"DESIGN AND EXPERIMENTAL ANALYSIS OF THERMOELECTRIC REFRIGERATOR"

Submitted to Delhi Technological University in Partial Fulfilment of the Requirement for the Award of the Degree of

Master of Technology In Mechanical Engineering

With specialization in Renewable Energy Technology

By Surender kumar (2K13/RET/11)

Under the guidance of Prof.Dr.R.S Mishra And Dr.R.K Singh

(Associate Professor)

Department of Mechanical Engineering

DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur Bawana Road, Delhi-110042, INDIA SESSION 2013-15

CERTIFICATE

This is to certify that the project entitled "Design and experimental analysis of thermoelectric refrigerator" being submitted by me, is a bonafide record of my own work carried by me under the guidance and supervision of Prof Dr.R.S Mishra and Dr. Raj Kumar Singh(Associate Professor) in partial fulfillment of requirements for the award of the Degree of Master of Technology in Renewable Energy Technology from Department of Mechanical Engineering, Delhi Technological University, Delhi.

The matter embodied in this project either full or in part have not been submitted to any other institution or University for the award of any other Diploma or Degree or any other purpose what so ever.

> Surender kumar Registration Number: DTU/13/M-Tech/202 University Roll Number: 2K13/RET/11

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

PROF(DR)R.S MISHRA

DR. R.K SINGH (Associate Professor)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

Shahabad Daulatpur, Bawana Road, Delhi-110042, India

ACKNOWLEDGMENTS

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to Prof(Dr.) R.S Mishra and Dr. R.K Singh(associate professor) of Mechanical Engineering Department, Delhi Technological University for his continuous guidance, invaluable suggestion and exquisite time at all stages from conceptualization to experimental and final completion of this project work. I also wish to place on record the patience and understanding shown by Sir at critical situations. Along with academics, I learnt from him the resilience to undertake challenges that the research world would be putting my way.

I am grateful to Prof. (Dr.) R. S. Mishra, Head, Department of Mechanical Engineering, Delhi Technological University for providing the experimental facilities. His constant support, co-operation and encouragement for successful completion of this work.

This research work would not have become possible without strong cooperation, immense support and keen involvement of my friends and colleagues specially Mr.Saurabh, Santosh Kumar, Aadish Jain and Chandra Shekhar Som.

All my academic pursuits become a noticeable just because of my parents, Mr. Ramesh Chander and Mrs.Shashi Kanti who played a crucial role at each step providing encouragement and support. My sincere thanks to entire dear and near for their contribution directly or indirectly for accomplishing this arduous task.

Above all, I owe it all to Almighty God for granting me the wisdom, health and strength to undertake this research task and enabling me to its completion.

Surender kumar University Roll Number: 2K13/RET/11

LIST OF DIAGRAM PAGE NO.

1.	Fig 1.1 Seebeck Effect05		
2.	Fig 1.2 Peltier Effect06		
3.	Fig 2.1 Component of thermoelectric module first one is single stage modu		
	and second is Two stage module		
4.	Fig 2.2 shows thermal conductivity of semiconductor15		
5.	Fig. 2.3 Show the best one material from the given semiconductor16		
6.	Fig 2.4Thermoelectric module Assemblage16		
7.	Fig2.5.Thermoelectric module		
8.	Fig 4.1: difference of the cold junction and the PCM temperatures from side to		
	side the cooling technique for the tests with, and short of, PCM material25		
9.	Fig 4.2: difference of cold junction and PCM temperatures for the test by, and		
	without, PCM material, when the power was turned off25		
10.	Fig 4.3: relationship b/w performance of thermoelectric refrigeration planning		
	with and without, PCM materials26		
11.	Fig 4.4: Resistivity ρ as a purpose of temperature for HfTe5 and ZrTe527		
12.	Fig 4.5: complete thermo-power as a purpose of Temp for HfTe5 and ZrTe.28		
13.	Fig. 5.1. Schematic of Thermoelectric Refrigerator		
14.	Fig.5.2 temp. v/s seebeck coefficient		
15.	Fig.6.1Block diagram		
16.	Fig.6.2 Experimental test for TE		
17.	Fig. 6.3 Running status of TE module		
18.	Fig.6.4running status of TE		
19.	Fig.6.5 temp. v/s current of thermoelectric module41		
20.	Fig.6.6 temp. v/s time of thermoelectric module		

LIST OF TABLES

1.	Table2.1 Experimental values of TE module of bismuth telluride Materials	.15
2.	Table 2.2Parameters of Bismuth Telluride	17
3.	Table 4.1: Some Scaling Laws in Conduction and Convection	23
	Table6.1 Specification of Thermoelectric moduleTable 6.2 Result obtained from experiment.	

SYMBOLS AND MEANING

Symbols	Meaning	Unit
	Peltier heat	J
π AB	Peltier coefficient	
Ι	Electric current	А
Ζ	Figure of merit	/K
α	Seebeck coefficient	V/K
6	Electrical resistivity	Ωm
k	Thermal conductivity	W/mK
ΔT¨max	Maximum temperature when	°C
	there is no ripple	
ΔTmax	Actual maximum temperature difference	°C
Ν	Ripple amplitude around average current	m
T _h	Heat sink temperature	°C
T _c	Cold side temperature of module	°C
K _m	Module thermal conductance	W/K
R _m	Module resistance	Ω
X ₁ ,X ₂ ,X ₃	Thicknesses of mild steel sheet, polyethane and aluminium respectively	m
Q _{co}	Heat transfer per unit area	W/m ²
h _o ,h _i	Heat transfer coefficient of air outside and inside chamber respectively	W/m ² k
Q _{INF}	Heat due to infiltration	W
M _w	Mass of water	kg
··· Cp _w	Specific heat capacity of water	J/kgK
Tw2,Tw1	Initial and final temperature of water	°C
Q _p	Product load	kJ
Q _T	Total refrigeration load	W
Q _c	Cooling capacity per module	W
V _{IN}	Input voltage	V
Р	Electrical power	W
Q _R	Heat rejected	W
C.O.P	Coefficient of performance	

TABLE OF CONTENTS

1 .Abstract	1		
2. Chapter 1 –1.0 Introduction			
1.1History	4		
1.2. Objective of the work	6		
1.3.Layout of project	7		
1.4. Literature review	8		
3. Chapter 2 structure and construction			
2.0. Introduction	13		
2.1. Comparison	13		
2.2. Thermoelectric materials	14		
2.3. Thermoelectric Module	17		
2.4. Concluding Remarks	19		
4. Chapter 3 Application of TE cooling			
3.0. Introduction	20		
3.1. Uses			
5. Chapter 4: Method of Improve COP of TE refrigerator			
4.0. Introduction			
4.1. Miniaturization	22		
4.2. Superlattices	23		
4.3 TE system Employ a phase change material (PCM)	24		
4.4. Semiconductor for use in TE refrigerator	26		
4.5. Concluding remarks	28		
6. Chapter 5: Analysis of thermoelectric cooling	29		
5.0. Introduction	29		
5.1. Design and Load Calculation	29		
5.2 Energy and entropy balance	32		
5.3Concluding Remark	35		
7. Chapter 6 conclusion and scope for future development			

6.1 Potential research scope in material field	36
6.2Exerimental work	36
6.3Conclusion and future work	.44-45
7.References	47