

A Comparative Analysis of Various Sampling Methods and

MetaCost Learners to Improve Software Defect Prediction

for Imbalanced Data

A project report submitted as a part of Major-II in the partial fulfilment of the

requirement for the award of the degree

Of

Master of Technology in Software Engineering

By

Shine Kamal

2K15/SWE/16

Under the Guidance of:

Dr. Ruchika Malhotra
(Assistant Professor, Department of CSE)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

2015-2017

i

DELHI TECHNOLOGICAL UNIVERSITY

CERTIFICATE

This is to certify that the project report entitled “A Comparative Analysis of Various

Sampling Methods and Metacost Learners to Improve Software Defect Prediction for

Imbalanced Data.” is a bonafide record of the work carried out by Shine Kamal (roll no.

2K15/SWE/16) under my guidance and supervision during the academic session 2015-2017

in the partial fulfilment of the requirement for the award of degree of Master of Technology

in Software Engineering from Delhi Technological University, Delhi.

To the best of my knowledge, the matter incorporated in the thesis has not been submitted to

any other University/Institute for the award of any Degree or Diploma.

Dr. Ruchika Malhotra

Assistant Professor

Department of Software Engineering

Delhi Technological University

Delhi

ii

ACKNOWLEDGEMENT

With due respect, I hereby take this opportunity to acknowledge the people who have

supported me with their words and deeds in completion of my research work as a part of

this course of Master of Technology in Software Engineering.

First of all I would like to thank the almighty, who has always guided me to work on the

right path of the life. My greatest thanks to my parents who bestowed ability and strength

in me to complete this work.

I owe a profound gratitude to my project guide, my motivator, Dr. Ruchika Malhotra,

Assistant Professor, Department of Software Engineering, Delhi Technological University,

who has been a constant source of inspiration to me throughout the period of this project.

It was her competent guidance, constant encouragement and critical evaluation that helped

me to develop a new insight into my project. Her calm, collected and professionally

impeccable style of handling situations not only steered me through every problem, but

also helped me to grow as a matured person. I am also thankful to her for trusting my

capabilities to develop this project under her guidance.

Last but not the least, I would like to thank all the people who were directly or indirectly

involved in the successful completion of my project.

 SHINE KAMAL

 Roll No. 2K15/SWE/16

iii

TABLE OF CONTENTS

Certificate……………………………………………………………………………………... i

Acknowledgement…………………………………………………………………………….. ii

Table of Contents……………………………………………………………………………... iii-iv

List of Tables………………………………………………………………………………….. v

List of Figures…………………………………………………………………………………. vi

Abstract………………………………………………………………………………………... vii

Chapter 1: Introduction………………………………………………………………………… 1-7

 1.1 Introduction……………………………………………………………………………. 1-2

 1.1.1 Software Metrics………………………………………………………………. 2-3

 1.1.2 Imbalanced Data Problem……………………………………………………... 3-4

 1.2 Motivation of the work………………………………………………………………... 4-5

 1.3 Goals of the Study……………………………………………………………………... 5-6

 1.4 Thesis Organization…………………………………………………………… 6-7

Chapter 2: Related Work……………………………………………………………………….. 8-10

 2.1 Defect Prediction Studies……………………………………………………………… 8-9

 2.2 Imbalanced Data Related Studies……………………………………………………... 9-10

Chapter 3: Experimental Design……………………………………………………………….. 11-15

 3.1 Dependent and Independent Variables………………………………………………... 11

 3.2 Data Collection………………………………………………………………………... 11-13

 3.3 Selection of Performance Measures…………………………………………………… 13

 3.4 Statistical Test Selection………………………………………………………………. 14-15

 3.5 Model Evaluation……………………………………………………………………… 15

Chapter 4: Research Methodology……………………………………………………………... 16-26

 4.1 Data Sampling Methods……………………………………………………………….. 16-25

 4.1.1 SMOTE………………………………………………………………………... 16-17

 4.1.2 Safe-Level-SMOTE…………………………………………………………… 17-18

 4.1.3 ADASYN……………………………………………………………………… 18-19

 4.1.4 SPIDER………………………………………………………………………... 19-21

 4.1.5 SPIDER2………………………………………………………………………. 21-22

iv

 4.1.6 SPIDER3………………………………………………………………………. 22-24

 4.1.7 MUTE…………………………………………………………………………. 24

 4.1.8 SPY……………………………………………………………………………. 24

 4.1.9 SpreadSubSample……………………………………………………………... 25

 4.1.10 Resample……………………………………………………………………... 25

 4.2 MetaCost Learners…………………………………………………………………….. 25

 4.3 Machine Learning Classifiers…………………………………………………………. 26

 4.3.1 J48……………………………………………………………………………... 26

 4.3.2 Random Forest………………………………………………………………… 26

 4.3.3 Naïve Bayes…………………………………………………………………… 26

 4.3.4 AdaboostM1…………………………………………………………………… 26

 4.3.5 Bagging………………………………………………………………………... 26

Chapter 5: Empirical Results and Analysis……………………………………………………. 27-55

 5.1 Result Analysis for Oversampling Methods...………………………………………… 27-40

 5.2 Comparison of Oversampling Methods..……………………………………………… 40-43

 5.2.1 Friedman Test Analysis using AUC for Oversampling Methods……………... 41-42

 5.2.2 Friedman Test Analysis using Sensitivity for Oversampling Methods……….. 42

 5.2.3 Friedman Test Analysis using Precision for Oversampling Methods…………. 42-43

 5.3 SPIDER2 vs SPIDER3………………………………………………………………… 43-44

 5.4 Comparison of Undersampling and Resampling Methods……………………………. 44-47

 5.4.1 Friedman Test Analysis using AUC…………………………………………... 45

 5.4.2 Friedman Test Analysis using Sensitivity……………………………………... 45-46

 5.4.3 Friedman Test Analysis using Precision………………………………………. 46-47

 5.5 Comparison among Data Sampling Methods..………………………………………… 47-48

 5.6 Result Analysis for MetaCost Learners..……………………………………………… 48-55

 5.7 Best Sampling Method vs MetaCost Learners………………………………………… 55

Chapter 6: Conclusion………………………………………………………………………….. 56-57

 6.1 The Conclusions of the Work…………………………………………………………. 56-57

 6.2 Future Scope…………………………………………………………………………... 57

References……………………………………………………………………………………… 58-63

v

LIST OF TABLES

3.1 Static Code Metrics Description in NASA Datasets……………………………………. 12

3.2 Confusion Matrix……………………………………………………………………….. 14

3.3 Performance Metrics……………………………………………………………………. 14

4.1 Parameter Selection for Sampling Algorithms………………………………………….. 17

5.1 Results for CM1 Dataset………………………………………………………………... 28

5.2 Results for JM1 Dataset……………………………………………………………….... 29

5.3 Results for KC2 Dataset……………………………………………………………….... 30

5.4 Results for KC3 Dataset……………………………………………………………….... 31

5.5 Results for MC1 Dataset………………………………………………………………... 32

5.6 Results for MC2 Dataset………………………………………………………………... 33

5.7 Results for MW1 Dataset……………………………………………………………….. 34

5.8 Results for PC1 Dataset……………………………………………………………….... 35

5.9 Results for PC2 Dataset……………………………………………………………….... 36

5.10 Results for PC3 Dataset………………………………………………………………... 37

5.11 Results for PC4 Dataset………………………………………………………………... 38

5.12 Results for PC5 Dataset………………………………………………………………... 39

5.13 Friedman Results using AUC for Oversampling Methods……………………………. 41

5.14 Friedman Results using Sensitivity for Oversampling Methods……………………… 42

5.15 Friedman Results using Precision for Oversampling Methods………………………... 43

5.16 Friedman Results using AUC………………………………………………………….. 45

5.17 Friedman Results using Sensitivity……………………………………………………. 46

5.18 Friedman Results using Precision……………………………………………………... 46

5.19 MC results for CM1 Dataset…………………………………………………………... 49

5.20 MC results for JM1 Dataset……………………………………………………………. 49-50

5.21 MC results for KC2 Dataset…………………………………………………………… 50

5.22 MC results for KC3 Dataset…………………………………………………………… 50-51

5.23 MC results for MC1 Dataset…………………………………………………………... 51

5.24 MC results for MC2 Dataset…………………………………………………………... 51-52

5.25 MC results for MW1 Dataset………………………………………………………….. 52

5.26 MC results for PC1 Dataset……………………………………………………………. 52-53

5.27 MC results for PC2 Dataset……………………………………………………………. 53

5.28 MC results for PC3 Dataset……………………………………………………………. 53-54

5.29 MC results for PC4 Dataset……………………………………………………………. 54

5.30 MC results for PC5 Dataset……………………………………………………………. 54-55

vi

LIST OF FIGURES

4.1 Safe-Level-SMOTE Algorithm for Imbalanced Data…………………………………... 18

4.2 ADASYN Algorithm for Imbalanced Data……………………………………………... 19

4.3 SPIDER Algorithm for Imbalanced Data……………………………………………….. 20

4.4 SPIDER2 Algorithm for Imbalanced Data……………………………………………… 21

4.5 SPIDER3 Algorithm for Imbalanced Data……………………………………………… 23

4.6 MUTE Algorithm for Imbalanced Data………………………………………………… 24

4.7 SPY Algorithm for Imbalanced Data…………………………………………………… 24

vii

Abstract

Data imbalancing is becoming a common problem to tackle in different fields like, defect

prediction, change prediction, oil spills, medical diagnose etc. Various methods have been

developed to handle imbalanced datasets in order to improve accuracy of the prediction

models. Software defect prediction is important to identify defects in the early phases of

software development life cycle. This early identification and thereby removal of software

defects is crucial to yield a cost-effective and good quality software product. Though,

previous studies have successfully used machine learning techniques for software defect

prediction, these techniques yield biased results when applied on imbalanced data sets. An

imbalanced data set has non-uniform class distribution with very few instances of a specific

class as compared to that of the other class. Use of imbalanced data sets leads to off-target

predictions of the minority class, which is generally considered to be more important than the

majority class. Thus, handling imbalanced data effectively is crucial for successful

development of a competent defect prediction model. Many studies have been carried out in

the field of defect prediction for imbalanced datasets but most of them uses SMOTE

oversampling method to handle the imbalanced data problem. There are many other

oversampling methods which help to deal with imbalancing problem and are still unexplored

particularly in the field of software defect prediction. This study evaluates the effectiveness

of machine learning classifiers for software defect prediction on twelve imbalanced NASA

datasets by application of nine sampling methods. We also propose a modified version

(SPIDER3) of the existing oversampling method SPIDER2 and compare it with the original

one. Furthermore, the work evaluates the performance of MetaCost learners on imbalanced

datasets. The results show improvement in the prediction capability of machine learning

classifiers with the use of sampling methods. MetaCost learners improves the sensitivity and

helps to predict defects effectively. Moreover, they advocate the applicability of modified

version of SPIDER2 oversampling method as it outperforms the original SPIDER2 method in

majority of the cases.

 Shine Kamal Page 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Defects in a software is a very common and frequently occurring problem. Software

designing, coding, addition of new features, modification of a software etc. can lead to

number of faults in the software. A software defect is defined as a bug that causes software

failure and prevents it from producing the desirable outcomes. To minimize the chances of

software failure, it becomes necessary to find faults in the software. As finding each and

every fault is a sophisticated and impractical task, researchers focus on developing fault

prediction models.

In recent years, many studies [16], [25], [26], [27], [28], [29], [30], [31], [32], [56]

have successfully developed software defect prediction models. Software defect prediction

involves determination of the probability of occurrence of a defect in the future or unseen

versions of a software product. Since, a software defect may cause software failure and

forbids the software to produce desirable outcomes, early detection of software defects is

beneficial so that they can be corrected in the initial phases of software development life

cycle. This helps in the development of a cost effective model because detection and

correction of defects becomes difficult and costlier if they propagate to later phases.

Thus, software defect prediction aids in development of good quality software product

with lower testing and maintenance costs and thereby satisfied customers. Software defect

prediction models rely on past data and classify modules as defective or non-defective on the

basis of this historically collected data. Previous studies have used various software metrics

(section 1.1.1.) sets along with defect data, to build prediction models which have been

proved reformative for predicting defect prone modules.

Previous research on defect prediction demonstrates that 80% of the defects occur in

very few modules (20%) while the rest 80% of modules contains only 20% of the total

defects [55]. This indicates that defective classes are present in minority (less number) as

compared to non-defective classes, which results in imbalanced datasets. Imbalanced data is

 Shine Kamal Page 2

the data in which distribution of classes is one-sided, which may result in incorrect prediction

of the minority class instances.

Although, the minority class instances are low in number, but in majority of the cases

they are important to be classified correctly. Incorrect prediction of defective classes might

result in escape of critical errors leading to bad quality software and higher testing costs.

Thus, misclassification of defective classes may lead to project scrap which can further harm

the reputation of an organization. Therefore, it is important to address imbalanced data

problem for software defect prediction to improve software quality, to reduce prediction error

and for successful deployment of the software.

Below subsections demonstrates the use of software metrics and elaborates the

occurrence of data imbalancing problem in defect prediction studies.

1.1.1. Software Metrics

A software metric is a measure of an extent to which a software system possess some

characteristics. Software measurement is done through code coverage, cohesion, coupling,

lines of code, cyclomatic complexity, Halstead complexity, function points etc. Metrics are

defined at various levels for example, method level metrics, class level, file level, component

level, quantitative metrics, product metrics and process metrics. Out of method level metrics,

Halstead (1977) and McCabe (1976) are widely used metrics [26]. Now-a-days, class level

metrics are also becoming popular but their use is confined to object oriented software only

whereas method level metrics can be used for both structured as well as object oriented

programming paradigm[26]. Popular class level metrics are CK metrics suite, MOOD,

QMOOD and L&K [26]. Kaszycki (1999) observed that performance increases if we use

process metrics as well [29]. The only difficulty with these metrics is that they change with

the change of organization. So, it is required that model must be built from root again [29].

This thesis work is based on method level metrics i.e. Halstead and McCabe static

code metrics suite. The study uses a set of 36 procedural metrics as independent variables.

Procedural metrics consists of a set of traditional code metrics defined by Halstead [23] and

McCabe [24] and lines of code (LOC) counts which are categorized under size metrics.

Halstead metrics are used to measure complexities on the basis of number of operators and

operands in a module [25] while McCabe metrics set is deduced using the flow graph

information of a module.

 Shine Kamal Page 3

Many previous defect prediction studies have used procedural metrics in order to

conduct their experiments on defect datasets. For example, a study of Catal and Diri [28]

used procedural metrics suite to assess results with respect to various machine learning

techniques. Chug and Dhall [27] incorporated the use of static code metrics in their research

regarding clusters and machine learning techniques. Lessmann et al. used Halstead and

McCabe metrics to build defect prediction classification models. These are the metrics which

have been used in a lot of defect prediction related studies.

1.1.2. Imbalanced Data Problem

Imbalanced data problem is a common problem in many machine learning (ML) and

data mining related domains for example, network intrusion detection [52], medical diagnosis

[51], fraud detection [53], hyperspectral image classification [54], software defect prediction

[11] etc. A data set is called imbalanced when one of the classes i.e. the minority class is

heavily under-represented in contrast to the majority class which have larger number of

instances as compared to minority class [18]. This means imbalanced data results from biased

distributions of classes.

Imbalanced data is considered as a serious problem in ML domain. It can cause

adverse effect on the actual performance of various ML classifiers. In most of the cases, the

accurate classification of minority class is more important than that of majority class as it is

costly to misclassify instances from the minority class [18], [19]. For example, in case of

medical diagnosis, cancer disease is less common but it is important to diagnose a person

with cancer correctly otherwise it may lead to a loss of life. The traditional standard

classifiers are built with the assumption that the input dataset is balanced with respect to

various classes but when one class dominates the other, the classifiers tend to misclassify the

minority class which results in the increase in prediction error [35]. This limitation of

classifiers can lead to huge losses in terms of life and money.

There are four different characteristics that imbalanced data holds as explained by

Ramyachitra and Manikandan [18]: small disjuncts, lack of density, noisy data and dataset

shift. In this study, we are dealing with the fourth characteristic that is dataset shift. This is

defined as the case where the dataset follow different distributions with respect to various

classes and the minority class is mostly sensitive to prediction errors. This work focuses on

binary class (defective and non-defective) imbalance problem. The defect prone classes are

present in only 20% of the total modules but are very important to be predicted correctly.

 Shine Kamal Page 4

There are many techniques to handle imbalanced datasets on various levels like data

level, algorithm level, cost sensitive level, feature selection level and ensemble level [6].

These levels further encompass different methods and algorithms to handle the imbalanced

data. This work explores data level and cost sensitive approach. The data level methods

include oversampling methods, undersampling methods and resampling methods. These are

further categorized into various data balancing techniques which we will discuss in the later

chapters.

1.2 Motivation of the Work

Handling imbalanced datasets to obtain improved results is an important challenge in

software defect prediction area. Various methods have been developed to deal with

imbalanced data like data sampling methods, cost sensitive learning, ensemble methods etc.

[6], [12], [14], [48]. As mentioned above, this study specifically focuses on data sampling

methods and cost sensitive learning.

 Data sampling methods as mentioned by Lopez et al. [6] sample the data either by

eradicating some of the majority class samples or by duplicating or adding new

synthetic minority class samples. Ruling out some of the majority class samples is

called the under sampling while addition of minority class samples (replicas or

synthetic instances) is known as over-sampling technique.

 Cost sensitive learning balances the data distribution by considering the cost of

misclassification. All misclassification errors may not be equal in terms of cost. A

predictor tries to minimize the cost by making less number of costlier

misclassification errors. In this work, we assess the performance of oversampling

methods as well as MetaCost (MC) learners [22] for handling the imbalanced

datasets.

Though, a number of studies in literature have explored imbalancing problem in

software defect prediction domain [8], [9], [10], [11], [12], [13], [14], [15] yet only few

sampling methods have been investigating in this domain. Amongst the explored sampling

methods, Synthetic Minority Oversampling Technique (SMOTE) is a popular method while

others like ADASYN, SPIDER, MUTE, SPY etc. are still novel to the area of defect

prediction. This study investigates the performance of novel balancing techniques with use of

NASA datasets. Furthermore, it implements these sampling methods together with the MC

 Shine Kamal Page 5

learners for five ML classifiers to handle imbalanced data problem. We further perform

statistical tests to compare their performances.

1.3 Goals of the study

This work examines nine sampling methods out of which five are oversampling

techniques (SMOTE, ADAptive SYNthetic sampling technique (ADASYN), Safe-Level-

SMOTE, Selective Preprocessing of Imbalanced Data (SPIDER) and SPIDER2), one is

undersampling technique (Majority Undersampling TEchnique (MUTE)) while the remaining

three are resampling techniques (SPY, SpreadSubSample and Resample) together with the

MC learners with three different cost ratios by using five ML classifiers. The ML classifiers

used in this study are decision trees (J48 and Random Forest (RF)), Naïve Bayes (NB), and

two ensemble methods AdaboostM1 (AB) and Bagging (BG). Furthermore, in order to

generalize the results we explore twelve defect prediction public NASA datasets. We

implement nine existing balancing techniques in MATLAB. We also propose and implement

an improved version of SPIDER2 i.e. SPIDER3. The results are appraised using Area Under

the Receiver Operating Characteristic Curve (AUC), sensitivity, specificity and precision

performance metrics. Furthermore, this study performs statistical comparison of the results

using Friedman and Wilcoxon tests.

Thus, this study investigates the following research questions (RQ):

RQ1: Does balancing of datasets using sampling methods improve the performance of ML

techniques for defect prediction?

RQ2: Which is the best oversampling method to improve the performance of ML techniques

for software defect prediction in this study?

RQ3: What is the comparative performance of the proposed version of SPIDER2 technique

i.e. SPIDER3 and the original SPIDER2 technique for software defect prediction?

RQ4: Which is the best sampling method among undersampling and resampling methods to

improve the performance of ML techniques for software defect prediction in this study?

RQ5: Which sampling technique is the best among oversampling, undersampling and

resampling techniques and why?

RQ6: What is the effect of using MC learners on imbalanced datasets for software defect

prediction?

 Shine Kamal Page 6

RQ7: What is the comparative performance of best sampling method and MC learners for

software defect prediction?

1.4 Thesis Organization

 This thesis work is bifurcated into six different chapters. Starting with the abstract,

Chapter 1 gives the brief introduction about the issues discussed in this study. The chapter

explains the need and use of defect prediction models. It defines the defect related

terminologies explaining how they affect the software systems and human life. It also

addresses the imbalanced data problem, how it has been leading to the ignorance of defect

prone classes in defect prediction area. The various software metrics used to develop

prediction models are demonstrated and the goals of this empirical research are stated in the

form of questions at the end of this chapter.

 Chapter 2 sums up the related studies with respect to software defect prediction and

imbalanced data problem. A lot of research has been carried out in defect prediction area in

context of imbalanced data. This chapter summarizes the major contributions and findings of

the previous studies. The literature survey conducted by the author in defect prediction finds

out that imbalanced data is becoming a serious problem. Many studies [5], [9],[15], [13], [11]

have been investigating in this field by using data balancing techniques. Most of the studies

use SMOTE sampling method to handle imbalancing problem while other methods are still

unexplored in the area of defect prediction. Only one defect prediction study [8] has used

Safe-Level SMOTE oversampling method while the methods like ADASYN, SPIDER, SPY

etc. are still novel. Furthermore, the related work describes the previous studies which have

used procedural metrics and have applied various ML techniques for building models.

 Chapter 3 provides the details regarding the experimental design of the study. It

describes the dependent, independent variables used to carry out the research. The data

collection method, different datasets and the various procedural metrics used in this study are

mentioned in detail. The chapter further defines the performance metrics used to evaluate the

prediction models and discusses the statistical test selection briefly. The 10-fold cross

validation method used for model evaluation is explained in this section.

 Chapter 4 describes the research methodology used in the experiment. It briefly

discusses the various data sampling methods together with the detailed explanation of the

algorithms to handle imbalanced data problem. A proposed oversampling method SPIDER3

is also discussed with full details. A detailed discussion is carried out regarding MetaCost

 Shine Kamal Page 7

learners which is cost sensitive approach of dealing data imbalancing. Furthermore, this

section defines various machine learning classifiers which are applied on balanced as well as

imbalanced datasets to develop defect prediction models.

 In Chapter 5 the obtained results are stated and analysed using statistical tests. This

chapter answers the above stated questions in chapter 1. We have performed an extensive

comparison between various balancing methods using two non-parametric tests, Friedman

and Wilcoxon. This chapter also states the advantageous use of the proposed method

SPIDER3 and describes how it is better than the existing one (SPIDER2).

At last, Chapter 6 concludes the final outcome of the study. It states which method

performed the best and guides the researchers to make use of novel sampling techniques to

further improve the performance of defect prediction models. The chapter also provides the

future scope of the research.

 Shine Kamal Page 8

CHAPTER 2

RELATED WORK

This section discusses the related work of this study. The section is further sub-

divided into two parts. The first part discusses the existing studies in defect prediction

domain which have used method level metrics i.e. static code metrics suite and NASA

datasets. The second part mentions previous studies related to imbalanced data problem in

defect prediction domain as well as in other areas.

2.1 Defect Prediction Studies

There are a number of previous studies which have used NASA data sets for defect

prediction. Chug and Dhall analyzed various ML techniques and clusters for defect prediction

on NASA data sets using static code metrics [27]. They found that RF outperforms all the

other investigated ML techniques for software defect prediction.

Catal and Diri inquired the effect of dataset size and metrics set on software defect

prediction [28]. They also used public NASA datasets and observed that RFs technique

outperforms for large datasets and NB for small datasets. Another study by Catal and Diri

observed that the most frequently used metrics in defect prediction are method-level metrics

[26]. Also, ML techniques were found to be popular methods for defect prediction. A study

by Catal [29] and another one by Malhotra [17], surveyed both ML and statistical techniques

for defect prediction. According to their surveys, most of the studies used method level

metrics and the defect prediction models were mostly developed using ML techniques.

Moreover, the ML techniques outperformed the statistical methods in majority of the cases

for developing software defect prediction models.

Gondra proposed an ML technique for selecting a subset of software metrics that are

most likely to predict defects and used NASA datasets to obtain results [30]. The study

concluded that the Support Vector Machine (SVM) performs better than that of Artificial

neural networks (ANNs). Li and Reformat studied a fresh ML method ‘SimBoost’ to make

the dataset more balanced in order to handle the skewness in data distributions in software

defect prediction [31]. Although, the method attempted to balance the datasets but the

accuracy of the prediction was still not acceptable.

 Shine Kamal Page 9

The study by Hong carried out his research on RF classifier [32]. He proved that the

RF model was better than the MultiLayer Perceptron neural network model and Support

Vector Machine (SVM) model. Shanthini and Chandrasekaran analyzed the performance of

ML models using traditional performance measures such as precision, recall and AUC [33].

Their results which were based on public domain NASA data set KC1 showed that the RF

outperforms the other methods. Singh et al. also used public domain NASA data set KC1 to

analyze that the SVM method predicts defective classes with high accuracy when evaluated

using AUC [34]. Lessmann et al. used Halstead and McCabe metrics to build defect

prediction classification models. These are the metrics which have been used in a lot of defect

prediction related studies [27], [28], [30], [33], [34].

2.2 Imbalanced Data Related Studies

Some previous studies on defect prediction have inculcated the data pre-processing

step by applying balancing techniques to get better results. The most popular and widely used

method is SMOTE (Synthetic Minority oversampling technique) and its modified versions

[5], [9], [12], [15]. A number of previous studies have used SMOTE for balancing the

unbalanced data but there are more improved methods like SPIDER(selective preprocessing

of imbalanced data), ADASYN (Adaptive synthetic sampling) which produce better results

when compared to SMOTE. To the best of author’s knowledge, no work has been found in

regard to these methods in software defect prediction.

Siers and Islam incorporated the oversampling methods, SMOTE and Safe-Level-

SMOTE to optimize the cost of software defect prediction using decision forest [8]. The use

of oversampling methods gave better results where number of defective examples was less

than 100. To address the imbalanced data problem for software defect prediction, Liu et al.

proposed a two-stage cost-sensitive learning (TSCS) method [10]. Their experimental results

demonstrated that the TSCS methods outperformed single-stage cost-sensitive learning

methods. Tan et al. applied the oversampling methods to improve the performance in online

change classification [20]. Their results depicted that the oversampling methods improved the

performance by significant percentage points. The study of Rodriguez et al. [7] compared

cost-sensitive, sampling methods, hybrid techniques and ensembles to deal with imbalanced

datasets. Their results showed that the algorithms to deal with imbalanced datasets enhanced

the performance of prediction models.

 Shine Kamal Page 10

The study of Wang and Yao compared the balancing techniques and concluded that

the balanced random undersampling had a better defect prediction rate than the other methods

[11]. To better estimate the cost, Khoshgoftaar and Gao used random undersampling (RUS)

[13]. The results showed that the sampled data significantly out-performed the models that

were constructed with the original, unsampled data. Kamei et. al. experimentally evaluated

the effects of sampling methods (random over sampling, SMOTE, random under sampling

and one-sided selection) on defect-prone ML models [14]. They discovered that sampling

methods improved the prediction performance of the linear and logistic models, while the

performance of neural network and classification tree models did not improve by the use of

sampling methods.

Seliya and Khoshgoftaar used cost sensitive method to analyze the performance ML

techniques in case of imbalanced datasets [48]. They considered misclassification cost as an

important factor for making better models. Weiss et al. [49] and Galar et al. [50] also worked

on imbalanced data in defect prediction. They used cost sensitive learning, sampling methods

and ensemble methods to improve the performance of ML models.

Although these studies have worked on improving the performance of defect

prediction models using imbalanced data but no study has explored all the above mentioned

sampling methods to handle imbalanced data in the software defect prediction domain.

Though, SMOTE has been popularly used in previous studies, this study analyzes the use of

new and improved sampling methods like ADASYN and SPIDER etc. Furthermore, this

study implements these nine sampling methods in the MATLAB environment and then uses

them for developing better defect prediction models using ML techniques.

A previous work by Malhotra and Khanna in [21] analysed the performance of three

sampling methods (sampling, SMOTE and Spread Subsample) along with MC learners on

change prediction data. However, this work is different from author’s previous work as it

investigates specifically the use of various oversampling methods on defect prediction data.

Moreover, the various oversampling methods (apart from SMOTE) used in this work has

been coded by the authors themselves. Also, the study proposes a new variant of an existing

oversampling method SPIDER2. Our improved version of the SPIDER2 algorithm is more

effective for handling imbalanced data than its original version. Moreover, this study uses

twelve public NASA defect datasets as compared to only six data sets used in author's

previous work on change prediction.

 Shine Kamal Page 11

CHAPTER 3

EXPERIMENTAL DESIGN

This section provides the details regarding various design settings used in this study.

3.1 Dependent and Independent Variables

This study uses ‘defect proneness’ as a dependent variable [56]. Defect proneness is a

binary variable which indicates the defective nature of the class. A class is said to be defect

prone if there is a probability of detecting a fault in the class in future versions otherwise, a

class is termed as non-defective. This binary variable is dependent on a number of other

variables like Halstead and McCabe metrics.

The dependence of defect proneness over static code metrics is considered practical as

they have helped in successful detection of the defect prone nature of the class in the past

[25], [30], [33]. They are also helpful in deciding whether the module should go through

manual inspections or not. According to the survey by Malhotra in [17] procedural metrics

are widely used metrics in more than 51% of previous [25], [26], [30], [33], [34] defect

prediction studies and can be calculated at reasonably low costs for both small and large

systems. Table 3.1 describes the static code metrics, size metrics and other metrics which are

a part of procedural metrics used in this study.

3.2 Data Collection

This study uses a set of 12 publically available NASA datasets. As observed by

Malhotra in [17] more than 60% of the previous software defect prediction studies [26], [30],

[31], [32], [34] used NASA datasets. They are available publically in NASA repository by

NASA Metrics Data Programme. The NASA datasets used in this work are collected from

the PROMISE repository. The NASA datasets used in this study are explored with the

application of data sampling and ML techniques.

 Shine Kamal Page 12

Table 3.1 Static Code Metrics Description in NASA Datasets

Metric
NASA Dataset

CM1 JM1 KC2 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5

Halstead

Metrics

Level √ √ √ √ √ √ √ √ √ √ √ √

Program time √ √ √ √ √ √ √ √ √ √ √ √

Volume √ √ √ √ √ √ √ √ √ √ √ √

Error estimate √ √ √ √ √ √ √ √ √ √ √ √

Length √ √ √ √ √ √ √ √ √ √ √ √

Content √ √ √ √ √ √ √ √ √ √ √ √

Difficulty √ √ √ √ √ √ √ √ √ √ √ √

Effort √ √ √ √ √ √ √ √ √ √ √ √

Num_operands √ √ √ √ √ √ √ √ √ √ √ √

Num_unique_operands √ √ √ √ √ √ √ √ √ √ √ √

Num_operators √ √ √ √ √ √ √ √ √ √ √ √

Num_unique_operators √ √ √ √ √ √ √ √ √ √ √ √

McCabe

Metrics

Essential Complexity √ √ √ √ √ √ √ √ √ √ √ √

Cyclomatic Complexity √ √ √ √ √ √ √ √ √ √ √ √

Design Complexity √ √ √ √ √ √ √ √ √ √ √ √

Cyclomatic Density √ √ √ √ √ √ √ √ √ √ √ √

Size

Metrics

Number of lines √ - - √ √ √ √ √ √ √ √ √

LOC total √ √ √ √ √ √ √ √ √ √ √ √

LOC executables √ √ √ √ √ √ √ √ √ √ √ √

LOC comments √ √ √ √ √ √ √ √ √ √ √ √

LOC code & comments √ √ √ √ √ √ √ √ √ √ √ √

LOC blanks √ √ √ √ √ √ √ √ √ √ √ √

Others

Branch count √ √ √ √ √ √ √ √ √ √ √ √

Condition count √ - - √ √ √ √ √ √ √ √ √

Decision count √ - - √ √ √ √ √ √ √ √ √

Edge count √ - - √ √ √ √ √ √ √ √ √

Parameter count √ - - √ √ √ √ √ √ √ √ √

Modified condition

count

√ - - √ √ √ √ √ √ √ √ √

Multiple condition

count

√ - - √ √ √ √ √ √ √ √ √

Node count √ - - √ √ √ √ √ √ √ √ √

Decision density √ - - √ - √ √ √ √ √ √ -

Design density √ - - √ √ √ √ √ √ √ √ √

Essential density √ - - √ √ √ √ √ √ √ √ √

Global data density - - - √ √ √ - - - - - √

Call pairs √ - - √ √ √ √ √ √ √ √ √

Maintenance severity √ - - √ √ √ √ √ √ √ √ √

Global data complexity - - - √ √ √ - - - - - √

Normalized cyclomatic

complexity

√ - - √ √ √ √ √ √ √ √ √

Percent comments √ - - √ √ √ √ √ √ √ √ √

Number of code attributes 37 21 21 39 38 39 37 37 37 37 37 38

Total number of modules 344 7782 522 194 1988 125 253 759 1585 1077 1458 17186

Percentage of defected modules 12.21 21.48 20.5 18.55 2.31 35.2 10.67 8.03 1 12.44 12.20 3

 Shine Kamal Page 13

Each dataset comprises of procedural metrics including static code metrics and size metrics.

They also contains the defect proneness dependent variable. The value of dependent variable

is set to ‘0’ or ‘no’ if the module is not defective otherwise it is set to ‘1’ or ‘yes’ in case of

defective module. The datasets selected in this study are highly imbalanced with minority

class (i.e. number of defective modules) percentage in the range of 1-35.5%.

 The detailed description of 12 NASA datasets used in this study together with the

procedural metrics used in each dataset is given in Table 3.1 which includes the total number

of modules per dataset and percentage of defect prone modules.

3.3 Selection of Performance Measures

Performance of different defect prediction models can be evaluated using various

performance metrics for example precision, recall, specificity, balance, AUC, F-measure, G-

mean, accuracy etc. Researchers had been involved in a controversy over the use of

performance measures while dealing with imbalanced data. The use of recall, precision and

accuracy performance measures have been criticized by researchers [36], [37], [38] for the

evaluation of prediction models while AUC, balance etc. are considered effective measures

for the defect prediction models evaluation in case of imbalanced data [12], [25], [37]. This

work evaluates the performance of ML classifiers using four performance metrics. We use

AUC, specificity and two traditional performance metrics: recall and precision as well for

evaluating the results of the prediction models. AUC is an important metric to be considered

for evaluation as it shows the trade-off between correct and incorrect predictions made by a

classifier [46].

The performance of the developed models is evaluated using confusion matrix. It

consists of four variables out of which two are predicted class labels and other two are actual

class labels. Two classes used in this paper are defective (whether the module is defective)

and non-defective class. In matrix, TN (true negatives) is the number of non-defective

samples of the dataset which are predicted as non-defective, TP (true positives) is the number

of defective samples of the dataset predicted correctly as defective, FN (false negatives)

implies to the number of defective samples predicted as non-defective and similarly FP (false

positives) refers to the number of non-defective samples predicted falsely as defective. Table

3.2 shows the confusion matrix formation while various performance metrics used in this

study are described with the help of definition along with formula in table 3.3.

 Shine Kamal Page 14

Table 3.2 Confusion Matrix

Class Predicted Negatives Predicted Positives

Actual Negatives TN FP

Actual Positives FN TP

Table 3.3 Performance Metrics

Performance Metric Definition

Area under ROC

curve

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and

specificity. The ROC is a curve plotted between sensitivity and (1-specificity)

on the y and x-coordinate axis respectively. The larger the area enclosed under

the curve the better is the performance of the ML technique.

Sensitivity (Recall)

It is defined as a percentage of correctly predicted defective modules. 𝑆݁݊ݏ𝑖ݐ𝑖𝑣𝑖ݐ𝑦 = TP ∗ ͳͲͲTP + FN

Specificity

It is defined as a percentage of correctly predicted non-defective modules. 𝑆݁݌𝑐𝑖݂𝑖𝑐𝑖ݐ𝑦 = TN ∗ ͳͲͲTN + FP

Precision

It is defined as the ratio of correctly predicted defective modules to the total

number of modules predicted as defective. 𝑃݁ݎ𝑐𝑖ݏ𝑖݊݋ = TP ∗ ͳͲͲTP + FP

3.4 Statistical Test Selection

In order to statistically evaluate the performance of data sampling methods and

MetaCost learners, we use two statistical tests: Friedman test and Wilcoxon signed rank test.

These tests are non-parametric tests and are conservative in nature. Unlike parametric tests,

assumptions made in the non-parametric tests are not stringent and one may ignore the

presence of outliers in the datasets, variance homogeneity, normal distributions etc [39].

Lessmann et al. ascertain that only few previous studies have used statistical tests for

performance validation [25]. Deriving conclusions exclusively by manual inspection of

empirical results might be misleading and can create inconsistency across more than one

experiment performed on the same subject. To avoid this scenario, we use the two selected

statistical tests to generate substantiated conclusions.

Friedman test assigns ranks to different methods under experiment on the basis of

performance metrics used for evaluation. The lower the mean rank attained by any method,

the better it is. The degree of freedom for the test is set to 6 and the alpha value to α=0.05. If

 Shine Kamal Page 15

the results obtained by Friedman test are significant, we perform Wilcoxon signed rank test

with Bonferroni correction. Bonferroni correction is used to remove family wise errors. The

test ascertains whether the pairwise performance of two methods differs significantly or not.

It compares two related scenarios (a vs b) using positive and negative ranks. Positive ranks

indicate the number of times ‘a’ outperforms ‘b’ out of total number of instances while

negative ranks indicate the number of times ‘b’ outperforms ‘a’. If positive ranks are equal to

negative ranks then the performance of both ‘a’ and ‘b’ is considered equal. We use α=0.05

as a decision parameter for the acceptance or rejection of null hypothesis.

3.5 Model Evaluation

The study uses 10-fold cross validation method for model evaluation. The method

works by randomly dividing the dataset into ten subsets. Ten iterations are performed where,

during each iteration, one subset is taken as testing set while other nine subsets are considered

as training sets. All the ten subsets are used as validation set exactly once. The final result is

calculated by the average estimation of results generated during each iteration.

 Shine Kamal Page 16

CHAPTER 4

RESEARCH METHODOLOGY

In this study, we have implemented nine existing sampling methods and have

proposed a new and improved oversampling method. The techniques are applied on

imbalanced NASA datasets along with the use of MC learners to handle imbalancing

problem. Furthermore, we apply five ML classifiers on the balanced datasets in order to

evaluate their performance by using four performance measures described in the previous

section. The study uses WEKA (www.cs.waikato.ac.nz/ml/weka) for evaluation. The results

are computed using default WEKA parameters. This section describes the various methods to

handle imbalanced datasets and the ML techniques for defect prediction used in this study.

4.1. Data Sampling Methods

Data sampling methods attempt to balance data either by replicating the minority class

samples or by generating new synthetic samples of the minority class or it can also be done

by eliminating the noisy majority class instances. This study implemented five oversampling

methods, one undersampling and three resampling methods in the MATLAB environment

whose brief explanation is stated in this section below.

4.1.1 SMOTE

SMOTE, synthetic minority oversampling technique by Chawla et al. [4] is a widely

used method. In SMOTE, for each minority class sample its k nearest neighbors are

computed and are randomly chosen in order to compute synthetic samples close to each

minority class sample. This study chooses seven different values of k depending on the

requirement of each of the 12 NASA datasets used in this work. Selection of number of

nearest neighbors depends upon the amount of oversampling (N) needed. The amount of

oversampling required can be 100%, 200%, 500%, 1000% and so on. For example, 500%

oversampling means five nearest neighbors are randomly chosen from k nearest neighbors.

Amount of oversampling further depends on the percentage of minority class present in each

dataset with respect to total number of instances present in the dataset. This study uses

amounts of oversampling in the range of 200-9000%. Detailed description of k and N is

provided in table 4.1 below. The synthetic sample for each minority class sample is generated

by taking the difference between the particular minority class sample and its nearest

 Shine Kamal Page 17

neighbor. The difference is then multiplied by a random number which belongs to the range

from 0 to 1 and then it is finally added to that particular minority class sample under

consideration. Detailed Algorithm of SMOTE can be referred in.

Table 4.1 Parameter Selection for Sampling Algorithms

Dataset

SMOTE/Safe-Level-SMOTE SPIDER/SP

IDER2/SPI

DER3

MUTE SPY

K N K k’ k” Z

CM1 5 5 5 5 5 2

JM1 4 4 4 5 5 2

KC2 4 4 4 5 5 2

KC3 4 4 4 5 5 2

MC1 25 25 25 5 25 12

MC2 3 2 3 5 5 2

MW1 5 5 5 5 5 2

PC1 7 7 7 5 5 2

PC2 15 90 90 5 89 44

PC3 5 5 5 5 5 2

PC4 5 5 5 5 5 2

PC5 30 30 30 5 29 14

4.1.2. Safe-Level-SMOTE

 Safe-level-SMOTE [2] is the modified version of SMOTE. It focuses on how the

random number (used in SMOTE) will be chosen to generate synthetic minority samples. The

minority class samples are assigned safe levels (sl) on the basis of k nearest neighbors in the

dataset. In our experiment, we set the value of k to seven different values depending on the

requirement of each of the 12 NASA datasets used in this work and the amount of synthetic

samples to be generated are set in the range of 200-9000%. Detailed description of k and N is

provided in table 4.1 above.

We find k nearest minority class neighbors for each minority class sample ‘p’. One

neighbor ‘n’ will be chosen randomly and then safe level ratio slp/sln (number of minority

samples in k nearest neighbors of p in the dataset to the number of minority class samples in

k nearest neighbors of n) will be calculated. On the basis of range of safe level ratio, random

number is chosen accordingly. Then it will be used same as in SMOTE to generate synthetic

samples. Difference between SMOTE and Safe-level-SMOTE is that SMOTE randomly

generates equal synthetic samples for each minority class sample while it is not the case in

 Shine Kamal Page 18

safe-level-smote. The generation of synthetic samples depends upon the gap variable. Figure

4.1 describes the Safe-Level-SMOTE algorithm.

D← OrigiŶal dataset

Cmin ← set of iŶstaŶĐes of origiŶal dataset ǁhiĐh are preseŶt iŶ ŵiŶority

Step 1)

 For eaĐh p є Cmin

 Compute k nearest neighbors of p in Cmin

 Step 1a) Randomly select one out of k nearest neighbors and call it n

 Slp ← Ŷuŵďer of positiǀe iŶstaŶĐes iŶ k Ŷearest Ŷeighďors of p iŶ D

 Sln ← Ŷuŵďer of positiǀe iŶstaŶĐes iŶ k Ŷearest Ŷeighďors of Ŷ iŶ D

 If(sln==0)

 Set sl=∞

 Else

 Calculate sl = slp/sln

 If(sl==∞ aŶd slp==o)

 no need to generate synthetic samples.

 Else {

 if(sl==∞ aŶd slp!=o)

 Gap=0

 Else if(sl==1)

 Gap= random number between 0 and 1

 Else if(sl>1)

 Gap= random number between 0 and 1/sl

 Else

 Gap= random number between 1-sl and 1

 For eaĐh a є attr
 { [attr is the number of attributes]

 Compute the difference ͚dif͛ between ͚a͛ attribute of instance n and p

 Generate synthetic sample by multiplying gap with dif and adding it to p.

 }

 }

 Step1b) Repeat step 1a according to the need of amount of oversampling required.

Step 2) Add synthetic samples to D.

Fig. 4.1 Safe-Level-SMOTE Algorithm for Imbalanced Data

4.1.3. ADASYN

 In Adaptive synthetic (ADASYN) sampling technique [3], the number of synthetic

samples needed to be generated for each minority class sample is decided by the density

distribution. Unlike SMOTE, ADASYN automatically calculates the number of synthetic

samples which are needed to be generated to balance the data. We do not need to manually

input the amount of oversampling in case of ADASYN. The only input is the imbalanced

dataset which we need to give. Density distribution is the measure of weights which are given

to each minority class sample according to their difficulty level of learning. The procedure of

generating synthetic sample is same as that of SMOTE. The major difference between

SMOTE and ADADSYN is that the former produces the number of synthetic samples as per

the user demand and it generates equal amount of samples for each minority class sample

 Shine Kamal Page 19

while the latter automatically decides that how many number of synthetic samples are needed

to be generated on the basis of density distributions. The variable ‘a’ used in the algorithm

decides the amount of balancing required with respect to number of majority class samples.

This study uses a=1 which means fully balanced dataset will be generated post ADASYN

application. Figure 4.2 represents pseudo code for ADASYN.

D← Original dataset
Cmin ← set of instances of original dataset which are present in minority

ms ← number of minority class samples

ml ← number of majority class samples

dmax ← maximum tolerated degree of class imbalance

Step 1) Calculate class imbalance degree ‘Deg’
 Deg= ms/ml

Step 2) if Deg< dmax

 Step 2a) Compute the number of synthetic samples that are needed

 to be generated for each minority class sample as

 T=(ml-ms)*a

 Where a є [0,1] is a constant used to specify desired
 balance level.

 Step 2b) For each s є Cmin do

 Compute k nearest neighbors of s in D

 Calculate ratio r(i)=maj(i)/k

 Where ‘maj’ is the number of majority class samples in k

 nearest neighbors of s, i=1,2,3…..ms.

 Step 2c) Calculate the density distribution for each minority

 class sample ‘i’ as

 R(i)=r(i)/∑ ሺ𝑖ሻ𝑚𝑠𝑖=1ݎ

 Step 2d) Calculate the number of synthetic samples need to be

 generated for each minority class sample ‘i’ as

 S(i)= R(i)*T

 Step 2e) Calculate each synthetic sample for ‘i’ as

 Loop from 1 to S(i)

 Randomly choose one minority sample ‘n’ from k

 nearest neighbors of s in Cmin.

 Generate synthetic sample as

 Synthetic=s+(n-s)*gap

 Where gap is the random number, gap є [0,1]

 End loop.

Fig. 4.2 ADASYN Algorithm for Imbalanced Data

4.1.4. SPIDER

 Selective preprocessing of imbalanced data (SPIDER) proposed by Stefanowski and

Wilk [1] consists of two phases. In the first phase, each sample from the given dataset is

flagged as noisy or safe depending on the k- nearest neighbors. In our experiment, we fix the

value of k depending upon the number of instances and the amount of oversampling required

in case of each of the 12 NASA datasets. The detailed description of k values is described in

 Shine Kamal Page 20

table 4.1. In the second phase, amplification of minority samples is done in three ways, that

is, weak amplification, weak amplification & relabeling and strong amplification.

D← original dataset
Cmin ← set of all samples in D which are present in minority

Cmaj ← set of all samples in D which are present in majority

k← number of nearest neighbors

Step 1) for each sample s є D do

 If correct(data, s, k) then

 type=safe

 Else

 type=noisy

Step 2) if amplication==weak then

 For each s є flagged(data, Cmin, noisy) do

 replicate(data, s, k, maj, safe)

 else if amplication==weak & relabeling==true

 For each s є flagged(data, Cmin, noisy) do

 replicate(data, s, k, maj, safe)

 For each s є flagged(data, Cmin, noisy) do

 For each t є Cmaj in k nearest neighbors of s &

 type==noisy do

 Change class of t from Cmaj to Cmin

 else

 For each s є flagged(data, Cmin, safe) do

 replicate(data, s, k, maj, safe)

 For each s є flagged(data, Cmin, noisy) do

 If correct(data, s, k+2) then

 replicate(data, s, k, maj, safe)

 else

 replicate(data, s, k+2, maj, safe)

Step 3) Remove all t є D

Fig. 4.3 SPIDER Algorithm for Imbalanced Data

In weak amplification, the minority class samples which are flagged as noisy are

amplified. For amplification, replicate them by as many numbers as there are safe majority

class samples in k nearest neighborhood of each noisy minority class sample. In weak

amplification & relabeling, one additional step is performed in which noisy majority class

samples in the k nearest neighborhoods of noisy minority class sample are relabeled by

modifying their class from majority to minority. Strong amplification amplifies all the

examples of minority class whether flagged safe or noisy. But amplification of safe and noisy

samples is done differently. Safe samples are replicated by as many numbers as there are safe

majority samples in k nearest neighborhood. In case of noisy minority class samples, flagging

is done yet again but this time by taking k+2 nearest neighbors. If the sample is flagged safe,

it is amplified in its k nearest neighborhood otherwise in k+2 nearest neighborhoods. In this

study we use strong amplification level in the second phase. Fig. 4.3 shows the detailed

algorithm of SPIDER. Algorithm uses three functions which are: correct(data, s, k),

 Shine Kamal Page 21

flagged(data, c, f) and replicate(data, s, k, maj, f). The first function classifies the sample ‘s’

as safe or noisy using its k nearest neighbors. For safe it returns 1 else 0. The second function

generates a set of those that are the part of class c and are flagged as f (noisy or safe). The

third function replicates the copies of minority class sample ‘s’ as many number of times as

there are majority class samples in s’s k nearest neighbors which are flagged as f.

4.1.5. SPIDER2

SPIDER2 is a modified version of SPIDER (Algorithm is described in figure 4.4)

[44]. In this modified version, flagging of majority and minority class samples is done in

different phases. In the first phase, only majority class samples are categorized as safe or

noisy. Relabeling is also done in the first phase only. SPIDER2 either re-label all the noisy

majority class samples or it removes them completely from the dataset depending upon the

re-label option.

D← original dataset
Cmin ← set of all samples in D which are present in minority

Cmaj ← set of all samples in D which are present in majority

K← number of nearest neighbors

Step 1) for each sample s є Cmaj do

 If correct(data, s, k) then

 type=safe

 Else

 type=noisy

Step 2) if relabeling==true

 For each t є flagged(data, Cmaj, noisy) do

 Change class of t from Cmaj to Cmin

 else

 D←D – flagged(data, Cmaj, noisy)

Step 3) for each sample s є Cmin do

 If correct(data, s, k) then

 type=safe

 Else

 type=noisy

Step 4) if amplication==weak then

 For each s є flagged(data, Cmin, noisy) do

 replicate(data, s, k, maj, safe)

 else

 For each s є flagged(data, Cmin, noisy) do

 If correct(data, s, k+2) then

 replicate(data, s, k, maj, safe)

 else

 replicate(data, s, k+2, maj, safe)

Fig. 4.4 SPIDER2 Algorithm for Imbalanced Data

In the second phase, samples of minority class are flagged as safe or noisy

considering the changes that arise because of relabeling in the first phase. This is the major

 Shine Kamal Page 22

difference between SPIDER and SPIDER2. The former blindly amplifies the minority class

samples without taking into account the changes that arise in the dataset due to relabeling

while the latter takes into considerations the changes made by relabeling option in the first

phase and on the basis of those changes it flags the minority class samples as safe or noisy.

After identification of noisy examples, SPIDER2 performs amplification operation on the

relabeled dataset.

4.1.6. SPIDER3: A Modified Version of SPIDER2 (Proposed Method)

To add one more method in the family of SPIDER methods, we propose SPIDER3, a

modified version of SPIDER2 technique. Pseudo code of SPIDER3 is presented in fig. 4.5 In

this method we use three functions out of which two are same as used in SPIDER and

SPIDER2 i.e. correct(data, s, k) and flagged(data, c, f). However, we modify the third

function replicate(data, s, k, maj, f) by adding one more parameter into it. The modified

replicate function is replicate(min, data, s, k, maj, f). This function generates new synthetic

samples of minority class sample ‘s’ as many number of times as there are majority class

samples in s’s k nearest neighbors which are flagged as f.

SPIDER3 consists of two phases. In the first phase, we identify majority class

examples as safe or noisy on the basis of k nearest neighbors. Our method uses Euclidean

distance instead of heterogeneous value difference metric (HVDM) distance function to

compute k nearest neighbors. We used Euclidean distance because this study focuses on

defect prediction imbalanced datasets which have all the numeric attributes. Only dependent

variable is nominal. HVDM [45] distance function is useful when we deal with

heterogeneous data which has both numeric and nominal attributes. It would not make much

difference in case of homogeneous data. After identification, relabeling is performed on noisy

majority class samples which lie in the nearest neighborhood of each corresponding minority

class sample.

In the second phase, identification of minority class samples is done with reference to

changes made in dataset by relabeling. Our modifications exist in the amplification phase.

Instead of replicating the same minority sample SPIDER3 calculates the synthetic samples

while amplifying the data. The synthetic samples are generated by using the same method

used in the SMOTE method. Minority class is amplified as many numbers of times as there

are safe examples of majority class in its k nearest neighbors. For each minority class sample

 Shine Kamal Page 23

amplification, k nearest neighbors are computed in the minority class region only and then a

synthetic sample is generated.

D← original dataset
Cmin ← set of all samples in D which are present in minority

Cmaj ← set of all samples in D which are present in majority

K← number of nearest neighbors

Step 1) for each sample s є D do

 If correct(data, s, k) then

 type=safe

 Else

 type=noisy

Step 2) if relabeling==true

 For each s є flagged(data, Cmin, noisy) do

 For each t є Cmaj in k nearest neighbors of s &

 type==noisy do

 Change class of t from Cmaj to Cmin

 else

 For each s є flagged(data, Cmin, noisy) do

 For each t є Cmaj in k nearest neighbors of s &

 type==noisy do

 D ← D – t

Step 3) for each sample s є Cmin do

 If correct(data, s, k) then

 type=safe

 Else

 type=noisy

Step 4) if amplication==weak then

 For each s є flagged(data, Cmin, noisy) do

 replicate(Cmin, data, s, k, maj, safe)

 else

 For each s є flagged(data, Cmin, safe) do

 replicate(Cmin, data, s, k, maj, safe)

 For each s є flagged(data, Cmin, noisy) do

 If correct(data, s, k+2) then

 replicate(Cmin, data, s, k, maj, safe)

 else

 replicate(Cmin, data, s, k+2, maj, safe)

Fig. 4.5 SPIDER3 Algorithm for Imbalanced Data

There is an exception which can arise while using SMOTE formula in SPIDER. As

we are using the same value of k both for generating synthetic samples as well as for the

other computations required by SPIDER3, it might be possible that the value of k exceeds the

total number of minority class samples present in the dataset. For example, in case of PC2

dataset there are only 16 minority class examples. But according to the amount of

oversampling needed which is 9000% (percentage of minority class is just 1% and hence,

large number of samples are required to be generated to fully balance the dataset) we need to

set k=90 (In SPIDER family there is no N, oversampling is done on the basis of k only)

which exceeds total number of minority class samples. In such case, we simply set k for

synthetic sample generation as the total number of minority class examples. Remaining

 Shine Kamal Page 24

amount of oversampling will be done by replicating the minority sample. The advantage of

our proposed method is that it generates new samples of minority class that is, a synthetic

sample rather than just replicating the same sample again and again.

4.1.7. MUTE

 Majority Undersampling Technique proposed in [57] is a replica of Safe-Level-

SMOTE but with a difference that it generates safe levels for majority class instances while

the latter generates them for minority class samples. The method declares a majority sample

as safe if its safe level is zero else if safe level is equal to the total number of nearest

neighbours then it is declared as noisy [57]. Hence, it removes the noisy majority instances in

order to balance the data. The number of k’ nearest neighbours taken for experimentation are

described in table 4.1. Figure 4.6 describes the MUTE algorithm in detail.

D← original dataset
Cmaj ← set of all samples in D which are present in majority

T ← minimum number of minority samples in the neighborhood of a

majority sample which allow the removal of the majority sample

sl ← number of minority class instances in k-nearest neighbor of each

majority class sample

Step 1) For each sample s є Cmaj do

 If sl >= T

 Remove s from D

Fig. 4.6 MUTE Algorithm for Imbalanced Data

4.1.8. SPY

It’s a novel method which tries to balance the data by changing the class labels of

noisy majority class instances from majority to minority class [58]. The noisy majority class

samples are those which lie at the boderline. The boderline samples are named as SPY

samples in this method as they are noisy and required to be removed or renamed. Table 4.1

states the k” nearest neighbours and threshold value z required for renaming majority class

samples to minority. The algorithm of SPY is described in figure 4.7.

D← original dataset
Cmin ← set of all samples in D which are present in minority

T ← minimum number of minority samples in the neighborhood of a
majority sample which allow the removal of the majority sample

k ← number nearest neighbors

Step 1) For each sample s є Cmin do

 C=Count the number of majority class instances in k-nearest

 neighborhood.

 If C <= T

 Change the class of the calculated majority instances to

 minority.

Fig. 4.7 SPY Algorithm for Imbalanced Data

 Shine Kamal Page 25

4.1.9. SpreadSubSample

 It is a resampling technique which generates a random subsample of a dataset [59].

The maximum spread between minority and majority is stipulated using this method. The

distribution spread parameter is set as per the requirements of balancing the dataset.

4.1.10. Resample

 It produces a random subsample of a dataset using either sampling with replacement

or without replacement [60]. The amount of samples that are required to be replicated are

needed to be manually given as input. The biasToUniformClass parameter is set as per the

requirements of balancing the dataset.

4.2 MetaCost Learners

Making each classifier cost sensitive is a heavy task. In its contrast, a procedure was

proposed by Domingos which was used for making classifiers cost sensitive called MC

learner [22]. MC learner makes any ML classifier cost sensitive by applying cost minimizing

procedure over it. MC learners do not require any information about how the individual

classifier works. They can be applied to the datasets containing any number of classes and to

any arbitrary cost matrix. This method uses Bayes optimal prediction to reduce the risk of

achieving high overall cost which is called the conditional risk. The conditional risk R(r/x)

computes the expected cost value of predicting a sample x as a part of the class ‘r’ when it

actually belongs to the class ‘s’. The conditional risk is defined as the summation of product

of C(r,s) and P(s/x) for each region ‘j’ where C(r,s) is the cost of predicting an example as a

part of ‘r’ when it actually is the member of class ‘s’ and P(s/x) is the probability of

predicting that sample x is a member of class ‘s’. The conditional risk partitions the sample

space into ‘j’ regions such that least cost prediction i.e. ‘s’ falls into the region of its own

class ‘s’.

In this way MC learners re-label the classes of each training instance according to

their best predicted classes. MC is the parallel method to BG ensemble method. The

difference between the two exists in choosing the size of resample. BG constructs the

bootstrap resample by selecting ‘n’ samples with replacement from the training set of size ‘n’

while MC learners go well with the smaller resample size also. This nature of MC learners

make them more efficient. The classifiers are then learned on each resample followed by the

collection of votes from the ensemble. The majority vote decides the label of each example

and hence, re-labels it to the optimal predicted class.

 Shine Kamal Page 26

4.3 Machine Learning Classifiers

The ML classifiers used in this work to predict whether the module is defective or not, are

described below.

4.3.1. J48

J48 is a decision tree classifier. It helps to classify the instances using information

gain [27]. The attribute having higher information gain is selected as a root node and among

the possible branches of the root, if there is any child for which all the instances are coming

under same class label, we terminate that branch by assigning class target value to it

otherwise we continue the above procedure.

4.3.2. Random forest

It is the forest of decision trees in which each tree is made up of randomly selected

subsets of datasets using replacement [40]. The final result is given by the majority voting in

which each decision tree gives out its own vote.

4.3.3. Naïve bayes

Bayesian learning is based on Bayes’ theorem in which the classifier assumes that the

effect of one attribute on a given class is independent of the other attributes which is called

class conditional independence [41], [47].

4.3.4. AdaboostM1

AdaboostM1 is a boosting classifier [42] which trains various individual classifiers in

a serial manner by using the whole dataset. In each iteration it focuses more on the difficult

instances which are misclassified in the previous iteration in order to achieve the goal to

correctly classify them in the next iteration. The difficulty of the instances is measured by

weights which are increased for every misclassification and decreased for correctly classified

instances.

4.3.5. Bagging

Bagging is a meta classifier which trains different classifiers using bootstrapped

replicas of the original training dataset [43]. The instances are randomly selected with

replacement from original dataset to form a new dataset which further trains each classifier.

 Shine Kamal Page 27

CHAPTER 5

EMPIRICAL RESULTS AND ANALYSIS

In this section, we discuss and analyse the results obtained by applying ML

techniques on sampled as well as original imbalanced datasets. In order to examine and

equate the performance of different sampling methods as well as MC learners, we use four

performance metrics: sensitivity (recall), specificity, AUC and precision. The results are

assessed by using two non-parametric statistical tests: Friedman and Wilcoxon signed rank

test. The investigation of results is carried out systematically by sequentially answering the

research questions mentioned in chapter 1.

5.1 RQ1: Does balancing of datasets using sampling methods improve the performance of

ML techniques for defect prediction?

Tables 5.1 to 5.12 provide the values of performance metrics calculated on the

original imbalanced datasets (no sampling) as well as balanced datasets after oversampling,

undersampling and resampling. The balanced datasets were obtained by correspondingly

applying ten sampling methods: SMOTE, Safe-Level-SMOTE, ADASYN, SPIDER,

SPIDER2, SPIDER3, SPY, MUTE, SpreadSubSample and Resample. The defect prediction

models were developed by the application of five different ML techniques: J48, RF, NB, AB

and BG. To carry out this work, ten sampling methods were implemented in the MATLAB

environment where original imbalanced datasets were given as input and balanced datasets

were generated as output. To obtain fully balanced datasets, we chose different values of k

and N (refer table 4.1) depending on the requirement of each dataset. 10-fold cross validation

method was used to develop models.

The empirical study conducted shows that in majority of the cases, the balancing of

datasets using sampling methods improves the performance of ML techniques for developing

defect prediction models when AUC, precision and sensitivity were used as an evaluation

factor.

From table 5.1-5.12, it can be discovered that AUC values in case of sampling

methods are better than those in the case when no sampling was performed in majority of the

cases. The table results show a significant percentage increase of 2-120% in AUC values in -

 Shine Kamal Page 28

 Shine Kamal Page 29

 Shine Kamal Page 30

 Shine Kamal Page 31

 Shine Kamal Page 32

 Shine Kamal Page 33

 Shine Kamal Page 34

 Shine Kamal Page 35

 Shine Kamal Page 36

 Shine Kamal Page 37

 Shine Kamal Page 38

 Shine Kamal Page 39

 Shine Kamal Page 40

- majority of the cases. Sensitivity results show a significantly large percentage increase (6-

1490%) in its values in the case of sampling methods as compared to the no sampling

scenario. Similarly, precision values also showed a large improvement of 13-945% increase

on the application of sampling methods. This improvement in the values of various

performance metrics is due to the balancing in datasets. In case of imbalanced datasets, very

few instances of defective class were present and hence, they were difficult to learn by the

ML techniques which are developed with the assumption that the dataset used to train a

particular classifier is balanced. The ML classifiers keep the tendency to classify non-

defective examples correctly as they are present in majority. However, balancing in datasets

using oversampling methods helps in overcoming the biased nature of the defect prediction

models. The increase in defect prone examples made them easy to learn which can be clearly

determined from the increased sensitivity values in table 5.1-5.12.

If we observe the specificity results regarding all the 12 datasets, we can conclude that

values show a visible decrease of 1-30% in the specificity values. Specificity is the measure

of number of non-defective examples which are correctly classified. Due to balancing in

datasets, the defective and non-defective examples become equally important to learn while

in case of imbalanced datasets, non-defective examples were dominating. The decrease in

specificity performance can be considered a concerning factor as it would lead to the testing

of some of the non-defective examples which would be a complete wastage of resources,

time and effort. In order to develop a good classifier, a balance between sensitivity and

specificity should be achieved. However, the balanced datasets provide overall improved

performance whereas in case of imbalanced datasets, only specificity results were good. With

balancing in datasets, balanced results have been obtained between sensitivity and specificity.

5.2 RQ2: Which is the best oversampling method to improve the performance of ML

techniques for software defect prediction in this study?

 In order to assess the superiority of various oversampling methods over the scenario

when no oversampling method is used, we use Friedman test. The test statistically compares

the performance of different oversampling methods. A lower mean rank of a sampling

method indicates better comparative performance of that method. We apply Friedman test

using AUC, sensitivity and precision performance measures. We do not use specificity for

evaluation as it is more biased towards majority class instances and this work focuses more

on minority class instances as chances of misclassifying them are high. Moreover, minority

 Shine Kamal Page 41

class in this study represents the defective modules which are important to classify correctly

because misclassification can lead to project failure and high cost to company. We first state

the null and alternate hypothesis investigated by the Friedman test:

Null Hypothesis (H1, H2, H3): The (AUC, sensitivity or precision) results of the

defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1

and BG) are same when no sampling method or six different oversampling methods

(ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are used to

balance the imbalanced datasets.

Alternate Hypothesis (H1a, H2a, H3a): The (AUC, sensitivity or precision) results of

the defect prediction models developed using five different ML classifiers (J48, RF, NB,

ABM1 and BG) are different when no sampling method or six different oversampling

methods (ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are

used to balance the imbalanced datasets.

5.2.1. Friedman Test Analysis using AUC for Oversampling Methods

Table 5.13 shows the results of Friedman test using AUC performance metric. The last

column in the table is the p-value which decides whether the results are significant or not.

The test results show that in all the twelve cases, the scenario where no sampling is done (i.e.

the case of imbalanced datasets) shows worst results when compared to oversampling

methods. Thus, the oversampling methods significantly outperformed the scenario where no

sampling was used.

Table 5.13 Friedman Results using AUC for Oversampling Methods

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value

CM1 ADASYN SPIDER SMOTE SPIDER2 SPIDER3 S-L-SMOTE No Sampling 0.009

JM1 SMOTE S-L-SMOTE ADASYN SPIDER SPIDER3 SPIDER2 No Sampling 0.02

KC2 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0

KC3 SMOTE SPIDER SPIDER2 S-L-SMOTE ADASYN SPIDER3 No Sampling 0.026

MC1 ADASYN SPIDER SPIDER2 SPIDER3 S-L-SMOTE SMOTE No Sampling 0.016

MC2 SMOTE S-L-SMOTE SPIDER SPIDER3 SPIDER2 ADASYN No Sampling 0.005

MW1 ADASYN SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling 0.008

PC1 ADASYN SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling 0.006

PC2 ADASYN SPIDER3 SMOTE SPIDER SPIDER2 S-L-SMOTE No Sampling 0.009

PC3 ADASYN SPIDER SMOTE SPIDER2 S-L-SMOTE SPIDER3 No Sampling 0.093

PC4 ADASYN SMOTE SPIDER S-L-SMOTE SPIDER3 SPIDER2 No Sampling 0.001

PC5 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER2 SPIDER No Sampling 0.003

 Shine Kamal Page 42

Furthermore, the test describes that ADASYN outperforms all other oversampling

methods in majority of the cases (8 out of 12). SMOTE outperforms other oversampling

methods in case of four datasets: JM1, KC2, KC3 and MC2 when AUC performance measure

is used for evaluation. It can be ascertained that our purposed method SPIDER3 which is an

enhancement in SPIDER2, significantly outperforms SPIDER2 in eight out twelve cases.

Hence, it can be used as a balancing filter for imbalanced datasets. As all the tests show

significant results, we can safely reject the null hypothesis H1.

5.2.2. Friedman Test Analysis using Sensitivity (Recall) for Oversampling Methods

Table 5.14 states the results of Friedman test on sensitivity measure. The last column is

the p-value which decides whether to approve or disapprove the null hypothesis. The test

results prove that in all the twelve cases, oversampling methods significantly outperform the

results of original datasets. Thus, we can safely rule out the null hypothesis H2. Furthermore,

the test resulted in the mixed outcomes in case of six oversampling methods. ADASYN

outperforms all other oversampling methods in five out of twelve cases while SMOTE and

SPIDER family achieves the best rank in six out of twelve cases: KC2, KC3 and CM1, JM1,

MC2, PC3 datasets respectively. Safe-Level-SMOTE shows best performance in only one

case i.e. PC5. As ADASYN outperforms in majority of the cases when compared to the

number of times SPIDER family and SMOTE variants achieved the best rank, we can say

that ADASYN is comparatively a better method.

Table 5.14 Friedman Results using Sensitivity for Oversampling Methods

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value

CM1 SPIDER ADASYN SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.008

JM1 SPIDER2 SMOTE SPIDER S-L-SMOTE SPIDER3 ADASYN No Sampling 0.027

KC2 SMOTE S-L-SMOTE SPIDER3 ADASYN SPIDER2 SPIDER No Sampling 0

KC3 SMOTE SPIDER SPIDER2 SPIDER3 ADASYN S-L-SMOTE No Sampling 0.092

MC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE No Sampling 0.015

MC2 SPIDER2 SPIDER S-L-SMOTE SMOTE SPIDER3 ADASYN No Sampling 0.001

MW1 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.011

PC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE No Sampling 0.013

PC2 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.012

PC3 SPIDER ADASYN SMOTE SPIDER2 SPIDER3 S-L-SMOTE No Sampling 0.001

PC4 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE No Sampling 0.003

PC5 S-L-SMOTE ADASYN SMOTE SPIDER SPIDER3 SPIDER2 No Sampling 0

5.2.3. Friedman Test Analysis using Precision for Oversampling Methods

Table 5.15 shows the results of Friedman test on precision metric. In all the twelve

cases, the scenario where no sampling is done shows worst results when compared to all the

 Shine Kamal Page 43

other oversampling methods. Furthermore, the test describes that ADASYN significantly

outperforms all the other oversampling methods in seven out of twelve cases while SMOTE

achieves the best rank in four out of twelve cases: JM1, KC3, MC2 and PC2. Safe-Level-

SMOTE shows best performance in only one case i.e. KC2. Hence, we can rule out the null

hypothesis H3 as the test shows significant results.

Table 5.15 Friedman Results using Precision for Oversampling Methods

Datasets Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value

CM1 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER SPIDER2 No Sampling 0.001

JM1 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0.001

KC2 S-L-SMOTE SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0

KC3 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0

MC1 ADASYN SPIDER3 S-L-SMOTE SMOTE SPIDER SPIDER2 No Sampling 0

MC2 SMOTE S-L-SMOTE SPIDER3 SPIDER ADASYN SPIDER2 No Sampling 0

MW1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0

PC1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0

PC2 SMOTE SPIDER3 ADASYN S-L-SMOTE SPIDER2 SPIDER No Sampling 0

PC3 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0

PC4 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0

PC5 ADASYN SMOTE S-L-SMOTE SPIDER3 SPIDER2 SPIDER No Sampling 0

According to above Friedman test results on AUC, sensitivity and precision, it can be

noticed that ADASYN outperforms in majority of the cases as compared to other

oversampling methods. This is due to the adaptive nature of ADASYN method. As the name

suggests, ADAptive SYNthetic minority oversampling, this method adapts itself according to

the need to generate synthetic minority samples. This method automatically chooses the value

of k (nearest neighbor) and n (amount of oversampling) on the basis of position of each

minority sample in the dataset. Unlike SMOTE method and its variants, ADASYN does not

generate equal amount of synthetic samples for each minority sample. It focuses more on

those minority samples which lie in the safe region and ignores those which are noise. Unlike

the other oversampling methods, this method doesn’t require user to input the values of k and

n. The original dataset is the only requirement as input. Thus, this method turns out to be the

best among all the oversampling methods.

5.3 RQ3: What is the comparative performance of the proposed version of SPIDER2

technique i.e. SPIDER3 and the original SPIDER2 technique for software defect prediction?

Although it can be noticed from the above stated Friedman results that SPIDER3

outperforms SPIDER2 in majority of the cases but still to further justify the result we apply

 Shine Kamal Page 44

Wilcoxon signed rank test with Bonferroni correction where alpha is set to α=0.05. The

hypothesis H4 for Wilcoxon test is stated below.

Null Hypothesis H4: Defect prediction models developed using five different ML

classifiers: J48, RF, NB, AB and BG are same when two oversampling methods: SPIDER2

and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity and

precision performance measures were taken for evaluation.

Alternate Hypothesis H4a: Defect prediction models developed using five different

ML classifiers: J48, RF, NB, AB and BG are different when two oversampling methods:

SPIDER2 and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity

and precision performance measures were taken for evaluation.

The Wilcoxon signed rank test performs pairwise comparison of SPIDER2 and

SPIDER3 on the performance metric (AUC, sensitivity and precision) values of the defect

prediction models developed by all the investigated ML techniques together on all the

datasets used in the study. The test depicts that SPIDER3 outperforms SPIDER2 significantly

in case of AUC and precision while in case of sensitivity both the methods show comparitive

performance. Thus, the results show that SPIDER3 has improved the performance of two

important performance measures namely AUC and precision. The improvement is due to the

use of SMOTE method in SPIDER3. SPIDER3 uses SMOTE to find synthetic samples for

each minority class sample while SPIDER2 simply replicates the existing minority class

samples. Hence, the Wilcoxon test results confirms that our proposed method i.e. the

modified version of SPIDER2 shows better results when compared to the original method.

5.4 RQ4: Which is the best sampling method among undersampling and resampling methods

to improve the performance of ML techniques for software defect prediction in this study?

To find out the best sampling method among various undersampling and resampling

methods, we again use Friedman test. We apply Friedman test using AUC, sensitivity and

precision performance measures where lower mean rank indicates better performance. The

null and alternate hypothesis taken for Friedman test are as follows:

Null Hypothesis (H5, H6, H7): The (AUC, sensitivity or precision) results of the

defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1

and BG) are same when no sampling method or four different sampling methods (SPY,

MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets.

 Shine Kamal Page 45

Alternate Hypothesis (H5a, H6a, H7a): The (AUC, sensitivity or precision) results of

the defect prediction models developed using five different ML classifiers (J48, RF, NB,

ABM1 and BG) are different when no sampling method or four different sampling methods

(SPY, MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets.

5.4.1 Friedman Test Analysis using AUC

The test results in table 5.16 show that in all the twelve cases, Resample method

significantly outperforms all the other resampling and undersampling methods except for one

case i.e. JM1. In JM1 dataset, SPY method shows best results. However, MUTE, SPY and

SpreadSubSample shows mixed results leading to the average performance in some cases. On

an average, the four sampling methods significantly outperformed the scenario where no

sampling was used where resample performs the best. Hence, it can be used as a balancing

filter for imbalanced datasets. As majority of the tests show significant results, we can safely

reject the null hypothesis H5.

Table 5.16 Friedman Results using AUC

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value

CM1 Resample SPY MUTE SpreadSub Sample No sampling 0.013

JM1 Resample SPY No sampling MUTE SpreadSub Sample 0.003

KC2 SPY Resample MUTE No sampling SpreadSub Sample 0.006

KC3 Resample No sampling SpreadSub Sample MUTE SPY 0.031

MC1 Resample SPY MUTE No sampling SpreadSub Sample 0.562

MC2 Resample SpreadSub Sample SPY MUTE No sampling 0.007

MW1 Resample SpreadSub Sample No sampling SPY MUTE 0.005

PC1 Resample MUTE SPY No sampling SpreadSub Sample 0.041

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.020

PC3 Resample SpreadSub Sample No sampling MUTE SPY 0.166

PC4 Resample MUTE No sampling SpreadSub Sample SPY 0.003

PC5 Resample SPY No sampling SpreadSub Sample MUTE 0.017

5.4.2. Friedman Test Analysis using Sensitivity (Recall)

Table 5.17 states the results of Friedman test on sensitivity measure. The test results

prove that in all the twelve cases, resample method outperforms all the other methods in the

first place while SpreadSubSample method achieves the second rank. In six out of twelve

cases the no sampling scenario achieves worst rank while the other methods significantly

improve the performance of prediction models. Hence, we can safely rule out the null

hypothesis H6. Furthermore, the test resulted in the mixed outcomes in case of SPY and

MUTE sampling methods. However, SPY achieves rank third in majority of the cases.

 Shine Kamal Page 46

Table 5.17 Friedman Results using Sensitivity

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value

CM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

JM1 Resample SpreadSub Sample SPY MUTE No sampling 0.002

KC2 Resample SpreadSub Sample SPY MUTE No sampling 0.015

KC3 Resample SpreadSub Sample No sampling SPY MUTE 0.007

MC1 Resample SpreadSub Sample SPY No sampling MUTE 0.013

MC2 Resample SpreadSub Sample SPY No sampling MUTE 0.011

MW1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

PC1 Resample SpreadSub Sample SPY MUTE No sampling 0.002

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.001

PC3 Resample SpreadSub Sample No sampling SPY MUTE 0.011

PC4 Resample SpreadSub Sample No sampling MUTE SPY 0.001

PC5 Resample SpreadSub Sample SPY No sampling MUTE 0.002

5.4.3. Friedman Test Analysis using Precision

Table 5.18 shows the results of Friedman test on precision metric. In seven out of the

twelve cases, the scenario where no sampling is done shows worst results when compared to

all the other sampling methods. Furthermore, the test describes that resample,

SpreadSubSample and SPY method significantly outperforms the no sampling scenario at

first second and third rank respectively. However, MUTE could not perform well in four out

of twelve cases.

Table 5.18 Friedman Results using Precision

Dataset Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value

CM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

JM1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

KC2 Resample SpreadSub Sample SPY No sampling MUTE 0.001

KC3 Resample SpreadSub Sample SPY No sampling MUTE 0.002

MC1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

MC2 Resample SpreadSub Sample SPY No sampling MUTE 0.007

MW1 Resample SpreadSub Sample SPY MUTE No sampling 0.001

PC1 Resample SpreadSub Sample SPY MUTE No sampling 0.002

PC2 Resample SpreadSub Sample SPY MUTE No sampling 0.000

PC3 Resample SpreadSub Sample SPY MUTE No sampling 0.002

PC4 Resample SpreadSub Sample No sampling SPY MUTE 0.002

PC5 Resample SpreadSub Sample SPY No sampling MUTE 0.002

According to above Friedman test results on AUC, sensitivity and precision, it can be

noticed that Resample method outperforms in majority of the cases as compared to other

sampling methods. This is due to the biasToUniformClass parameter which helps to resample

the dataset so as to achieve a good balanced ratio between minority and majority class

instances. However, an average performance of MUTE is due to its strict rule to eliminate

 Shine Kamal Page 47

majority class samples. MUTE method removes majority class instance and declares it noisy

if and only if all its k nearest neighbors are minority class samples. This makes it difficult to

achieve balance between two classes as it is not possible for maximum of the majority

samples to have all its k nearest neighbors as minority samples because of latter being less in

number. Researchers should decrease the threshold value for noisy samples to a reasonable

digit so as to achieve better performance with respect to MUTE method.

5.5 RQ5: Which sampling technique is the best among oversampling, undersampling and

resampling techniques and why?

From the above Friedman tests, it can be noticed that ADASYN and Resample are the

best methods among oversampling and resampling techniques respectively. In order to further

justify which method is the best between the two we apply Wilcoxon signed rank test with

Bonferroni correction where alpha is set to α=0.05. The hypothesis H8 for Wilcoxon test is

stated below.

Null Hypothesis H8: Defect prediction models developed using five different ML

classifiers: J48, RF, NB, AB and BG are same when two sampling methods: ADASYN and

Resample are used to balance the imbalanced datasets when AUC, sensitivity and precision

performance measures were taken for evaluation.

Alternate Hypothesis H8a: Defect prediction models developed using five different

ML classifiers: J48, RF, NB, AB and BG are different when two sampling methods:

ADASYN and Resample are used to balance the imbalanced datasets when AUC, sensitivity

and precision performance measures were taken for evaluation.

The Wilcoxon signed rank test performs pairwise comparison of ADASYN and

Resample on the performance metric (AUC, sensitivity and precision) values of the defect

prediction models developed by all the investigated ML techniques together on all the

datasets used in the study. The test depicts that both the techniques are efficient in their own

ways. ADASYN outperforms Resample in case AUC and precision while Resample

outperforms ADASYN in case of sensitivity. ADASYN dominates precision and AUC test

results significantly while Resample dominates recall results.

This is due to the biasness removing nature of the resample method. The

biasToUniformClass parameter helps to achieve an effective balance between the two classes.

This further helps to improve the correct prediction of minority class instances to a significant

 Shine Kamal Page 48

level. Thus, correct prediction of minority class leads to the better sensitivity results.

Furthermore, ADASYN’s best performance in case of AUC and precision is due to its

adaptive nature which helps to balance the data by multiplying each minority class sample

using the synthetic sample generation method. It distributes the synthetic samples among

each minority class sample on the basis of density distribution function. Density distribution

function determines the number of synthetic samples that should be produced corresponding

to each minority class sample.

5.6 RQ6: What is the effect of using MC learners on imbalanced datasets for software defect

prediction?

This work also uses cost sensitive learning to handle the imbalanced data problem in

software defect prediction. We use three different cost ratios: 10, 30 and 50 to cost sensitize

the various ML classifiers used in this study. We compare the use of MC learners with the

scenario in which the original learners are used to build ML models. Tables 5.19-5.30

describes the results obtained by using different cost ratios in MC learners as well as those

obtained on original datasets.

It can be observed from the tables 5.19-5.30 that the average performance of ML

techniques improved (1-47%) in 6 out of 12 datasets in terms of AUC when MC learners

were used in comparison to the original scenario. However, the average performance of ML

techniques decreased in the remaining datasets. The results show that the MC with cost ratio

10 outperforms the other MC learners in majority of the cases when AUC was used while in

case of sensitivity MC with cost ratio 50 outperforms the other MC learners as well as the

original scenario. In fact, MC learners with all the cost ratios outperforms the original dataset

in case of sensitivity with percentage increase of 10-600%. This outcome is because the cost

values of MC learners were set in such a way so as to decrease the number of false negative

predictions. The lower the number of FNs the higher will be the chance of correctly

classifying defective modules. Thus, penalizing the classifier for false negatives lead to the

increase in sensitivity in all the datasets. But in order to develop the better predictive models

the balance between specificity and sensitivity must be achieved. Table 5.19-5.30 also show

that the precision values decreased in majority of the cases. However, the average

performance of ML techniques improved in case of two datasets: CM1 and PC2. But overall

decrease in precision values is a concerning factor and it should be researchers’ aim to

achieve balance among all the performance metrics.

 Shine Kamal Page 49

The study also performed Wilcoxon signed rank test in order to make a pairwise

comparison between MC learners and the original dataset scenario. The test was performed

on AUC, sensitivity and precision values of the defect prediction models developed by the

application of five ML techniques (J48, RF, NB, AB and BG) on all the datasets (original as

well as MC learners) of the study. It was observed that original scenario outperformed MC

learners in case of AUC but non-significantly while in case of sensitivity MC learners

significantly outperformed the original dataset. As the defect prone classes are important to

learn correctly, MC learners help improve the prediction of defective modules and hence

improves the quality of the product. However, they may not always yield improved results.

Table 5.19 MC results for CM1 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.594 0.581 0.657 0.678

RF 0.763 0.780 0.738 0.727

NB 0.694 0.686 0.684 0.688

AB 0.717 0.754 0.753 0.736

BG 0.727 0.760 0.711 0.671

Sensitivity

(in %)

J48 26.2 59.5 59.5 73.8

RF 0 71.4 90.5 95.2

NB 33.3 52.4 64.3 64.3

AB 0 90.5 95.2 97.6

BG 0 78.6 92.9 95.2

Specificity

(in %)

 J48 93.7 67.2 67.9 55.3

RF 99.0 71.5 39.7 30.8

NB 89.1 71.2 64.6 64.2

AB 100.0 56.3 39.4 27.8

BG 99.0 64.2 36.8 22.5

Precision (in

%)

 J48 36.7 20.2 20.5 18.7

RF 0 25.9 17.3 16.1

NB 29.8 20.2 20.1 20.0

AB 0 22.4 17.9 15.8

BG 0 23.4 17.0 14.6

Table 5.20 MC results for JM1 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.616 0.623 0.535 0.483

RF 0.701 0.689 0.650 0.613

NB 0.633 0.650 0.650 0.650

AB 0.669 0.500 0.500 0.500

BG 0.689 0.682 0.587 0.500

Sensitivity

(in %)

J48 22.5 75.2 94.6 99.7

RF 20.5 79.4 97.2 99.1

NB 18.5 27.8 28.8 28.8

 Shine Kamal Page 50

AB 0 100.0 100.0 100.0

BG 17.2 90.0 99.8 100.0

Specificity

(in %)

 J48 91.2 48.4 96 70.0

RF 95.5 44.9 82 024

NB 94.5 90.7 90.4 90.3

AB 100.0 0 0 0

BG 95.5 27.1 70.0 0

Precision (in

%)

 J48 41.0 28.5 22.3 21.5

RF 55.3 28.3 22.5 21.7

NB 48.1 45.0 45.0 44.8

AB 0 21.5 21.5 21.5

BG 51.3 25.3 21.6 21.5

Table 5.21 MC results for KC2 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.704 0.728 0.418 0.471

RF 0.825 0.812 0.723 0.702

NB 0.832 0.830 0.831 0.832

AB 0.784 0.804 0.570 0.499

BG 0.825 0.811 0.548 0.500

Sensitivity

(in %)

J48 49.5 79.4 92.5 100.0

RF 47.7 84.1 92.5 92.5

NB 42.1 57.0 57.0 57.0

AB 43.9 85.0 96.3 98.1

BG 43.0 86.0 96.3 100.0

Specificity

(in %)

 J48 89.6 72.8 11.8 0

RF 92.5 69.6 45.3 34.9

NB 94.2 89.4 89.2 89.2

AB 91.1 69.9 12.8 024

BG 94.2 71.3 13.5 0

Precision (in

%)

 J48 55.2 42.9 21.3 20.5

RF 62.2 41.7 30.4 26.8

NB 65.2 58.1 57.5 57.5

AB 56.0 42.1 22.2 20.6

BG 65.7 43.6 22.3 20.5

Table 5.22 MC results for KC3 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.653 0.670 0.692 0.517

RF 0.736 0.692 0.644 0.646

NB 0.661 0.663 0.656 0.652

AB 0.573 0.624 0.528 0.506

BG 0.729 0.630 0.498 0.500

Sensitivity

(in %)

J48 33.3 69.4 75.0 86.1

RF 13.9 72.2 94.4 97.2

NB 38.9 50.0 52.8 52.8

AB 36.1 75.0 97.2 97.2

 Shine Kamal Page 51

BG 13.9 75.0 97.2 100.0

Specificity

(in %)

 J48 89.9 60.8 54.4 10.8

RF 96.8 58.9 18.4 10.1

NB 88.0 71.5 69.0 68.4

AB 93.0 47.5 032 019

BG 93.7 43.0 013 0

Precision (in

%)

 J48 42.9 28.7 27.3 18.0

RF 50.0 28.6 20.9 19.8

NB 42.4 28.6 27.9 27.5

AB 54.2 24.5 18.6 18.4

BG 33.3 23.1 18.3 18.6

Table 5.23 MC results for MC1 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.521 0.682 0.604 0.643

RF 0.883 0.917 0.877 0.868

NB 0.708 0.704 0.713 0.708

AB 0.842 0.793 0.816 0.812

BG 0.860 0.787 0.853 0.834

Sensitivity

(in %)

J48 8.7 30.4 30.4 37.0

RF 19.6 39.1 63.0 71.7

NB 32.6 58.7 65.2 71.7

AB 0 26.1 63.0 76.1

BG 0 19.6 56.5 76.1

Specificity

(in %)

 J48 99.5 96.1 96.3 95.8

RF 99.5 98.1 91.4 85.8

NB 90.2 72.9 68.4 66.6

AB 100.0 96.7 81.5 73.2

BG 100.0 98.3 89.9 81.9

Precision (in

%)

 J48 28.6 15.7 16.3 17.2

RF 47.4 32.7 14.8 10.7

NB 7.3 4.9 4.7 4.8

AB 0 15.8 7.5 6.3

BG 0 21.4 11.7 9

Table 5.24 MC results for MC2 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.698 0.575 0.575 0.566

RF 0.717 0.576 0.534 0.498

NB 0.702 0.676 0.674 0.674

AB 0.616 0.588 0.510 0.499

BG 0.676 0.502 0.500 0.500

Sensitivity

(in %)

J48 52.3 75.0 88.6 97.7

RF 38.6 93.2 100.0 100.0

NB 38.6 47.7 47.7 47.7

AB 40.9 97.7 100.0 100.0

BG 38.6 100.0 100.0 100.0

 Shine Kamal Page 52

Specificity

(in %)

 J48 81.5 29.6 27.2 8.6

RF 87.7 18.5 0 0

NB 90.1 80.2 77.8 76.5

AB 85.2 14.8 025 0

BG 86.4 0 0 0

Precision (in

%)

 J48 60.5 36.7 39.8 36.8

RF 63.0 38.3 35.2 35.2

NB 68.0 56.8 53.8 52.5

AB 60.0 38.4 35.8 35.2

BG 60.7 35.2 35.2 35.2

Table 5.25 MC results for MW1 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.449 0.583 0.661 0.562

RF 0.716 0.726 0.709 0.733

NB 0.728 0.711 0.705 0.703

AB 0.711 0.668 0.688 0.678

BG 0.705 0.745 0.700 0.500

Sensitivity

(in %)

J48 14.8 40.7 59.3 92.6

RF 18.5 55.6 74.1 81.5

NB 55.6 59.3 63.0 63.0

AB 29.6 55.6 85.2 88.9

BG 11.1 63.0 88.9 100.0

Specificity

(in %)

 J48 95.6 77.4 68.1 14.6

RF 96.0 82.3 53.5 35.4

NB 84.5 73.5 72.6 72.6

AB 94.7 81.9 47.8 33.6

BG 98.7 80.1 21.7 0

Precision (in

%)

 J48 28.6 17.7 18.2 11.5

RF 35.7 27.3 16.0 13.1

NB 30.0 21.1 21.5 21.5

AB 40.0 26.8 16.3 13.8

BG 50.0 27.4 11.9 10.7

Table 5.26 MC results for PC1 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.719 0.691 0.801 0.803

RF 0.844 0.848 0.850 0.842

NB 0.768 0.717 0.716 0.718

AB 0.793 0.802 0.804 0.810

BG 0.820 0.816 0.792 0.776

Sensitivity

(in %)

J48 24.6 55.7 72.1 88.5

RF 13.1 49.2 93.4 98.4

NB 36.1 42.6 45.9 47.5

AB 0 85.2 95.1 96.7

BG 8.2 63.9 93.4 96.7

Specificity J48 96.7 81.1 77.9 71.3

 Shine Kamal Page 53

(in %) RF 98.1 88.5 64.8 56.2

NB 92.8 80.1 78.2 77.7

AB 99.6 67.0 56.4 53.4

BG 99.4 78.7 56.3 49.1

Precision (in

%)

 J48 39.5 20.5 22.2 21.3

RF 38.1 27.3 18.8 16.4

NB 30.6 15.8 15.6 15.7

AB 0 18.4 16.0 15.4

BG 55.6 20.7 15.7 14.3

Table 5.27 MC results for PC2 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.448 0.652 0.662 0.620

RF 0.836 0.814 0.892 0.927

NB 0.877 0.867 0.862 0.860

AB 0.914 0.826 0.880 0.880

BG 0.828 0.849 0.860 0.858

Sensitivity

(in %)

J48 0 18.8 25.0 18.8

RF 0 063 37.5 56.3

NB 31.3 62.5 62.5 62.5

AB 6.3 37.5 68.8 75.0

BG 0 18.8 43.8 62.5

Specificity

(in %)

 J48 99.7 97.7 97.1 96.8

RF 99.9 99.2 94.5 92.0

NB 96.1 84.2 82.1 81.6

AB 99.8 97.6 93.3 91.3

BG 100.0 99.5 95.3 92.5

Precision (in

%)

 J48 0 7.7 8.2 5.7

RF 0 7.1 6.5 6.0

NB 7.6 3.9 3.4 3.4

AB 25.0 14.0 9.5 8.1

BG 0 27.3 8.8 7.8

Table 5.28 MC results for PC3 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.616 0.710 0.744 0.733

RF 0.831 0.819 0.807 0.795

NB 0.766 0.564 0.548 0.531

AB 0.791 0.809 0.787 0.789

BG 0.824 0.806 0.768 0.774

Sensitivity

(in %)

J48 26.1 68.7 77.6 82.8

RF 11.2 78.4 94.8 96.3

NB 91.8 94.8 94.8 95.5

AB 0 85.8 93.3 96.3

BG 11.2 85.8 91.8 97.8

Specificity

(in %)

 J48 93.3 72.0 70.5 66.9

RF 97.6 74.4 53.6 43.5

 Shine Kamal Page 54

NB 27.7 099 067 069

AB 100.0 63.8 45.8 35.4

BG 97.7 68.6 50.3 38.1

Precision (in

%)

 J48 35.7 25.8 27.2 26.2

RF 39.5 30.3 22.5 19.5

NB 15.3 13.0 12.6 12.7

AB 0 25.2 19.7 17.5

BG 40.5 28.0 20.8 18.3

Table 5.29 MC results for PC4 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.777 0.859 0.850 0.857

RF 0.945 0.918 0.890 0.877

NB 0.836 0.728 0.730 0.734

AB 0.913 0.881 0.855 0.874

BG 0.920 0.900 0.858 0.833

Sensitivity

(in %)

J48 48.9 84.8 88.2 91.0

RF 37.6 91.6 98.9 99.4

NB 38.2 44.4 47.2 47.8

AB 23.0 97.2 97.8 97.8

BG 46.1 94.4 97.8 97.8

Specificity

(in %)

 J48 93.6 83.8 81.5 81.1

RF 98.1 80.4 67.7 60.8

NB 93.8 83.8 82.3 81.9

AB 98.4 72.3 68.7 65.0

BG 96.4 77.4 69.6 68.8

Precision (in

%)

 J48 51.5 42.1 39.8 40.1

RF 73.6 39.4 29.9 26.1

NB 46.3 27.6 27.0 26.8

AB 66.1 32.8 30.3 28.0

BG 64.1 36.8 30.9 30.3

Table 5.30 MC results for PC5 Dataset

Performance

Metric

Classifier Original MC(10) MC(30) MC(50)

AUC J48 0.817 0.871 0.908 0.906

RF 0.977 0.971 0.965 0.964

NB 0.937 0.930 0.929 0.929

AB 0.959 0.960 0.959 0.956

BG 0.975 0.966 0.968 0.963

Sensitivity

(in %)

J48 46.3 77.1 83.1 85.3

RF 43.4 88.2 94.4 96.3

NB 44.8 70.5 70.9 70.9

AB 14.5 87.2 91.9 92.1

BG 39.7 88.4 93.4 95.3

Specificity

(in %)

 J48 99.0 96.5 96.0 95.4

RF 99.3 95.8 93.8 92.8

NB 98.0 93.8 93.7 93.7

 Shine Kamal Page 55

AB 99.7 94.2 91.1 90.0

BG 99.4 95.6 93.9 93.0

Precision (in

%)

 J48 60.1 40.6 39.2 36.7

RF 67.3 39.3 32.0 29.2

NB 41.1 26.1 26.0 25.9

AB 60.0 31.7 24.2 22.2

BG 65.9 38.4 32.0 29.7

5.7 RQ7: What is the comparative performance of best sampling method and MC learners for

software defect prediction?

According to the findings in RQ5, ADASYN is the overall best sampling method to

handle imbalanced datasets. This RQ compares ADASYN with MC learners using Wilcoxon

signed rank test. The result of the pairwise comparison of ADASYN and MC learners was

evaluated on AUC, sensitivity and precision using all the datasets of the study together where

models were developed by the application of five ML techniques (J48, RF, NB, AB, BG).

According to the results, ADASYN method significantly outperformed the MC learners in

case of AUC and precision. However, MC learners outperform ADASYN non-significantly

in case of sensitivity. This is due to the fact that MC learners focus more on correct prediction

of defective class instances by cost sensitizing the classifiers for false negatives leading to the

increase in sensitivity values.

However, the overall best performance of ADASYN in all the cases is because of its

property to balance the data using density distribution method. The synthetic samples to be

generated may vary in number for every minority class sample depending upon the value of

density distribution function. Density distribution helps in defining the region in which

synthetic samples should be yielded for each minority class sample. This property makes

ADASYN works automatically while in other sampling methods as well as in case of MC

learners, we are supposed to set one or more parameters (k, n or cost ratios) manually.

 Shine Kamal Page 56

CHAPTER 6

CONCLUSION

This study ascertains if balancing the datasets improves the performance of ML

techniques in software defect prediction. The study uses five ML classifiers namely J48, RF,

NB, AB and BG to develop defect prediction models. In order to handle imbalanced data, the

study uses nine existing sampling methods: SMOTE, ADASYN, Safe-Level-SMOTE,

SPIDER, SPIDER2, MUTE, SPY, SpreadSubSample and Resample. As only the SMOTE

method is used in most of the previous studies, we implemented all the above mentioned

sampling methods in MATLAB environment in order to perform our analysis. We also

proposed a modified version of SPIDER2 i.e. SPIDER3 and implemented the same.

Furthermore, MC learners were also evaluated to ascertain their effectiveness in improving

the results of the developed defect prediction models on imbalanced datasets. Moreover, a

comparative analysis between MC learners and sampling methods was also performed. The

empirical validation was done using AUC and three traditional metrics: sensitivity, precision

and specificity and the outcomes of the study were statistically assessed.

6.1 The Conclusions of the Work

 A significant improvement was observed in the performance of ML techniques when

sampling methods were used to handle imbalancing in datasets. Moreover, ADASYN was

observed to be the best oversampling method among others due to its adaptive nature and

capability to balance the data automatically using density distributions. In addition, other

oversampling methods also performed well. SMOTE and SPIDER showed comparative

results followed by other techniques.

 Resample method outperformed among resampling and undersampling methods. It shows

the best sensitivity results among all the sampling methods including oversampling. This

is due to its unbiased nature to resample the data by setting biasToUniformClass

parameter to an optimum value.

 MUTE undersampling method can be improved for developing better prediction models

by relaxing the threshold value used to identify noisy majority class samples to a

reasonable amount. MUTE method removes majority class instance and declares it noisy

 Shine Kamal Page 57

if and only if all its k nearest neighbors are minority class samples. This makes it difficult

to achieve balance between two classes leading to the poor development of prediction

models.

 The proposed method SPIDER3 i.e. the modified version of SPIDER2 significantly

outperforms SPIDER2 method in case of AUC and precision while it showed

comparative results when evaluated using sensitivity measure. The modified version only

improved the performance of existing one by generating synthetic samples per each

defective class sample rather than just replicating them.

 MC learners are another effective way to handle the imbalancing problem. They cost

sensitize the classifier in order to improve predictable nature of the predictive models by

using different cost ratios for various misclassification errors. They outperformed the

results of original datasets in case of sensitivity. However, AUC and precision results

were average. They showed lower performance in comparison to original non cost-

sensitized learners i.e. oversampling methods when evaluated using AUC and precision.

 A pairwise comparison between ADASYN and MC learners with best cost ratio

concluded that ADASYN is the better method to handle imbalancing problem as

compared to MC learners. ADASYN significantly outperformed in case of AUC and

precision. Although MC learner with cost ratio 50 outperformed ADASYN in few cases

when evaluated using sensitivity but the results were non-significant. Moreover,

ADASYN provides balanced results among various performance measures, which is in

fact necessary for better development of defect prediction models.

6.2 Future Scope

The analysis performed in this study can be used to develop efficient defect prediction

models in case of imbalanced data problem. The future work will focus on another category

of balancing methods i.e. ensemble methods using inter-cross validation method.

Furthermore, the future research may include a statistical comparison between sampling and

ensemble methods for the betterment of defect prediction models in case of imbalanced data.

 Shine Kamal Page 58

REFERENCES

[1] J. Stefanowski, Sz. Wilk, “Selective Pre-processing of Imbalanced Data for Improving

Classification Performance” In Proc. of 10th Int. Conference DaWaK 2008, LNCS vol. 5182,

Springer Verlag,, 283 292, 2008.

[2] C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, “safe-level-synthetic minority

over-sampling technique for handling the class imbalanced problem”, in: Advances in

Knowledge Discovery and Data Mining,, pp. 475–482, 2009.

[3] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling

Approach for Imbalanced Learning”, International Joint Conference on Neural Networks

(IJCNN 2008).

 [4] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “SMOTE: Synthetic

Minority Oversampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.

321-357, 2002.

[5] A. Syaripudin and M. L. Khodra, “A Comparison for Handling Imbalanced Datasets”,

International Conference of Advanced Informatics: Concept, Theory and Application

(ICAICTA), 2014.

[6] V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, “An insight into classification

with imbalanced data: Empirical results and current trends on using data intrinsic

characteristics”, Information Sciences 250, journal homepage: www.elsevier.com/locate/ins,

pp. 113–141, 2013.

[7] D. Rodriguez, I. Herraiz and R. Harrison, “Preliminary Comparison of Techniques for

Dealing with Imbalance in Software Defect Prediction”, Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, Article No. 43, 2014.

[8] M.J. Siers, M.Z. Islam, “Software defect prediction using a cost sensitive decision forest

and voting, and a potential solution to the class imbalance problem ”, Information Systems

Volume 51, Pages 62–71, July 2015.

 Shine Kamal Page 59

[9] J. Chen, S. Liu and W. Liu, “A Two-Stage Data Preprocessing Approach for Software

Fault Prediction”, Software Security and Reliability, 2014 Eighth International Conference,

15 September 2014.

[10] M. Liu, L. Miao and D. Zhang, “Two-Stage Cost-Sensitive Learning for Software Defect

Prediction”, IEEE Transactions on Reliability, Volume: 63, Issue: 2, June 2014.

[11] S. Wang and X. Yao, “Using Class Imbalance Learning for Software Defect Prediction”,

Reliability, IEEE Transactions, pg 434-443, June 2013.

[12] R. Shatnawi, “Improving software fault-prediction for imbalanced data”, Innovations in

Information Technology (IIT), 2012 International Conference, pg 54-59, March 2012.

[13] T. M. Khoshgoftaar and K. Gao, “Feature Selection with Imbalanced Data for Software

Defect Prediction”, Proceedings of the 2009 International Conference on machine learning

and Applications, p.235-240, December 13-15, 2009.

[14] Y. Kamei, A. Monden and S. Matsumoto, “The Effects of Over and Under Sampling on

Fault-prone Module Detection”, Empirical Software Engineering and Measurement, 2007.

ESEM 2007. First International Symposium, Oct 2007.

[15] J. C. Riquelme, R Ruiz, D Rodr´ıguez, and J Moreno, “Finding Defective Modules from

Highly Unbalanced Datasets”, Actas de los Talleres de las Jornadas de Ingeniería del

Software y Bases de Datos, Vol. 2, No. 1, 2008.

[16] R. Malhotra and A. Jain, "Fault Prediction Using Statistical and machine learning

Methods for Improving Software Quality," Journal of Information Processing Systems, vol.

8, no. 2, pp. 241-262, 2012.

[17] R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction”, Applied Soft Computing 27, 504-518, 2015.

[18] D. Ramyachitra and P. Manikandan, “Imbalanced dataset classification and solutions: a

review”, International Journal of Computing and Business Research (IJCBR), ISSN (Online):

2229-6166, Volume 5 Issue 4 July, 2014.

[19] S. Kotsiantis, D. Kanellopoulos and P. Pintelas, "Handling imbalanced datasets: A

review," GESTS International Transactions on Computer Science and Engineering, Vol.30,

2006.

 Shine Kamal Page 60

[20] M. Tan, L. Tan, S. Dara and C. Mayeux, “Online Defect Prediction for Imbalanced

Data”, IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015.

[21] R. Malhotra and M. Khanna, “An empirical evaluation for software change prediction

using imbalanced data”, Automated Software Engineering, Springer, August 2016.

[22] P. Domingos, “MetaCost: A General Method For Making Classifiers Cost Sensitive”, In

Proc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, CA, 155–164, 1999.

[23] M. Halstead, “Elements of Software Science”, Elsevier, New York, 1977.

[24] T. McCabe, “A complexity measure”, IEEE Trans. Softw. Eng. 2, 308–320, 1976.

[25] S Lessmann, B. Baesans,C. Mues,S. Pietsch, “Benchmarking classification models for

software defect prediction: a proposed framework and novel finding” IEEE Trans on Softw

Eng,Vol 34, 485–496, july/august 2008.

[26] C. Catal and B. Diri, "A systematic review of software fault prediction studies," Expert

Systems with Applications,vol. 36, pp. 7346-7354, 2009.

[27] A. Chug, S. Dhall , “Software Defect Prediction Using Supervised Learning Algorithm

and Unsupervised Learning Algorithm”, Confluence 2013: The Next Generation Information

Technology Summit (4th International Conference), pg 5.01, 2013.

[28] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics sets, and feature

selection techniques on software fault prediction problem”, Information Sciences 179, 1040–

1058, 2009.

[29] C. Catal, “Software fault prediction: a literature review and current trends”, Expert Syst.

Appl. 38, 4626–4636, 2011.

[30] I. Gondra, "Applying machine learning to software fault-proneness prediction," The

Journal of Systems and Software, vol. 81, pp. 186-195, 2008.

[31] Z. Li and M. Reformat, “A practical method for the software fault-prediction”,

Information Reuse and Integration, IRI. IEEE International Conference, IEEE, Las Vegas, IL,

August, 2007.

[32] E. Hong, “Software fault-proneness Prediction using random forest”, International

Journal of Smart Home Vol. 6, No. 4, October, 2012.

 Shine Kamal Page 61

[33] A. Shanthini and R. M. Chandrasekaran, “Applying machine learning for Fault

Prediction Using Software Metrics”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 6, June 2012.

[34] Y. Singh, R. Malhotra, A. Kaur, “Empirical validation of object-oriented metrics for

predicting fault proneness at different severity levels using support vector machines”, Int.

Journal of System Assur. Eng. Management, 1(3):269–281, July-Sept, 2010.

[35] P. Jeatrakul, K. W. Wong, and C. C. Fung, “Classification of Imbalanced Data by

Combining the Complementary Neural Network and SMOTE Algorithm”, Springer-Verlag

Berlin Heidelberg, ICONIP, Part II, LNCS 6444, pp. 152–159, 2010.

 [36]T. Menzies, A. Dekhtyar, J. Distefance, J. Greenwald, “Problems with precision:a

response to comments on ‘data mining static code attributes to learn defectpredictors”, IEEE

Trans. Softw. Eng. 33 637–640, 2007.

[37] H. He and E. A. Garcia, “Learning from imbalanced data.” IEEE Trans on Knowledge

Data Eng Vol 21, 1263–1284, 2009.

[38] K. Gao, T. M. Khoshgoftaar, A. Napolitano, “Combining feature subset selection and

data sampling for coping with highly imbalanced software data.”, In Proc. of 27th

International Conf. on Software Engineering and Knowledge Engineering, Pittsburgh, 2015.

[39]J. Demšar, “Statistical comparisons of classifiers over multiple data sets.”, J Mach Learn

Res Vol 7, 1–30, 2006

[40] L. Breiman, “Random Forests.”, Machine Learning Vol 45, 5–32, 2001.

[41] K. P. Murphy, “Naïve Bayes classifiers”, Technical Report, 2006.

[42] I. H. Witten, E. Frank, M. A. Hall, “Data mining: practical machine learning, tools and

techniques”, 3rd edition. Morgan Kaufmann, San Francisco, 2011.

[43] L. Breiman, “Bagging predictors.” Machine Learning Vol 24, 123–140, 1996.

[44] K. Napierala, J. Stefanowski, S. Wilk, “Learning from Imbalanced Data in Presence of

Noisy and Borderline Examples”, Springer-Verlag Berlin Heidelberg, RSCTC, LNAI 6086,

pp. 158–167, 2010.

[45] D. R. Wilson and T. R. Martinez, “Reduction Techniques for Instance-Based Learning

Algorithms”, Machine learning, 38, 257–286, 2000.

 Shine Kamal Page 62

[46] T. Fawcett, “An introduction to ROC analysis.”, Pattern Recogn Lett Vol 27, 861–874,

2006.

[47] G. J. Pai, J. B. Dugan, “Empirical analysis of software fault content and fault proneness

using Bayesian methods.”, IEEE Trans on Softw Eng, Vol 33, 675–686, 2007.

[48] N. Seliya and T.M. Khoshgoftaar, “The use of decision trees for costsensitive

classification: an empirical study in software quality prediction.” Wiley Interdiscip Rev: Data

Min Knowl Disc 1, pg 448–459, 2011.

[49] G.M. Weiss, K. McCarthy and B. Zabar, “Costsensitive learning vs. sampling: which is

best for handling unbalanced classes with unequal error costs?”, In Proc. of International

Conf. on Data Mining, pg 35–41, 2007.

[50] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, “A review on

ensembles for the class imbalance problem: Bagging, boosting, and hybridbased

approaches.”, IEEE Trans Syst Man Cybern Part C Appl Rev 42, pg 463–484, 2012.

[51] M. Zięba, “Service-oriented medical system for supporting decisions with missing and

imbalanced data”, IEEE Journal of Biomedical and Health Informatics, Vol 18, pg 1533 –

1540, May. 2014.

[52] Z. Miao, L. Zhao, W. Yuan, “Multiclass imbalanced learning implemented in network

intrusion detection”, Computer Science and Service System (CSSS), IEEE International

Conference, 2011.

[53] T. M. Padmaja, N. Dhulipalla, R. S. Bapi, P. R. Krishna, “Unbalanced data classification

using extreme outlier elimination and oversampling methods for fraud detection”, 15th

International Conference on Advanced Computing and Communications (ADCOM), pg 511

– 516, 2007.

[54] J. Li, Q. Du, W. Li, Y. Li, “Representation based hyperspectral image classification with

imbalanced data”, IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), pg 3318 – 3321, 2016.

[55] T. Zimmermann, N. Nagappan and A. Zeller, “Predicting bugs from history”, Software

Evolution, Springer, pp 69-88, 2008.

 Shine Kamal Page 63

[56] R. Malhotra, N. Pritam and Y. Singh, "On the applicability of evolutionary computation

for software defect prediction", International Conference on Advances in Computing

Communications and Informatics (ICACCI), 2014.

[57] C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, “MUTE: Majority Under-

sampling Technique”, ICICS, 2011.

[58] X. T. Dang, D. H. Tran, O. Hirose, K. Satou, “SPY: a novel resampling method for

improving classification performance in imbalanced data”, Seventh International Conference

on Knowledge and Systems Engineering, 2015.

[59] http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-

le.html

[60] http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/Resample.html

http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-le
http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-le

