A Comparative Analysis of Various Sampling Methods and
MetaCost Learners to Improve Software Defect Prediction
for Imbalanced Data

A project report submitted as a part of Major-II in the partial fulfilment of the
requirement for the award of the degree

Of
Master of Technology in Software Engineering
By
Shine Kamal

2K15/SWE/16

Under the Guidance of:

Dr. Ruchika Malhotra
(Assistant Professor, Department of CSE)

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

2015-2017

DELHI TECHNOLOGICAL UNIVERSITY
CERTIFICATE

This is to certify that the project report entitled “A Comparative Analysis of Various
Sampling Methods and Metacost Learners to Improve Software Defect Prediction for
Imbalanced Data.” is a bonafide record of the work carried out by Shine Kamal (roll no.
2K15/SWE/16) under my guidance and supervision during the academic session 2015-2017
in the partial fulfilment of the requirement for the award of degree of Master of Technology

in Software Engineering from Delhi Technological University, Delhi.

To the best of my knowledge, the matter incorporated in the thesis has not been submitted to

any other University/Institute for the award of any Degree or Diploma.

Dr. Ruchika Malhotra

Assistant Professor

Department of Software Engineering
Delhi Technological University
Delhi

ACKNOWLEDGEMENT

With due respect, I hereby take this opportunity to acknowledge the people who have
supported me with their words and deeds in completion of my research work as a part of

this course of Master of Technology in Software Engineering.

First of all I would like to thank the almighty, who has always guided me to work on the
right path of the life. My greatest thanks to my parents who bestowed ability and strength

in me to complete this work.

I owe a profound gratitude to my project guide, my motivator, Dr. Ruchika Malhotra,
Assistant Professor, Department of Software Engineering, Delhi Technological University,
who has been a constant source of inspiration to me throughout the period of this project.
It was her competent guidance, constant encouragement and critical evaluation that helped
me to develop a new insight into my project. Her calm, collected and professionally
impeccable style of handling situations not only steered me through every problem, but
also helped me to grow as a matured person. I am also thankful to her for trusting my

capabilities to develop this project under her guidance.

Last but not the least, I would like to thank all the people who were directly or indirectly

involved in the successful completion of my project.

SHINE KAMAL
Roll No. 2K15/SWE/16

TABLE OF CONTENTS

L 11 T2 1 i
ACKNOWIEAZEMENL.uiiiuiiiniiiiiiieiiiaiirniereisretsestosstossscssssssssssssasessscssssssssosssoses ii
10 L) O] 11 LN iii-iv
0 L 1) 0 .0 [v
0 T A 0 T 1 vi
N 1] T vii
Chapter 1: INtrodUCHON. e etiietiieetiieiiiiiiettietientetntttestsestoestosssssssssstosssossssssscsnssons 1-7
1ol L et T D) T na0n0000000000000006000030000000000030000000000000000300aa000000a00000000000000000300CC 1-2
L.1.1 SOftWare MetriCS.eeeeeeeieeeeaeieeneieceeneiecnesaciecsesecsecasesscsscsssscsscnsnsnns 2-3
1.1.2 Imbalanced Data Problem....ccceeeieeiiieiiieniiinieinieiriiercinionnessensocnsonnses 34
1.2 Motivation Of the WOTK...eeieeeieiiiiiiieeiiieiieeiieeioiareistseatseassscssssssssssnssnsens 4-5
1.3 Goals Of the StUdY.eeueeeerieriniieiieiierinriiiiereieeieriatiaresssesssasessessssssnssnscssasses 5-6
1.4 ThesiS OrganiZation..ceeeeeeeseeeseessessscesssessoesscssssssssssssssssssssossssssssssss sssssasssss 6-7
Chapter 2: Related WorK...oveeiieeiieereenteinecnnes 8-10
211 1DEifee [Ereehicien SitiESoooco00000000000000000000000000000000000000600060000AUEEACEEEEOEEACEEAOC 8-9
2.2 Imbalanced Data Related StudieS..ueierieeieinrieiieeieiieeiiiiiiiecieciecieciecinecnecnnnn 9-10
Chapter 3: Experimental Desig@lec.eceeeeeeeieiieiiiieiiieiieiieiiiiiecieiietiecieciaciaccsecsssssccnce 11-15
3.1 Dependent and Independent Variables....eeeeeeeeeiieiiaiinieneeieiiaienriecinreneeneenssnnnns 11
3.2 Data COlleCtiON.eeatereeieeiarineeieeiariariaciasiarsacssessscssssssssssssssssssssscsssssssnssnsnne 11-13
3.3 Selection of Performance MeasureS. .oeveesieeeseeeteesreensesssssssoessosscsssocnsssnscsnsss 13
3.4 Statistical Test SEleCtion.cieeieeieririieiieeierierieiieiietieriatieiieeieiaecseciasiacenscnnes 14-15
3.3 MieakEl IBvaEoToco0000000000000060006000000060006000EEACEEEEEEEEEEEATEEACEEOCEEEOEEACEEACEOATOOS 15
Chapter 4: Research MethodOlOgy..ceueieeeiiieiiiiiiiiiiiiiiieiiiiiieiiiieiiiaiieriinsieesseenrennsen 16-26
4.1 Data Sampling MethOdS.ccueeeeeieeeiseniossioseiosarossscssecssatssssosssossssssssssssssscssscas 16-25
e L LN (01 B 0 000 000 OO0 OB AO0 OO 16-17
4.1.2 Safe-Level-SMOTE. . c.ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineieiiiieiecnesecenes 17-18
4 3N B S (N [0 0000000 B0 B0 OO0 OO0 000 18-19
O) g D) 19-21
4.1.5 SPIDERZ...ututitiiuiiiiiiitiiiiiiieiiiieiiiieiiettieciecneseceiecsssscscsssscnsensnnes 21-22

Aol |0 81 1 IDI BIREES: 0005000000000000000G000C000006000000060005 22-24

O R LV L1 1 N 24
O R) e 24
4.1.9 SpreadSubSample..cceeieiieiiiiieiiiiiiieiiiiiiiiiiieiieiietietietietietcieciecacen 25
4110110 1R Eerm178) (Bo000000000000000000000000000000EACEEACECEEOAEECCEACECAEEAACEACEACOOAOOCOO0ES 25
4.2 MetaCoSt LearnerS.eeeeeieeiereieeieeierinteieeieeieeiesiaciscesecssssacescssssacesscsscssssncenes 25
4.2 Wi |Lesmning ClEsSliEmSeoo000000000000000000000600060006000600006000000EEACEEACEEEEEEE00CE 26
T s 26
4.3.2 Random FOTesteeeeeeeieiieiieiieiiiiniiiieieiieiieiiecierieciecieciecinececsscnncens 26
4.3.3 NaATVE BaYeS.eeutttueiiieiieareinriiniotetseatotaressscssstssstossssscssssssssssnsssnsens 26
4.3.4 AdabOOStM1.cuuiuiiniieiniiniieiiiiniieieiieiieiecieieiecieenecaceiececncsscnscncennns 26
4.3.5 BagZING.uuuteeueiieeirentoentosnetsesssarossscssssssstsssossssssssssssonsosnssssssssssones 26
Chapter 5: Empirical Results and AnalysiS..ceeceeeeeerieieieiierieriieieciesiniiareerenienecesssnsnns 27-55
5.1 Result Analysis for Oversampling MethodS...ceveeeiieniiiieiiieiiinieieioieiiieieiarennnens 27-40
5.2 Comparison of Oversampling MethodS....eeveeieieiieiiaiiiiiieiieiiaiieiieiieiineeiecincnns 40-43
5.2.1 Friedman Test Analysis using AUC for Oversampling Methods.......ccceeueenen. 41-42
5.2.2 Friedman Test Analysis using Sensitivity for Oversampling Methods........... 42
5.2.3 Friedman Test Analysis using Precision for Oversampling Methods............. 42-43
RIS o U5] 21 S9ARTEINY =4 U] 2 2K N 43-44
5.4 Comparison of Undersampling and Resampling MethodS...cc.ceeeiiiieiieiieiiniinninnns 44-47
5.4.1 Friedman Test Analysis using AUC....cciieeiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieinnn 45
5.4.2 Friedman Test Analysis USINg SeNSItiVity.eeeeeeeeeerenreeeeeseeseessnsensonesssanes 45-46
5.4.3 Friedman Test Analysis Using Precision..ceeceeceeeieiiecieiieriniinreecieciacenees 46-47
5.5 Comparison among Data Sampling MethodS.....eeeeveiieiiniiiiieiiiiieiieiieiiniieenecnns 47-48
5.6 Result Analysis for MetaCost Learnerseeeeeeeeeeeeeeeieeieiiniiiiiiecieriecieciecenecnecnaes 48-55
5.7 Best Sampling Method vs MetaCost Learners..ceeeeeeeeeeieiierieeiecieeiecieceneenececnns 55
Chapter 6: CONCIUSION. cuetteeteestesseesnetsestosstssscssstssstossscsssssssssssossssssssssssssssssscssssns 56-57
6.1 The Conclusions of the WOork...c.vveiieiieiieeenecen 56-57
522 | TS SI8E M Eo00T 57
S LS 1 (8 R 0000 BB OO OO 58-63

LIST OF TABLES

3.1 Static Code Metrics Description in NASA Datasets...eeeeeeeeireereeeiieeieiaisenrocnsennsens 12
3.2 Confusion MatITX..eeeeeeeeeaeieeiesaeieeneierieceeiesassecsesassecscsassecscsssscsscscssssscnsnnn 14
3.3 Performance MEtIICS.ueeeeeeeeeieeneiacieeneiarnesecseiaciecsceassecscsassecacsscsssscscssssscncens 14
4.1 Parameter Selection for Sampling Algorithms...ceveeeieiniiiiiiiiiiiiniiiiiiiiiieeieiniennien 17
5.1 Results for CMI Dataselee.eeeeeeeeieeierariecieiariereeiereiecieseseciesncsecacsecsccscnscscans 28
5.2 Results fOor IM1 Dataset.eeeeeeeeeieieeeieeieeierineieeieciesieriecesecsessscsscssssssssccsscnssne 29
5.3 Results for KC2 Datasete.eeeeeieeierieeieeieeieriecierietiieeieciscisrentcsscsscnccsscsscessonsnns 30
5.4 Results for KC3 Dataseteeeeeeeeeieieeieieierierarieeeierieiaciesiesacsessciecacsscsseacsscssans 31
5.5 Results for MC1 Dataset.eeeeeeeeeeeeieeieiierieeieineeneeieciacinceecsscsssssssscsssesscnscnsnes 32
5.6 Results for MC2 Dataseleeeeeieeeieesresereenresnscessssssssessosssosssssssssoscassosssssssssnnsans 33
5.7 Results for MW 1 Dataseleeeeeeeeeecieeneieineierieiecieeneiecieescieceescsecacsesscsecncescnsens 34
5.8 Results for PC1 Dataseleeeeeeeeeeieeeiieetesaieinrsenrosnresesssessosssosssssassessosssosssssssonns 35
5.9 IRelES itoir IRC2 [DaiESEoo000000000000000000000000000600060000000060E0EEATEATEAACEEACEOACEOATOON 36
5.10 Results for PC3 Dataseteeeeeeeeeeeeieieeieierieceieieiecieieiaciecseiecsecacesacscscsssncons 37
5,111 1REsullis itor IXCA IDRERSl0000000000000000000000000060000000060006EECEEACEEACEEACCEACEOAOEEATEOONAT 38
5.12 Results for PCS5 Dataseteeeeeeeieieieeieieriecieieieiecieieieciecseiecsecacsesacscscsssscoes 39
5.13 Friedman Results using AUC for Oversampling MethodS...c.ceevenieieeiecierinrinrennen 41
5.14 Friedman Results using Sensitivity for Oversampling MethodS....ccceeeiveiieiinannans 42
5.15 Friedman Results using Precision for Oversampling Methods....ceeeeeeiieiieriniiniennnn 43
5.16 Friedman Results using AUC...cciieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeiietiiecsscenne 45
5.17 Friedman Results using SenSitiVity.eeeeeeeeeeseeiesiareeeeseciariacenecsessscscesssssssccnsens 46
5.18 Friedman Results using Precision..ceeieeeeeieeiieiiieiiiiiiiiiiiieeiieeiinieieeciessennnan 46
5.19 MC results for CM1 Dataset..ceeeeeeeeieeeiieiiieeieieiiecieietieeieiacieiecnesacecncnscann 49
5.20 MC results for M1 Dataseleceeeieesreesseesieeassestosssssssssesssessossssssssssssossosssssssns 49-50
5.21 MC results for KC2 Datasete.eeeceeeeeierieiecieieiieeieietiecieierieceiecnesecscsasscncescns 50
5.22 MC results for KC3 Datasete..eesreeeeeeeririsaresnecssetsesrossscssssssssssssssscsssssssonns 50-51
5.23 MC results for MC1 Dataseleeeeseeeeeeeeetseessercessessssosssosssssnscssssssssssssssscssssssses 51
5.24 MC results for MC2 Dataseleeeseereeieeeeeineeeineesesiariaccsecsassacssccscsacssccsscssnscans 51-52
5.25 MC results for MW Dataset..c.ceeeeeeeeieeeeieraeieeiesaeiesiesaeiecnceaciecscsccassscaccncens 52
5.26 MC results for PC1 Dataseteeeeeeeeeieeeiereieeieiaeieeieiaeieciesaeiecaciesacsscscsassscacnse 52-53
5.27 MC results for PC2 Dataset..eeeeseeieeiecierierieeineeietiesietiaccsecsececnecsscsscssccsccnns 53
5.28 MC results for PC3 Dataseteeeeeeeeieeeierieiaeeiaeieeieiarieciesaesecscsssacsscsccassscncnse 53-54
5.29 MC results for PC4 Dataseteeeeeeeecseeseeeeieeaceiaciecciacieccsassecscsscacsscsccnssscncnse 54
5.30 MC results for PCS5 Dataset.eeeeeeeeierieeiarieriaeiecieciesieciaececsessecsecsscsacsaccsccnns 54-55

LIST OF FIGURES

4.1 Safe-Level-SMOTE Algorithm for Imbalanced Data....c.oceveeeiiieiiiieiiiiiieiieniennnn 18
4.2 ADASYN Algorithm for Imbalanced Data....cceeeeeiiiiiieiiaiiiiiiiiieiieiieiieiiniiecnennn 19
4.3 SPIDER Algorithm for Imbalanced Data......ceeeeeiieiiniiiiiieiiaiinriieciiiieneciesincenna 20
4.4 SPIDER?2 Algorithm for Imbalanced Data......ceeviieiiiiiiieiiieiiiiiiiniiiiiiieieiarennnens 21
4.5 SPIDER3 Algorithm for Imbalanced Data....cccvvevieiieiiiiiieiiariniiririeieiecneciannes 23
4.6 MUTE Algorithm for Imbalanced Data.....ccceeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieiiennens 24
4.7 SPY Algorithm for Imbalanced Data.....cceveeiiiiiieiiiniiiiiiieiiieieieiineieneieeareennens 24

Vi

Abstract

Data imbalancing is becoming a common problem to tackle in different fields like, defect
prediction, change prediction, oil spills, medical diagnose etc. Various methods have been
developed to handle imbalanced datasets in order to improve accuracy of the prediction
models. Software defect prediction is important to identify defects in the early phases of
software development life cycle. This early identification and thereby removal of software
defects is crucial to yield a cost-effective and good quality software product. Though,
previous studies have successfully used machine learning techniques for software defect
prediction, these techniques yield biased results when applied on imbalanced data sets. An
imbalanced data set has non-uniform class distribution with very few instances of a specific
class as compared to that of the other class. Use of imbalanced data sets leads to off-target
predictions of the minority class, which is generally considered to be more important than the
majority class. Thus, handling imbalanced data effectively is crucial for successful
development of a competent defect prediction model. Many studies have been carried out in
the field of defect prediction for imbalanced datasets but most of them uses SMOTE
oversampling method to handle the imbalanced data problem. There are many other
oversampling methods which help to deal with imbalancing problem and are still unexplored
particularly in the field of software defect prediction. This study evaluates the effectiveness
of machine learning classifiers for software defect prediction on twelve imbalanced NASA
datasets by application of nine sampling methods. We also propose a modified version
(SPIDER3) of the existing oversampling method SPIDER2 and compare it with the original
one. Furthermore, the work evaluates the performance of MetaCost learners on imbalanced
datasets. The results show improvement in the prediction capability of machine learning
classifiers with the use of sampling methods. MetaCost learners improves the sensitivity and
helps to predict defects effectively. Moreover, they advocate the applicability of modified
version of SPIDER?2 oversampling method as it outperforms the original SPIDER2 method in

majority of the cases.

Vii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Defects in a software is a very common and frequently occurring problem. Software
designing, coding, addition of new features, modification of a software etc. can lead to
number of faults in the software. A software defect is defined as a bug that causes software
failure and prevents it from producing the desirable outcomes. To minimize the chances of
software failure, it becomes necessary to find faults in the software. As finding each and
every fault is a sophisticated and impractical task, researchers focus on developing fault

prediction models.

In recent years, many studies [16], [25], [26], [27], [28], [29], [30], [31], [32], [56]
have successfully developed software defect prediction models. Software defect prediction
involves determination of the probability of occurrence of a defect in the future or unseen
versions of a software product. Since, a software defect may cause software failure and
forbids the software to produce desirable outcomes, early detection of software defects is
beneficial so that they can be corrected in the initial phases of software development life
cycle. This helps in the development of a cost effective model because detection and

correction of defects becomes difficult and costlier if they propagate to later phases.

Thus, software defect prediction aids in development of good quality software product
with lower testing and maintenance costs and thereby satisfied customers. Software defect
prediction models rely on past data and classify modules as defective or non-defective on the
basis of this historically collected data. Previous studies have used various software metrics
(section 1.1.1.) sets along with defect data, to build prediction models which have been

proved reformative for predicting defect prone modules.

Previous research on defect prediction demonstrates that 80% of the defects occur in
very few modules (20%) while the rest 80% of modules contains only 20% of the total
defects [55]. This indicates that defective classes are present in minority (less number) as

compared to non-defective classes, which results in imbalanced datasets. Imbalanced data is

Shine Kamal Page 1

the data in which distribution of classes is one-sided, which may result in incorrect prediction

of the minority class instances.

Although, the minority class instances are low in number, but in majority of the cases
they are important to be classified correctly. Incorrect prediction of defective classes might
result in escape of critical errors leading to bad quality software and higher testing costs.
Thus, misclassification of defective classes may lead to project scrap which can further harm
the reputation of an organization. Therefore, it is important to address imbalanced data
problem for software defect prediction to improve software quality, to reduce prediction error

and for successful deployment of the software.

Below subsections demonstrates the use of software metrics and elaborates the

occurrence of data imbalancing problem in defect prediction studies.
1.1.1. Software Metrics

A software metric is a measure of an extent to which a software system possess some
characteristics. Software measurement is done through code coverage, cohesion, coupling,
lines of code, cyclomatic complexity, Halstead complexity, function points etc. Metrics are
defined at various levels for example, method level metrics, class level, file level, component
level, quantitative metrics, product metrics and process metrics. Out of method level metrics,
Halstead (1977) and McCabe (1976) are widely used metrics [26]. Now-a-days, class level
metrics are also becoming popular but their use is confined to object oriented software only
whereas method level metrics can be used for both structured as well as object oriented
programming paradigm[26]. Popular class level metrics are CK metrics suite, MOOD,
QMOOQOD and L&K [26]. Kaszycki (1999) observed that performance increases if we use
process metrics as well [29]. The only difficulty with these metrics is that they change with

the change of organization. So, it is required that model must be built from root again [29].

This thesis work is based on method level metrics i.e. Halstead and McCabe static
code metrics suite. The study uses a set of 36 procedural metrics as independent variables.
Procedural metrics consists of a set of traditional code metrics defined by Halstead [23] and
McCabe [24] and lines of code (LOC) counts which are categorized under size metrics.
Halstead metrics are used to measure complexities on the basis of number of operators and
operands in a module [25] while McCabe metrics set is deduced using the flow graph

information of a module.

Shine Kamal Page 2

Many previous defect prediction studies have used procedural metrics in order to
conduct their experiments on defect datasets. For example, a study of Catal and Diri [28]
used procedural metrics suite to assess results with respect to various machine learning
techniques. Chug and Dhall [27] incorporated the use of static code metrics in their research
regarding clusters and machine learning techniques. Lessmann et al. used Halstead and
McCabe metrics to build defect prediction classification models. These are the metrics which

have been used in a lot of defect prediction related studies.
1.1.2. Imbalanced Data Problem

Imbalanced data problem is a common problem in many machine learning (ML) and
data mining related domains for example, network intrusion detection [52], medical diagnosis
[51], fraud detection [53], hyperspectral image classification [54], software defect prediction
[11] etc. A data set is called imbalanced when one of the classes i.e. the minority class is
heavily under-represented in contrast to the majority class which have larger number of
instances as compared to minority class [18]. This means imbalanced data results from biased

distributions of classes.

Imbalanced data is considered as a serious problem in ML domain. It can cause
adverse effect on the actual performance of various ML classifiers. In most of the cases, the
accurate classification of minority class is more important than that of majority class as it is
costly to misclassify instances from the minority class [18], [19]. For example, in case of
medical diagnosis, cancer disease is less common but it is important to diagnose a person
with cancer correctly otherwise it may lead to a loss of life. The traditional standard
classifiers are built with the assumption that the input dataset is balanced with respect to
various classes but when one class dominates the other, the classifiers tend to misclassify the
minority class which results in the increase in prediction error [35]. This limitation of

classifiers can lead to huge losses in terms of life and money.

There are four different characteristics that imbalanced data holds as explained by
Ramyachitra and Manikandan [18]: small disjuncts, lack of density, noisy data and dataset
shift. In this study, we are dealing with the fourth characteristic that is dataset shift. This is
defined as the case where the dataset follow different distributions with respect to various
classes and the minority class is mostly sensitive to prediction errors. This work focuses on
binary class (defective and non-defective) imbalance problem. The defect prone classes are

present in only 20% of the total modules but are very important to be predicted correctly.

Shine Kamal Page 3

There are many techniques to handle imbalanced datasets on various levels like data
level, algorithm level, cost sensitive level, feature selection level and ensemble level [6].
These levels further encompass different methods and algorithms to handle the imbalanced
data. This work explores data level and cost sensitive approach. The data level methods
include oversampling methods, undersampling methods and resampling methods. These are
further categorized into various data balancing techniques which we will discuss in the later

chapters.
1.2 Motivation of the Work

Handling imbalanced datasets to obtain improved results is an important challenge in
software defect prediction area. Various methods have been developed to deal with
imbalanced data like data sampling methods, cost sensitive learning, ensemble methods etc.
[6], [12], [14], [48]. As mentioned above, this study specifically focuses on data sampling

methods and cost sensitive learning.

e Data sampling methods as mentioned by Lopez et al. [6] sample the data either by
eradicating some of the majority class samples or by duplicating or adding new
synthetic minority class samples. Ruling out some of the majority class samples is
called the under sampling while addition of minority class samples (replicas or
synthetic instances) is known as over-sampling technique.

e (Cost sensitive learning balances the data distribution by considering the cost of
misclassification. All misclassification errors may not be equal in terms of cost. A
predictor tries to minimize the cost by making less number of costlier
misclassification errors. In this work, we assess the performance of oversampling
methods as well as MetaCost (MC) learners [22] for handling the imbalanced

datasets.

Though, a number of studies in literature have explored imbalancing problem in
software defect prediction domain [8], [9], [10], [11], [12], [13], [14], [15] yet only few
sampling methods have been investigating in this domain. Amongst the explored sampling
methods, Synthetic Minority Oversampling Technique (SMOTE) is a popular method while
others like ADASYN, SPIDER, MUTE, SPY etc. are still novel to the area of defect
prediction. This study investigates the performance of novel balancing techniques with use of

NASA datasets. Furthermore, it implements these sampling methods together with the MC

Shine Kamal Page 4

learners for five ML classifiers to handle imbalanced data problem. We further perform

statistical tests to compare their performances.
1.3 Goals of the study

This work examines nine sampling methods out of which five are oversampling
techniques (SMOTE, ADAptive SYNthetic sampling technique (ADASYN), Safe-Level-
SMOTE, Selective Preprocessing of Imbalanced Data (SPIDER) and SPIDER?2), one is
undersampling technique (Majority Undersampling TEchnique (MUTE)) while the remaining
three are resampling techniques (SPY, SpreadSubSample and Resample) together with the
MC learners with three different cost ratios by using five ML classifiers. The ML classifiers
used in this study are decision trees (J48 and Random Forest (RF)), Naive Bayes (NB), and
two ensemble methods AdaboostM1 (AB) and Bagging (BG). Furthermore, in order to
generalize the results we explore twelve defect prediction public NASA datasets. We
implement nine existing balancing techniques in MATLAB. We also propose and implement
an improved version of SPIDER?2 i.e. SPIDER3. The results are appraised using Area Under
the Receiver Operating Characteristic Curve (AUC), sensitivity, specificity and precision
performance metrics. Furthermore, this study performs statistical comparison of the results

using Friedman and Wilcoxon tests.
Thus, this study investigates the following research questions (RQ):

RQ1: Does balancing of datasets using sampling methods improve the performance of ML

techniques for defect prediction?

RQ2: Which is the best oversampling method to improve the performance of ML techniques

for software defect prediction in this study?

RQ3: What is the comparative performance of the proposed version of SPIDER2 technique
i.e. SPIDER3 and the original SPIDER?2 technique for software defect prediction?

RQ4: Which is the best sampling method among undersampling and resampling methods to

improve the performance of ML techniques for software defect prediction in this study?

RQS5: Which sampling technique is the best among oversampling, undersampling and

resampling techniques and why?

RQ6: What is the effect of using MC learners on imbalanced datasets for software defect

prediction?

Shine Kamal Page 5

RQ7: What is the comparative performance of best sampling method and MC learners for

software defect prediction?
1.4 Thesis Organization

This thesis work is bifurcated into six different chapters. Starting with the abstract,
Chapter 1 gives the brief introduction about the issues discussed in this study. The chapter
explains the need and use of defect prediction models. It defines the defect related
terminologies explaining how they affect the software systems and human life. It also
addresses the imbalanced data problem, how it has been leading to the ignorance of defect
prone classes in defect prediction area. The various software metrics used to develop
prediction models are demonstrated and the goals of this empirical research are stated in the

form of questions at the end of this chapter.

Chapter 2 sums up the related studies with respect to software defect prediction and
imbalanced data problem. A lot of research has been carried out in defect prediction area in
context of imbalanced data. This chapter summarizes the major contributions and findings of
the previous studies. The literature survey conducted by the author in defect prediction finds
out that imbalanced data is becoming a serious problem. Many studies [5], [9],[15], [13], [11]
have been investigating in this field by using data balancing techniques. Most of the studies
use SMOTE sampling method to handle imbalancing problem while other methods are still
unexplored in the area of defect prediction. Only one defect prediction study [8] has used
Safe-Level SMOTE oversampling method while the methods like ADASYN, SPIDER, SPY
etc. are still novel. Furthermore, the related work describes the previous studies which have

used procedural metrics and have applied various ML techniques for building models.

Chapter 3 provides the details regarding the experimental design of the study. It
describes the dependent, independent variables used to carry out the research. The data
collection method, different datasets and the various procedural metrics used in this study are
mentioned in detail. The chapter further defines the performance metrics used to evaluate the
prediction models and discusses the statistical test selection briefly. The 10-fold cross

validation method used for model evaluation is explained in this section.

Chapter 4 describes the research methodology used in the experiment. It briefly
discusses the various data sampling methods together with the detailed explanation of the
algorithms to handle imbalanced data problem. A proposed oversampling method SPIDER3

is also discussed with full details. A detailed discussion is carried out regarding MetaCost

Shine Kamal Page 6

learners which is cost sensitive approach of dealing data imbalancing. Furthermore, this
section defines various machine learning classifiers which are applied on balanced as well as

imbalanced datasets to develop defect prediction models.

In Chapter 5 the obtained results are stated and analysed using statistical tests. This
chapter answers the above stated questions in chapter 1. We have performed an extensive
comparison between various balancing methods using two non-parametric tests, Friedman
and Wilcoxon. This chapter also states the advantageous use of the proposed method

SPIDER3 and describes how it is better than the existing one (SPIDER2).

At last, Chapter 6 concludes the final outcome of the study. It states which method
performed the best and guides the researchers to make use of novel sampling techniques to
further improve the performance of defect prediction models. The chapter also provides the

future scope of the research.

Shine Kamal Page 7

CHAPTER 2

RELATED WORK

This section discusses the related work of this study. The section is further sub-
divided into two parts. The first part discusses the existing studies in defect prediction
domain which have used method level metrics i.e. static code metrics suite and NASA
datasets. The second part mentions previous studies related to imbalanced data problem in

defect prediction domain as well as in other areas.
2.1 Defect Prediction Studies

There are a number of previous studies which have used NASA data sets for defect
prediction. Chug and Dhall analyzed various ML techniques and clusters for defect prediction
on NASA data sets using static code metrics [27]. They found that RF outperforms all the

other investigated ML techniques for software defect prediction.

Catal and Diri inquired the effect of dataset size and metrics set on software defect
prediction [28]. They also used public NASA datasets and observed that RFs technique
outperforms for large datasets and NB for small datasets. Another study by Catal and Diri
observed that the most frequently used metrics in defect prediction are method-level metrics
[26]. Also, ML techniques were found to be popular methods for defect prediction. A study
by Catal [29] and another one by Malhotra [17], surveyed both ML and statistical techniques
for defect prediction. According to their surveys, most of the studies used method level
metrics and the defect prediction models were mostly developed using ML techniques.
Moreover, the ML techniques outperformed the statistical methods in majority of the cases

for developing software defect prediction models.

Gondra proposed an ML technique for selecting a subset of software metrics that are
most likely to predict defects and used NASA datasets to obtain results [30]. The study
concluded that the Support Vector Machine (SVM) performs better than that of Artificial
neural networks (ANNSs). Li and Reformat studied a fresh ML method ‘SimBoost’ to make
the dataset more balanced in order to handle the skewness in data distributions in software
defect prediction [31]. Although, the method attempted to balance the datasets but the

accuracy of the prediction was still not acceptable.

Shine Kamal Page 8

The study by Hong carried out his research on RF classifier [32]. He proved that the
RF model was better than the MultiLayer Perceptron neural network model and Support
Vector Machine (SVM) model. Shanthini and Chandrasekaran analyzed the performance of
ML models using traditional performance measures such as precision, recall and AUC [33].
Their results which were based on public domain NASA data set KC1 showed that the RF
outperforms the other methods. Singh et al. also used public domain NASA data set KC1 to
analyze that the SVM method predicts defective classes with high accuracy when evaluated
using AUC [34]. Lessmann et al. used Halstead and McCabe metrics to build defect
prediction classification models. These are the metrics which have been used in a lot of defect

prediction related studies [27], [28], [30], [33], [34].
2.2 Imbalanced Data Related Studies

Some previous studies on defect prediction have inculcated the data pre-processing
step by applying balancing techniques to get better results. The most popular and widely used
method is SMOTE (Synthetic Minority oversampling technique) and its modified versions
[5], [9], [12], [15]. A number of previous studies have used SMOTE for balancing the
unbalanced data but there are more improved methods like SPIDER(selective preprocessing
of imbalanced data), ADASYN (Adaptive synthetic sampling) which produce better results
when compared to SMOTE. To the best of author’s knowledge, no work has been found in

regard to these methods in software defect prediction.

Siers and Islam incorporated the oversampling methods, SMOTE and Safe-Level-
SMOTE to optimize the cost of software defect prediction using decision forest [8]. The use
of oversampling methods gave better results where number of defective examples was less
than 100. To address the imbalanced data problem for software defect prediction, Liu et al.
proposed a two-stage cost-sensitive learning (TSCS) method [10]. Their experimental results
demonstrated that the TSCS methods outperformed single-stage cost-sensitive learning
methods. Tan et al. applied the oversampling methods to improve the performance in online
change classification [20]. Their results depicted that the oversampling methods improved the
performance by significant percentage points. The study of Rodriguez et al. [7] compared
cost-sensitive, sampling methods, hybrid techniques and ensembles to deal with imbalanced
datasets. Their results showed that the algorithms to deal with imbalanced datasets enhanced

the performance of prediction models.

Shine Kamal Page 9

The study of Wang and Yao compared the balancing techniques and concluded that
the balanced random undersampling had a better defect prediction rate than the other methods
[11]. To better estimate the cost, Khoshgoftaar and Gao used random undersampling (RUS)
[13]. The results showed that the sampled data significantly out-performed the models that
were constructed with the original, unsampled data. Kamei et. al. experimentally evaluated
the effects of sampling methods (random over sampling, SMOTE, random under sampling
and one-sided selection) on defect-prone ML models [14]. They discovered that sampling
methods improved the prediction performance of the linear and logistic models, while the
performance of neural network and classification tree models did not improve by the use of

sampling methods.

Seliya and Khoshgoftaar used cost sensitive method to analyze the performance ML
techniques in case of imbalanced datasets [48]. They considered misclassification cost as an
important factor for making better models. Weiss et al. [49] and Galar et al. [50] also worked
on imbalanced data in defect prediction. They used cost sensitive learning, sampling methods

and ensemble methods to improve the performance of ML models.

Although these studies have worked on improving the performance of defect
prediction models using imbalanced data but no study has explored all the above mentioned
sampling methods to handle imbalanced data in the software defect prediction domain.
Though, SMOTE has been popularly used in previous studies, this study analyzes the use of
new and improved sampling methods like ADASYN and SPIDER etc. Furthermore, this
study implements these nine sampling methods in the MATLAB environment and then uses

them for developing better defect prediction models using ML techniques.

A previous work by Malhotra and Khanna in [21] analysed the performance of three
sampling methods (sampling, SMOTE and Spread Subsample) along with MC learners on
change prediction data. However, this work is different from author’s previous work as it
investigates specifically the use of various oversampling methods on defect prediction data.
Moreover, the various oversampling methods (apart from SMOTE) used in this work has
been coded by the authors themselves. Also, the study proposes a new variant of an existing
oversampling method SPIDER?2. Our improved version of the SPIDER2 algorithm is more
effective for handling imbalanced data than its original version. Moreover, this study uses
twelve public NASA defect datasets as compared to only six data sets used in author's

previous work on change prediction.

Shine Kamal Page 10

CHAPTER 3

EXPERIMENTAL DESIGN

This section provides the details regarding various design settings used in this study.
3.1 Dependent and Independent Variables

This study uses ‘defect proneness’ as a dependent variable [56]. Defect proneness is a
binary variable which indicates the defective nature of the class. A class is said to be defect
prone if there is a probability of detecting a fault in the class in future versions otherwise, a
class is termed as non-defective. This binary variable is dependent on a number of other

variables like Halstead and McCabe metrics.

The dependence of defect proneness over static code metrics is considered practical as
they have helped in successful detection of the defect prone nature of the class in the past
[25], [30], [33]. They are also helpful in deciding whether the module should go through
manual inspections or not. According to the survey by Malhotra in [17] procedural metrics
are widely used metrics in more than 51% of previous [25], [26], [30], [33], [34] defect
prediction studies and can be calculated at reasonably low costs for both small and large
systems. Table 3.1 describes the static code metrics, size metrics and other metrics which are

a part of procedural metrics used in this study.
3.2 Data Collection

This study uses a set of 12 publically available NASA datasets. As observed by
Malhotra in [17] more than 60% of the previous software defect prediction studies [26], [30],
[31], [32], [34] used NASA datasets. They are available publically in NASA repository by
NASA Metrics Data Programme. The NASA datasets used in this work are collected from
the PROMISE repository. The NASA datasets used in this study are explored with the

application of data sampling and ML techniques.

Shine Kamal Page 11

Table 3.1 Static Code Metrics Description in NASA Datasets

NASA Dataset
Metric

cM1 M1 KC2 KC3 MC1 MC2 MWl PC1 PC2 PC3 PC4 PC5
Level v v v v v v v v v) v v
Program time v Vv \ \ \ \ \ \ \ v v v
Volume v v v v v v v \ v v v v
Error estimate v v v v v v v \ v v v v
Length v v v v v v v v v) v v
Halstead Content v v v v v v v v v v v Y
Metrics Difficulty Y Y v v v v v v v v v Y
Effort v Vv \ \ \ \ \ \ \ v v v
Num_operands v Vv \ \ \ \ \ \ \ v v v
Num_unique_operands v v \ \ \ \ \ \ \ v v v
Num_operators v v v v v v v \ \ v v v
Num_unique_operators v v v Vv v v v \ \ v v v
Essential Complexity v v v))) \ \ \)) v
McCabe Cyclomatic Complexity v v v))) \ v v)) v
Metrics Design Complexity v v v v v v v v v v v v
Cyclomatic Density v v v v v v v v v v v v
Number of lines v - - v v v v v v v v v
LOC total v v v v \ \ \ v Vv \ \ v
Size LOC executables \ \ v v v v v v v v v \
Metrics LOC comments v v \ Vv Vv Vv \ \ \ v v v
LOC code & comments v v v v v v v v v v v v
LOC blanks v v v v v v v V) V) v v v
Branch count v v v v v v v v v v v v
Condition count v - - v v v v v v \ v v
Decision count v - - v v v v v v v v v
Edge count v - - v v v v \ v Vv v v
Parameter count v - - v v v v v) v v v
Modified condition v - - \ \ \ \))) v v
count
Multiple condition v - - v v v v ' v v v v
count
Node count v - - v v v v v v v v v
Others pecision density v - - v - v v v v v v -
Design density v - - v v v v v v v v v
Essential density v - - \ \ \ \)))) v
Global data density - - - \ \ \ - - - - - v
Call pairs v - - \ \ \ \)) \ v v
Maintenance severity v - - v v v v
Global data complexity - - - v v v - - - - - \
Normalized cyclomatic v - - v v v v v v v v v
complexity
Percent comments v - - v v v v v v v v v
Number of code attributes 37 21 21 39 38 39 37 37 37 37 37 38
Total number of modules 344 7782 522 194 1988 125 253 759 1585 1077 1458 17186
Percentage of defected modules 12.21 2148 205 1855 231 352 10.67 8.03 1 12.44 12.20 3

Shine Kamal Page 12

Each dataset comprises of procedural metrics including static code metrics and size metrics.
They also contains the defect proneness dependent variable. The value of dependent variable
is set to ‘0’ or ‘no’ if the module is not defective otherwise it is set to ‘1’ or ‘yes’ in case of
defective module. The datasets selected in this study are highly imbalanced with minority

class (i.e. number of defective modules) percentage in the range of 1-35.5%.

The detailed description of 12 NASA datasets used in this study together with the
procedural metrics used in each dataset is given in Table 3.1 which includes the total number

of modules per dataset and percentage of defect prone modules.
3.3 Selection of Performance Measures

Performance of different defect prediction models can be evaluated using various
performance metrics for example precision, recall, specificity, balance, AUC, F-measure, G-
mean, accuracy etc. Researchers had been involved in a controversy over the use of
performance measures while dealing with imbalanced data. The use of recall, precision and
accuracy performance measures have been criticized by researchers [36], [37], [38] for the
evaluation of prediction models while AUC, balance etc. are considered effective measures
for the defect prediction models evaluation in case of imbalanced data [12], [25], [37]. This
work evaluates the performance of ML classifiers using four performance metrics. We use
AUC, specificity and two traditional performance metrics: recall and precision as well for
evaluating the results of the prediction models. AUC is an important metric to be considered
for evaluation as it shows the trade-off between correct and incorrect predictions made by a

classifier [46].

The performance of the developed models is evaluated using confusion matrix. It
consists of four variables out of which two are predicted class labels and other two are actual
class labels. Two classes used in this paper are defective (whether the module is defective)
and non-defective class. In matrix, TN (true negatives) is the number of non-defective
samples of the dataset which are predicted as non-defective, TP (true positives) is the number
of defective samples of the dataset predicted correctly as defective, FN (false negatives)
implies to the number of defective samples predicted as non-defective and similarly FP (false
positives) refers to the number of non-defective samples predicted falsely as defective. Table
3.2 shows the confusion matrix formation while various performance metrics used in this

study are described with the help of definition along with formula in table 3.3.

Shine Kamal Page 13

Table 3.2 Confusion Matrix

Class Predicted Negatives Predicted Positives
Actual Negatives TN FP
Actual Positives FN TP

Table 3.3 Performance Metrics

Performance Metric Definition

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and
specificity. The ROC is a curve plotted between sensitivity and (1-specificity)

A der ROC . . .
af:jeun er on the y and x-coordinate axis respectively. The larger the area enclosed under
the curve the better is the performance of the ML technique.
It is defined as a percentage of correctly predicted defective modules.
Sensitivity (Recall) Sensitivit TP % 100
ensitivi eca =
y ensitivity = — TFN
It is defined as a percentage of correctly predicted non-defective modules.
Specificit Specificit TN * 100
ecifici =~
p y pecificity N + FP
It is defined as the ratio of correctly predicted defective modules to the total
Precision number of modules predicted as defective.
Precisi TP %100
recision = -3 TP

3.4 Statistical Test Selection

In order to statistically evaluate the performance of data sampling methods and
MetaCost learners, we use two statistical tests: Friedman test and Wilcoxon signed rank test.
These tests are non-parametric tests and are conservative in nature. Unlike parametric tests,
assumptions made in the non-parametric tests are not stringent and one may ignore the
presence of outliers in the datasets, variance homogeneity, normal distributions etc [39].
Lessmann et al. ascertain that only few previous studies have used statistical tests for
performance validation [25]. Deriving conclusions exclusively by manual inspection of
empirical results might be misleading and can create inconsistency across more than one
experiment performed on the same subject. To avoid this scenario, we use the two selected

statistical tests to generate substantiated conclusions.

Friedman test assigns ranks to different methods under experiment on the basis of
performance metrics used for evaluation. The lower the mean rank attained by any method,

the better it is. The degree of freedom for the test is set to 6 and the alpha value to 0=0.05. If

Shine Kamal Page 14

the results obtained by Friedman test are significant, we perform Wilcoxon signed rank test
with Bonferroni correction. Bonferroni correction is used to remove family wise errors. The
test ascertains whether the pairwise performance of two methods differs significantly or not.
It compares two related scenarios (a vs b) using positive and negative ranks. Positive ranks
indicate the number of times ‘a’ outperforms ‘b’ out of total number of instances while
negative ranks indicate the number of times ‘b’ outperforms ‘a’. If positive ranks are equal to
negative ranks then the performance of both ‘a’ and ‘b’ is considered equal. We use 0=0.05

as a decision parameter for the acceptance or rejection of null hypothesis.
3.5 Model Evaluation

The study uses 10-fold cross validation method for model evaluation. The method
works by randomly dividing the dataset into ten subsets. Ten iterations are performed where,
during each iteration, one subset is taken as testing set while other nine subsets are considered
as training sets. All the ten subsets are used as validation set exactly once. The final result is

calculated by the average estimation of results generated during each iteration.

Shine Kamal Page 15

CHAPTER 4

RESEARCH METHODOLOGY

In this study, we have implemented nine existing sampling methods and have
proposed a new and improved oversampling method. The techniques are applied on
imbalanced NASA datasets along with the use of MC learners to handle imbalancing
problem. Furthermore, we apply five ML classifiers on the balanced datasets in order to
evaluate their performance by using four performance measures described in the previous
section. The study uses WEKA (www.cs.waikato.ac.nz/ml/weka) for evaluation. The results
are computed using default WEKA parameters. This section describes the various methods to

handle imbalanced datasets and the ML techniques for defect prediction used in this study.
4.1. Data Sampling Methods

Data sampling methods attempt to balance data either by replicating the minority class
samples or by generating new synthetic samples of the minority class or it can also be done
by eliminating the noisy majority class instances. This study implemented five oversampling
methods, one undersampling and three resampling methods in the MATLAB environment

whose brief explanation is stated in this section below.
4.1.1 SMOTE

SMOTE, synthetic minority oversampling technique by Chawla et al. [4] is a widely
used method. In SMOTE, for each minority class sample its k nearest neighbors are
computed and are randomly chosen in order to compute synthetic samples close to each
minority class sample. This study chooses seven different values of k depending on the
requirement of each of the 12 NASA datasets used in this work. Selection of number of
nearest neighbors depends upon the amount of oversampling (N) needed. The amount of
oversampling required can be 100%, 200%, 500%, 1000% and so on. For example, 500%
oversampling means five nearest neighbors are randomly chosen from k nearest neighbors.
Amount of oversampling further depends on the percentage of minority class present in each
dataset with respect to total number of instances present in the dataset. This study uses
amounts of oversampling in the range of 200-9000%. Detailed description of k and N is
provided in table 4.1 below. The synthetic sample for each minority class sample is generated

by taking the difference between the particular minority class sample and its nearest

Shine Kamal Page 16

neighbor. The difference is then multiplied by a random number which belongs to the range
from O to 1 and then it is finally added to that particular minority class sample under

consideration. Detailed Algorithm of SMOTE can be referred in.

Table 4.1 Parameter Selection for Sampling Algorithms

SMOTE/Safe-Level-SMOTE SPIDER/SP MUTE SPY
IDER2/SPI
Dataset DER3

K N K kK’ k” y/
cM1 5 5 5 5 5 2
JM1 4 4 4 5 5 2
KC2 4 4 4 5 5 2
KC3 4 4 4 5 5 2
MC1 25 25 25 5 25 12
MC2 3 2 3 5 5 2

MW1 5 5
PC1 7 7 7 5 5 2
PC2 15 90 90 5 89 44

PC3 5 5 5 5 5

PC4 5 5 5 5 5
PCS 30 30 30 5 29 14

4.1.2. Safe-Level-SMOTE

Safe-level- SMOTE [2] is the modified version of SMOTE. It focuses on how the
random number (used in SMOTE) will be chosen to generate synthetic minority samples. The
minority class samples are assigned safe levels (sl) on the basis of k nearest neighbors in the
dataset. In our experiment, we set the value of k to seven different values depending on the
requirement of each of the 12 NASA datasets used in this work and the amount of synthetic
samples to be generated are set in the range of 200-9000%. Detailed description of k and N is
provided in table 4.1 above.

We find k nearest minority class neighbors for each minority class sample ‘p’. One
neighbor ‘n’ will be chosen randomly and then safe level ratio sly/sl, (number of minority
samples in k nearest neighbors of p in the dataset to the number of minority class samples in
k nearest neighbors of n) will be calculated. On the basis of range of safe level ratio, random
number is chosen accordingly. Then it will be used same as in SMOTE to generate synthetic
samples. Difference between SMOTE and Safe-level-SMOTE is that SMOTE randomly

generates equal synthetic samples for each minority class sample while it is not the case in

Shine Kamal Page 17

safe-level-smote. The generation of synthetic samples depends upon the gap variable. Figure

4.1 describes the Safe-Level-SMOTE algorithm.

D4 Original dataset
Cmin € set of instances of original dataset which are present in minority
Step 1)
For each p € Cin
Compute k nearest neighbors of p in Cpi,
Step 1a) Randomly select one out of k nearest neighbors and call it n
Sl, € number of positive instances in k nearest neighbors of pin D
Sl, € number of positive instances in k nearest neighbors of nin D
If(sl,==0)
Set sl=c0
Else
Calculate s/ = sl,/sl,
If(sl==e< and sl,==0)
no need to generate synthetic samples.
Else {
if(sl==c° and sl,!=0)
Gap=0
Else if(sl==1)
Gap=random number between 0 and 1
Else if(sI>1)
Gap=random number between 0 and 1/sl
Else
Gap=random number between 1-sl and 1
For each a € attr
{ [attr is the number of attributes]
Compute the difference ‘dif’ between ‘@’ attribute of instance n and p
Generate synthetic sample by multiplying gap with dif and adding it to p.
}
}

Steplb) Repeat step 1a according to the need of amount of oversampling required.

Step 2) Add synthetic samples to D.
Fig. 4.1 Safe-Level-SMOTE Algorithm for Imbalanced Data

4.1.3. ADASYN

In Adaptive synthetic (ADASYN) sampling technique [3], the number of synthetic
samples needed to be generated for each minority class sample is decided by the density
distribution. Unlike SMOTE, ADASYN automatically calculates the number of synthetic
samples which are needed to be generated to balance the data. We do not need to manually
input the amount of oversampling in case of ADASYN. The only input is the imbalanced
dataset which we need to give. Density distribution is the measure of weights which are given
to each minority class sample according to their difficulty level of learning. The procedure of
generating synthetic sample is same as that of SMOTE. The major difference between
SMOTE and ADADSYN is that the former produces the number of synthetic samples as per

the user demand and it generates equal amount of samples for each minority class sample

Shine Kamal Page 18

while the latter automatically decides that how many number of synthetic samples are needed
to be generated on the basis of density distributions. The variable ‘a’ used in the algorithm
decides the amount of balancing required with respect to number of majority class samples.
This study uses a=1 which means fully balanced dataset will be generated post ADASYN
application. Figure 4.2 represents pseudo code for ADASYN.

D+« Original dataset
Chin < set of instances of original dataset which are present in minority
m;, <— number of minority class samples
m; <— number of majority class samples
dpax < maximum tolerated degree of class imbalance
Step 1) Calculate class imbalance degree ‘Deg’
Deg= my/m;
Step 2) if Deg< d, .«
Step 2a) Compute the number of synthetic samples that are needed
to be generated for each minority class sample as
T=(my-my)*a
Where a € [0,1] is a constant used to specify desired
balance level.

Step 2b) For each s € C;, do
Compute k nearest neighbors of s in D
Calculate ratio r(i)=maj(i)/k
Where ‘maj’ is the number of majority class samples in k
nearest neighbors of's, i=1,2,3.....m;.

Step 2c) Calculate the density distribution for each minority
class sample ‘i’ as

R(i)=r(i)/%{Z (D)

Step 2d) Calculate the number of synthetic samples need to be
generated for each minority class sample ‘i’ as
S(i)= R(i)*T

Step 2e) Calculate each synthetic sample for ‘i’ as
Loop from 1 to S(i)
Randomly choose one minority sample ‘n’ from k
nearest neighbors of s in C .
Generate synthetic sample as
Synthetic=s+(n-s)*gap
Where gap is the random number, gap € [0,1]

End loop.
Fig. 4.2 ADASYN Algorithm for Imbalanced Data

4.1.4. SPIDER

Selective preprocessing of imbalanced data (SPIDER) proposed by Stefanowski and
Wilk [1] consists of two phases. In the first phase, each sample from the given dataset is
flagged as noisy or safe depending on the k- nearest neighbors. In our experiment, we fix the
value of k depending upon the number of instances and the amount of oversampling required

in case of each of the 12 NASA datasets. The detailed description of k values is described in

Shine Kamal Page 19

table 4.1. In the second phase, amplification of minority samples is done in three ways, that

is, weak amplification, weak amplification & relabeling and strong amplification.

D« original dataset

Cuin < set of all samples in D which are present in minority
Ciai < set of all samples in D which are present in majority
k<« number of nearest neighbors

Step 1) for each sample s € D do
If correct(data, s, k) then
type=safe
Else
type=noisy

Step 2) if amplication==weak then

For each s € flagged(data, C,,,, noisy) do

replicate(data, s, k, maj, safe)
else if amplication==weak & relabeling==true

For each s € flagged(data, C,,;,, noisy) do
replicate(data, s, k, maj, safe)

For each s € flagged(data, C,,,, noisy) do
For each t € Cy,; in k nearest neighbors of s &
type==noisy do

Change class of t from Cy to Cppip
else

For each s € flagged(data, C,,;,, safe)do
replicate(data, s, k, maj, safe)

For each s € flagged(data, C,,,, noisy) do
If correct(data, s, k+2) then

replicate(data, s, k, maj, safe)
else
replicate(data, s, k+2, maj, safe)

Step 3) Remove all t e D
Fig. 4.3 SPIDER Algorithm for Imbalanced Data

In weak amplification, the minority class samples which are flagged as noisy are
amplified. For amplification, replicate them by as many numbers as there are safe majority
class samples in k nearest neighborhood of each noisy minority class sample. In weak
amplification & relabeling, one additional step is performed in which noisy majority class
samples in the k nearest neighborhoods of noisy minority class sample are relabeled by
modifying their class from majority to minority. Strong amplification amplifies all the
examples of minority class whether flagged safe or noisy. But amplification of safe and noisy
samples is done differently. Safe samples are replicated by as many numbers as there are safe
majority samples in k nearest neighborhood. In case of noisy minority class samples, flagging
is done yet again but this time by taking k+2 nearest neighbors. If the sample is flagged safe,
it is amplified in its k nearest neighborhood otherwise in k+2 nearest neighborhoods. In this
study we use strong amplification level in the second phase. Fig. 4.3 shows the detailed

algorithm of SPIDER. Algorithm uses three functions which are: correct(data, s, k),

Shine Kamal Page 20

flagged(data, c, f) and replicate(data, s, k, maj, f). The first function classifies the sample ‘s’
as safe or noisy using its k nearest neighbors. For safe it returns 1 else 0. The second function
generates a set of those that are the part of class ¢ and are flagged as f (noisy or safe). The
third function replicates the copies of minority class sample ‘s’ as many number of times as

there are majority class samples in s’s k nearest neighbors which are flagged as f.
4.1.5. SPIDER2

SPIDER? is a modified version of SPIDER (Algorithm is described in figure 4.4)
[44]. In this modified version, flagging of majority and minority class samples is done in
different phases. In the first phase, only majority class samples are categorized as safe or
noisy. Relabeling is also done in the first phase only. SPIDER?2 either re-label all the noisy
majority class samples or it removes them completely from the dataset depending upon the

re-label option.

D« original dataset

Cuin < set of all samples in D which are present in minority
Ciai < set of all samples in D which are present in majority
K<« number of nearest neighbors

Step 1) for each sample s € C,,; do
If correct(data, s, k) then
type=safe
Else
type=noisy
Step 2) if relabeling==true
For each t € flagged(data, C,,,, noisy) do
Change class of t from C,,,; to Cyy
else
DD — flagged(data, C,,,, noisy)

Step 3) for each sample s € Cy;, do
If correct(data, s, k) then
type=safe
Else
type=noisy

Step 4) if amplication==weak then

For each s € flagged(data, C,,,, noisy) do

replicate(data, s, k, maj, safe)
else

For each s € flagged(data, C,,,, noisy) do

If correct(data, s, k+2) then
replicate(data, s, k, maj, safe)
else

replicate(data, s, k+2, maj, safe)
Fig. 4.4 SPIDER2 Algorithm for Imbalanced Data

In the second phase, samples of minority class are flagged as safe or noisy

considering the changes that arise because of relabeling in the first phase. This is the major

Shine Kamal Page 21

difference between SPIDER and SPIDER?2. The former blindly amplifies the minority class
samples without taking into account the changes that arise in the dataset due to relabeling
while the latter takes into considerations the changes made by relabeling option in the first
phase and on the basis of those changes it flags the minority class samples as safe or noisy.
After identification of noisy examples, SPIDER2 performs amplification operation on the

relabeled dataset.
4.1.6. SPIDER3: A Modified Version of SPIDER?2 (Proposed Method)

To add one more method in the family of SPIDER methods, we propose SPIDER3, a
modified version of SPIDER?2 technique. Pseudo code of SPIDER3 is presented in fig. 4.5 In
this method we use three functions out of which two are same as used in SPIDER and
SPIDER?2 i.e. correct(data, s, k) and flagged(data, c, f). However, we modify the third
function replicate(data, s, k, maj, f) by adding one more parameter into it. The modified
replicate function is replicate(min, data, s, k, maj, f). This function generates new synthetic
samples of minority class sample ‘s’ as many number of times as there are majority class

samples in s’s k nearest neighbors which are flagged as f.

SPIDER3 consists of two phases. In the first phase, we identify majority class
examples as safe or noisy on the basis of k nearest neighbors. Our method uses Euclidean
distance instead of heterogeneous value difference metric (HVDM) distance function to
compute k nearest neighbors. We used Euclidean distance because this study focuses on
defect prediction imbalanced datasets which have all the numeric attributes. Only dependent
variable is nominal. HVDM [45] distance function is useful when we deal with
heterogeneous data which has both numeric and nominal attributes. It would not make much
difference in case of homogeneous data. After identification, relabeling is performed on noisy
majority class samples which lie in the nearest neighborhood of each corresponding minority

class sample.

In the second phase, identification of minority class samples is done with reference to
changes made in dataset by relabeling. Our modifications exist in the amplification phase.
Instead of replicating the same minority sample SPIDER3 calculates the synthetic samples
while amplifying the data. The synthetic samples are generated by using the same method
used in the SMOTE method. Minority class is amplified as many numbers of times as there

are safe examples of majority class in its k nearest neighbors. For each minority class sample

Shine Kamal Page 22

amplification, k nearest neighbors are computed in the minority class region only and then a

synthetic sample is generated.

D+« original dataset

Cuin < set of all samples in D which are present in minority
Cinaj < set of all samples in D which are present in majority
K<« number of nearest neighbors

Step 1) for each sample s € D do
If correct(data, s, k) then
type=safe
Else
type=noisy
Step 2) if relabeling==true
For each s € flagged(data, C,,,, noisy) do
For each t € C,,; in k nearest neighbors of s &
type==noisy do
Change class of t from Cy,yj t0 Cyyiy
else
For each s € flagged(data, C,,;,, noisy) do
For each t € C,,; in k nearest neighbors of s &
type==noisy do
D«—D-t
Step 3) for each sample s € C,;, do
If correct(data, s, k) then
type=safe
Else
type=noisy
Step 4) if amplication==weak then
For each s € flagged(data, C,,;,, noisy) do
replicate(C,,;,, data, s, k, maj, safe)
else
For each s € flagged(data, C,,;,, safe) do
replicate(C,,;,, data, s, k, maj, safe)
For each s € flagged(data, C,,,, noisy) do
If correct(data, s, k+2) then
replicate(C,,,, data, s, k, maj, safe)
else

replicate(C,,,, data, s, k+2, maj, safe)
Fig. 4.5 SPIDER3 Algorithm for Imbalanced Data

There is an exception which can arise while using SMOTE formula in SPIDER. As
we are using the same value of k both for generating synthetic samples as well as for the
other computations required by SPIDER3, it might be possible that the value of k exceeds the
total number of minority class samples present in the dataset. For example, in case of PC2
dataset there are only 16 minority class examples. But according to the amount of
oversampling needed which is 9000% (percentage of minority class is just 1% and hence,
large number of samples are required to be generated to fully balance the dataset) we need to
set k=90 (In SPIDER family there is no N, oversampling is done on the basis of k only)
which exceeds total number of minority class samples. In such case, we simply set k for

synthetic sample generation as the total number of minority class examples. Remaining

Shine Kamal Page 23

amount of oversampling will be done by replicating the minority sample. The advantage of
our proposed method is that it generates new samples of minority class that is, a synthetic

sample rather than just replicating the same sample again and again.

4.1.7. MUTE

Majority Undersampling Technique proposed in [57] is a replica of Safe-Level-
SMOTE but with a difference that it generates safe levels for majority class instances while
the latter generates them for minority class samples. The method declares a majority sample
as safe if its safe level is zero else if safe level is equal to the total number of nearest
neighbours then it is declared as noisy [57]. Hence, it removes the noisy majority instances in
order to balance the data. The number of k’ nearest neighbours taken for experimentation are

described in table 4.1. Figure 4.6 describes the MUTE algorithm in detail.

D+« original dataset
Chnai < set of all samples in D which are present in majority
T «— minimum number of minority samples in the neighborhood of a
majority sample which allow the removal of the majority sample
sl «— number of minority class instances in k-nearest neighbor of each
majority class sample
Step 1) For each sample s € C,,j do

Ifs1>=T

Remove s from D

Fig. 4.6 MUTE Algorithm for Imbalanced Data

4.1.8. SPY

It’s a novel method which tries to balance the data by changing the class labels of
noisy majority class instances from majority to minority class [58]. The noisy majority class
samples are those which lie at the boderline. The boderline samples are named as SPY
samples in this method as they are noisy and required to be removed or renamed. Table 4.1
states the k” nearest neighbours and threshold value z required for renaming majority class

samples to minority. The algorithm of SPY is described in figure 4.7.

D« original dataset
Chin < set of all samples in D which are present in minority
T «— minimum number of minority samples in the neighborhood of a
majority sample which allow the removal of the majority sample
k «— number nearest neighbors
Step 1) For each sample s € C,;, do
C=Count the number of majority class instances in k-nearest
neighborhood.
IfC<=T
Change the class of the calculated majority instances to
minority.

Fig. 4.7 SPY Algorithm for Imbalanced Data

Shine Kamal Page 24

4.1.9. SpreadSubSample
It is a resampling technique which generates a random subsample of a dataset [59].
The maximum spread between minority and majority is stipulated using this method. The

distribution spread parameter is set as per the requirements of balancing the dataset.
4.1.10. Resample

It produces a random subsample of a dataset using either sampling with replacement
or without replacement [60]. The amount of samples that are required to be replicated are
needed to be manually given as input. The biasToUniformClass parameter is set as per the

requirements of balancing the dataset.
4.2 MetaCost Learners

Making each classifier cost sensitive is a heavy task. In its contrast, a procedure was
proposed by Domingos which was used for making classifiers cost sensitive called MC
learner [22]. MC learner makes any ML classifier cost sensitive by applying cost minimizing
procedure over it. MC learners do not require any information about how the individual
classifier works. They can be applied to the datasets containing any number of classes and to
any arbitrary cost matrix. This method uses Bayes optimal prediction to reduce the risk of
achieving high overall cost which is called the conditional risk. The conditional risk R(r/x)
computes the expected cost value of predicting a sample x as a part of the class ‘r’ when it
actually belongs to the class ‘s’. The conditional risk is defined as the summation of product
of C(r,s) and P(s/x) for each region ‘j” where C(r,s) is the cost of predicting an example as a
part of ‘r’ when it actually is the member of class ‘s’ and P(s/x) is the probability of
predicting that sample x is a member of class ‘s’. The conditional risk partitions the sample
space into ‘j’ regions such that least cost prediction i.e. ‘s’ falls into the region of its own

class ‘s’.

In this way MC learners re-label the classes of each training instance according to
their best predicted classes. MC is the parallel method to BG ensemble method. The
difference between the two exists in choosing the size of resample. BG constructs the
bootstrap resample by selecting ‘n’ samples with replacement from the training set of size ‘n’
while MC learners go well with the smaller resample size also. This nature of MC learners
make them more efficient. The classifiers are then learned on each resample followed by the
collection of votes from the ensemble. The majority vote decides the label of each example

and hence, re-labels it to the optimal predicted class.

Shine Kamal Page 25

4.3 Machine Learning Classifiers

The ML classifiers used in this work to predict whether the module is defective or not, are

described below.
4.3.1. J48

J48 is a decision tree classifier. It helps to classify the instances using information
gain [27]. The attribute having higher information gain is selected as a root node and among
the possible branches of the root, if there is any child for which all the instances are coming
under same class label, we terminate that branch by assigning class target value to it

otherwise we continue the above procedure.
4.3.2. Random forest

It is the forest of decision trees in which each tree is made up of randomly selected
subsets of datasets using replacement [40]. The final result is given by the majority voting in

which each decision tree gives out its own vote.
4.3.3. Naive bayes

Bayesian learning is based on Bayes’ theorem in which the classifier assumes that the
effect of one attribute on a given class is independent of the other attributes which is called

class conditional independence [41], [47].
4.3.4. AdaboostM 1

AdaboostM1 is a boosting classifier [42] which trains various individual classifiers in
a serial manner by using the whole dataset. In each iteration it focuses more on the difficult
instances which are misclassified in the previous iteration in order to achieve the goal to
correctly classify them in the next iteration. The difficulty of the instances is measured by
weights which are increased for every misclassification and decreased for correctly classified

instances.
4.3.5. Bagging

Bagging is a meta classifier which trains different classifiers using bootstrapped
replicas of the original training dataset [43]. The instances are randomly selected with

replacement from original dataset to form a new dataset which further trains each classifier.

Shine Kamal Page 26

CHAPTER 5

EMPIRICAL RESULTS AND ANALYSIS

In this section, we discuss and analyse the results obtained by applying ML
techniques on sampled as well as original imbalanced datasets. In order to examine and
equate the performance of different sampling methods as well as MC learners, we use four
performance metrics: sensitivity (recall), specificity, AUC and precision. The results are
assessed by using two non-parametric statistical tests: Friedman and Wilcoxon signed rank
test. The investigation of results is carried out systematically by sequentially answering the

research questions mentioned in chapter 1.

5.1 RQ1: Does balancing of datasets using sampling methods improve the performance of

ML techniques for defect prediction?

Tables 5.1 to 5.12 provide the values of performance metrics calculated on the
original imbalanced datasets (no sampling) as well as balanced datasets after oversampling,
undersampling and resampling. The balanced datasets were obtained by correspondingly
applying ten sampling methods: SMOTE, Safe-Level-SMOTE, ADASYN, SPIDER,
SPIDER?2, SPIDER3, SPY, MUTE, SpreadSubSample and Resample. The defect prediction
models were developed by the application of five different ML techniques: J48, RF, NB, AB
and BG. To carry out this work, ten sampling methods were implemented in the MATLAB
environment where original imbalanced datasets were given as input and balanced datasets
were generated as output. To obtain fully balanced datasets, we chose different values of k
and N (refer table 4.1) depending on the requirement of each dataset. 10-fold cross validation

method was used to develop models.

The empirical study conducted shows that in majority of the cases, the balancing of
datasets using sampling methods improves the performance of ML techniques for developing
defect prediction models when AUC, precision and sensitivity were used as an evaluation

factor.

From table 5.1-5.12, it can be discovered that AUC values in case of sampling
methods are better than those in the case when no sampling was performed in majority of the

cases. The table results show a significant percentage increase of 2-120% in AUC values in -

Shine Kamal Page 27

9%s L9g 0st 0sT 598 i3 L'938 086 86 0ot 0 0d

oL T'is 0 0 £o8 T LE9 g86 o'lh oot 0 qav

gal L g6t g6t oy ¥ ag £1L gas L18 998 el qN

L] g69 0 0 598 I'ls R 086 0l Ll 0 J4d (%

16 619 L9% L9t £88 £i8 L6 816 TLg 888 L9t 8FI[ul) worsrALg
(S Log 66 66 £L8 1’88 go8 £86 0'e6 oot a6 Dd

L89 TIL 001 001 £l L'6s £TE £66 L'86 0ot 001 av

£06 L°58 168 168 L98 868 168 L'68 L'88 1’68 I'as aN

£06 69 £86 £86 £L] o ¥ig £'26 86 a6 g4 (85 1)
I'ls 619 L6 L'Ed 1708] i ¥ L6 I'16 LLh grr Lngradg
(TR 35] L9g Fe ¥ 1°T8 £Eg 0ot 09s 86l L'Ed 0 od

£Es8 ges 0 0 138 T8 L6 £98 808 '+ 0 av

ooy £EE £EE £EE 903 ELT TIE L6868 6 FL £re £LE qN

LG TIL 0 0 8T8 1'cs 0ot oLR 86l £l 0 d4 . (05)
9L 619 89T 89t 9Ls [968 LL8 TFs £F8 [BFl AJLAnIsuag
65670 LELD FEL0 FLL0 are 0 9L60 o670 L9670 cFe0 09670 LTLO od
080 ozL 0 LTL0 LTL0 are 0 18L°0 9Ll 0 90670 56’0 £960 LILO qav
LOL0 o0 6870 o870 060 30L°0 11470 re0 S6870 LTE0 raea aN
L6670 EFL0 ELLO Li 15670 F860 I {9670 gE6°0 S5670 £9L0 J4
P60 1970 650 a5 0 18870 £L8°0 LTG0 0Te 0 L6870 Fag0 Faco grr DOV

ILONS
ajdmeg [2aa Sunpdmes LAY
sjdmesay qngpeaads FINW AdS fHIIIdSs TIIdIdS HIdIds NASYVAIY 2FES JLOINS Oh AIGISSE[] IUETLIOLIA

WREEIE(] TIND 10F SHMERT T°5 AT9E L

Page 28

Shine Kamal

T'Es Ive £C v1e £ 68 Tog 0ce e 856 £o6 £1s bg

o Lr9 0 188 vig (] gac Ten 1’66 ¥ a6 0 av

CLL CLL £ar Ive Tes L teg LTL ik 1'Z8 '8t qN

688 L9 4 o LYo Vs &6'C8 0la re gl F o6 £Cs J4 (%
€18 e Fir 6T L'98 66l (T T8 [s] rir BFI ur) woysIaalg
£T8 c9 08 T'is £C8 6.9 T'1s LCh L'%h 9°ch (N, bg

a9 1’69 001 16 L6 e gLc tes a6 £'66 0ot av

¥ tre Lo T'sa Ll is] £ CEd e I't6 LA L6 qn

Tag 9 LE6 0o L1908 L8L (il 0 LCh 1’96 LR £Lh J4 (96 m)
66l 6k g 168 L08 1’89 gLl £ig £16 i Tlg BFI Aograadg
I'is ofe LT 6Tt o8 L4 L6 LL T1g LER TLT bg

oig orac 0 £E o E] 0'es Tl Lal el 0 av

0T el L8T (i el el I el 99t FE L8l qn

I'tg 6'EQ el TiE I'Eg via tie LL 218 LER L0 J4 . (96 m)
£l ore £t Lot o8 o8 £C6 Tl ik £rE £TT BFI AjAnIsuRg
Fo60 7800 880970 EEL0 L06°0 L0670 ¥re0 FI670 0e60 LEGTD 6390 bg
£LO°0 900 89970 20470 880 LYoo o180 10670 0Te 0 LTG0 69970 av
£E90 £9°0 LT90 690 L0L°0 F19°0 850 FOL O SCL0 SFL0 £E9°0 qn
FL60 18970 T6ee0 1570 81670 6re0 €860 81670 [£a0 25670 10L°0 J4
L9870 £Con o0 18970 9c80 6.0 TL80 0g80 2680 £0670 9190 BFI Q0¥

ILONS
apdmesg -[2AR T Sunpdmres IR
sjdmesay qngpeards LN AdS fIIdIdS THIAIdS HIdIdS NASVAV W 3JES JLONS oN AIGISSE[) IVUEULIDLIJ

19SEIE(TINT 10F SISy LS 28 L

Page 29

Shine Kamal

98 g6l £e i 788 I3 ELL £06 [1+ 8'I6 LE9 0d

LL 8oL £oc £TL L] ol LLg £L8 N 6'ta 09s qav
oTa £68 L'89 0B £CR [069 g Fee 588 g qM

£88 ETL £09 g8L L'8% £T8 £0s 506 L'th LE6 e g4 (%
6L §6L 9Es 5L 993 I'1s 65L 1706] Fia L8 BFI ul) worsalg
L'E8 o8 £6] €68 €8 Tra 806 ia 'ls (i 0d
269 8oL £ 06 L0a £og 90l cal ora] 86 I'1a qav
L96 L] 616 U] 0rs 0Fé cia £T6 £Th £ia Tr6 qM

£o3 6L £T6 CE6 963 TE8 £es I'ls 3'Th £ia £Ia g4 (05 ™)
£98 LEL tLE (s} 6L TEs LT8 906 LR 816 963 BFI Lroygradg
€05 gLL 61F 61L LL 808 LLL] £'8g T rer 0d

£ag 8oL £8F 069 CER LL oig 108 6 L98 8Ly qav

[LoF £F A 06t it £TT LTE 69f or 'y qM
L6 £aL Icr 689 (] L8 6Fa go8 L'8% 5’68 Ly g4 . (05 ™)
£98 gre Ies Tig 98 66l LLL Ll i £LE L68 Laf BFI Aranisuag
L1670 17370 T80 6870 £F6 0 060 £330 [5670 £26°0 19670 80 0d
£ERO GL0 6.0 £L3°0 0Zte o ELLTO EFL0 10 oFe0 L¥a0 FELO qav
80 31870 £E80 €630 QoL 0070 L0470 98L0 gL870 180 TE8°0 qM
£560 20 61370 6870 560 LEGO 0E60 £Ce0 £96°0 £96°0 ST80 g4
LLEO &0L70 L4700 851870 98870 {980 8E8°0 2060 Fie’ LTA0 FOLD BFI 20OV

ILOWNS
ajdmeg [2aaT Sunpdmres LB

sjdmesay qngpeards FLOW AdS tHIdIds TIdIds HIdIds NASYVAV —2Jes JLONS 0N JIYISEE[) FIUETLIOLIA

1REEIE(I T J0f s)nsEay £'< Qe L

Page 30

Shine Kamal

18 LEg £EE 0L LL vig LE8 Ll L96 Fih £Le od
£08 L9g ire O 6LE £EL Tve L6 F 6 196 TFe av
LBL L (A LSF 218 oL 6.9 698 678 Lol Fif aN
o83 e ot LIF £68 LE8 L7838 9T LEh N 0s J4 (%
L9g gee 6°TF TEF oFs L 8’18 £L8 0'3g 806 6'CF Bfr[up) uorsialg
¥ig L9g 616 186 [g6l g L't gL LN Lta od
L L99 £6 L68 ¥LE 61L £0L LN 9'ch 96 e av
oG 198 28 L 188 688 o'gs] £Lg o'8E g8 qN
88 e 9cl £5a 188 €8 6638 LN 66 N 296 g4 (95 m)
£L8 6E9 668 63 0Es L8 €78 0ss 68 668 668 8FI[Apoyreds
83 6E9 I'Ti L0 6Es LT 06 L6l 66l I'18 8¢l 2d
LTL L9g Iec 6L1 0Ll BTl] L6l ol A I'9¢ av
ToF LIF 68¢ 133 L'FF It 6LT 808 [6l 6°3¢ M
g6 e I'Tt 8Tl £FE a3 o'lg 88 ol Fti 8¢l J4 . (a5 m)
¥ig 69 £EE 658 oL £o8 ila 0re 68 Ly £Le o) AlLATISURE
LT60 8040 L0470 16970 {60 £Te0 L6 0 LE6 0 21670 tre0 6TL0 Dd
QL8O LTL0 ELEO 1970 L160 LOLD 09L70 26870 0670 £1670 £ELETD qav
68970 oIo0 19570 880 LERD 20L70 195970 L9870 5870 SBE0 19970 qN
{860 £L870 L0 ITL0 LEGD £960 G6L670 FEG D 0Fa0 £Fe0 9EL0 J4
2060 LL80 £L80 080 T80 6LE0 80670 0980 FLE0 L8870 £59°0 BFI[D0V
JILONS
apdmeg [aaa Sundmres ILIIITY
sjdmesay qngpeasds FIOW AdS IIdIds TIAdIds J3dIds NASVAV - 9FF§ JLONS O ARJISSE[) UEALIOLIRJ

135EIR(] £ A0F SIMSAY 'S 4L

Page 31

Shine Kamal

616 an 0 0 9'66 T'L6 90L6 866 966 L66 0 g
08 L1L 0 0 9'66 FEL TEL L66 $66 966 0 av
7oL 08 €L i [1 €0L €0L €8 CTL LOL €L aN
66 I'ts 0¢ 0g C66 0’66 1'66 966 £'66 766 Py Er %
996 g9 98T 9°8T 866 996 9°95 66 £°66 166 93z 170 ur) uorspALg
26 969 001 001 L°66 86 <86 8766 366 866 001 g
T08 L1L 001 001 L°66 T'+3 I't8 L66 L66 L 66 001 qav
53 1’68 T06 T08 £cL 668 668 008 08 1'SL Too an
66 3P3 966 966 L°66 66 66 966 966 <66 £766 Id (06)
L1796 Tco T66 <66 566 gL6 $i6 766 966 66 £766 gl Lmgedg
001 Tie 0 0 +'96 001 001 816 656 £96 0 g
THs L 0 0 96 C69 C69 L6 66 £96 0 qav
CLE CEr 9zE 9TE 786 gLt gL T96 LC6 FL6 9T an
001 08 rLT A 0.6 001 001 186 96 1'L6 g6l Ert (06)
001 €L L80 L80 C96 001 001 186 096 896 L8 8HT Ouanrsuag
6660 7780 ¥E80 +C8°0 £6670 6660 66670 $660 €667D 76670 0950 g
6370 86L°0 Trs0 TrE0 €660 63870 63870 £660 76670 76670 reo av
LTL0 TEL0 80L°0 80070 1460 FSL0 FELD Lv60 65670 96°0 30L0 an
I L¥80 8370 8870 86670 I I 8660 86670 L667D £330 I
L8670 7£9°0 17570 1750 £3670 76670 76670 6560 08670 8670 S gl 20V
ALOINS
apdmeg [aaaT Sundmres ILDRTY
spdmesay qngpeaads FLNW AdS £YIQIdS THIAIAS WAAIdS NASVAY J¥S TIONS 0N JAISSE[) A0UEHLIOJAJ

RERIE(] TOJN 10 S)Msay £°C AqEL

Page 32

Shine Kamal

TEL ted £68 oo ¥ LTL 8L Lel L'E £16 L9 Dg
orL 6% gre 6LC 0ER 669 CEL CER 906 6046 09 av
o8 o7E 8o EEL g18] LL FiL 8+8 &L 089 qN

CER La9 Log La9 0ig £6Ll o8 R 3 £16 2'th] J4 (%
CFL g otF 60L CFE geL 01s oL L8 0rE £o9 o) uI) UoISIALg
6oL 659 £08 T°CE L°89 £or oo O'Fg el L o8 bg
6oL 0D I8 8L o1 et ocC L L L TLR av

£Co 606 £le 68 Tcs [% LLB 106 L 106 106 qN

T'Es £oL £08 T°CE L L9 gLl L L Fl16 LLg g4 (05 m)
8L tie CTL giB T'eL Lo 6L9 I'rL ol I'FL 18 8FI Lygradg
£89 Tac | Q13 [06l £L3 CLe LAY el el 9°8f Dg

EEL £TL cor T'EF 0eL o3 £°ER £09 sl 5L aor av

£t CEF L'SE T'EF £9t oLy 6t oct gEr Firy 98¢ qN
L798 Tas cor TEF 908 £L3 0ca £99 9ty £08 98¢ J4 . (a6 m)
£89 QEg cor §8¢c 06l £Fs g &L9 9ty £E8 £Ts 8l ANAlIsTIRg
9re 0 £6e0 8L9°0 BIL°0 LEBD 880 a0 86L0 £980 6680 QL90 Dg
FOBD £9en TLen oen 31870 QL0 roLn 19070 6580 £98°0 o190 av
QELO GaEL’0 oLl £L°0 69L70 oL 81070 BELO LOE0 LOB0 ToL0 an
£26°0 FrL0 FrL 0 IFL0 8870 Felg 0 FLe0 TERO 2680 0670 LTLO g4
9.0 LLGD 6150 1.0 FOL 0 FILO 98L°0 18970 15.°0 QELD 8690 BFl 20V

ILONS
apdmeg -[eAas Sunpdmes ILOEATY
ajdmesay qngpeaads FLAW AdS fHIAIdS THIdIdS HAdIdS NASVAV -ayes JLOWNS oN JAISSEL) FIWEMLIOLISJ

JREEIE(] TOTN 10] SHMESY 0°C I[qE]

Page 33

Shine Kamal

81a L oc 1] och Tag o'la 001 Feh 986 o< bg
L (] oF 0F 0o LL ocL 86 6L o6 iy av
6LL 0B 0g 0e oFrs 61L TEL T8 oL £18 0% g
86 69 i gEF L£Ch 816 (i L9g £'eh 656 Leg g4 (%
Tag 0gc 98T 08T 616 '+ LB Toa £16 L'Fh 98T g ul) uols1IaLg
ol LE L6 L'B6 =l 108 6'C8 001 166 166 L°86 bg
oLl Tve Lv6 Lve o5 T8 18 L7836 166 966 L'FG av
L) [ST (o o T68 vig LCB ola o8 688 8 qM
£En Le9 96 06 894 L tee 696 696 £l 096 J4 (95 m)
88 o°cC o5a 056 LEG oCR 688 el 0956 £'95 L] BF [Apograadg
I'Fs Leg it I'tt o3 L] gLe 888 Lol 9rs I'T1 24
TEL ocC 96T 96T CFs LEL OEL £68 18 0rE 96l v
] £68 osc ocC 969 i Lag oL g'c0 6°L9 9¢g qM
£l Tve 65T 65T o] 001 £14 6'C8 0Lg L8l J4d . (95 D)
't £9 vl g1 §LB] 0ot 908 68 £'88 ¥l grr ALADISUAY
9L670 6t 0 86970 86070 9r6 0 TLe0 CBe0 9060 LTe0 Foan SOL°0 bg
£98°0 CEL0 £e9°0 £e9°0 19670 80870 SE8°0 69670 Fea’ 0 6Fa’0 T1L°0 av
LELTD Tn 8TL0 8TL0 880 oL 940 060 £98°0 95870 [i] qnN
6610 FLL 1120 110 3560 660 I FL60 Qea’0 oca’0 91L0 g4
Fre6'0 £150 6rF 0 aFtr 0 8060 60 L¥e0 TEG0 9870 206’0 6FF 0 BF[20V
JLONS
apdmesg -[2aa Sunpdmes ILNRTY
sjdmesay qngpeaads FINW AdS fII0Ids THIdIdS HAdIds NASVAV —3Jes JLONS ON AIGISSE[D) SIUEULIOLIZJ

JRERIR({] [N 10] S)MEY L& Qe L

Page 34

Shine Kamal

€6 669 9°'¢9 L99 9'36 06 €16 986 CLE 086 9°¢E og
8L L 0 0 066 €19 9.9 66 86 366 0 gy
S18 L'9L 90€ 1€ c18 06L 0'6L 68 69L 08 9°0¢ an
L'F6 6TL 0g Tsr 9.6 996 196 736 6 696 '8¢ T4 (%
€6 L'89 13 13 5€6 868 668 696 Tt6 656 C6E) ur) uorspALg
TE6 6¢9 166 66 066 TT6 L'T6 686 686 L'36 66 og
Lot 639 966 00T €66 1799 c99 766 £66 666 9°66 av
s cgs 376 616 916 1°¢6 8§76 £eb 76 06 8'T6 gN
616 689 66 L6 €86 ¥L6 8§06 €86 6L6 086 186 Er (06)
T 9°c9 L96 56 e 916 €16 0Le €16 €16 L796) Lnygadg
1’86 9°¢s <11 611 563 836 '66 o 818 L'88 8 og
<6 <'88 0 0 83 L6 06 v16 78 <L 0 av
€8¢ L 1'9¢ 3¢ Tif 6FE §te gLs 9°8F 6'9F 19t an
766 9°¢s g1 60T 906 986 001 6’16 9°¢8 06 TEl Er (06)
766 5L 9rT 0 66T €06 986 001 I'e6 68 06 9¥L 8+r Ouansuag
<860 I6L°0 91870 8€8°0 0860 £86°0 06670 £86°0 L9670 8L670 80 og
L9870 €780 €6L°0 7080 9L60 380 1£3°0 P36 0 796°0 60 i6L0 gy
<8070 SEL°D 89870 9.0 L1670 8070 €8L°0 £e60 T06°0 T16°0 89L0 an
<660 L6LD 980 698°0 93670 £66°0 66°0 L360 9L6°0 7860 rreo T4
9570 £69°0 S1L°0 9D 9r60 9560 096°0 €960 CE6°0 €560 610 gl 20V
ALONS
apdmeg [aART Sundmres LAY
spdmesay qngpeaads FTINW AdS fYIAIdS TYAAIIS WIAIAS NASYAV e TLONS ON JOUISSE[) A0UEHLIOMRJ

135EIR([Dd 10F SINSAY §°C A[qE L

Page 35

Shine Kamal

9f 78 0 0 001 886 886 001 00T 00T 0 og
288 78 T T 00t 106 106 00T L'66 00T 0¢T qav
L06 £es 9.0 L0 966 c'88 88 966 916 L66 oL gN
€66 £es 0 0 666 866 L'66 666 00T 00T 0 I (%
916 g¢6 0 0 666 L6 9'LE 866 336 L66 0 8¥I u) uotspa1g
Lt €18 001 001 001 686 636 001 001 001 001 g
€88 €18 866 866 00t 706 T06 001 666 001 866 gy
CCE CL8 196 196 L66 C'Ch C'CH 9760 <66 L66 1'9g gN
66 €18 666 666 666 866 L'66 660 00T 00T 666 I (96 m)
LL g¢6 L'66 L 66 666 §L6 §L6 8766 L'66 L66 L'66 8¥I Lnygpadg
001 LC8 0 0 686 001 001 066 £C6 636 0 g
001 LC8 €90 €90 686 vi6 L6 066 £C6 636 €9 gy
oLt ¢'79 €1e €1g 1'68 tLE tLE 6700 656 706 12 gN
001 g¢s 0 0 686 001 001 066 £¢6 636 0 I (96 m)
001 g¢s 0 0 686 001 001 066 £¢6 066 0 Ty SHuprsuag
66670 9670 1£3°0 1£3°0 3660 6660 I L660 06670 3660 80 g
7960 81670 +1670 F160 6660 9L60 9/670 6660 C66°D 6660 Fi60 gy
9680 <6370 LLED Li870 9660 9680 26370 9660 C86°D C66°0 LLB0 gn
I 6F6°0 F80 F80 66670 I I 6660 660 6660 9e8°0 I
£35°0 8£6°0 8FH0 SFF0 £66°0 0660 0660 P66 0 SLE0 £66°0 §rr o 8[20V
ALOINS
apdmeg -[2as Sunpdores LD
spdmesay qngpeaads FINW AdS €9IAIdS TYAAIAS WAAIAS NASVAY J*S TLOIS oN AIYISSE[) DUEMLIOJIRJ

13SE1E(] [J10F s)nEay §'< 2[q¥ L

Page 36

Shine Kamal

98 §EL 97T €Cr 06 1°c8 €cs 9L6 76 €16 cor og

69 TIL 0 0 166 789 789 866 C66 L66 0 av

8708 L €51 L'81 1€ oLy €8F T8¢ 8IS LES ¢l an

816 8L '+ 6+ $'56 616 1'¢s §L6 656 896 o1 Ext %

€98 69 Leg 9°0¢ 168 L8 L 1't6 068 863 fige 171 uI) uorsALg

6.8 1L CL6 696 196 198 9°C8 gL 0L6 086 Li6 og

§°99 99 001 001 866 189 6L 8760 L66 866 00T av

90T T'6L LLT €L ¢eT 0Fl o+1 g6l FLE 66T LLE aN

176 TeL 86 Ti6 96 1'g6 L6 ﬁ.mm £L6 96 m.E T4 (06)

938 Tt9 €6 806 906 0L8 6L [06 <16 £ 171 Lygradg

L756 66L T50 €01 €8 LS6 L'86 Vi 878 0¢s [o4g

778 878 0 0 08 808 918 [608 €58 0 av

516 TEL 316 T16 CT6 116 Tt6 6F0 66 C6 816 an

766 66L T11 L1 CEs TF6 1'66 rss Tes Lcs (s Ext (06)

L'96 66L 197 6T 798 €16 636 £68 1'98 88 et g+l Lnapisuag

€L60 5180 1570 16470 7960 9.6 8360 £L60 19670 €960 vigo og

£6L°0 89470 16.°0 Ly 15670 120 LLLD £960 1560 65670 16L0 av

9gL0 81870 99.°0 +9L°0 69870 15470 09L°0 £68°0 16870 16870 99L0 an

L6670 1+8°0 7E8°0 61870 99570 L8670 66670 LLG0 L960 6960 1£80 Ex

65670 79070 919°0 679°0 0680 7670 0F60 160 680 6870 9190 121 20V

ALONS
apdmeg N EREN | Sundmres LAY

spdmesay qngpeaads FLAW AdS f9ACIdS TIIAIAS WAAIAS NASVAY -¥es TLOIS ON J2GISSE[) 20UEWLIOLI

REENE(] £ 10F S)DSAY OT°S A[qEL

Page 37

Shine Kamal

616 3E8 £59 £eg 't L'68 68 9945 £56 [[Dg
6C8 £6L og vie i £8L 08l £Fo L6 L'eh 1799 av
998 LEB £or rre 613 £6L QEl 8C8 £18 1F8 £or qM
£ LTEB £EL gL Tig £En 0ta a6 896 &L 9¢l J4 (%
€6 308 £Ic 6'EC Ll 106 08 oFe 816 LT N £ BfI uI) uoIsIIalg
906 B L'96 805 0 Ca 0la 08 oo i 198 o6 bg
T EL gL tae 6'Llo 186 el el (o 4 L o 6’6 F86 av
£6 T'is g'to il CC8 o0G6 Lo T'E8 ’gg £LE E] qN
LEg cI8 1’86 6Llo LL CFa Lra 6 A] 1’86 g4 (95 m)
fil] 6L 0'to 60 oL Cla 01a 6 oF6 o] 9ch 8Fl Lygadg
TG Lo iy (il 12 1706 6 Ch £66 616 £'E88 9’16 ey Dg
[y Lo £ (i 603 CEo 068 £Eo L'88 L0 et av
o1r ror (i1 £LT L o &Er gTF 898 oLl 03 T8t qM
6 66 6o TiE Tig £68 196 g6a 816 FLig 06 9Lt J4 . (a5 m)
LB LB 6ar vor 914 £Ea (1 TG 888 £16 a'8F 8FI AJAnIsIag
L3670 80670 LTE0 1160 8670 18670 06670 63670 £a60 28670] bg
ol 60670 £16°0 6.870 L9670 £E60 L1670 88670 860 08670 £16°0 av
i) £18°0 980 68L70 L3870 8180 0rg 0 0£60 2060 91670 QR0 qN
Lag™0 60 ore 0 cea’0 98670 6670 66670 660 6860 [ea0 60 J4
90670 Fea0 LLL0 L¥i0 Fre 0 LEGD £z60 L5670 0rs0 gr6 0 LLLD 8fl 20V
JLONS
apdmeg -[Bas Sunpdmes ILORTY
sidmesay qugpeaads FINW AdS fIIdIdS TIIdIds JHIdIdS NASVOV ~aJes JLOWNS oN JAQISSE[) NUENLIOLIRg

R FOd 10] B0Y TT°5 A9EL

Page 38

Shine Kamal

£08 Lo Lo CEo s 6o I'se Ll s o6 £o6 69 bg

16 Cle 9ac 008 £66 (il o gen £ 66 86 686 09 av
€0 05 LoF £6L o6 oL £ 3] £5h £5h 'Ly qN
CLg 0E6 Lo L'ie a6 47986 o8 £66 o6 £66 €18 d4 (%
8945 oia L&C LB £86 6L L5e a6 L'86 686 109 BF[ul) UOISIIAL g
£ 66 0'la 11 66 £66 £l Lo Ll £'o6 £66 Fa6 bg
606 L'1e 68 66 966 918 g08 £ 66 F86 066 Lag av
oLl Lo 86 T'ie L85 £96 (e] 0ig 0L 086 anN
i tee L1 66 Ll el £786 6 L6 £66 £'o6 ¥ o6 £66 J4 (05 m)
L9845 vie §'86 Fll1] 0es 8L 9Lg e 386 686 0ag BFI Apoyraadg
o5 L] ot £0L 'L £l LG 186 086 036 Lot Dg

£Ts 106 6l 1as £Eg £C8 98 rig 9'Lh £L6 £F1 av

£EF [6EF gocL LEE Lor CLF 89 Bl] 99 8Fr an

£60 606 A £6L i oLl t8s &8 1] 186 FEr J4 . (05 m)
£68 gte ¥ iF 6L Cig T'ie §le g F8a6 86 £ar g+l ALADISUAY
96670 £96°0 TLen Tas 0 66670 96670 96670 66670 6660 6e6 0 0670 bg
Foo6'0 L2670 L1670 18670 Leg0 cen cre0 66670 6660 6e6 0 6560 av
I+60 are’0 6t6°0 99670 £E6°0 1260 €160 £re0 £ra0 Fra 0 LEGD qN
66670 £L6°0 FLE0 fil .30 6660 66670 66670 66670 6660 6660 LiG0 d4
88670 Fre'0 1180 160 8670 98670 98670 88670 28670 6860 LT8O BF[20V

ILOWNS
apdmesg -[Raa Surpdmres ILOATY
sjdmesay qngpeaxdgs FLOW AdS fIIAIdS THIdIdS HIdIdS NASVOV —3JES JLONS oN ISR} FUEULIDLISg

RERE(204 10 SN TT°5 A9EL

Page 39

Shine Kamal

- majority of the cases. Sensitivity results show a significantly large percentage increase (6-
1490%) in its values in the case of sampling methods as compared to the no sampling
scenario. Similarly, precision values also showed a large improvement of 13-945% increase
on the application of sampling methods. This improvement in the values of various
performance metrics is due to the balancing in datasets. In case of imbalanced datasets, very
few instances of defective class were present and hence, they were difficult to learn by the
ML techniques which are developed with the assumption that the dataset used to train a
particular classifier is balanced. The ML classifiers keep the tendency to classify non-
defective examples correctly as they are present in majority. However, balancing in datasets
using oversampling methods helps in overcoming the biased nature of the defect prediction
models. The increase in defect prone examples made them easy to learn which can be clearly

determined from the increased sensitivity values in table 5.1-5.12.

If we observe the specificity results regarding all the 12 datasets, we can conclude that
values show a visible decrease of 1-30% in the specificity values. Specificity is the measure
of number of non-defective examples which are correctly classified. Due to balancing in
datasets, the defective and non-defective examples become equally important to learn while
in case of imbalanced datasets, non-defective examples were dominating. The decrease in
specificity performance can be considered a concerning factor as it would lead to the testing
of some of the non-defective examples which would be a complete wastage of resources,
time and effort. In order to develop a good classifier, a balance between sensitivity and
specificity should be achieved. However, the balanced datasets provide overall improved
performance whereas in case of imbalanced datasets, only specificity results were good. With

balancing in datasets, balanced results have been obtained between sensitivity and specificity.

5.2 RQ2: Which is the best oversampling method to improve the performance of ML

techniques for software defect prediction in this study?

In order to assess the superiority of various oversampling methods over the scenario
when no oversampling method is used, we use Friedman test. The test statistically compares
the performance of different oversampling methods. A lower mean rank of a sampling
method indicates better comparative performance of that method. We apply Friedman test
using AUC, sensitivity and precision performance measures. We do not use specificity for
evaluation as it is more biased towards majority class instances and this work focuses more

on minority class instances as chances of misclassifying them are high. Moreover, minority

Shine Kamal Page 40

class in this study represents the defective modules which are important to classify correctly
because misclassification can lead to project failure and high cost to company. We first state

the null and alternate hypothesis investigated by the Friedman test:

Null Hypothesis (H1, H2, H3): The (AUC, sensitivity or precision) results of the
defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1
and BG) are same when no sampling method or six different oversampling methods
(ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are used to

balance the imbalanced datasets.

Alternate Hypothesis (Hla, H2a, H3a): The (AUC, sensitivity or precision) results of
the defect prediction models developed using five different ML classifiers (J48, RF, NB,
ABMI1 and BG) are different when no sampling method or six different oversampling
methods (ADASYN, Safe-Level-SMOTE, SMOTE, SPIDER, SPIDER2 and SPIDER3) are

used to balance the imbalanced datasets.
5.2.1. Friedman Test Analysis using AUC for Oversampling Methods

Table 5.13 shows the results of Friedman test using AUC performance metric. The last
column in the table is the p-value which decides whether the results are significant or not.
The test results show that in all the twelve cases, the scenario where no sampling is done (i.e.
the case of imbalanced datasets) shows worst results when compared to oversampling
methods. Thus, the oversampling methods significantly outperformed the scenario where no

sampling was used.

Table 5.13 Friedman Results using AUC for Oversampling Methods

Datasets | Rank1l Rank2 Rank3 Rank4 Rank5 Rank6 Rank?7 p-value
cMm1 ADASYN | SPIDER SMOTE SPIDER2 SPIDER3 S-L-SMOTE No Sampling | 0.009
JM1 SMOTE S-L-SMOTE | ADASYN SPIDER SPIDER3 SPIDER2 No Sampling 0.02
KC2 SMOTE S-L-SMOTE | ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0
KC3 SMOTE SPIDER SPIDER2 S-L-SMOTE | ADASYN SPIDER3 No Sampling 0.026
MC1 ADASYN | SPIDER SPIDER2 SPIDER3 S-L-SMOTE | SMOTE No Sampling | 0.016
MC2 SMOTE S-L-SMOTE | SPIDER SPIDER3 SPIDER2 ADASYN No Sampling | 0.005
Mw1 ADASYN | SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling | 0.008
PC1 ADASYN | SPIDER SPIDER3 SPIDER2 SMOTE S-L-SMOTE No Sampling | 0.006
PC2 ADASYN | SPIDER3 SMOTE SPIDER SPIDER2 S-L-SMOTE No Sampling | 0.009
PC3 ADASYN | SPIDER SMOTE SPIDER2 S-L-SMOTE | SPIDER3 No Sampling | 0.093
PC4 ADASYN | SMOTE SPIDER S-L-SMOTE | SPIDER3 SPIDER2 No Sampling 0.001
PC5 ADASYN | SMOTE S-L-SMOTE | SPIDER3 SPIDER2 SPIDER No Sampling 0.003
Shine Kamal Page 41

Furthermore, the test describes that ADASYN outperforms all other oversampling
methods in majority of the cases (8 out of 12). SMOTE outperforms other oversampling
methods in case of four datasets: M1, KC2, KC3 and MC2 when AUC performance measure
is used for evaluation. It can be ascertained that our purposed method SPIDER3 which is an
enhancement in SPIDER?2, significantly outperforms SPIDER2 in eight out twelve cases.
Hence, it can be used as a balancing filter for imbalanced datasets. As all the tests show

significant results, we can safely reject the null hypothesis H1.
5.2.2. Friedman Test Analysis using Sensitivity (Recall) for Oversampling Methods

Table 5.14 states the results of Friedman test on sensitivity measure. The last column is
the p-value which decides whether to approve or disapprove the null hypothesis. The test
results prove that in all the twelve cases, oversampling methods significantly outperform the
results of original datasets. Thus, we can safely rule out the null hypothesis H2. Furthermore,
the test resulted in the mixed outcomes in case of six oversampling methods. ADASYN
outperforms all other oversampling methods in five out of twelve cases while SMOTE and
SPIDER family achieves the best rank in six out of twelve cases: KC2, KC3 and CM1, JMI,
MC2, PC3 datasets respectively. Safe-Level-SMOTE shows best performance in only one
case i.e. PC5. As ADASYN outperforms in majority of the cases when compared to the
number of times SPIDER family and SMOTE variants achieved the best rank, we can say
that ADASYN is comparatively a better method.

Table 5.14 Friedman Results using Sensitivity for Oversampling Methods

Datasets | Rankl Rank2 Rank3 Rank4 Rank5 Rank6 Rank?7 p-value
cMm1 SPIDER ADASYN SPIDER2 SMOTE SPIDER3 | S-L-SMOTE | No Sampling 0.008
JM1 SPIDER2 SMOTE SPIDER S-L-SMOTE | SPIDER3 | ADASYN No Sampling 0.027
KC2 SMOTE S-L-SMOTE | SPIDER3 ADASYN SPIDER2 SPIDER No Sampling 0
KC3 SMOTE SPIDER SPIDER2 SPIDER3 ADASYN S-L-SMOTE | No Sampling 0.092
MC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE | No Sampling 0.015
MC2 SPIDER2 SPIDER S-L-SMOTE | SMOTE SPIDER3 ADASYN No Sampling 0.001
MW1 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 S-L-SMOTE | No Sampling 0.011
PC1 ADASYN SPIDER SPIDER2 SPIDER3 SMOTE S-L-SMOTE | No Sampling 0.013
PC2 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 | S-L-SMOTE | No Sampling 0.012
PC3 SPIDER ADASYN SMOTE SPIDER2 SPIDER3 | S-L-SMOTE | No Sampling 0.001
PC4 ADASYN SPIDER SPIDER2 SMOTE SPIDER3 | S-L-SMOTE | No Sampling 0.003
PC5 S-L-SMOTE | ADASYN SMOTE SPIDER SPIDER3 SPIDER2 No Sampling 0

5.2.3. Friedman Test Analysis using Precision for Oversampling Methods

Table 5.15 shows the results of Friedman test on precision metric. In all the twelve

cases, the scenario where no sampling is done shows worst results when compared to all the

Shine Kamal

Page 42

other oversampling methods. Furthermore, the test describes that ADASYN significantly
outperforms all the other oversampling methods in seven out of twelve cases while SMOTE
achieves the best rank in four out of twelve cases: JM1, KC3, MC2 and PC2. Safe-Level-
SMOTE shows best performance in only one case i.e. KC2. Hence, we can rule out the null

hypothesis H3 as the test shows significant results.

Table 5.15 Friedman Results using Precision for Oversampling Methods

Datasets | Rankl Rank2 Rank3 Rank4 Rank5 Rank6 Rank7 p-value
cM1 ADASYN SMOTE S-L-SMOTE | SPIDER3 SPIDER SPIDER2 | No Sampling | 0.001
M1 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0.001
KC2 S-L-SMOTE | SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0
KC3 SMOTE S-L-SMOTE ADASYN SPIDER3 SPIDER2 SPIDER No Sampling 0
MC1 ADASYN SPIDER3 S-L-SMOTE SMOTE SPIDER SPIDER2 No Sampling 0
MC2 SMOTE S-L-SMOTE SPIDER3 SPIDER ADASYN SPIDER2 No Sampling 0
MW1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0
PC1 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0
PC2 SMOTE SPIDER3 ADASYN S-L-SMOTE SPIDER2 SPIDER No Sampling 0
PC3 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 No Sampling 0
PC4 ADASYN SMOTE SPIDER3 S-L-SMOTE SPIDER SPIDER2 | No Sampling | O
PC5 ADASYN SMOTE S-L-SMOTE | SPIDER3 SPIDER2 SPIDER No Sampling | O

According to above Friedman test results on AUC, sensitivity and precision, it can be
noticed that ADASYN outperforms in majority of the cases as compared to other
oversampling methods. This is due to the adaptive nature of ADASYN method. As the name
suggests, ADAptive SYNthetic minority oversampling, this method adapts itself according to
the need to generate synthetic minority samples. This method automatically chooses the value
of k (nearest neighbor) and n (amount of oversampling) on the basis of position of each
minority sample in the dataset. Unlike SMOTE method and its variants, ADASYN does not
generate equal amount of synthetic samples for each minority sample. It focuses more on
those minority samples which lie in the safe region and ignores those which are noise. Unlike
the other oversampling methods, this method doesn’t require user to input the values of k and
n. The original dataset is the only requirement as input. Thus, this method turns out to be the

best among all the oversampling methods.

5.3 RQ3: What is the comparative performance of the proposed version of SPIDER2
technique i.e. SPIDER3 and the original SPIDER?2 technique for software defect prediction?

Although it can be noticed from the above stated Friedman results that SPIDER3

outperforms SPIDER?2 in majority of the cases but still to further justify the result we apply

Shine Kamal Page 43

Wilcoxon signed rank test with Bonferroni correction where alpha is set to 0=0.05. The

hypothesis H4 for Wilcoxon test is stated below.

Null Hypothesis H4: Defect prediction models developed using five different ML
classifiers: J48, RF, NB, AB and BG are same when two oversampling methods: SPIDER2
and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity and

precision performance measures were taken for evaluation.

Alternate Hypothesis H4a: Defect prediction models developed using five different
ML classifiers: J48, RF, NB, AB and BG are different when two oversampling methods:
SPIDER?2 and SPIDER3 are used to balance the imbalanced datasets when AUC, sensitivity

and precision performance measures were taken for evaluation.

The Wilcoxon signed rank test performs pairwise comparison of SPIDER2 and
SPIDER3 on the performance metric (AUC, sensitivity and precision) values of the defect
prediction models developed by all the investigated ML techniques together on all the
datasets used in the study. The test depicts that SPIDER3 outperforms SPIDER?2 significantly
in case of AUC and precision while in case of sensitivity both the methods show comparitive
performance. Thus, the results show that SPIDER3 has improved the performance of two
important performance measures namely AUC and precision. The improvement is due to the
use of SMOTE method in SPIDER3. SPIDER3 uses SMOTE to find synthetic samples for
each minority class sample while SPIDER2 simply replicates the existing minority class
samples. Hence, the Wilcoxon test results confirms that our proposed method i.e. the

modified version of SPIDER?2 shows better results when compared to the original method.

5.4 RQ4: Which is the best sampling method among undersampling and resampling methods

to improve the performance of ML techniques for software defect prediction in this study?

To find out the best sampling method among various undersampling and resampling
methods, we again use Friedman test. We apply Friedman test using AUC, sensitivity and
precision performance measures where lower mean rank indicates better performance. The

null and alternate hypothesis taken for Friedman test are as follows:

Null Hypothesis (H5, H6, H7). The (AUC, sensitivity or precision) results of the
defect prediction models developed using five different ML classifiers (J48, RF, NB, ABM1
and BG) are same when no sampling method or four different sampling methods (SPY,

MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets.

Shine Kamal Page 44

Alternate Hypothesis (H5a, H6a, H7a): The (AUC, sensitivity or precision) results of
the defect prediction models developed using five different ML classifiers (J48, RF, NB,
ABMI1 and BQG) are different when no sampling method or four different sampling methods
(SPY, MUTE, SpreadSubSample and Resample) are used to balance the imbalanced datasets.

5.4.1 Friedman Test Analysis using AUC

The test results in table 5.16 show that in all the twelve cases, Resample method
significantly outperforms all the other resampling and undersampling methods except for one
case i.e. JM1. In JM1 dataset, SPY method shows best results. However, MUTE, SPY and
SpreadSubSample shows mixed results leading to the average performance in some cases. On
an average, the four sampling methods significantly outperformed the scenario where no
sampling was used where resample performs the best. Hence, it can be used as a balancing
filter for imbalanced datasets. As majority of the tests show significant results, we can safely

reject the null hypothesis HS.

Table 5.16 Friedman Results using AUC

Dataset | Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value
CM1 Resample | SPY MUTE SpreadSub Sample | No sampling 0.013
JM1 Resample | SPY No sampling MUTE SpreadSub Sample | 0.003
KC2 SPY Resample MUTE No sampling SpreadSub Sample | 0.006
KC3 Resample | No sampling SpreadSub Sample | MUTE SPY 0.031
MC1 Resample | SPY MUTE No sampling SpreadSub Sample | 0.562
MC2 Resample | SpreadSub Sample | SPY MUTE No sampling 0.007
MW1 Resample | SpreadSub Sample | No sampling SPY MUTE 0.005
PC1 Resample | MUTE SPY No sampling SpreadSub Sample | 0.041
PC2 Resample | SpreadSub Sample | SPY MUTE No sampling 0.020
PC3 Resample | SpreadSub Sample | No sampling MUTE SPY 0.166
PC4 Resample | MUTE No sampling SpreadSub Sample | SPY 0.003
PCS5 Resample | SPY No sampling SpreadSub Sample | MUTE 0.017

5.4.2. Friedman Test Analysis using Sensitivity (Recall)

Table 5.17 states the results of Friedman test on sensitivity measure. The test results

prove that in all the twelve cases, resample method outperforms all the other methods in the
first place while SpreadSubSample method achieves the second rank. In six out of twelve
cases the no sampling scenario achieves worst rank while the other methods significantly
improve the performance of prediction models. Hence, we can safely rule out the null
hypothesis H6. Furthermore, the test resulted in the mixed outcomes in case of SPY and

MUTE sampling methods. However, SPY achieves rank third in majority of the cases.

Shine Kamal Page 45

Table 5.17 Friedman Results using Sensitivity

Dataset | Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 p-value
CM1 Resample | SpreadSub Sample | SPY MUTE No sampling 0.001
JM1 Resample | SpreadSub Sample | SPY MUTE No sampling 0.002
KC2 Resample | SpreadSub Sample | SPY MUTE No sampling 0.015
KC3 Resample | SpreadSub Sample | No sampling | SPY MUTE 0.007
MC1 Resample | SpreadSub Sample | SPY No sampling | MUTE 0.013
MC2 Resample | SpreadSub Sample | SPY No sampling | MUTE 0.011
MW1 Resample | SpreadSub Sample | SPY MUTE No sampling 0.001
PC1 Resample | SpreadSub Sample | SPY MUTE No sampling 0.002
PC2 Resample | SpreadSub Sample | SPY MUTE No sampling 0.001
PC3 Resample | SpreadSub Sample | No sampling | SPY MUTE 0.011
PC4 Resample | SpreadSub Sample | No sampling | MUTE SPY 0.001
PCS Resample | SpreadSub Sample | SPY No sampling | MUTE 0.002

5.4.3. Friedman Test Analysis using Precision

Table 5.18 shows the results of Friedman test on precision metric. In seven out of the
twelve cases, the scenario where no sampling is done shows worst results when compared to
all the other sampling methods. Furthermore, the test describes that resample,
SpreadSubSample and SPY method significantly outperforms the no sampling scenario at
first second and third rank respectively. However, MUTE could not perform well in four out

of twelve cases.

Table 5.18 Friedman Results using Precision

Dataset | Rank 1 Rank 2 Rank 3 Rank 4 Rank $§ p-value
CM1 Resample SpreadSub Sample | SPY MUTE No sampling | 0.001
JM1 Resample SpreadSub Sample | SPY MUTE No sampling | 0.001
KC2 Resample SpreadSub Sample | SPY No sampling | MUTE 0.001
KC3 Resample SpreadSub Sample | SPY No sampling | MUTE 0.002
MC1 Resample SpreadSub Sample | SPY MUTE No sampling | 0.001
MC2 Resample SpreadSub Sample | SPY No sampling | MUTE 0.007
MWI1 Resample SpreadSub Sample | SPY MUTE No sampling | 0.001
PC1 Resample SpreadSub Sample | SPY MUTE No sampling | 0.002
PC2 Resample SpreadSub Sample | SPY MUTE No sampling | 0.000
PC3 Resample SpreadSub Sample | SPY MUTE No sampling | 0.002
PC4 Resample SpreadSub Sample | No sampling | SPY MUTE 0.002
PC5 Resample SpreadSub Sample | SPY No sampling | MUTE 0.002

According to above Friedman test results on AUC, sensitivity and precision, it can be
noticed that Resample method outperforms in majority of the cases as compared to other
sampling methods. This is due to the biasToUniformClass parameter which helps to resample
the dataset so as to achieve a good balanced ratio between minority and majority class

instances. However, an average performance of MUTE is due to its strict rule to eliminate

Shine Kamal Page 46

majority class samples. MUTE method removes majority class instance and declares it noisy
if and only if all its k nearest neighbors are minority class samples. This makes it difficult to
achieve balance between two classes as it is not possible for maximum of the majority
samples to have all its k nearest neighbors as minority samples because of latter being less in
number. Researchers should decrease the threshold value for noisy samples to a reasonable

digit so as to achieve better performance with respect to MUTE method.

5.5 RQS5: Which sampling technique is the best among oversampling, undersampling and

resampling techniques and why?

From the above Friedman tests, it can be noticed that ADASYN and Resample are the
best methods among oversampling and resampling techniques respectively. In order to further
justify which method is the best between the two we apply Wilcoxon signed rank test with
Bonferroni correction where alpha is set to a=0.05. The hypothesis H8 for Wilcoxon test is

stated below.

Null Hypothesis HS: Defect prediction models developed using five different ML
classifiers: J48, RF, NB, AB and BG are same when two sampling methods: ADASYN and
Resample are used to balance the imbalanced datasets when AUC, sensitivity and precision

performance measures were taken for evaluation.

Alternate Hypothesis HS8a: Defect prediction models developed using five different
ML classifiers: J48, RF, NB, AB and BG are different when two sampling methods:
ADASYN and Resample are used to balance the imbalanced datasets when AUC, sensitivity

and precision performance measures were taken for evaluation.

The Wilcoxon signed rank test performs pairwise comparison of ADASYN and
Resample on the performance metric (AUC, sensitivity and precision) values of the defect
prediction models developed by all the investigated ML techniques together on all the
datasets used in the study. The test depicts that both the techniques are efficient in their own
ways. ADASYN outperforms Resample in case AUC and precision while Resample
outperforms ADASYN in case of sensitivity. ADASYN dominates precision and AUC test

results significantly while Resample dominates recall results.

This is due to the biasness removing nature of the resample method. The
biasToUniformClass parameter helps to achieve an effective balance between the two classes.

This further helps to improve the correct prediction of minority class instances to a significant

Shine Kamal Page 47

level. Thus, correct prediction of minority class leads to the better sensitivity results.
Furthermore, ADASYN’s best performance in case of AUC and precision is due to its
adaptive nature which helps to balance the data by multiplying each minority class sample
using the synthetic sample generation method. It distributes the synthetic samples among
each minority class sample on the basis of density distribution function. Density distribution
function determines the number of synthetic samples that should be produced corresponding

to each minority class sample.

5.6 RQ6: What is the effect of using MC learners on imbalanced datasets for software defect

prediction?

This work also uses cost sensitive learning to handle the imbalanced data problem in
software defect prediction. We use three different cost ratios: 10, 30 and 50 to cost sensitize
the various ML classifiers used in this study. We compare the use of MC learners with the
scenario in which the original learners are used to build ML models. Tables 5.19-5.30
describes the results obtained by using different cost ratios in MC learners as well as those

obtained on original datasets.

It can be observed from the tables 5.19-5.30 that the average performance of ML
techniques improved (1-47%) in 6 out of 12 datasets in terms of AUC when MC learners
were used in comparison to the original scenario. However, the average performance of ML
techniques decreased in the remaining datasets. The results show that the MC with cost ratio
10 outperforms the other MC learners in majority of the cases when AUC was used while in
case of sensitivity MC with cost ratio 50 outperforms the other MC learners as well as the
original scenario. In fact, MC learners with all the cost ratios outperforms the original dataset
in case of sensitivity with percentage increase of 10-600%. This outcome is because the cost
values of MC learners were set in such a way so as to decrease the number of false negative
predictions. The lower the number of FNs the higher will be the chance of correctly
classifying defective modules. Thus, penalizing the classifier for false negatives lead to the
increase in sensitivity in all the datasets. But in order to develop the better predictive models
the balance between specificity and sensitivity must be achieved. Table 5.19-5.30 also show
that the precision values decreased in majority of the cases. However, the average
performance of ML techniques improved in case of two datasets: CM1 and PC2. But overall
decrease in precision values is a concerning factor and it should be researchers’ aim to

achieve balance among all the performance metrics.

Shine Kamal Page 48

The study also performed Wilcoxon signed rank test in order to make a pairwise

comparison between MC learners and the original dataset scenario. The test was performed

on AUC, sensitivity and precision values of the defect prediction models developed by the

application of five ML techniques (J48, RF, NB, AB and BG) on all the datasets (original as

well as MC learners) of the study. It was observed that original scenario outperformed MC

learners in case of AUC but non-significantly while in case of sensitivity MC learners

significantly outperformed the original dataset. As the defect prone classes are important to

learn correctly, MC learners help improve the prediction of defective modules and hence

improves the quality of the product. However, they may not always yield improved results.

Table 5.19 MC results for CM1 Dataset

Performance Classifier Original MC10) MC@30) MC(50)
Metric
AUC J48 0.594 0.581 0.657 0.678
RF 0.763 0.780 0.738 0.727
NB 0.694 0.686 0.684 0.688
AB 0.717 0.754 0.753 0.736
BG 0.727 0.760 0.711 0.671
Sensitivity J48 26.2 59.5 59.5 73.8
(in %) RF 0 71.4 90.5 95.2
NB 333 52.4 64.3 64.3
AB 0 90.5 95.2 97.6
BG 0 78.6 92.9 95.2
Specificity J48 93.7 67.2 67.9 55.3
(in %) RF 99.0 71.5 39.7 30.8
NB 89.1 71.2 64.6 64.2
AB 100.0 56.3 39.4 27.8
BG 99.0 64.2 36.8 22.5
Precision (in J48 36.7 20.2 20.5 18.7
%) RF 0 25.9 17.3 16.1
NB 29.8 20.2 20.1 20.0
AB 0 22.4 17.9 15.8
BG 0 23.4 17.0 14.6
Table 5.20 MC results for JM1 Dataset
Performance Classifier Original MC10) MC@30) MC(50)
Metric

AUC J48 0.616 0.623 0.535 0.483
RF 0.701 0.689 0.650 0.613
NB 0.633 0.650 0.650 0.650
AB 0.669 0.500 0.500 0.500
BG 0.689 0.682 0.587 0.500
Sensitivity J48 22.5 75.2 94.6 99.7
(in %) RF 20.5 79.4 97.2 99.1
NB 18.5 27.8 28.8 28.8

Shine Kamal

Page 49

AB 0 100.0 100.0 100.0

BG 17.2 90.0 99.8 100.0
Specificity 148 91.2 48.4 96 70.0
(in %) RF 95.5 44.9 82 024
NB 94.5 90.7 90.4 90.3
AB 100.0 0 0 0
BG 95.5 27.1 70.0 0
Precision (in J48 41.0 28.5 22.3 21.5
%) RF 55.3 28.3 225 21.7
NB 48.1 45.0 45.0 44.8
AB 0 215 21.5 21.5
BG 51.3 25.3 21.6 21.5

Table 5.21 MC results for KC2 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC 148 0.704 0.728 0.418 0.471
RF 0.825 0.812 0.723 0.702
NB 0.832 0.830 0.831 0.832
AB 0.784 0.804 0.570 0.499
BG 0.825 0.811 0.548 0.500
Sensitivity J48 49.5 79.4 92.5 100.0
(in %) RF 47.7 84.1 92.5 92.5
NB 42.1 57.0 57.0 57.0
AB 43.9 85.0 96.3 98.1
BG 43.0 86.0 96.3 100.0
Specificity J48 89.6 72.8 11.8 0
(in %) RF 92.5 69.6 45.3 34.9
NB 94.2 89.4 89.2 89.2
AB 91.1 69.9 12.8 024
BG 94.2 71.3 13.5 0
Precision (in J48 55.2 429 21.3 20.5
%) RF 62.2 41.7 30.4 26.8
NB 65.2 58.1 57.5 57.5
AB 56.0 42.1 222 20.6
BG 65.7 43.6 223 20.5

Table 5.22 MC results for KC3 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC 148 0.653 0.670 0.692 0.517
RF 0.736 0.692 0.644 0.646
NB 0.661 0.663 0.656 0.652
AB 0.573 0.624 0.528 0.506
BG 0.729 0.630 0.498 0.500
Sensitivity 148 33.3 69.4 75.0 86.1
(in %) RF 13.9 72.2 94.4 97.2
NB 38.9 50.0 52.8 52.8
AB 36.1 75.0 97.2 97.2

Shine Kamal Page 50

BG 13.9 75.0 97.2 100.0

Specificity 148 89.9 60.8 54.4 10.8
(in %) RF 96.8 58.9 18.4 10.1
NB 88.0 715 69.0 68.4
AB 93.0 475 032 019

BG 93.7 43.0 013 0
Precision (in J48 42.9 28.7 27.3 18.0
%) RF 50.0 28.6 20.9 19.8
NB 424 28.6 27.9 275
AB 54.2 245 18.6 18.4
BG 33.3 23.1 18.3 18.6

Table 5.23 MC results for MC1 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric

AUC J48 0.521 0.682 0.604 0.643
RF 0.883 0.917 0.877 0.868
NB 0.708 0.704 0.713 0.708
AB 0.842 0.793 0.816 0.812
BG 0.860 0.787 0.853 0.834
Sensitivity J48 8.7 30.4 30.4 37.0
(in %) RF 19.6 39.1 63.0 71.7
NB 32.6 58.7 65.2 71.7

AB 0 26.1 63.0 76.1

BG 0 19.6 56.5 76.1
Specificity J48 99.5 96.1 96.3 95.8
(in %) RF 99.5 98.1 91.4 85.8
NB 90.2 72.9 68.4 66.6
AB 100.0 96.7 81.5 73.2
BG 100.0 98.3 89.9 81.9
Precision (in J48 28.6 15.7 16.3 17.2
%) RF 474 32.7 14.8 10.7
NB 7.3 4.9 4.7 4.8

AB 0 15.8 7.5 6.3

BG 0 214 11.7 9

Table 5.24 MC results for MC2 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC 1438 0.698 0.575 0.575 0.566
RF 0.717 0.576 0.534 0.498
NB 0.702 0.676 0.674 0.674
AB 0.616 0.588 0.510 0.499
BG 0.676 0.502 0.500 0.500
Sensitivity 148 523 75.0 88.6 97.7
(in %) RF 38.6 93.2 100.0 100.0
NB 38.6 47.7 47.7 47.7
AB 40.9 97.7 100.0 100.0
BG 38.6 100.0 100.0 100.0

Shine Kamal Page 51

Specificity J48 81.5 29.6 27.2 8.6

(in %) RF 87.7 18.5 0 0
NB 90.1 80.2 77.8 76.5

AB 85.2 14.8 025 0

BG 86.4 0 0 0
Precision (in J48 60.5 36.7 39.8 36.8
%) RF 63.0 38.3 35.2 35.2
NB 68.0 56.8 53.8 525
AB 60.0 38.4 35.8 35.2
BG 60.7 35.2 35.2 35.2

Table 5.25 MC results for MW1 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric

AUC 148 0.449 0.583 0.661 0.562
RF 0.716 0.726 0.709 0.733
NB 0.728 0.711 0.705 0.703
AB 0.711 0.668 0.688 0.678
BG 0.705 0.745 0.700 0.500
Sensitivity J48 14.8 40.7 59.3 92.6
(in %) RF 18.5 55.6 74.1 81.5
NB 55.6 59.3 63.0 63.0
AB 29.6 55.6 85.2 88.9
BG 11.1 63.0 88.9 100.0
Specificity J48 95.6 77.4 68.1 14.6
(in %) RF 96.0 82.3 53.5 35.4
NB 84.5 73.5 72.6 72.6
AB 94.7 81.9 47.8 33.6

BG 98.7 80.1 21.7 0
Precision (in J48 28.6 17.7 18.2 11.5
%) RF 35.7 27.3 16.0 13.1
NB 30.0 21.1 215 21.5
AB 40.0 26.8 16.3 13.8
BG 50.0 27.4 11.9 10.7

Table 5.26 MC results for PC1 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC J48 0.719 0.691 0.801 0.803
RF 0.844 0.848 0.850 0.842
NB 0.768 0.717 0.716 0.718
AB 0.793 0.802 0.804 0.810
BG 0.820 0.816 0.792 0.776
Sensitivity J48 24.6 55.7 72.1 88.5
(in %) RF 13.1 49.2 93.4 98.4
NB 36.1 42.6 459 475
AB 0 85.2 95.1 96.7
BG 8.2 63.9 934 96.7
Specificity J48 96.7 81.1 779 713

Shine Kamal Page 52

(in %) RF 98.1 88.5 64.8 56.2

NB 92.8 80.1 78.2 77.7

AB 99.6 67.0 56.4 53.4

BG 99 4 78.7 56.3 491

Precision (in J48 39.5 20.5 22.2 21.3
%) RF 38.1 27.3 18.8 16.4

NB 30.6 15.8 15.6 15.7

AB 0 18.4 16.0 154

BG 55.6 20.7 15.7 14.3

Table 5.27 MC results for PC2 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric

AUC J48 0.448 0.652 0.662 0.620
RF 0.836 0.814 0.892 0.927
NB 0.877 0.867 0.862 0.860
AB 0914 0.826 0.880 0.880
BG 0.828 0.849 0.860 0.858

Sensitivity J48 0 18.8 25.0 18.8
(in %) RF 0 063 37.5 56.3
NB 313 62.5 62.5 62.5

AB 6.3 37.5 68.8 75.0

BG 0 18.8 43.8 62.5

Specificity J48 99.7 97.7 97.1 96.8
(in %) RF 99.9 99.2 94.5 92.0
NB 96.1 84.2 82.1 81.6

AB 99.8 97.6 93.3 913

BG 100.0 99.5 95.3 925

Precision (in J48 0 7.7 8.2 5.7
%) RF 0 7.1 6.5 6.0

NB 7.6 3.9 34 34

AB 25.0 14.0 9.5 8.1

BG 0 27.3 8.8 7.8

Table 5.28 MC results for PC3 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC J48 0.616 0.710 0.744 0.733
RF 0.831 0.819 0.807 0.795
NB 0.766 0.564 0.548 0.531
AB 0.791 0.809 0.787 0.789
BG 0.824 0.806 0.768 0.774
Sensitivity J48 26.1 68.7 77.6 82.8
(in %) RF 112 78.4 94.8 96.3
NB 91.8 94.8 94.8 955
AB 0 85.8 93.3 96.3
BG 11.2 85.8 91.8 97.8
Specificity J48 933 72.0 70.5 66.9

(in %) RF 97.6 74.4 53.6 43.5

Shine Kamal Page 53

NB 277 099 067 069

AB 100.0 63.8 45.8 35.4

BG 97.7 68.6 50.3 38.1

Precision (in J48 35.7 25.8 27.2 26.2
%) RF 39.5 30.3 225 19.5

NB 15.3 13.0 12.6 12.7

AB 0 25.2 19.7 17.5

BG 40.5 28.0 20.8 18.3

Table 5.29 MC results for PC4 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC 1438 0.777 0.859 0.850 0.857
RF 0.945 0.918 0.890 0.877
NB 0.836 0.728 0.730 0.734
AB 0.913 0.881 0.855 0.874
BG 0.920 0.900 0.858 0.833
Sensitivity J48 48.9 84.8 88.2 91.0
(in %) RF 37.6 91.6 98.9 99.4
NB 38.2 44.4 47.2 47.8
AB 23.0 97.2 97.8 97.8
BG 46.1 94.4 97.8 97.8
Specificity J48 93.6 83.8 81.5 81.1
(in %) RF 98.1 80.4 67.7 60.8
NB 93.8 83.8 82.3 81.9
AB 98.4 72.3 68.7 65.0
BG 96.4 77.4 69.6 68.8
Precision (in J48 51.5 42.1 39.8 40.1
%) RF 73.6 39.4 29.9 26.1
NB 46.3 27.6 27.0 26.8
AB 66.1 32.8 30.3 28.0
BG 64.1 36.8 30.9 30.3

Table 5.30 MC results for PC5 Dataset
Performance Classifier Original MC10) MC@30) MC(50)

Metric
AUC 148 0.817 0.871 0.908 0.906
RF 0.977 0.971 0.965 0.964
NB 0.937 0.930 0.929 0.929
AB 0.959 0.960 0.959 0.956
BG 0.975 0.966 0.968 0.963
Sensitivity 148 46.3 77.1 83.1 85.3
(in %) RF 43.4 88.2 94.4 96.3
NB 44.8 70.5 70.9 70.9
AB 14.5 87.2 91.9 92.1
BG 39.7 88.4 93.4 95.3
Specificity 148 99.0 96.5 96.0 95.4
(in %) RF 99.3 95.8 93.8 92.8
NB 98.0 93.8 93.7 93.7

Shine Kamal Page 54

AB 99.7 94.2 91.1 90.0

BG 99.4 95.6 93.9 93.0
Precision (in J48 60.1 40.6 39.2 36.7
%) RF 67.3 39.3 32.0 29.2

NB 41.1 26.1 26.0 25.9

AB 60.0 31.7 24.2 222

BG 65.9 38.4 32.0 29.7

5.7 RQ7: What is the comparative performance of best sampling method and MC learners for

software defect prediction?

According to the findings in RQS5, ADASYN is the overall best sampling method to
handle imbalanced datasets. This RQ compares ADASYN with MC learners using Wilcoxon
signed rank test. The result of the pairwise comparison of ADASYN and MC learners was
evaluated on AUC, sensitivity and precision using all the datasets of the study together where
models were developed by the application of five ML techniques (J48, RF, NB, AB, BQG).
According to the results, ADASYN method significantly outperformed the MC learners in
case of AUC and precision. However, MC learners outperform ADASYN non-significantly
in case of sensitivity. This is due to the fact that MC learners focus more on correct prediction
of defective class instances by cost sensitizing the classifiers for false negatives leading to the

increase in sensitivity values.

However, the overall best performance of ADASYN in all the cases is because of its
property to balance the data using density distribution method. The synthetic samples to be
generated may vary in number for every minority class sample depending upon the value of
density distribution function. Density distribution helps in defining the region in which
synthetic samples should be yielded for each minority class sample. This property makes
ADASYN works automatically while in other sampling methods as well as in case of MC

learners, we are supposed to set one or more parameters (k, n or cost ratios) manually.

Shine Kamal Page 55

CHAPTER 6

CONCLUSION

This study ascertains if balancing the datasets improves the performance of ML
techniques in software defect prediction. The study uses five ML classifiers namely J48, RF,
NB, AB and BG to develop defect prediction models. In order to handle imbalanced data, the
study uses nine existing sampling methods: SMOTE, ADASYN, Safe-Level-SMOTE,
SPIDER, SPIDER2, MUTE, SPY, SpreadSubSample and Resample. As only the SMOTE
method is used in most of the previous studies, we implemented all the above mentioned
sampling methods in MATLAB environment in order to perform our analysis. We also
proposed a modified version of SPIDER2 ie. SPIDER3 and implemented the same.
Furthermore, MC learners were also evaluated to ascertain their effectiveness in improving
the results of the developed defect prediction models on imbalanced datasets. Moreover, a
comparative analysis between MC learners and sampling methods was also performed. The
empirical validation was done using AUC and three traditional metrics: sensitivity, precision

and specificity and the outcomes of the study were statistically assessed.
6.1 The Conclusions of the Work

e A significant improvement was observed in the performance of ML techniques when
sampling methods were used to handle imbalancing in datasets. Moreover, ADASYN was
observed to be the best oversampling method among others due to its adaptive nature and
capability to balance the data automatically using density distributions. In addition, other
oversampling methods also performed well. SMOTE and SPIDER showed comparative

results followed by other techniques.

e Resample method outperformed among resampling and undersampling methods. It shows
the best sensitivity results among all the sampling methods including oversampling. This
is due to its unbiased nature to resample the data by setting biasToUniformClass

parameter to an optimum value.

e MUTE undersampling method can be improved for developing better prediction models
by relaxing the threshold value used to identify noisy majority class samples to a

reasonable amount. MUTE method removes majority class instance and declares it noisy

Shine Kamal Page 56

if and only if all its k nearest neighbors are minority class samples. This makes it difficult
to achieve balance between two classes leading to the poor development of prediction

models.

e The proposed method SPIDER3 i.e. the modified version of SPIDER?2 significantly
outperforms SPIDER2 method in case of AUC and precision while it showed
comparative results when evaluated using sensitivity measure. The modified version only
improved the performance of existing one by generating synthetic samples per each

defective class sample rather than just replicating them.

e MC learners are another effective way to handle the imbalancing problem. They cost
sensitize the classifier in order to improve predictable nature of the predictive models by
using different cost ratios for various misclassification errors. They outperformed the
results of original datasets in case of sensitivity. However, AUC and precision results
were average. They showed lower performance in comparison to original non cost-

sensitized learners i.e. oversampling methods when evaluated using AUC and precision.

e A pairwise comparison between ADASYN and MC learners with best cost ratio
concluded that ADASYN is the better method to handle imbalancing problem as
compared to MC learners. ADASYN significantly outperformed in case of AUC and
precision. Although MC learner with cost ratio 50 outperformed ADASYN in few cases
when evaluated using sensitivity but the results were non-significant. Moreover,
ADASYN provides balanced results among various performance measures, which is in

fact necessary for better development of defect prediction models.
6.2 Future Scope

The analysis performed in this study can be used to develop efficient defect prediction
models in case of imbalanced data problem. The future work will focus on another category
of balancing methods i.e. ensemble methods using inter-cross validation method.
Furthermore, the future research may include a statistical comparison between sampling and

ensemble methods for the betterment of defect prediction models in case of imbalanced data.

Shine Kamal Page 57

REFERENCES

[1] J. Stefanowski, Sz. Wilk, “Selective Pre-processing of Imbalanced Data for Improving
Classification Performance” In Proc. of 10th Int. Conference DaWaK 2008, LNCS vol. 5182,
Springer Verlag,, 283 292, 2008.

[2] C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap, “safe-level-synthetic minority
over-sampling technique for handling the class imbalanced problem”, in: Advances in

Knowledge Discovery and Data Mining,, pp. 475482, 2009.

[3] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive Synthetic Sampling
Approach for Imbalanced Learning”, International Joint Conference on Neural Networks

(IJCNN 2008).

[4] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Oversampling Technique,” Journal of Artificial Intelligence Research, vol. 16, pp.

321-357, 2002.

[5] A. Syaripudin and M. L. Khodra, “A Comparison for Handling Imbalanced Datasets”,
International Conference of Advanced Informatics: Concept, Theory and Application

(ICAICTA), 2014,

[6] V. Lopez, A. Fernandez, S. Garcia, V. Palade, F. Herrera, “An insight into classification
with imbalanced data: Empirical results and current trends on using data intrinsic
characteristics”, Information Sciences 250, journal homepage: www.elsevier.com/locate/ins,

pp- 113-141, 2013.

[7] D. Rodriguez, 1. Herraiz and R. Harrison, “Preliminary Comparison of Techniques for
Dealing with Imbalance in Software Defect Prediction”, Proceedings of the 18th International

Conference on Evaluation and Assessment in Software Engineering, Article No. 43, 2014.

[8] M.J. Siers, M.Z. Islam, “Software defect prediction using a cost sensitive decision forest
and voting, and a potential solution to the class imbalance problem ”, Information Systems

Volume 51, Pages 62—71, July 2015.

Shine Kamal Page 58

[9] J. Chen, S. Liu and W. Liu, “A Two-Stage Data Preprocessing Approach for Software
Fault Prediction”, Software Security and Reliability, 2014 Eighth International Conference,
15 September 2014.

[10] M. Liu, L. Miao and D. Zhang, “Two-Stage Cost-Sensitive Learning for Software Defect
Prediction”, IEEE Transactions on Reliability, Volume: 63, Issue: 2, June 2014.

[11] S. Wang and X. Yao, “Using Class Imbalance Learning for Software Defect Prediction”,
Reliability, IEEE Transactions, pg 434-443, June 2013.

[12] R. Shatnawi, “Improving software fault-prediction for imbalanced data”, Innovations in

Information Technology (IIT), 2012 International Conference, pg 54-59, March 2012.

[13] T. M. Khoshgoftaar and K. Gao, “Feature Selection with Imbalanced Data for Software
Defect Prediction”, Proceedings of the 2009 International Conference on machine learning

and Applications, p.235-240, December 13-15, 2009.

[14] Y. Kamei, A. Monden and S. Matsumoto, “The Effects of Over and Under Sampling on
Fault-prone Module Detection”, Empirical Software Engineering and Measurement, 2007.

ESEM 2007. First International Symposium, Oct 2007.

[15]J. C. Riquelme, R Ruiz, D Rodr’iguez, and J Moreno, “Finding Defective Modules from
Highly Unbalanced Datasets”, Actas de los Talleres de las Jornadas de Ingenieria del
Software y Bases de Datos, Vol. 2, No. 1, 2008.

[16] R. Malhotra and A. Jain, "Fault Prediction Using Statistical and machine learning
Methods for Improving Software Quality," Journal of Information Processing Systems, vol.

8, no. 2, pp. 241-262, 2012.

[17] R. Malhotra, “A systematic review of machine learning techniques for software fault

prediction”, Applied Soft Computing 27, 504-518, 2015.

[18] D. Ramyachitra and P. Manikandan, “Imbalanced dataset classification and solutions: a
review”, International Journal of Computing and Business Research (IJCBR), ISSN (Online):

2229-6166, Volume 5 Issue 4 July, 2014.

[19] S. Kotsiantis, D. Kanellopoulos and P. Pintelas, "Handling imbalanced datasets: A
review," GESTS International Transactions on Computer Science and Engineering, Vol.30,

2006.

Shine Kamal Page 59

[20] M. Tan, L. Tan, S. Dara and C. Mayeux, “Online Defect Prediction for Imbalanced
Data”, IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015.

[21] R. Malhotra and M. Khanna, “An empirical evaluation for software change prediction

using imbalanced data”, Automated Software Engineering, Springer, August 2016.

[22] P. Domingos, “MetaCost: A General Method For Making Classifiers Cost Sensitive”, In
Proc. of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, CA, 155-164, 1999.

[23] M. Halstead, “Elements of Software Science”, Elsevier, New York, 1977.
[24] T. McCabe, “A complexity measure”, IEEE Trans. Softw. Eng. 2, 308-320, 1976.

[25] S Lessmann, B. Baesans,C. Mues,S. Pietsch, “Benchmarking classification models for
software defect prediction: a proposed framework and novel finding” IEEE Trans on Softw

Eng,Vol 34, 485496, july/august 2008.

[26] C. Catal and B. Diri, "A systematic review of software fault prediction studies," Expert

Systems with Applications,vol. 36, pp. 7346-7354, 2009.

[27] A. Chug, S. Dhall , “Software Defect Prediction Using Supervised Learning Algorithm
and Unsupervised Learning Algorithm”, Confluence 2013: The Next Generation Information

Technology Summit (4th International Conference), pg 5.01, 2013.

[28] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem”, Information Sciences 179, 1040—

1058, 2009.

[29] C. Catal, “Software fault prediction: a literature review and current trends”, Expert Syst.

Appl. 38, 46264636, 2011.

[30] I. Gondra, "Applying machine learning to software fault-proneness prediction," The

Journal of Systems and Software, vol. 81, pp. 186-195, 2008.

[31] Z. Li and M. Reformat, “A practical method for the software fault-prediction”,
Information Reuse and Integration, IRI. IEEE International Conference, IEEE, Las Vegas, IL,
August, 2007.

[32] E. Hong, “Software fault-proneness Prediction using random forest”, International

Journal of Smart Home Vol. 6, No. 4, October, 2012.

Shine Kamal Page 60

[33] A. Shanthini and R. M. Chandrasekaran, “Applying machine learning for Fault
Prediction Using Software Metrics”, International Journal of Advanced Research in

Computer Science and Software Engineering, Volume 2, Issue 6, June 2012.

[34] Y. Singh, R. Malhotra, A. Kaur, “Empirical validation of object-oriented metrics for
predicting fault proneness at different severity levels using support vector machines”, Int.

Journal of System Assur. Eng. Management, 1(3):269-281, July-Sept, 2010.

[35] P. Jeatrakul, K. W. Wong, and C. C. Fung, “Classification of Imbalanced Data by
Combining the Complementary Neural Network and SMOTE Algorithm”, Springer-Verlag
Berlin Heidelberg, ICONIP, Part 11, LNCS 6444, pp. 152-159, 2010.

[36]T. Menzies, A. Dekhtyar, J. Distefance, J. Greenwald, “Problems with precision:a
response to comments on ‘data mining static code attributes to learn defectpredictors”, IEEE

Trans. Softw. Eng. 33 637-640, 2007.

[37] H. He and E. A. Garcia, “Learning from imbalanced data.” IEEE Trans on Knowledge
Data Eng Vol 21, 1263-1284, 2009.

[38] K. Gao, T. M. Khoshgoftaar, A. Napolitano, “Combining feature subset selection and
data sampling for coping with highly imbalanced software data.”, In Proc. of 27th

International Conf. on Software Engineering and Knowledge Engineering, Pittsburgh, 2015.

[39]J. Demsar, “Statistical comparisons of classifiers over multiple data sets.”, J Mach Learn

Res Vol 7, 1-30, 2006
[40] L. Breiman, “Random Forests.”, Machine Learning Vol 45, 5-32, 2001.
[41] K. P. Murphy, “Naive Bayes classifiers”, Technical Report, 2006.

[42] I. H. Witten, E. Frank, M. A. Hall, “Data mining: practical machine learning, tools and

techniques”, 3rd edition. Morgan Kaufmann, San Francisco, 2011.
[43] L. Breiman, “Bagging predictors.” Machine Learning Vol 24, 123-140, 1996.

[44] K. Napierala, J. Stefanowski, S. Wilk, “Learning from Imbalanced Data in Presence of
Noisy and Borderline Examples”, Springer-Verlag Berlin Heidelberg, RSCTC, LNAI 6086,
pp- 158-167, 2010.

[45] D. R. Wilson and T. R. Martinez, “Reduction Techniques for Instance-Based Learning
Algorithms”, Machine learning, 38, 257-286, 2000.

Shine Kamal Page 61

[46] T. Fawcett, “An introduction to ROC analysis.”, Pattern Recogn Lett Vol 27, 861-874,
2006.

[47] G. J. Pai, J. B. Dugan, “Empirical analysis of software fault content and fault proneness

using Bayesian methods.”, IEEE Trans on Softw Eng, Vol 33, 675-686, 2007.

[48] N. Seliya and T.M. Khoshgoftaar, “The use of decision trees for costsensitive
classification: an empirical study in software quality prediction.” Wiley Interdiscip Rev: Data

Min Knowl Disc 1, pg 448459, 2011.

[49] G.M. Weiss, K. McCarthy and B. Zabar, “Costsensitive learning vs. sampling: which is
best for handling unbalanced classes with unequal error costs?”, In Proc. of International

Conf. on Data Mining, pg 3541, 2007.

[50] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, “A review on
ensembles for the class imbalance problem: Bagging, boosting, and hybridbased

approaches.”, IEEE Trans Syst Man Cybern Part C Appl Rev 42, pg 463—484, 2012.

[51] M. Zigba, “Service-oriented medical system for supporting decisions with missing and
imbalanced data”, IEEE Journal of Biomedical and Health Informatics, Vol 18, pg 1533 —
1540, May. 2014.

[52] Z. Miao, L. Zhao, W. Yuan, “Multiclass imbalanced learning implemented in network
intrusion detection”, Computer Science and Service System (CSSS), IEEE International

Conference, 2011.

[53] T. M. Padmaja, N. Dhulipalla, R. S. Bapi, P. R. Krishna, “Unbalanced data classification
using extreme outlier elimination and oversampling methods for fraud detection”, 15th
International Conference on Advanced Computing and Communications (ADCOM), pg 511

— 516, 2007.

[54]J. Li, Q. Du, W. L1, Y. Li, “Representation based hyperspectral image classification with
imbalanced data”, IEEE International Geoscience and Remote Sensing Symposium

(IGARSS), pg 3318 — 3321, 2016.

[55] T. Zimmermann, N. Nagappan and A. Zeller, “Predicting bugs from history”, Software
Evolution, Springer, pp 69-88, 2008.

Shine Kamal Page 62

[56] R. Malhotra, N. Pritam and Y. Singh, "On the applicability of evolutionary computation
for software defect prediction”, International Conference on Advances in Computing

Communications and Informatics (ICACCI), 2014.

[57] C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, “MUTE: Majority Under-
sampling Technique”, ICICS, 2011.

[58] X. T. Dang, D. H. Tran, O. Hirose, K. Satou, “SPY: a novel resampling method for
improving classification performance in imbalanced data”, Seventh International Conference

on Knowledge and Systems Engineering, 2015.

[59] http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-
le.html

[60] http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/Resample.html

Shine Kamal Page 63

http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-le
http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsamp-le

