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Abstract 

 

Data imbalancing is becoming a common problem to tackle in different fields like, defect 

prediction, change prediction, oil spills, medical diagnose etc. Various methods have been 

developed to handle imbalanced datasets in order to improve accuracy of the prediction 

models. Software defect prediction is important to identify defects in the early phases of 

software development life cycle. This early identification and thereby removal of software 

defects is crucial to yield a cost-effective and good quality software product. Though, 

previous studies have successfully used machine learning techniques for software defect 

prediction, these techniques yield biased results when applied on imbalanced data sets. An 

imbalanced data set has non-uniform class distribution with very few instances of a specific 

class as compared to that of the other class. Use of imbalanced data sets leads to off-target 

predictions of the minority class, which is generally considered to be more important than the 

majority class. Thus, handling imbalanced data effectively is crucial for successful 

development of a competent defect prediction model. Many studies have been carried out in 

the field of defect prediction for imbalanced datasets but most of them uses SMOTE 

oversampling method to handle the imbalanced data problem. There are many other 

oversampling methods which help to deal with imbalancing problem and are still unexplored 

particularly in the field of software defect prediction. This study evaluates the effectiveness 

of machine learning classifiers for software defect prediction on twelve imbalanced NASA 

datasets by application of nine sampling methods. We also propose a modified version 

(SPIDER3) of the existing oversampling method SPIDER2 and compare it with the original 

one. Furthermore, the work evaluates the performance of MetaCost learners on imbalanced 

datasets. The results show improvement in the prediction capability of machine learning 

classifiers with the use of sampling methods. MetaCost learners improves the sensitivity and 

helps to predict defects effectively. Moreover, they advocate the applicability of modified 

version of SPIDER2 oversampling method as it outperforms the original SPIDER2 method in 

majority of the cases. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Defects in a software is a very common and frequently occurring problem. Software 

designing, coding, addition of new features, modification of a software etc. can lead to 

number of faults in the software. A software defect is defined as a bug that causes software 

failure and prevents it from producing the desirable outcomes. To minimize the chances of 

software failure, it becomes necessary to find faults in the software. As finding each and 

every fault is a sophisticated and impractical task, researchers focus on developing fault 

prediction models.  

In recent years, many studies [16], [25], [26], [27], [28], [29], [30], [31], [32], [56] 

have successfully developed software defect prediction models. Software defect prediction 

involves determination of the probability of occurrence of a defect in the future or unseen 

versions of a software product. Since, a software defect may cause software failure and 

forbids the software to produce desirable outcomes, early detection of software defects is 

beneficial so that they can be corrected in the initial phases of software development life 

cycle. This helps in the development of a cost effective model because detection and 

correction of defects becomes difficult and costlier if they propagate to later phases.  

Thus, software defect prediction aids in development of good quality software product 

with lower testing and maintenance costs and thereby satisfied customers. Software defect 

prediction models rely on past data and classify modules as defective or non-defective on the 

basis of this historically collected data. Previous studies have used various software metrics 

(section 1.1.1.) sets along with defect data, to build prediction models which have been 

proved reformative for predicting defect prone modules. 

Previous research on defect prediction demonstrates that 80% of the defects occur in 

very few modules (20%) while the rest 80% of modules contains only 20% of the total 

defects [55]. This indicates that defective classes are present in minority (less number) as 

compared to non-defective classes, which results in imbalanced datasets. Imbalanced data is 
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the data in which distribution of classes is one-sided, which may result in incorrect prediction 

of the minority class instances.  

Although, the minority class instances are low in number, but in majority of the cases 

they are important to be classified correctly. Incorrect prediction of defective classes might 

result in escape of critical errors leading to bad quality software and higher testing costs. 

Thus, misclassification of defective classes may lead to project scrap which can further harm 

the reputation of an organization. Therefore, it is important to address imbalanced data 

problem for software defect prediction to improve software quality, to reduce prediction error 

and for successful deployment of the software.  

Below subsections demonstrates the use of software metrics and elaborates the 

occurrence of data imbalancing problem in defect prediction studies. 

1.1.1. Software Metrics 

A software metric is a measure of an extent to which a software system possess some 

characteristics. Software measurement is done through code coverage, cohesion, coupling, 

lines of code, cyclomatic complexity, Halstead complexity, function points etc. Metrics are 

defined at various levels for example, method level metrics, class level, file level, component 

level, quantitative metrics, product metrics and process metrics. Out of method level metrics, 

Halstead (1977) and McCabe (1976) are widely used metrics [26]. Now-a-days, class level 

metrics are also becoming popular but their use is confined to object oriented software only 

whereas method level metrics can be used for both structured as well as object oriented 

programming paradigm[26]. Popular class level metrics are CK metrics suite, MOOD, 

QMOOD and L&K [26]. Kaszycki (1999) observed that performance increases if we use 

process metrics as well [29]. The only difficulty with these metrics is that they change with 

the change of organization. So, it is required that model must be built from root again [29].  

This thesis work is based on method level metrics i.e. Halstead and McCabe static 

code metrics suite. The study uses a set of 36 procedural metrics as independent variables. 

Procedural metrics consists of a set of traditional code metrics defined by Halstead [23] and 

McCabe [24] and lines of code (LOC) counts which are categorized under size metrics. 

Halstead metrics are used to measure complexities on the basis of number of operators and 

operands in a module [25] while McCabe metrics set is deduced using the flow graph 

information of a module. 
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Many previous defect prediction studies have used procedural metrics in order to 

conduct their experiments on defect datasets. For example, a study of Catal and Diri [28] 

used procedural metrics suite to assess results with respect to various machine learning 

techniques. Chug and Dhall [27] incorporated the use of static code metrics in their research 

regarding clusters and machine learning techniques. Lessmann et al. used Halstead and 

McCabe metrics to build defect prediction classification models. These are the metrics which 

have been used in a lot of defect prediction related studies. 

1.1.2. Imbalanced Data Problem 

Imbalanced data problem is a common problem in many  machine learning (ML) and 

data mining related domains for example, network intrusion detection [52], medical diagnosis 

[51], fraud detection [53], hyperspectral image classification [54], software defect prediction 

[11] etc. A data set is called imbalanced when one of the classes i.e. the minority class is 

heavily under-represented in contrast to the majority class which have larger number of 

instances as compared to minority class [18]. This means imbalanced data results from biased 

distributions of classes. 

Imbalanced data is considered as a serious problem in ML domain. It can cause 

adverse effect on the actual performance of various ML classifiers. In most of the cases, the 

accurate classification of minority class is more important than that of majority class as it is 

costly to misclassify instances from the minority class [18], [19]. For example, in case of 

medical diagnosis, cancer disease is less common but it is important to diagnose a person 

with cancer correctly otherwise it may lead to a loss of life. The traditional standard 

classifiers are built with the assumption that the input dataset is balanced with respect to 

various classes but when one class dominates the other, the classifiers tend to misclassify the 

minority class which results in the increase in prediction error [35]. This limitation of 

classifiers can lead to huge losses in terms of life and money.  

There are four different characteristics that imbalanced data holds as explained by 

Ramyachitra and Manikandan [18]: small disjuncts, lack of density, noisy data and dataset 

shift. In this study, we are dealing with the fourth characteristic that is dataset shift. This is 

defined as the case where the dataset follow different distributions with respect to various 

classes and the minority class is mostly sensitive to prediction errors. This work focuses on 

binary class (defective and non-defective) imbalance problem. The defect prone classes are 

present in only 20% of the total modules but are very important to be predicted correctly. 
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There are many techniques to handle imbalanced datasets on various levels like data 

level, algorithm level, cost sensitive level, feature selection level and ensemble level [6]. 

These levels further encompass different methods and algorithms to handle the imbalanced 

data. This work explores data level and cost sensitive approach. The data level methods 

include oversampling methods, undersampling methods and resampling methods. These are 

further categorized into various data balancing techniques which we will discuss in the later 

chapters. 

1.2 Motivation of the Work 

Handling imbalanced datasets to obtain improved results is an important challenge in 

software defect prediction area. Various methods have been developed to deal with 

imbalanced data like data sampling methods, cost sensitive learning, ensemble methods etc. 

[6], [12], [14], [48]. As mentioned above, this study specifically focuses on data sampling 

methods and cost sensitive learning.  

 Data sampling methods as mentioned by Lopez et al. [6] sample the data either by 

eradicating some of the majority class samples or by duplicating or adding new 

synthetic minority class samples. Ruling out some of the majority class samples is 

called the under sampling while addition of minority class samples (replicas or 

synthetic instances) is known as over-sampling technique. 

 Cost sensitive learning balances the data distribution by considering the cost of 

misclassification. All misclassification errors may not be equal in terms of cost. A 

predictor tries to minimize the cost by making less number of costlier 

misclassification errors. In this work, we assess the performance of oversampling 

methods as well as MetaCost (MC) learners [22] for handling the imbalanced 

datasets.  

Though, a number of studies in literature have explored imbalancing problem in 

software defect prediction domain [8], [9], [10], [11], [12], [13], [14], [15] yet only few 

sampling methods have been investigating in this domain. Amongst the explored sampling 

methods, Synthetic Minority Oversampling Technique (SMOTE) is a popular method while 

others like ADASYN, SPIDER, MUTE, SPY etc. are still novel to the area of defect 

prediction. This study investigates the performance of novel balancing techniques with use of 

NASA datasets. Furthermore, it implements these sampling methods together with the MC 



        

 

  Shine Kamal Page 5

 

learners for five ML classifiers to handle imbalanced data problem. We further perform 

statistical tests to compare their performances.  

1.3 Goals of the study 

This work examines nine sampling methods out of which five are oversampling 

techniques (SMOTE, ADAptive SYNthetic sampling technique (ADASYN), Safe-Level-

SMOTE, Selective Preprocessing of Imbalanced Data (SPIDER) and SPIDER2), one is 

undersampling technique (Majority Undersampling TEchnique (MUTE)) while the remaining 

three are resampling techniques (SPY, SpreadSubSample and Resample) together with the 

MC learners with three different cost ratios by using five ML classifiers. The ML classifiers 

used in this study are decision trees (J48 and Random Forest (RF)), Naïve Bayes (NB), and 

two ensemble methods AdaboostM1 (AB) and Bagging (BG). Furthermore, in order to 

generalize the results we explore twelve defect prediction public NASA datasets. We 

implement nine existing balancing techniques in MATLAB. We also propose and implement 

an improved version of SPIDER2 i.e. SPIDER3. The results are appraised using Area Under 

the Receiver Operating Characteristic Curve (AUC), sensitivity, specificity and precision 

performance metrics. Furthermore, this study performs statistical comparison of the results 

using Friedman and Wilcoxon tests.  

Thus, this study investigates the following research questions (RQ): 

RQ1: Does balancing of datasets using sampling methods improve the performance of ML 

techniques for defect prediction?  

RQ2: Which is the best oversampling method to improve the performance of ML techniques 

for software defect prediction in this study? 

RQ3: What is the comparative performance of the proposed version of SPIDER2 technique 

i.e. SPIDER3 and the original SPIDER2 technique for software defect prediction? 

RQ4: Which is the best sampling method among undersampling and resampling methods to 

improve the performance of ML techniques for software defect prediction in this study? 

RQ5: Which sampling technique is the best among oversampling, undersampling and 

resampling techniques and why? 

RQ6: What is the effect of using MC learners on imbalanced datasets for software defect 

prediction? 
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RQ7: What is the comparative performance of best sampling method and MC learners for 

software defect prediction? 

1.4 Thesis Organization 

  This thesis work is bifurcated into six different chapters. Starting with the abstract, 

Chapter 1 gives the brief introduction about the issues discussed in this study. The chapter 

explains the need and use of defect prediction models. It defines the defect related 

terminologies explaining how they affect the software systems and human life. It also 

addresses the imbalanced data problem, how it has been leading to the ignorance of defect 

prone classes in defect prediction area. The various software metrics used to develop 

prediction models are demonstrated and the goals of this empirical research are stated in the 

form of questions at the end of this chapter. 

 Chapter 2 sums up the related studies with respect to software defect prediction and 

imbalanced data problem. A lot of research has been carried out in defect prediction area in 

context of imbalanced data. This chapter summarizes the major contributions and findings of 

the previous studies. The literature survey conducted by the author in defect prediction finds 

out that imbalanced data is becoming a serious problem. Many studies [5], [9],[15], [13], [11] 

have been investigating in this field by using data balancing techniques. Most of the studies 

use SMOTE sampling method to handle imbalancing problem while other methods are still 

unexplored in the area of defect prediction. Only one defect prediction study [8] has used 

Safe-Level SMOTE oversampling method while the methods like ADASYN, SPIDER, SPY 

etc. are still novel. Furthermore, the related work describes the previous studies which have 

used procedural metrics and have applied various ML techniques for building models. 

 Chapter 3 provides the details regarding the experimental design of the study. It 

describes the dependent, independent variables used to carry out the research. The data 

collection method, different datasets and the various procedural metrics used in this study are 

mentioned in detail. The chapter further defines the performance metrics used to evaluate the 

prediction models and discusses the statistical test selection briefly. The 10-fold cross 

validation method used for model evaluation is explained in this section. 

 Chapter 4 describes the research methodology used in the experiment. It briefly 

discusses the various data sampling methods together with the detailed explanation of the 

algorithms to handle imbalanced data problem. A proposed oversampling method SPIDER3 

is also discussed with full details. A detailed discussion is carried out regarding MetaCost 
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learners which is cost sensitive approach of dealing data imbalancing. Furthermore, this 

section defines various machine learning classifiers which are applied on balanced as well as 

imbalanced datasets to develop defect prediction models. 

 In Chapter 5 the obtained results are stated and analysed using statistical tests. This 

chapter answers the above stated questions in chapter 1. We have performed an extensive 

comparison between various balancing methods using two non-parametric tests, Friedman 

and Wilcoxon. This chapter also states the advantageous use of the proposed method 

SPIDER3 and describes how it is better than the existing one (SPIDER2). 

At last, Chapter 6 concludes the final outcome of the study. It states which method 

performed the best and guides the researchers to make use of novel sampling techniques to 

further improve the performance of defect prediction models. The chapter also provides the 

future scope of the research. 
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CHAPTER 2 

RELATED WORK 

 

This section discusses the related work of this study. The section is further sub-

divided into two parts. The first part discusses the existing studies in defect prediction 

domain which have used method level metrics i.e. static code metrics suite and NASA 

datasets. The second part mentions previous studies related to imbalanced data problem in 

defect prediction domain as well as in other areas. 

2.1 Defect Prediction Studies 

There are a number of previous studies which have used NASA data sets for defect 

prediction. Chug and Dhall analyzed various ML techniques and clusters for defect prediction 

on NASA data sets using static code metrics [27]. They found that RF outperforms all the 

other investigated ML techniques for software defect prediction. 

Catal and Diri inquired the effect of dataset size and metrics set on software defect 

prediction [28]. They also used public NASA datasets and observed that RFs technique 

outperforms for large datasets and NB for small datasets. Another study by Catal and Diri 

observed that the most frequently used metrics in defect prediction are method-level metrics 

[26]. Also, ML techniques were found to be popular methods for defect prediction. A study 

by Catal [29] and another one by Malhotra [17], surveyed both ML and statistical techniques 

for defect prediction. According to their surveys, most of the studies used method level 

metrics and the defect prediction models were mostly developed using ML techniques. 

Moreover, the ML techniques outperformed the statistical methods in majority of the cases 

for developing software defect prediction models. 

Gondra proposed an ML technique for selecting a subset of software metrics that are 

most likely to predict defects and used NASA datasets to obtain results [30]. The study 

concluded that the Support Vector Machine (SVM) performs better than that of Artificial 

neural networks (ANNs). Li and Reformat studied a fresh ML method ‘SimBoost’ to make 

the dataset more balanced in order to handle the skewness in data distributions in software 

defect prediction [31]. Although, the method attempted to balance the datasets but the 

accuracy of the prediction was still not acceptable. 
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The study by Hong carried out his research on RF classifier [32]. He proved that the 

RF model was better than the MultiLayer Perceptron neural network model and Support 

Vector Machine (SVM) model. Shanthini and Chandrasekaran analyzed the performance of 

ML models using traditional performance measures such as precision, recall and AUC [33]. 

Their results which were based on public domain NASA data set KC1 showed that the RF 

outperforms the other methods. Singh et al. also used public domain NASA data set KC1 to 

analyze that the SVM method predicts defective classes with high accuracy when evaluated 

using AUC [34]. Lessmann et al. used Halstead and McCabe metrics to build defect 

prediction classification models. These are the metrics which have been used in a lot of defect 

prediction related studies [27], [28], [30], [33], [34]. 

2.2 Imbalanced Data Related Studies 

Some previous studies on defect prediction have inculcated the data pre-processing 

step by applying balancing techniques to get better results. The most popular and widely used 

method is SMOTE (Synthetic Minority oversampling technique) and its modified versions 

[5], [9], [12], [15]. A number of previous studies have used SMOTE for balancing the 

unbalanced data but there are more improved methods like SPIDER(selective preprocessing 

of imbalanced data), ADASYN (Adaptive synthetic sampling) which produce better results 

when compared to SMOTE. To the best of author’s knowledge, no work has been found in 

regard to these methods in software defect prediction.  

Siers and Islam incorporated the oversampling methods, SMOTE and Safe-Level-

SMOTE to optimize the cost of software defect prediction using decision forest [8]. The use 

of oversampling methods gave better results where number of defective examples was less 

than 100. To address the imbalanced data problem for software defect prediction, Liu et al. 

proposed a two-stage cost-sensitive learning (TSCS) method [10]. Their experimental results 

demonstrated that the TSCS methods outperformed single-stage cost-sensitive learning 

methods. Tan et al. applied the oversampling methods to improve the performance in online 

change classification [20]. Their results depicted that the oversampling methods improved the 

performance by significant percentage points. The study of Rodriguez et al. [7] compared 

cost-sensitive, sampling methods, hybrid techniques and ensembles to deal with imbalanced 

datasets. Their results showed that the algorithms to deal with imbalanced datasets enhanced 

the performance of prediction models. 
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The study of Wang and Yao compared the balancing techniques and concluded that 

the balanced random undersampling had a better defect prediction rate than the other methods 

[11]. To better estimate the cost, Khoshgoftaar and Gao used random undersampling (RUS) 

[13]. The results showed that the sampled data significantly out-performed the models that 

were constructed with the original, unsampled data. Kamei et. al. experimentally evaluated 

the effects of sampling methods (random over sampling, SMOTE, random under sampling 

and one-sided selection) on defect-prone ML models [14]. They discovered that sampling 

methods improved the prediction performance of the linear and logistic models, while the 

performance of neural network and classification tree models did not improve by the use of 

sampling methods. 

Seliya and Khoshgoftaar used cost sensitive method to analyze the performance ML 

techniques in case of imbalanced datasets [48]. They considered misclassification cost as an 

important factor for making better models. Weiss et al. [49] and Galar et al. [50] also worked 

on imbalanced data in defect prediction. They used cost sensitive learning, sampling methods 

and ensemble methods to improve the performance of ML models. 

Although these studies have worked on improving the performance of defect 

prediction models using imbalanced data but no study has explored all the above mentioned 

sampling methods to handle imbalanced data in the software defect prediction domain. 

Though, SMOTE has been popularly used in previous studies, this study analyzes the use of 

new and improved sampling methods like ADASYN and SPIDER etc. Furthermore, this 

study implements these nine sampling methods in the MATLAB environment and then uses 

them for developing better defect prediction models using ML techniques. 

A previous work by Malhotra and Khanna in [21] analysed the performance of three 

sampling methods (sampling, SMOTE and Spread Subsample) along with MC learners on 

change prediction data. However, this work is different from author’s previous work as it 

investigates specifically the use of various oversampling methods on defect prediction data. 

Moreover, the various oversampling methods (apart from SMOTE) used in this work has 

been coded by the authors themselves. Also, the study proposes a new variant of an existing 

oversampling method SPIDER2. Our improved version of the SPIDER2 algorithm is more 

effective for handling imbalanced data than its original version. Moreover, this study uses 

twelve public NASA defect datasets as compared to only six data sets used in author's 

previous work on change prediction. 
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CHAPTER 3 

EXPERIMENTAL DESIGN 

 

This section provides the details regarding various design settings used in this study. 

3.1 Dependent and Independent Variables 

This study uses ‘defect proneness’ as a dependent variable [56]. Defect proneness is a 

binary variable which indicates the defective nature of the class. A class is said to be defect 

prone if there is a probability of detecting a fault in the class in future versions otherwise, a 

class is termed as non-defective. This binary variable is dependent on a number of other 

variables like Halstead and McCabe metrics. 

The dependence of defect proneness over static code metrics is considered practical as 

they have helped in successful detection of the defect prone nature of the class in the past 

[25], [30], [33]. They are also helpful in deciding whether the module should go through 

manual inspections or not. According to the survey by Malhotra in [17] procedural metrics 

are widely used metrics in more than 51% of previous [25], [26], [30], [33], [34] defect 

prediction studies and can be calculated at reasonably low costs for both small and large 

systems. Table 3.1 describes the static code metrics, size metrics and other metrics which are 

a part of procedural metrics used in this study. 

3.2 Data Collection 

This study uses a set of 12 publically available NASA datasets. As observed by 

Malhotra in [17] more than 60% of the previous software defect prediction studies [26], [30], 

[31], [32], [34] used NASA datasets. They are available publically in NASA repository by 

NASA Metrics Data Programme. The NASA datasets used in this work are collected from 

the PROMISE repository. The NASA datasets used in this study are explored with the 

application of data sampling and ML techniques. 
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Table 3.1 Static Code Metrics Description in NASA Datasets  

Metric 
NASA Dataset 

CM1 JM1 KC2 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 

Halstead 

Metrics 

Level √ √ √ √ √ √ √ √ √ √ √ √ 

Program time √ √ √ √ √ √ √ √ √ √ √ √ 

Volume √ √ √ √ √ √ √ √ √ √ √ √ 

Error estimate √ √ √ √ √ √ √ √ √ √ √ √ 

Length √ √ √ √ √ √ √ √ √ √ √ √ 

Content √ √ √ √ √ √ √ √ √ √ √ √ 

Difficulty √ √ √ √ √ √ √ √ √ √ √ √ 

Effort √ √ √ √ √ √ √ √ √ √ √ √ 

Num_operands √ √ √ √ √ √ √ √ √ √ √ √ 

Num_unique_operands √ √ √ √ √ √ √ √ √ √ √ √ 

Num_operators √ √ √ √ √ √ √ √ √ √ √ √ 

Num_unique_operators √ √ √ √ √ √ √ √ √ √ √ √ 

McCabe 

Metrics 

Essential Complexity √ √ √ √ √ √ √ √ √ √ √ √ 

Cyclomatic Complexity √ √ √ √ √ √ √ √ √ √ √ √ 

Design Complexity √ √ √ √ √ √ √ √ √ √ √ √ 

Cyclomatic Density √ √ √ √ √ √ √ √ √ √ √ √ 

Size 

Metrics 

Number of lines √ - - √ √ √ √ √ √ √ √ √ 

LOC total √ √ √ √ √ √ √ √ √ √ √ √ 

LOC executables √ √ √ √ √ √ √ √ √ √ √ √ 

LOC comments √ √ √ √ √ √ √ √ √ √ √ √ 

LOC code & comments √ √ √ √ √ √ √ √ √ √ √ √ 

LOC blanks √ √ √ √ √ √ √ √ √ √ √ √ 

Others 

Branch count √ √ √ √ √ √ √ √ √ √ √ √ 

Condition count √ - - √ √ √ √ √ √ √ √ √ 

Decision count √ - - √ √ √ √ √ √ √ √ √ 

Edge count √ - - √ √ √ √ √ √ √ √ √ 

Parameter count √ - - √ √ √ √ √ √ √ √ √ 

Modified condition 

count 

√ - - √ √ √ √ √ √ √ √ √ 

Multiple condition 

count 

√ - - √ √ √ √ √ √ √ √ √ 

Node count √ - - √ √ √ √ √ √ √ √ √ 

Decision density √ - - √ - √ √ √ √ √ √ - 

Design density √ - - √ √ √ √ √ √ √ √ √ 

Essential density √ - - √ √ √ √ √ √ √ √ √ 

Global data density - - - √ √ √ - - - - - √ 

Call pairs √ - - √ √ √ √ √ √ √ √ √ 

Maintenance severity √ - - √ √ √ √ √ √ √ √ √ 

Global data complexity - - - √ √ √ - - - - - √ 

Normalized cyclomatic 

complexity 

√ - - √ √ √ √ √ √ √ √ √ 

Percent comments √ - - √ √ √ √ √ √ √ √ √ 

Number of code attributes 37 21 21 39 38 39 37 37 37 37 37 38 

Total number of modules 344 7782 522 194 1988 125 253 759 1585 1077 1458 17186 

Percentage of defected modules  12.21 21.48 20.5 18.55 2.31 35.2 10.67 8.03 1 12.44 12.20 3 
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Each dataset comprises of procedural metrics including static code metrics and size metrics. 

They also contains the defect proneness dependent variable. The value of dependent variable 

is set to ‘0’ or ‘no’ if the module is not defective otherwise it is set to ‘1’ or ‘yes’ in case of 

defective module. The datasets selected in this study are highly imbalanced with minority 

class (i.e. number of defective modules) percentage in the range of 1-35.5%. 

 The detailed description of 12 NASA datasets used in this study together with the 

procedural metrics used in each dataset is given in Table 3.1 which includes the total number 

of modules per dataset and percentage of defect prone modules. 

3.3 Selection of Performance Measures 

Performance of different defect prediction models can be evaluated using various 

performance metrics for example precision, recall, specificity, balance, AUC, F-measure, G-

mean, accuracy etc. Researchers had been involved in a controversy over the use of 

performance measures while dealing with imbalanced data. The use of recall, precision and 

accuracy performance measures have been criticized by researchers [36], [37], [38] for the 

evaluation of prediction models while AUC, balance etc. are considered effective measures 

for the defect prediction models evaluation in case of imbalanced data [12], [25], [37]. This 

work evaluates the performance of ML classifiers using four performance metrics. We use 

AUC, specificity and two traditional performance metrics: recall and precision as well for 

evaluating the results of the prediction models. AUC is an important metric to be considered 

for evaluation as it shows the trade-off between correct and incorrect predictions made by a 

classifier [46]. 

The performance of the developed models is evaluated using confusion matrix. It 

consists of four variables out of which two are predicted class labels and other two are actual 

class labels. Two classes used in this paper are defective (whether the module is defective) 

and non-defective class. In matrix, TN (true negatives) is the number of non-defective 

samples of the dataset which are predicted as non-defective, TP (true positives) is the number 

of defective samples of the dataset predicted correctly as defective, FN (false negatives) 

implies to the number of defective samples predicted as non-defective and similarly FP (false 

positives) refers to the number of non-defective samples predicted falsely as defective. Table 

3.2 shows the confusion matrix formation while various performance metrics used in this 

study are described with the help of definition along with formula in table 3.3. 

 



        

 

  Shine Kamal Page 14

 

Table 3.2 Confusion Matrix 

Class Predicted Negatives Predicted Positives 

Actual Negatives TN FP 

Actual Positives FN TP 

 

Table 3.3 Performance Metrics 

Performance Metric Definition 

Area under ROC 

curve 

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and 

specificity. The ROC is a curve plotted between sensitivity and (1-specificity) 

on the y and x-coordinate axis respectively. The larger the area enclosed under 

the curve the better is the performance of the ML technique. 

 

Sensitivity (Recall) 

It is defined as a percentage of correctly predicted defective modules.                      𝑆݁݊ݏ𝑖ݐ𝑖𝑣𝑖ݐ𝑦 = TP ∗ ͳͲͲTP + FN  

 

Specificity 

It is defined as a percentage of correctly predicted non-defective modules.                      𝑆݁݌𝑐𝑖݂𝑖𝑐𝑖ݐ𝑦 = TN ∗ ͳͲͲTN + FP  

 

Precision 

It is defined as the ratio of correctly predicted defective modules to the total 

number of modules predicted as defective.                       𝑃݁ݎ𝑐𝑖ݏ𝑖݊݋ = TP ∗ ͳͲͲTP + FP  

 

3.4 Statistical Test Selection 

In order to statistically evaluate the performance of data sampling methods and 

MetaCost learners, we use two statistical tests: Friedman test and Wilcoxon signed rank test. 

These tests are non-parametric tests and are conservative in nature. Unlike parametric tests, 

assumptions made in the non-parametric tests are not stringent and one may ignore the 

presence of outliers in the datasets, variance homogeneity, normal distributions etc [39]. 

Lessmann et al. ascertain that only few previous studies have used statistical tests for 

performance validation [25]. Deriving conclusions exclusively by manual inspection of 

empirical results might be misleading and can create inconsistency across more than one 

experiment performed on the same subject. To avoid this scenario, we use the two selected 

statistical tests to generate substantiated conclusions. 

Friedman test assigns ranks to different methods under experiment on the basis of 

performance metrics used for evaluation. The lower the mean rank attained by any method, 

the better it is. The degree of freedom for the test is set to 6 and the alpha value to α=0.05.  If 
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the results obtained by Friedman test are significant, we perform Wilcoxon signed rank test 

with Bonferroni correction. Bonferroni correction is used to remove family wise errors. The 

test ascertains whether the pairwise performance of two methods differs significantly or not. 

It compares two related scenarios (a vs b) using positive and negative ranks. Positive ranks 

indicate the number of times ‘a’ outperforms ‘b’ out of total number of instances while 

negative ranks indicate the number of times ‘b’ outperforms ‘a’. If positive ranks are equal to 

negative ranks then the performance of both ‘a’ and ‘b’ is considered equal. We use α=0.05 

as a decision parameter for the acceptance or rejection of null hypothesis. 

3.5 Model Evaluation 

The study uses 10-fold cross validation method for model evaluation. The method 

works by randomly dividing the dataset into ten subsets. Ten iterations are performed where, 

during each iteration, one subset is taken as testing set while other nine subsets are considered 

as training sets. All the ten subsets are used as validation set exactly once. The final result is 

calculated by the average estimation of results generated during each iteration. 
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CHAPTER 4 

RESEARCH METHODOLOGY 

In this study, we have implemented nine existing sampling methods and have 

proposed a new and improved oversampling method. The techniques are applied on 

imbalanced NASA datasets along with the use of MC learners to handle imbalancing 

problem. Furthermore, we apply five ML classifiers on the balanced datasets in order to 

evaluate their performance by using four performance measures described in the previous 

section. The study uses WEKA (www.cs.waikato.ac.nz/ml/weka) for evaluation. The results 

are computed using default WEKA parameters. This section describes the various methods to 

handle imbalanced datasets and the ML techniques for defect prediction used in this study. 

4.1. Data Sampling Methods 

Data sampling methods attempt to balance data either by replicating the minority class 

samples or by generating new synthetic samples of the minority class or it can also be done 

by eliminating the noisy majority class instances. This study implemented five oversampling 

methods, one undersampling and three resampling methods in the MATLAB environment 

whose brief explanation is stated in this section below. 

4.1.1 SMOTE 

SMOTE, synthetic minority oversampling technique by Chawla et al. [4] is a widely 

used method. In SMOTE, for each minority class sample its k nearest neighbors are 

computed and are randomly chosen in order to compute synthetic samples close to each 

minority class sample. This study chooses seven different values of k depending on the 

requirement of each of the 12 NASA datasets used in this work. Selection of number of 

nearest neighbors depends upon the amount of oversampling (N) needed. The amount of 

oversampling required can be 100%, 200%, 500%, 1000% and so on. For example, 500% 

oversampling means five nearest neighbors are randomly chosen from k nearest neighbors.  

Amount of oversampling further depends on the percentage of minority class present in each 

dataset with respect to total number of instances present in the dataset. This study uses 

amounts of oversampling in the range of 200-9000%. Detailed description of k and N is 

provided in table 4.1 below. The synthetic sample for each minority class sample is generated 

by taking the difference between the particular minority class sample and its nearest 
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neighbor. The difference is then multiplied by a random number which belongs to the range 

from 0 to 1 and then it is finally added to that particular minority class sample under 

consideration. Detailed Algorithm of SMOTE can be referred in. 

Table 4.1 Parameter Selection for Sampling Algorithms 

Dataset 

SMOTE/Safe-Level-SMOTE SPIDER/SP

IDER2/SPI

DER3 

MUTE SPY 

K N K k’ k” Z 

CM1 5 5 5 5 5 2 

JM1 4 4 4 5 5 2 

KC2 4 4 4 5 5 2 

KC3 4 4 4 5 5 2 

MC1 25 25 25 5 25 12 

MC2 3 2 3 5 5 2 

MW1 5 5 5 5 5 2 

PC1 7 7 7 5 5 2 

PC2 15 90 90 5 89 44 

PC3 5 5 5 5 5 2 

PC4 5 5 5 5 5 2 

PC5 30 30 30 5 29 14 

 

4.1.2. Safe-Level-SMOTE 

 Safe-level-SMOTE [2] is the modified version of SMOTE. It focuses on how the 

random number (used in SMOTE) will be chosen to generate synthetic minority samples. The 

minority class samples are assigned safe levels (sl) on the basis of k nearest neighbors in the 

dataset. In our experiment, we set the value of k to seven different values depending on the 

requirement of each of the 12 NASA datasets used in this work and the amount of synthetic 

samples to be generated are set in the range of 200-9000%. Detailed description of k and N is 

provided in table 4.1 above.  

We find k nearest minority class neighbors for each minority class sample ‘p’. One 

neighbor ‘n’ will be chosen randomly and then safe level ratio slp/sln (number of minority 

samples in k nearest neighbors of p in the dataset to the number of minority class samples in 

k nearest neighbors of n) will be calculated. On the basis of range of safe level ratio, random 

number is chosen accordingly. Then it will be used same as in SMOTE to generate synthetic 

samples. Difference between SMOTE and Safe-level-SMOTE is that SMOTE randomly 

generates equal synthetic samples for each minority class sample while it is not the case in 
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safe-level-smote. The generation of synthetic samples depends upon the gap variable. Figure 

4.1 describes the Safe-Level-SMOTE algorithm. 

D← OrigiŶal dataset 

Cmin ← set of iŶstaŶĐes of origiŶal dataset ǁhiĐh are preseŶt iŶ ŵiŶority 

Step 1) 

 For eaĐh p є Cmin 

 Compute k nearest neighbors of p in Cmin 

 Step 1a) Randomly select one out of k nearest neighbors and call it n 

                   Slp ← Ŷuŵďer of positiǀe iŶstaŶĐes iŶ k Ŷearest Ŷeighďors of  p iŶ D 

                   Sln ← Ŷuŵďer of positiǀe iŶstaŶĐes iŶ k Ŷearest Ŷeighďors of  Ŷ iŶ D 

                  If(sln==0) 

                       Set sl=∞ 

                  Else 

                       Calculate sl = slp/sln 

                  If(sl==∞ aŶd slp==o)  

  no need to generate synthetic samples. 

                  Else {  

                            if(sl==∞ aŶd slp!=o) 

   Gap=0 

                            Else if(sl==1) 

  Gap= random number between 0 and 1 

                            Else if(sl>1) 

                  Gap= random number between 0 and 1/sl 

                            Else 

  Gap= random number between 1-sl and 1 

          For eaĐh a є attr  
            {    [attr is the number of attributes] 

                  Compute the difference ͚dif͛ between ͚a͛ attribute of instance n and p 

                                   Generate synthetic sample by multiplying gap with dif and adding it to p. 

                             } 

                     } 

 Step1b) Repeat step 1a according to the need of amount of oversampling required. 

Step 2) Add synthetic samples to D. 

Fig. 4.1 Safe-Level-SMOTE Algorithm for Imbalanced Data 

4.1.3. ADASYN 

 In Adaptive synthetic (ADASYN) sampling technique [3], the number of synthetic 

samples needed to be generated for each minority class sample is decided by the density 

distribution. Unlike SMOTE, ADASYN automatically calculates the number of synthetic 

samples which are needed to be generated to balance the data. We do not need to manually 

input the amount of oversampling in case of ADASYN. The only input is the imbalanced 

dataset which we need to give. Density distribution is the measure of weights which are given 

to each minority class sample according to their difficulty level of learning. The procedure of 

generating synthetic sample is same as that of SMOTE. The major difference between 

SMOTE and ADADSYN is that the former produces the number of synthetic samples as per 

the user demand and it generates equal amount of samples for each minority class sample 
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while the latter automatically decides that how many number of synthetic samples are needed 

to be generated on the basis of density distributions. The variable ‘a’ used in the algorithm 

decides the amount of balancing required with respect to number of majority class samples. 

This study uses a=1 which means fully balanced dataset will be generated post ADASYN 

application. Figure 4.2 represents pseudo code for ADASYN. 

D← Original dataset 
Cmin ← set of instances of original dataset which are present in minority 

ms ← number of minority class samples 

ml ← number of majority class samples 

dmax ← maximum tolerated degree of class imbalance 

Step 1) Calculate class imbalance degree ‘Deg’ 
              Deg= ms/ml 

Step 2) if Deg< dmax 

            Step 2a) Compute the number of synthetic samples that are needed        

                           to be generated for each minority class sample as 

                 T=(ml-ms)*a 

        Where a є [0,1] is a constant used to specify desired     
        balance level.  

 

            Step 2b) For each s є Cmin do 

 Compute k nearest neighbors of s in D 

 Calculate ratio r(i)=maj(i)/k 

                          Where ‘maj’ is the number of majority class samples in k   

                           nearest neighbors of s, i=1,2,3…..ms. 

 

            Step 2c) Calculate the density distribution for each minority  

                          class sample ‘i’ as 

   R(i)=r(i)/∑ ሺ𝑖ሻ𝑚𝑠𝑖=1ݎ  

 

            Step 2d) Calculate the number of synthetic samples need to be  

                          generated for each minority class sample ‘i’ as 

 S(i)= R(i)*T 

 

            Step 2e) Calculate each synthetic sample for ‘i’ as 

 Loop from 1 to S(i) 

                                       Randomly choose one minority sample ‘n’ from k  

                                       nearest neighbors of s in Cmin. 

                                       Generate synthetic sample as 

                                             Synthetic=s+(n-s)*gap 

                        Where gap is the random number, gap є [0,1] 

  End loop. 

Fig. 4.2 ADASYN Algorithm for Imbalanced Data 

4.1.4. SPIDER 

 Selective preprocessing of imbalanced data (SPIDER) proposed by Stefanowski and 

Wilk [1] consists of two phases. In the first phase, each sample from the given dataset is 

flagged as noisy or safe depending on the k- nearest neighbors. In our experiment, we fix the 

value of k depending upon the number of instances and the amount of oversampling required 

in case of each of the 12 NASA datasets. The detailed description of k values is described in 
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table 4.1. In the second phase, amplification of minority samples is done in three ways, that 

is, weak amplification, weak amplification & relabeling and strong amplification. 

D← original dataset 
Cmin ← set of all samples in D which are present in minority 

Cmaj ← set of all samples in D which are present in majority 

k← number of nearest neighbors 

 

Step 1)    for each sample s є D do 

                            If correct(data, s, k) then 

                                          type=safe 

                            Else 

                                          type=noisy 

 

Step 2)    if amplication==weak then 

                      For each s є flagged(data, Cmin, noisy) do 

                                  replicate(data, s, k, maj, safe) 

                else if amplication==weak & relabeling==true 

                      For each s є flagged(data, Cmin, noisy) do 

                                  replicate(data, s, k, maj, safe) 

                      For each s є flagged(data, Cmin, noisy) do 

                                  For each t є Cmaj in k nearest neighbors of s &  

                                  type==noisy do 

                                       Change class of t from Cmaj to Cmin 

                  else 

                       For each s є flagged(data, Cmin, safe) do 

                                  replicate(data, s, k, maj, safe) 

                       For each s є flagged(data, Cmin, noisy) do 

                                   If correct(data, s, k+2) then 

                                          replicate(data, s, k, maj, safe) 

                                   else 

                                          replicate(data, s, k+2, maj, safe) 

Step 3) Remove all t є D 

Fig. 4.3 SPIDER Algorithm for Imbalanced Data 

In weak amplification, the minority class samples which are flagged as noisy are 

amplified. For amplification, replicate them by as many numbers as there are safe majority 

class samples in k nearest neighborhood of each noisy minority class sample. In weak 

amplification & relabeling, one additional step is performed in which noisy majority class 

samples in the k nearest neighborhoods of noisy minority class sample are relabeled by 

modifying their class from majority to minority. Strong amplification amplifies all the 

examples of minority class whether flagged safe or noisy. But amplification of safe and noisy 

samples is done differently. Safe samples are replicated by as many numbers as there are safe 

majority samples in k nearest neighborhood. In case of noisy minority class samples, flagging 

is done yet again but this time by taking k+2 nearest neighbors. If the sample is flagged safe, 

it is amplified in its k nearest neighborhood otherwise in k+2 nearest neighborhoods. In this 

study we use strong amplification level in the second phase. Fig. 4.3 shows the detailed 

algorithm of SPIDER. Algorithm uses three functions which are: correct(data, s, k), 
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flagged(data, c, f) and replicate(data, s, k, maj, f). The first function classifies the sample ‘s’ 

as safe or noisy using its k nearest neighbors. For safe it returns 1 else 0. The second function 

generates a set of those that are the part of class c and are flagged as f (noisy or safe). The 

third function replicates the copies of minority class sample ‘s’ as many number of times as 

there are majority class samples in s’s k nearest neighbors which are flagged as f. 

4.1.5. SPIDER2 

SPIDER2 is a modified version of SPIDER (Algorithm is described in figure 4.4) 

[44]. In this modified version, flagging of majority and minority class samples is done in 

different phases. In the first phase, only majority class samples are categorized as safe or 

noisy. Relabeling is also done in the first phase only. SPIDER2 either re-label all the noisy 

majority class samples or it removes them completely from the dataset depending upon the 

re-label option.  

D← original dataset 
Cmin ← set of all samples in D which are present in minority 

Cmaj ← set of all samples in D which are present in majority 

K← number of nearest neighbors 

 

Step 1)    for each sample s є Cmaj do 

                            If correct(data, s, k) then 

                                     type=safe 

                            Else 

                                     type=noisy 

Step 2)    if relabeling==true 

                      For each t є flagged(data, Cmaj, noisy) do 

                                   Change class of t from Cmaj to Cmin 

               else 

                      D←D – flagged(data, Cmaj, noisy) 

 

Step 3)   for each sample s є Cmin do 

                      If correct(data, s, k) then 

                                     type=safe 

                            Else 

                                     type=noisy 

 

Step 4)   if amplication==weak then 

                      For each s є flagged(data, Cmin, noisy) do 

                                  replicate(data, s, k, maj, safe) 

              else 

                      For each s є flagged(data, Cmin, noisy) do 

                                  If correct(data, s, k+2) then 

                                               replicate(data, s, k, maj, safe) 

                                      else 

                                              replicate(data, s, k+2, maj, safe) 

Fig. 4.4 SPIDER2 Algorithm for Imbalanced Data 

In the second phase, samples of minority class are flagged as safe or noisy 

considering the changes that arise because of relabeling in the first phase. This is the major 
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difference between SPIDER and SPIDER2. The former blindly amplifies the minority class 

samples without taking into account the changes that arise in the dataset due to relabeling 

while the latter takes into considerations the changes made by relabeling option in the first 

phase and on the basis of those changes it flags the minority class samples as safe or noisy. 

After identification of noisy examples, SPIDER2 performs amplification operation on the 

relabeled dataset. 

4.1.6. SPIDER3: A Modified Version of SPIDER2 (Proposed Method) 

To add one more method in the family of SPIDER methods, we propose SPIDER3, a 

modified version of SPIDER2 technique. Pseudo code of SPIDER3 is presented in fig. 4.5 In 

this method we use three functions out of which two are same as used in SPIDER and 

SPIDER2 i.e. correct(data, s, k) and flagged(data, c, f). However, we modify the third 

function replicate(data, s, k, maj, f) by adding one more parameter into it. The modified 

replicate function is replicate(min, data, s, k, maj, f). This function generates  new synthetic 

samples of minority class sample ‘s’ as many number of times as there are majority class 

samples in s’s k nearest neighbors which are flagged as f. 

SPIDER3 consists of two phases. In the first phase, we identify majority class 

examples as safe or noisy on the basis of k nearest neighbors. Our method uses Euclidean 

distance instead of heterogeneous value difference metric (HVDM) distance function to 

compute k nearest neighbors. We used Euclidean distance because this study focuses on 

defect prediction imbalanced datasets which have all the numeric attributes. Only dependent 

variable is nominal. HVDM [45] distance function is useful when we deal with 

heterogeneous data which has both numeric and nominal attributes. It would not make much 

difference in case of homogeneous data. After identification, relabeling is performed on noisy 

majority class samples which lie in the nearest neighborhood of each corresponding minority 

class sample.  

In the second phase, identification of minority class samples is done with reference to 

changes made in dataset by relabeling. Our modifications exist in the amplification phase. 

Instead of replicating the same minority sample SPIDER3 calculates the synthetic samples 

while amplifying the data. The synthetic samples are generated by using the same method 

used in the SMOTE method. Minority class is amplified as many numbers of times as there 

are safe examples of majority class in its k nearest neighbors. For each minority class sample 
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amplification, k nearest neighbors are computed in the minority class region only and then a 

synthetic sample is generated.  

D← original dataset 
Cmin ← set of all samples in D which are present in minority 

Cmaj ← set of all samples in D which are present in majority 

K← number of nearest neighbors 

 

Step 1)    for each sample s є D do 

                            If correct(data, s, k) then 

                                      type=safe 

                            Else 

                                      type=noisy 

Step 2)    if relabeling==true 

                      For each s є flagged(data, Cmin, noisy) do 

                            For each t є Cmaj in k nearest neighbors of s &  

                             type==noisy do 

                                  Change class of t from Cmaj to Cmin 

              else 

                      For each s є flagged(data, Cmin, noisy) do 

                             For each t є Cmaj in k nearest neighbors of s &  

                              type==noisy do 

                                   D ← D – t 

Step 3)   for each sample s є Cmin do 

                            If correct(data, s, k) then 

                                      type=safe 

                            Else 

                                      type=noisy 

Step 4)  if amplication==weak then 

                      For each s є flagged(data, Cmin, noisy) do 

                                  replicate(Cmin, data, s, k, maj, safe) 

              else 

                      For each s є flagged(data, Cmin, safe) do 

                                  replicate(Cmin, data, s, k, maj, safe) 

                       For each s є flagged(data, Cmin, noisy) do 

                                      If correct(data, s, k+2) then 

                                                replicate(Cmin, data, s, k, maj, safe) 

                                      else 

                                                replicate(Cmin, data, s, k+2, maj, safe) 

Fig. 4.5 SPIDER3 Algorithm for Imbalanced Data 

There is an exception which can arise while using SMOTE formula in SPIDER. As 

we are using the same value of k both for generating synthetic samples as well as for the 

other computations required by SPIDER3, it might be possible that the value of k exceeds the 

total number of minority class samples present in the dataset. For example, in case of PC2 

dataset there are only 16 minority class examples. But according to the amount of 

oversampling needed which is 9000% (percentage of minority class is just 1% and hence, 

large number of samples are required to be generated to fully balance the dataset) we need to 

set k=90 (In SPIDER family there is no N, oversampling is done on the basis of k only) 

which exceeds total number of minority class samples. In such case, we simply set k for 

synthetic sample generation as the total number of minority class examples. Remaining 
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amount of oversampling will be done by replicating the minority sample. The advantage of 

our proposed method is that it generates new samples of minority class that is, a synthetic 

sample rather than just replicating the same sample again and again. 

4.1.7. MUTE  

   Majority Undersampling Technique proposed in [57] is a replica of Safe-Level-

SMOTE but with a difference that it generates safe levels for majority class instances while 

the latter generates them for minority class samples. The method declares a majority sample 

as safe if its safe level is zero else if safe level is equal to the total number of nearest 

neighbours then it is declared as noisy [57]. Hence, it removes the noisy majority instances in 

order to balance the data. The number of k’ nearest neighbours taken for experimentation are 

described in table 4.1. Figure 4.6 describes the MUTE algorithm in detail. 

D← original dataset 
Cmaj ← set of all samples in D which are present in majority 

T ← minimum number of minority samples in the neighborhood of a 

majority sample which allow the removal of the majority sample 

sl ← number of minority class instances in k-nearest neighbor of each 

majority class sample 

Step 1) For each sample s є Cmaj do 

                    If sl >= T 

                         Remove s from D 

Fig. 4.6 MUTE Algorithm for Imbalanced Data 

4.1.8. SPY 

It’s a novel method which tries to balance the data by changing the class labels of 

noisy majority class instances from majority to minority class [58]. The noisy majority class 

samples are those which lie at the boderline. The boderline samples are named as SPY 

samples in this method as they are noisy and required to be removed or renamed. Table 4.1 

states the k” nearest neighbours and threshold value z required for renaming majority class 

samples to minority. The algorithm of SPY is described in figure 4.7. 

D← original dataset 
Cmin ← set of all samples in D which are present in minority 

T ← minimum number of minority samples in the neighborhood of a 
majority sample which allow the removal of the majority sample 

k ← number nearest neighbors 

Step 1) For each sample s є Cmin do 

                    C=Count the number of majority class instances in k-nearest    

                    neighborhood.   

                    If C <= T 

                         Change the class of the calculated majority instances to  

                         minority.  

Fig. 4.7 SPY Algorithm for Imbalanced Data 
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4.1.9. SpreadSubSample 

 It is a resampling technique which generates a random subsample of a dataset [59]. 

The maximum spread between minority and majority is stipulated using this method. The 

distribution spread parameter is set as per the requirements of balancing the dataset. 

4.1.10. Resample 

 It produces a random subsample of a dataset using either sampling with replacement 

or without replacement [60]. The amount of samples that are required to be replicated are 

needed to be manually given as input. The biasToUniformClass parameter is set as per the 

requirements of balancing the dataset. 

4.2 MetaCost Learners 

Making each classifier cost sensitive is a heavy task. In its contrast, a procedure was 

proposed by Domingos which was used for making classifiers cost sensitive called MC 

learner [22]. MC learner makes any ML classifier cost sensitive by applying cost minimizing 

procedure over it. MC learners do not require any information about how the individual 

classifier works. They can be applied to the datasets containing any number of classes and to 

any arbitrary cost matrix. This method uses Bayes optimal prediction to reduce the risk of 

achieving high overall cost which is called the conditional risk.  The conditional risk R(r/x) 

computes the expected cost value of predicting a sample x as a part of the class ‘r’ when it 

actually belongs to the class ‘s’. The conditional risk is defined as the summation of product 

of C(r,s) and P(s/x) for each region ‘j’ where C(r,s) is the cost of predicting an example as a 

part of ‘r’ when it actually is the member of class ‘s’ and P(s/x) is the probability of 

predicting that sample x is a member of class ‘s’. The conditional risk partitions the sample 

space into ‘j’ regions such that least cost prediction i.e. ‘s’ falls into the region of its own 

class ‘s’.  

In this way MC learners re-label the classes of each training instance according to 

their best predicted classes. MC is the parallel method to BG ensemble method. The 

difference between the two exists in choosing the size of resample. BG constructs the 

bootstrap resample by selecting ‘n’ samples with replacement from the training set of size ‘n’ 

while MC learners go well with the smaller resample size also. This nature of MC learners 

make them more efficient. The classifiers are then learned on each resample followed by the 

collection of votes from the ensemble. The majority vote decides the label of each example 

and hence, re-labels it to the optimal predicted class. 
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4.3 Machine Learning Classifiers 

The ML classifiers used in this work to predict whether the module is defective or not, are 

described below. 

4.3.1. J48 

J48 is a decision tree classifier. It helps to classify the instances using information 

gain [27]. The attribute having higher information gain is selected as a root node and among 

the possible branches of the root, if there is any child for which all the instances are coming 

under same class label, we terminate that branch by assigning class target value to it 

otherwise we continue the above procedure. 

4.3.2. Random forest 

It is the forest of decision trees in which each tree is made up of randomly selected 

subsets of datasets using replacement [40]. The final result is given by the majority voting in 

which each decision tree gives out its own vote. 

4.3.3. Naïve bayes 

Bayesian learning is based on Bayes’ theorem in which the classifier assumes that the 

effect of one attribute on a given class is independent of the other attributes which is called 

class conditional independence [41], [47]. 

4.3.4. AdaboostM1 

AdaboostM1 is a boosting classifier [42] which trains various individual classifiers in 

a serial manner by using the whole dataset. In each iteration it focuses more on the difficult 

instances which are misclassified in the previous iteration in order to achieve the goal to 

correctly classify them in the next iteration. The difficulty of the instances is measured by 

weights which are increased for every misclassification and decreased for correctly classified 

instances. 

4.3.5. Bagging 

Bagging is a meta classifier which trains different classifiers using bootstrapped 

replicas of the original training dataset [43]. The instances are randomly selected with 

replacement from original dataset to form a new dataset which further trains each classifier. 
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CHAPTER 5 

EMPIRICAL RESULTS AND ANALYSIS 

 

In this section, we discuss and analyse the results obtained by applying ML 

techniques on sampled as well as original imbalanced datasets. In order to examine and 

equate the performance of different sampling methods as well as MC learners, we use four 

performance metrics: sensitivity (recall), specificity, AUC and precision. The results are 

assessed by using two non-parametric statistical tests: Friedman and Wilcoxon signed rank 

test. The investigation of results is carried out systematically by sequentially answering the 

research questions mentioned in chapter 1.  

5.1 RQ1: Does balancing of datasets using sampling methods improve the performance of 

ML techniques for defect prediction?  

Tables 5.1 to 5.12 provide the values of performance metrics calculated on the 

original imbalanced datasets (no sampling) as well as balanced datasets after oversampling, 

undersampling and resampling. The balanced datasets were obtained by correspondingly 

applying ten sampling methods: SMOTE, Safe-Level-SMOTE, ADASYN, SPIDER, 

SPIDER2, SPIDER3, SPY, MUTE, SpreadSubSample and Resample. The defect prediction 

models were developed by the application of five different ML techniques: J48, RF, NB, AB 

and BG. To carry out this work, ten sampling methods were implemented in the MATLAB 

environment where original imbalanced datasets were given as input and balanced datasets 

were generated as output. To obtain fully balanced datasets, we chose different values of k 

and N (refer table 4.1) depending on the requirement of each dataset. 10-fold cross validation 

method was used to develop models. 

The empirical study conducted shows that in majority of the cases, the balancing of 

datasets using sampling methods improves the performance of ML techniques for developing 

defect prediction models when AUC, precision and sensitivity were used as an evaluation 

factor. 

From table 5.1-5.12, it can be discovered that AUC values in case of sampling 

methods are better than those in the case when no sampling was performed in majority of the 

cases.  The table results show a significant percentage increase of 2-120% in AUC values in - 
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- majority of the cases. Sensitivity results show a significantly large percentage increase (6-

1490%) in its values in the case of sampling methods as compared to the no sampling 

scenario. Similarly, precision values also showed a large improvement of 13-945% increase 

on the application of sampling methods. This improvement in the values of various 

performance metrics is due to the balancing in datasets. In case of imbalanced datasets, very 

few instances of defective class were present and hence, they were difficult to learn by the 

ML techniques which are developed with the assumption that the dataset used to train a 

particular classifier is balanced. The ML classifiers keep the tendency to classify non-

defective examples correctly as they are present in majority. However, balancing in datasets 

using oversampling methods helps in overcoming the biased nature of the defect prediction 

models. The increase in defect prone examples made them easy to learn which can be clearly 

determined from the increased sensitivity values in table 5.1-5.12.  

If we observe the specificity results regarding all the 12 datasets, we can conclude that 

values show a visible decrease of 1-30% in the specificity values. Specificity is the measure 

of number of non-defective examples which are correctly classified. Due to balancing in 

datasets, the defective and non-defective examples become equally important to learn while 

in case of imbalanced datasets, non-defective examples were dominating. The decrease in 

specificity performance can be considered a concerning factor as it would lead to the testing 

of some of the non-defective examples which would be a complete wastage of resources, 

time and effort. In order to develop a good classifier, a balance between sensitivity and 

specificity should be achieved. However, the balanced datasets provide overall improved 

performance whereas in case of imbalanced datasets, only specificity results were good. With 

balancing in datasets, balanced results have been obtained between sensitivity and specificity.  

5.2 RQ2: Which is the best oversampling method to improve the performance of ML 

techniques for software defect prediction in this study? 

 In order to assess the superiority of various oversampling methods over the scenario 

when no oversampling method is used, we use Friedman test. The test statistically compares 

the performance of different oversampling methods. A lower mean rank of a sampling 

method indicates better comparative performance of that method. We apply Friedman test 

using AUC, sensitivity and precision performance measures. We do not use specificity for 

evaluation as it is more biased towards majority class instances and this work focuses more 

on minority class instances as chances of misclassifying them are high. Moreover, minority 
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class in this study represents the defective modules which are important to classify correctly 

because misclassification can lead to project failure and high cost to company. We first state 

the null and alternate hypothesis investigated by the Friedman test: 

Null Hypothesis (H1, H2, H3): The (AUC, sensitivity or precision) results of the 

defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1 

and BG) are same when no sampling method or six different oversampling methods 

(ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are used to 

balance the imbalanced datasets. 

Alternate Hypothesis (H1a, H2a, H3a): The (AUC, sensitivity or precision) results of 

the defect prediction models developed using five different ML classifiers (J48, RF, NB, 

ABM1 and BG) are different when no sampling method or six different oversampling 

methods (ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are 

used to balance the imbalanced datasets. 

5.2.1. Friedman Test Analysis using AUC for Oversampling Methods 

Table 5.13 shows the results of Friedman test using AUC performance metric. The last 

column in the table is the p-value which decides whether the results are significant or not. 

The test results show that in all the twelve cases, the scenario where no sampling is done (i.e. 

the case of imbalanced datasets) shows worst results when compared to oversampling 

methods. Thus, the oversampling methods significantly outperformed the scenario where no 

sampling was used.  

Table 5.13 Friedman Results using AUC for Oversampling Methods 

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value 

CM1 ADASYN  SPIDER  SMOTE SPIDER2 SPIDER3  S-L-SMOTE No Sampling  0.009 

JM1 SMOTE S-L-SMOTE  ADASYN SPIDER SPIDER3 SPIDER2 No Sampling 0.02 

KC2 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0 

KC3 SMOTE SPIDER SPIDER2 S-L-SMOTE ADASYN SPIDER3 No Sampling 0.026 

MC1 ADASYN SPIDER SPIDER2 SPIDER3 S-L-SMOTE SMOTE No Sampling 0.016 

MC2 SMOTE S-L-SMOTE SPIDER SPIDER3 SPIDER2 ADASYN No Sampling 0.005 

MW1 ADASYN SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling 0.008 

PC1 ADASYN SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling 0.006 

PC2 ADASYN SPIDER3 SMOTE SPIDER SPIDER2 S-L-SMOTE No Sampling 0.009 

PC3 ADASYN SPIDER SMOTE SPIDER2 S-L-SMOTE SPIDER3 No Sampling 0.093 

PC4 ADASYN SMOTE SPIDER S-L-SMOTE SPIDER3 SPIDER2 No Sampling 0.001 

PC5 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER2 SPIDER No Sampling 0.003 
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Furthermore, the test describes that ADASYN outperforms all other oversampling 

methods in majority of the cases (8 out of 12). SMOTE outperforms other oversampling 

methods in case of four datasets: JM1, KC2, KC3 and MC2 when AUC performance measure 

is used for evaluation. It can be ascertained that our purposed method SPIDER3 which is an 

enhancement in SPIDER2, significantly outperforms SPIDER2 in eight out twelve cases. 

Hence, it can be used as a balancing filter for imbalanced datasets. As all the tests show 

significant results, we can safely reject the null hypothesis H1. 

5.2.2. Friedman Test Analysis using Sensitivity (Recall) for Oversampling Methods 

Table 5.14 states the results of Friedman test on sensitivity measure. The last column is 

the p-value which decides whether to approve or disapprove the null hypothesis. The test 

results prove that in all the twelve cases, oversampling methods significantly outperform the 

results of original datasets. Thus, we can safely rule out the null hypothesis H2. Furthermore, 

the test resulted in the mixed outcomes in case of six oversampling methods. ADASYN 

outperforms all other oversampling methods in five out of twelve cases while SMOTE and 

SPIDER family achieves the best rank in six out of twelve cases: KC2, KC3 and CM1, JM1, 

MC2, PC3 datasets respectively. Safe-Level-SMOTE shows best performance in only one 

case i.e. PC5. As ADASYN outperforms in majority of the cases when compared to the 

number of times SPIDER family and SMOTE variants achieved the best rank, we can say 

that ADASYN is comparatively a better method. 

Table 5.14 Friedman Results using Sensitivity for Oversampling Methods 

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value 

CM1 SPIDER ADASYN SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.008 

JM1 SPIDER2 SMOTE SPIDER S-L-SMOTE SPIDER3 ADASYN No Sampling 0.027 

KC2 SMOTE S-L-SMOTE SPIDER3 ADASYN SPIDER2 SPIDER No Sampling 0 

KC3 SMOTE SPIDER SPIDER2 SPIDER3 ADASYN S-L-SMOTE No Sampling 0.092 

MC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE No Sampling 0.015 

MC2 SPIDER2 SPIDER S-L-SMOTE SMOTE SPIDER3 ADASYN No Sampling 0.001 

MW1 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.011 

PC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE No Sampling 0.013 

PC2 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.012 

PC3 SPIDER ADASYN SMOTE SPIDER2 SPIDER3 S-L-SMOTE No Sampling 0.001 

PC4 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.003 

PC5 S-L-SMOTE ADASYN SMOTE SPIDER SPIDER3 SPIDER2 No Sampling 0 

 

5.2.3. Friedman Test Analysis using Precision for Oversampling Methods 

Table 5.15 shows the results of Friedman test on precision metric. In all the twelve 

cases, the scenario where no sampling is done shows worst results when compared to all the 
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other oversampling methods. Furthermore, the test describes that ADASYN significantly 

outperforms all the other oversampling methods in seven out of twelve cases while SMOTE 

achieves the best rank in four out of twelve cases: JM1, KC3, MC2 and PC2. Safe-Level-

SMOTE shows best performance in only one case i.e. KC2. Hence, we can rule out the null 

hypothesis H3 as the test shows significant results. 

Table 5.15 Friedman Results using Precision for Oversampling Methods 

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value 

CM1 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER SPIDER2 No Sampling 0.001 

JM1 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0.001 

KC2 S-L-SMOTE SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0 

KC3 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0 

MC1 ADASYN SPIDER3 S-L-SMOTE SMOTE SPIDER SPIDER2 No Sampling 0 

MC2 SMOTE S-L-SMOTE SPIDER3 SPIDER ADASYN SPIDER2 No Sampling 0 

MW1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0 

PC1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0 

PC2 SMOTE SPIDER3 ADASYN S-L-SMOTE SPIDER2 SPIDER No Sampling 0 

PC3 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0 

PC4 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0 

PC5 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER2 SPIDER No Sampling 0 

 

According to above Friedman test results on AUC, sensitivity and precision, it can be 

noticed that ADASYN outperforms in majority of the cases as compared to other 

oversampling methods. This is due to the adaptive nature of ADASYN method. As the name 

suggests, ADAptive SYNthetic minority oversampling, this method adapts itself according to 

the need to generate synthetic minority samples. This method automatically chooses the value 

of k (nearest neighbor) and n (amount of oversampling) on the basis of position of each 

minority sample in the dataset. Unlike SMOTE method and its variants, ADASYN does not 

generate equal amount of synthetic samples for each minority sample. It focuses more on 

those minority samples which lie in the safe region and ignores those which are noise. Unlike 

the other oversampling methods, this method doesn’t require user to input the values of k and 

n. The original dataset is the only requirement as input. Thus, this method turns out to be the 

best among all the oversampling methods. 

5.3 RQ3: What is the comparative performance of the proposed version of SPIDER2 

technique i.e. SPIDER3 and the original SPIDER2 technique for software defect prediction? 

Although it can be noticed from the above stated Friedman results that SPIDER3 

outperforms SPIDER2 in majority of the cases but still to further justify the result we apply 
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Wilcoxon signed rank test with Bonferroni correction where alpha is set to α=0.05. The 

hypothesis H4 for Wilcoxon test is stated below. 

Null Hypothesis H4: Defect prediction models developed using five different ML 

classifiers: J48, RF, NB, AB and BG are same when two oversampling methods: SPIDER2 

and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity and 

precision performance measures were taken for evaluation. 

Alternate Hypothesis H4a: Defect prediction models developed using five different 

ML classifiers: J48, RF, NB, AB and BG are different when two oversampling methods: 

SPIDER2 and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity 

and precision performance measures were taken for evaluation. 

The Wilcoxon signed rank test performs pairwise comparison of SPIDER2 and 

SPIDER3 on the performance metric (AUC, sensitivity and precision) values of the defect 

prediction models developed by all the investigated ML techniques together on all the 

datasets used in the study. The test depicts that SPIDER3 outperforms SPIDER2 significantly 

in case of AUC and precision while in case of sensitivity both the methods show comparitive 

performance. Thus, the results show that SPIDER3 has improved the performance of two 

important performance measures namely AUC and precision. The improvement is due to the 

use of SMOTE method in SPIDER3. SPIDER3 uses SMOTE to find synthetic samples for 

each minority class sample while SPIDER2 simply replicates the existing minority class 

samples. Hence, the Wilcoxon test results confirms that our proposed method i.e. the 

modified version of SPIDER2 shows better results when compared to the original method. 

5.4 RQ4: Which is the best sampling method among undersampling and resampling methods 

to improve the performance of ML techniques for software defect prediction in this study? 

To find out the best sampling method among various undersampling and resampling 

methods, we again use Friedman test. We apply Friedman test using AUC, sensitivity and 

precision performance measures where lower mean rank indicates better performance. The 

null and alternate hypothesis taken for Friedman test are as follows: 

Null Hypothesis (H5, H6, H7): The (AUC, sensitivity or precision) results of the 

defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1 

and BG) are same when no sampling method or four different sampling methods (SPY, 

MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets. 
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Alternate Hypothesis (H5a, H6a, H7a): The (AUC, sensitivity or precision) results of 

the defect prediction models developed using five different ML classifiers (J48, RF, NB, 

ABM1 and BG) are different when no sampling method or four different sampling methods 

(SPY, MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets. 

5.4.1 Friedman Test Analysis using AUC 

The test results in table 5.16 show that in all the twelve cases, Resample method 

significantly outperforms all the other resampling and undersampling methods except for one 

case i.e. JM1. In JM1 dataset, SPY method shows best results. However, MUTE, SPY and 

SpreadSubSample shows mixed results leading to the average performance in some cases. On 

an average, the four sampling methods significantly outperformed the scenario where no 

sampling was used where resample performs the best. Hence, it can be used as a balancing 

filter for imbalanced datasets. As majority of the tests show significant results, we can safely 

reject the null hypothesis H5. 

Table 5.16 Friedman Results using AUC 

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value 

CM1 Resample SPY MUTE SpreadSub Sample No sampling 0.013 

JM1 Resample SPY No sampling MUTE SpreadSub Sample 0.003 

KC2 SPY Resample MUTE No sampling SpreadSub Sample 0.006 

KC3 Resample No sampling SpreadSub Sample MUTE SPY 0.031 

MC1 Resample SPY MUTE No sampling SpreadSub Sample 0.562 

MC2 Resample SpreadSub Sample SPY MUTE No sampling 0.007 

MW1 Resample SpreadSub Sample No sampling SPY MUTE 0.005 

PC1 Resample MUTE SPY No sampling SpreadSub Sample 0.041 

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.020 

PC3 Resample SpreadSub Sample No sampling MUTE SPY 0.166 

PC4 Resample MUTE No sampling SpreadSub Sample SPY 0.003 

PC5 Resample SPY No sampling SpreadSub Sample MUTE 0.017 

 

5.4.2. Friedman Test Analysis using Sensitivity (Recall)  

Table 5.17 states the results of Friedman test on sensitivity measure. The test results 

prove that in all the twelve cases, resample method outperforms all the other methods in the 

first place while SpreadSubSample method achieves the second rank. In six out of twelve 

cases the no sampling scenario achieves worst rank while the other methods significantly 

improve the performance of prediction models. Hence, we can safely rule out the null 

hypothesis H6. Furthermore, the test resulted in the mixed outcomes in case of SPY and 

MUTE sampling methods. However, SPY achieves rank third in majority of the cases. 
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Table 5.17 Friedman Results using Sensitivity 

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value 

CM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

JM1 Resample SpreadSub Sample SPY MUTE No sampling 0.002 

KC2 Resample SpreadSub Sample SPY MUTE No sampling 0.015 

KC3 Resample SpreadSub Sample No sampling SPY MUTE 0.007 

MC1 Resample SpreadSub Sample SPY No sampling MUTE 0.013 

MC2 Resample SpreadSub Sample SPY No sampling MUTE 0.011 

MW1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

PC1 Resample SpreadSub Sample SPY MUTE No sampling 0.002 

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

PC3 Resample SpreadSub Sample No sampling SPY MUTE 0.011 

PC4 Resample SpreadSub Sample No sampling MUTE SPY 0.001 

PC5 Resample SpreadSub Sample SPY No sampling MUTE 0.002 
 

5.4.3. Friedman Test Analysis using Precision 

Table 5.18 shows the results of Friedman test on precision metric. In seven out of the 

twelve cases, the scenario where no sampling is done shows worst results when compared to 

all the other sampling methods. Furthermore, the test describes that resample, 

SpreadSubSample and SPY method significantly outperforms the no sampling scenario at 

first second and third rank respectively. However, MUTE could not perform well in four out 

of twelve cases. 

Table 5.18 Friedman Results using Precision 

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value 

CM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

JM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

KC2 Resample SpreadSub Sample SPY No sampling MUTE 0.001 

KC3 Resample SpreadSub Sample SPY No sampling MUTE 0.002 

MC1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

MC2 Resample SpreadSub Sample SPY No sampling MUTE 0.007 

MW1 Resample SpreadSub Sample SPY MUTE No sampling 0.001 

PC1 Resample SpreadSub Sample SPY MUTE No sampling 0.002 

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.000 

PC3 Resample SpreadSub Sample SPY MUTE No sampling 0.002 

PC4 Resample SpreadSub Sample No sampling SPY MUTE 0.002 

PC5 Resample SpreadSub Sample SPY No sampling MUTE 0.002 
 

According to above Friedman test results on AUC, sensitivity and precision, it can be 

noticed that Resample method outperforms in majority of the cases as compared to other 

sampling methods. This is due to the biasToUniformClass parameter which helps to resample 

the dataset so as to achieve a good balanced ratio between minority and majority class 

instances. However, an average performance of MUTE is due to its strict rule to eliminate 
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majority class samples. MUTE method removes majority class instance and declares it noisy 

if and only if all its k nearest neighbors are minority class samples. This makes it difficult to 

achieve balance between two classes as it is not possible for maximum of the majority 

samples to have all its k nearest neighbors as minority samples because of latter being less in 

number. Researchers should decrease the threshold value for noisy samples to a reasonable 

digit so as to achieve better performance with respect to MUTE method. 

5.5 RQ5: Which sampling technique is the best among oversampling, undersampling and 

resampling techniques and why? 

From the above Friedman tests, it can be noticed that ADASYN and Resample are the 

best methods among oversampling and resampling techniques respectively. In order to further 

justify which method is the best between the two we apply Wilcoxon signed rank test with 

Bonferroni correction where alpha is set to α=0.05. The hypothesis H8 for Wilcoxon test is 

stated below. 

Null Hypothesis H8: Defect prediction models developed using five different ML 

classifiers: J48, RF, NB, AB and BG are same when two sampling methods: ADASYN and 

Resample are used to balance the imbalanced datasets when AUC, sensitivity and precision 

performance measures were taken for evaluation. 

Alternate Hypothesis H8a: Defect prediction models developed using five different 

ML classifiers: J48, RF, NB, AB and BG are different when two sampling methods: 

ADASYN and Resample are used to balance the imbalanced datasets when AUC, sensitivity 

and precision performance measures were taken for evaluation. 

The Wilcoxon signed rank test performs pairwise comparison of ADASYN and 

Resample on the performance metric (AUC, sensitivity and precision) values of the defect 

prediction models developed by all the investigated ML techniques together on all the 

datasets used in the study. The test depicts that both the techniques are efficient in their own 

ways.  ADASYN outperforms Resample in case AUC and precision while Resample 

outperforms ADASYN in case of sensitivity. ADASYN dominates precision and AUC test 

results significantly while Resample dominates recall results.  

This is due to the biasness removing nature of the resample method. The 

biasToUniformClass parameter helps to achieve an effective balance between the two classes. 

This further helps to improve the correct prediction of minority class instances to a significant 
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level. Thus, correct prediction of minority class leads to the better sensitivity results. 

Furthermore, ADASYN’s best performance in case of AUC and precision is due to its 

adaptive nature which helps to balance the data by multiplying each minority class sample 

using the synthetic sample generation method.  It distributes the synthetic samples among 

each minority class sample on the basis of density distribution function. Density distribution 

function determines the number of synthetic samples that should be produced corresponding 

to each minority class sample. 

5.6 RQ6: What is the effect of using MC learners on imbalanced datasets for software defect 

prediction? 

This work also uses cost sensitive learning to handle the imbalanced data problem in 

software defect prediction. We use three different cost ratios: 10, 30 and 50 to cost sensitize 

the various ML classifiers used in this study. We compare the use of MC learners with the 

scenario in which the original learners are used to build ML models. Tables 5.19-5.30 

describes the results obtained by using different cost ratios in MC learners as well as those 

obtained on original datasets.  

It can be observed from the tables 5.19-5.30 that the average performance of ML 

techniques improved (1-47%) in 6 out of 12 datasets in terms of AUC when MC learners 

were used in comparison to the original scenario. However, the average performance of ML 

techniques decreased in the remaining datasets. The results show that the MC with cost ratio 

10 outperforms the other MC learners in majority of the cases when AUC was used while in 

case of sensitivity MC with cost ratio 50 outperforms the other MC learners as well as the 

original scenario. In fact, MC learners with all the cost ratios outperforms the original dataset 

in case of sensitivity with percentage increase of 10-600%. This outcome is because the cost 

values of MC learners were set in such a way so as to decrease the number of false negative 

predictions. The lower the number of FNs the higher will be the chance of correctly 

classifying defective modules. Thus, penalizing the classifier for false negatives lead to the 

increase in sensitivity in all the datasets. But in order to develop the better predictive models 

the balance between specificity and sensitivity must be achieved. Table 5.19-5.30 also show 

that the precision values decreased in majority of the cases. However, the average 

performance of ML techniques improved in case of two datasets: CM1 and PC2. But overall 

decrease in precision values is a concerning factor and it should be researchers’ aim to 

achieve balance among all the performance metrics. 
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The study also performed Wilcoxon signed rank test in order to make a pairwise 

comparison between MC learners and the original dataset scenario. The test was performed 

on AUC, sensitivity and precision values of the defect prediction models developed by the 

application of five ML techniques (J48, RF, NB, AB and BG) on all the datasets (original as 

well as MC learners) of the study. It was observed that original scenario outperformed MC 

learners in case of AUC but non-significantly while in case of sensitivity MC learners 

significantly outperformed the original dataset. As the defect prone classes are important to 

learn correctly, MC learners help improve the prediction of defective modules and hence 

improves the quality of the product. However, they may not always yield improved results. 

Table 5.19 MC results for CM1 Dataset 

 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.594 0.581 0.657 0.678 

RF 0.763 0.780 0.738 0.727 

NB 0.694 0.686 0.684 0.688 

AB 0.717 0.754 0.753 0.736 

BG 0.727 0.760 0.711 0.671 

Sensitivity 

(in %) 

J48 26.2 59.5 59.5 73.8 

RF 0 71.4 90.5 95.2 

NB 33.3 52.4 64.3 64.3 

AB 0 90.5 95.2 97.6 

BG 0 78.6 92.9 95.2 

Specificity 

(in %) 

      J48 93.7 67.2 67.9 55.3 

RF 99.0 71.5 39.7 30.8 

NB 89.1 71.2 64.6 64.2 

AB 100.0 56.3 39.4 27.8 

BG 99.0 64.2 36.8 22.5 

Precision (in 

%) 

      J48 36.7 20.2 20.5 18.7 

RF 0 25.9 17.3 16.1 

NB 29.8 20.2 20.1 20.0 

AB 0 22.4 17.9 15.8 

BG 0 23.4 17.0 14.6 

 

Table 5.20 MC results for JM1 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.616 0.623 0.535 0.483 

RF 0.701 0.689 0.650 0.613 

NB 0.633 0.650 0.650 0.650 

AB 0.669 0.500 0.500 0.500 

BG 0.689 0.682 0.587 0.500 

Sensitivity 

(in %) 

J48 22.5 75.2 94.6 99.7 

RF 20.5 79.4 97.2 99.1 

NB 18.5 27.8 28.8 28.8 
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AB 0 100.0 100.0 100.0 

BG 17.2 90.0 99.8 100.0 

Specificity 

(in %) 

      J48 91.2 48.4 96 70.0 

RF 95.5 44.9 82 024 

NB 94.5 90.7 90.4 90.3 

AB 100.0 0 0 0 

BG 95.5 27.1 70.0 0 

Precision (in 

%) 

      J48 41.0 28.5 22.3 21.5 

RF 55.3 28.3 22.5 21.7 

NB 48.1 45.0 45.0 44.8 

AB 0 21.5 21.5 21.5 

BG 51.3 25.3 21.6 21.5 

 

Table 5.21 MC results for KC2 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.704 0.728 0.418 0.471 

RF 0.825 0.812 0.723 0.702 

NB 0.832 0.830 0.831 0.832 

AB 0.784 0.804 0.570 0.499 

BG 0.825 0.811 0.548 0.500 

Sensitivity 

(in %) 

J48 49.5 79.4 92.5 100.0 

RF 47.7 84.1 92.5 92.5 

NB 42.1 57.0 57.0 57.0 

AB 43.9 85.0 96.3 98.1 

BG 43.0 86.0 96.3 100.0 

Specificity 

(in %) 

      J48 89.6 72.8 11.8 0 

RF 92.5 69.6 45.3 34.9 

NB 94.2 89.4 89.2 89.2 

AB 91.1 69.9 12.8 024 

BG 94.2 71.3 13.5 0 

Precision (in 

%) 

      J48 55.2 42.9 21.3 20.5 

RF 62.2 41.7 30.4 26.8 

NB 65.2 58.1 57.5 57.5 

AB 56.0 42.1 22.2 20.6 

BG 65.7 43.6 22.3 20.5 

 

Table 5.22 MC results for KC3 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.653 0.670 0.692 0.517 

RF 0.736 0.692 0.644 0.646 

NB 0.661 0.663 0.656 0.652 

AB 0.573 0.624 0.528 0.506 

BG 0.729 0.630 0.498 0.500 

Sensitivity 

(in %) 

J48 33.3 69.4 75.0 86.1 

RF 13.9 72.2 94.4 97.2 

NB 38.9 50.0 52.8 52.8 

AB 36.1 75.0 97.2 97.2 
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BG 13.9 75.0 97.2 100.0 

Specificity 

(in %) 

      J48 89.9 60.8 54.4 10.8 

RF 96.8 58.9 18.4 10.1 

NB 88.0 71.5 69.0 68.4 

AB 93.0 47.5 032 019 

BG 93.7 43.0 013 0 

Precision (in 

%) 

      J48 42.9 28.7 27.3 18.0 

RF 50.0 28.6 20.9 19.8 

NB 42.4 28.6 27.9 27.5 

AB 54.2 24.5 18.6 18.4 

BG 33.3 23.1 18.3 18.6 

 

Table 5.23 MC results for MC1 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.521 0.682 0.604 0.643 

RF 0.883 0.917 0.877 0.868 

NB 0.708 0.704 0.713 0.708 

AB 0.842 0.793 0.816 0.812 

BG 0.860 0.787 0.853 0.834 

Sensitivity 

(in %) 

J48 8.7 30.4 30.4 37.0 

RF 19.6 39.1 63.0 71.7 

NB 32.6 58.7 65.2 71.7 

AB 0 26.1 63.0 76.1 

BG 0 19.6 56.5 76.1 

Specificity 

(in %) 

      J48 99.5 96.1 96.3 95.8 

RF 99.5 98.1 91.4 85.8 

NB 90.2 72.9 68.4 66.6 

AB 100.0 96.7 81.5 73.2 

BG 100.0 98.3 89.9 81.9 

Precision (in 

%) 

      J48 28.6 15.7 16.3 17.2 

RF 47.4 32.7 14.8 10.7 

NB 7.3 4.9 4.7 4.8 

AB 0 15.8 7.5 6.3 

BG 0 21.4 11.7 9 

 

 

Table 5.24 MC results for MC2 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.698 0.575 0.575 0.566 

RF 0.717 0.576 0.534 0.498 

NB 0.702 0.676 0.674 0.674 

AB 0.616 0.588 0.510 0.499 

BG 0.676 0.502 0.500 0.500 

Sensitivity 

(in %) 

J48 52.3 75.0 88.6 97.7 

RF 38.6 93.2 100.0 100.0 

NB 38.6 47.7 47.7 47.7 

AB 40.9 97.7 100.0 100.0 

BG 38.6 100.0 100.0 100.0 
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Specificity 

(in %) 

      J48 81.5 29.6 27.2 8.6 

RF 87.7 18.5 0 0 

NB 90.1 80.2 77.8 76.5 

AB 85.2 14.8 025 0 

BG 86.4 0 0 0 

Precision (in 

%) 

      J48 60.5 36.7 39.8 36.8 

RF 63.0 38.3 35.2 35.2 

NB 68.0 56.8 53.8 52.5 

AB 60.0 38.4 35.8 35.2 

BG 60.7 35.2 35.2 35.2 

 

Table 5.25 MC results for MW1 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.449 0.583 0.661 0.562 

RF 0.716 0.726 0.709 0.733 

NB 0.728 0.711 0.705 0.703 

AB 0.711 0.668 0.688 0.678 

BG 0.705 0.745 0.700 0.500 

Sensitivity 

(in %) 

J48 14.8 40.7 59.3 92.6 

RF 18.5 55.6 74.1 81.5 

NB 55.6 59.3 63.0 63.0 

AB 29.6 55.6 85.2 88.9 

BG 11.1 63.0 88.9 100.0 

Specificity 

(in %) 

      J48 95.6 77.4 68.1 14.6 

RF 96.0 82.3 53.5 35.4 

NB 84.5 73.5 72.6 72.6 

AB 94.7 81.9 47.8 33.6 

BG 98.7 80.1 21.7 0 

Precision (in 

%) 

      J48 28.6 17.7 18.2 11.5 

RF 35.7 27.3 16.0 13.1 

NB 30.0 21.1 21.5 21.5 

AB 40.0 26.8 16.3 13.8 

BG 50.0 27.4 11.9 10.7 

 

 

Table 5.26 MC results for PC1 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.719 0.691 0.801 0.803 

RF 0.844 0.848 0.850 0.842 

NB 0.768 0.717 0.716 0.718 

AB 0.793 0.802 0.804 0.810 

BG 0.820 0.816 0.792 0.776 

Sensitivity 

(in %) 

J48 24.6 55.7 72.1 88.5 

RF 13.1 49.2 93.4 98.4 

NB 36.1 42.6 45.9 47.5 

AB 0 85.2 95.1 96.7 

BG 8.2 63.9 93.4 96.7 

Specificity       J48 96.7 81.1 77.9 71.3 
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(in %) RF 98.1 88.5 64.8 56.2 

NB 92.8 80.1 78.2 77.7 

AB 99.6 67.0 56.4 53.4 

BG 99.4 78.7 56.3 49.1 

Precision (in 

%) 

      J48 39.5 20.5 22.2 21.3 

RF 38.1 27.3 18.8 16.4 

NB 30.6 15.8 15.6 15.7 

AB 0 18.4 16.0 15.4 

BG 55.6 20.7 15.7 14.3 

 

Table 5.27 MC results for PC2 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.448 0.652 0.662 0.620 

RF 0.836 0.814 0.892 0.927 

NB 0.877 0.867 0.862 0.860 

AB 0.914 0.826 0.880 0.880 

BG 0.828 0.849 0.860 0.858 

Sensitivity 

(in %) 

J48 0 18.8 25.0 18.8 

RF 0 063 37.5 56.3 

NB 31.3 62.5 62.5 62.5 

AB 6.3 37.5 68.8 75.0 

BG 0 18.8 43.8 62.5 

Specificity 

(in %) 

      J48 99.7 97.7 97.1 96.8 

RF 99.9 99.2 94.5 92.0 

NB 96.1 84.2 82.1 81.6 

AB 99.8 97.6 93.3 91.3 

BG 100.0 99.5 95.3 92.5 

Precision (in 

%) 

      J48 0 7.7 8.2 5.7 

RF 0 7.1 6.5 6.0 

NB 7.6 3.9 3.4 3.4 

AB 25.0 14.0 9.5 8.1 

BG 0 27.3 8.8 7.8 

 

 

Table 5.28 MC results for PC3 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.616 0.710 0.744 0.733 

RF 0.831 0.819 0.807 0.795 

NB 0.766 0.564 0.548 0.531 

AB 0.791 0.809 0.787 0.789 

BG 0.824 0.806 0.768 0.774 

Sensitivity 

(in %) 

J48 26.1 68.7 77.6 82.8 

RF 11.2 78.4 94.8 96.3 

NB 91.8 94.8 94.8 95.5 

AB 0 85.8 93.3 96.3 

BG 11.2 85.8 91.8 97.8 

Specificity 

(in %) 

      J48 93.3 72.0 70.5 66.9 

RF 97.6 74.4 53.6 43.5 
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NB 27.7 099 067 069 

AB 100.0 63.8 45.8 35.4 

BG 97.7 68.6 50.3 38.1 

Precision (in 

%) 

      J48 35.7 25.8 27.2 26.2 

RF 39.5 30.3 22.5 19.5 

NB 15.3 13.0 12.6 12.7 

AB 0 25.2 19.7 17.5 

BG 40.5 28.0 20.8 18.3 

 

Table 5.29 MC results for PC4 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.777 0.859 0.850 0.857 

RF 0.945 0.918 0.890 0.877 

NB 0.836 0.728 0.730 0.734 

AB 0.913 0.881 0.855 0.874 

BG 0.920 0.900 0.858 0.833 

Sensitivity 

(in %) 

J48 48.9 84.8 88.2 91.0 

RF 37.6 91.6 98.9 99.4 

NB 38.2 44.4 47.2 47.8 

AB 23.0 97.2 97.8 97.8 

BG 46.1 94.4 97.8 97.8 

Specificity 

(in %) 

      J48 93.6 83.8 81.5 81.1 

RF 98.1 80.4 67.7 60.8 

NB 93.8 83.8 82.3 81.9 

AB 98.4 72.3 68.7 65.0 

BG 96.4 77.4 69.6 68.8 

Precision (in 

%) 

      J48 51.5 42.1 39.8 40.1 

RF 73.6 39.4 29.9 26.1 

NB 46.3 27.6 27.0 26.8 

AB 66.1 32.8 30.3 28.0 

BG 64.1 36.8 30.9 30.3 

 

 

Table 5.30 MC results for PC5 Dataset 

Performance 

Metric 

Classifier Original MC(10) MC(30) MC(50) 

AUC J48 0.817 0.871 0.908 0.906 

RF 0.977 0.971 0.965 0.964 

NB 0.937 0.930 0.929 0.929 

AB 0.959 0.960 0.959 0.956 

BG 0.975 0.966 0.968 0.963 

Sensitivity 

(in %) 

J48 46.3 77.1 83.1 85.3 

RF 43.4 88.2 94.4 96.3 

NB 44.8 70.5 70.9 70.9 

AB 14.5 87.2 91.9 92.1 

BG 39.7 88.4 93.4 95.3 

Specificity 

(in %) 

      J48 99.0 96.5 96.0 95.4 

RF 99.3 95.8 93.8 92.8 

NB 98.0 93.8 93.7 93.7 
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AB 99.7 94.2 91.1 90.0 

BG 99.4 95.6 93.9 93.0 

Precision (in 

%) 

      J48 60.1 40.6 39.2 36.7 

RF 67.3 39.3 32.0 29.2 

NB 41.1 26.1 26.0 25.9 

AB 60.0 31.7 24.2 22.2 

BG 65.9 38.4 32.0 29.7 

 

5.7 RQ7: What is the comparative performance of best sampling method and MC learners for 

software defect prediction? 

According to the findings in RQ5, ADASYN is the overall best sampling method to 

handle imbalanced datasets. This RQ compares ADASYN with MC learners using Wilcoxon 

signed rank test. The result of the pairwise comparison of ADASYN and MC learners was 

evaluated on AUC, sensitivity and precision using all the datasets of the study together where 

models were developed by the application of five ML techniques (J48, RF, NB, AB, BG). 

According to the results, ADASYN method significantly outperformed the MC learners in 

case of AUC and precision. However, MC learners outperform ADASYN non-significantly 

in case of sensitivity. This is due to the fact that MC learners focus more on correct prediction 

of defective class instances by cost sensitizing the classifiers for false negatives leading to the 

increase in sensitivity values.  

However, the overall best performance of ADASYN in all the cases is because of its 

property to balance the data using density distribution method. The synthetic samples to be 

generated may vary in number for every minority class sample depending upon the value of 

density distribution function. Density distribution helps in defining the region in which 

synthetic samples should be yielded for each minority class sample. This property makes 

ADASYN works automatically while in other sampling methods as well as in case of MC 

learners, we are supposed to set one or more parameters (k, n or cost ratios) manually. 
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CHAPTER 6 

CONCLUSION 

 

This study ascertains if balancing the datasets improves the performance of ML 

techniques in software defect prediction. The study uses five ML classifiers namely J48, RF, 

NB, AB and BG to develop defect prediction models. In order to handle imbalanced data, the 

study uses nine existing sampling methods: SMOTE, ADASYN, Safe-Level-SMOTE, 

SPIDER, SPIDER2, MUTE, SPY, SpreadSubSample and Resample. As only the SMOTE 

method is used in most of the previous studies, we implemented all the above mentioned 

sampling methods in MATLAB environment in order to perform our analysis. We also 

proposed a modified version of SPIDER2 i.e. SPIDER3 and implemented the same. 

Furthermore, MC learners were also evaluated to ascertain their effectiveness in improving 

the results of the developed defect prediction models on imbalanced datasets. Moreover, a 

comparative analysis between MC learners and sampling methods was also performed. The 

empirical validation was done using AUC and three traditional metrics: sensitivity, precision 

and specificity and the outcomes of the study were statistically assessed. 

6.1 The Conclusions of the Work 

 A significant improvement was observed in the performance of ML techniques when 

sampling methods were used to handle imbalancing in datasets. Moreover, ADASYN was 

observed to be the best oversampling method among others due to its adaptive nature and 

capability to balance the data automatically using density distributions. In addition, other 

oversampling methods also performed well. SMOTE and SPIDER showed comparative 

results followed by other techniques.  

 Resample method outperformed among resampling and undersampling methods. It shows 

the best sensitivity results among all the sampling methods including oversampling. This 

is due to its unbiased nature to resample the data by setting biasToUniformClass 

parameter to an optimum value.  

 MUTE undersampling method can be improved for developing better prediction models 

by relaxing the threshold value used to identify noisy majority class samples to a 

reasonable amount. MUTE method removes majority class instance and declares it noisy 
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if and only if all its k nearest neighbors are minority class samples. This makes it difficult 

to achieve balance between two classes leading to the poor development of prediction 

models.  

 The proposed method SPIDER3 i.e. the modified version of SPIDER2 significantly 

outperforms SPIDER2 method in case of AUC and precision while it showed 

comparative results when evaluated using sensitivity measure. The modified version only 

improved the performance of existing one by generating synthetic samples per each 

defective class sample rather than just replicating them. 

 MC learners are another effective way to handle the imbalancing problem. They cost 

sensitize the classifier in order to improve predictable nature of the predictive models by 

using different cost ratios for various misclassification errors. They outperformed the 

results of original datasets in case of sensitivity. However, AUC and precision results 

were average. They showed lower performance in comparison to original non cost-

sensitized learners i.e. oversampling methods when evaluated using AUC and precision. 

 A pairwise comparison between ADASYN and MC learners with best cost ratio 

concluded that ADASYN is the better method to handle imbalancing problem as 

compared to MC learners. ADASYN significantly outperformed in case of AUC and 

precision. Although MC learner with cost ratio 50 outperformed ADASYN in few cases 

when evaluated using sensitivity but the results were non-significant. Moreover, 

ADASYN provides balanced results among various performance measures, which is in 

fact necessary for better development of defect prediction models. 

6.2 Future Scope 

The analysis performed in this study can be used to develop efficient defect prediction 

models in case of imbalanced data problem. The future work will focus on another category 

of balancing methods i.e. ensemble methods using inter-cross validation method. 

Furthermore, the future research may include a statistical comparison between sampling and 

ensemble methods for the betterment of defect prediction models in case of imbalanced data.  
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