5 Indirect Encoding

	4.2 NeuroEvolution of Augmenting Topologies
	4.2.1 Genetic Encoding
	4.2.2 Mutation
	4.2.3 Steps involved in NEAT

	4.3 Analysis of NEAT & Backpropagation Algorithm

	5 Results and Evaluation
	5.1 Implementaion
	5.1.1 Results

	5.2 Evaluation

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

