## CHAPTER 1

## INTRODUCTION

### 1.1 Regular and Irregular structures

Structures are designated as structurally regular or irregular. A regular structure has no significant discontinuities in plan, vertical configuration, or lateral force resisting systems. An irregular structure, on the other hand, has significant discontinuities such as horizontal irregularities and vertical irregularities. The various types of structural irregularities are as shown:

- Vertical stiffness irregularity (soft storey)
- Weight (mass) irregularity
- Vertical geometric irregularity
- In-plane discontinuity
- Out-of-plane offsets
- Discontinuity in capacity (weak storey)
- Torsional sensitivity
- Non-orthogonal systems


### 1.2 Soft storey building and its behaviour

A soft story is defined as a story in a building that has substantially less stiffness or inadequate ductility (energy absorption capacity) to resist the earthquake induced building stresses. If a building has a floor which is $70 \%$ less stiff than the floor above it, it is considered a soft story building. This soft story creates a major weak point in an earthquake, and since soft stories are classically associated with retail spaces and parking garages, they are often on the lower stories of a building, which means that when they collapse, they can take the whole building down with them, causing serious structural damage which may render the structure totally unusable.

Many building structures having parking or commercial areas in their first stories, suffered major structural damages and collapsed in the recent earthquakes. Large open areas with less infill and exterior walls and higher floor levels at the ground level result in soft stories and hence damage. In such buildings, the stiffness of the lateral load resisting systems at those
stories is quite less than the stories above or below. In Fig. below, the lateral displacement diagram of a building with a soft storey under lateral loading is shown.


Fig. 1Soft story behaviour of a building structure under lateral loading [35]

During an earthquake, if abnormal inter-story drifts between adjacent stories occur, the lateral forces cannot be well distributed along the height of the structure. This situation causes the lateral forces to concentrate on the storey (or stories) having large displacement(s). In addition, if the local ductility demands are not met in the design of such a building structure for that storey and the inter-storey drifts are not limited, a local failure mechanism or, even worse, a storey failure mechanism, which may lead to the collapse of the system, may be formed due to the high level of load deformation (P- $\Delta$ ) effects.


Fig. 2 Collapse mechanism of such a building structure with a soft storey under both earthquake and gravity loads [35]

Lateral displacement of a storey is a function of stiffness, mass and lateral force distributed on that storey. It is also known that the lateral force distribution along the height of a building is directly related to mass and stiffness of each story. If the P- $\Delta$ effect is considered to be the main reason for the dynamic collapse of building structures during earthquakes, accurately determined lateral displacements calculated in the elastic design process may provide very important information about the structural behaviour of the system. Therefore dynamic analysis procedure is required in many of the actual codes for accurate distribution of the earthquake forces along the building height, determining modal effects and local ductility demands efficiently. Although some of the current codes define soft storey irregularity by stiffness comparison of adjacent floors, displacement based criteria for such irregularity determination is more efficient, since it covers all the mass, stiffness and force distribution concepts.

### 1.3 Preventing soft storey irregularities

In constructions where it is necessary to build a soft storey, lateral rigidity of this particular storey should be brought to the rigidity level of the other storeys. To be able to do this, the number of columns and shear walls should be increased. because of this increase, longitudinal and lateral reinforcement should also be increased. These raise the cost of the construction. Soft storey is an irregularity which affects the behaviour of a construction during a quake and also increases the construction costs. For this reason, soft storeys should be avoided as much as possible. In case it is necessary, by the controls to be performed as a result of calculation made, irregularities can be eliminated as follows:

- Building additional walls (Fig.3.a)
- Increasing the rigidity of the columns and the shear walls on the soft storey (Fig.3.b)
- Regulating the dimensions of the columns and shear walls by longitudinal and lateral reinforcement so that the soft floor would show a ductile behaviour (Fig.3.c)
- Preventing cracking by placing the wall at a certain distance from columns and walls that are on the soft storey (Fig.3.d)


Fig. 3 Methods of preventing soft storey irregularities

Now that we cannot leave the already present buildings, we should turn them into resisting ones according to the new Code of Earthquake. Since the codes and regulations are changed as a result of technological advances and examination of the quake results, those constructions which are considered resistant according to the previous regulations can be weakness according to the new regulations. To be able to do this, present irregularities should be eliminated. Upon investigation in the quake region, it was observed that constructions built in accordance with the previous Code of Earthquake (1975) underwent greater damage, and those built in accordance with the new Code (1998) underwent less damage, and some did not even undergo any damage. to bring the present buildings into resistant state of being, proper one of the following method is applied:

- Increasing the lateral rigidity of this storey by putting up additional walls between single structural elements on the soft storey.
- Increasing the lateral rigidity of this storey by placing steel diagonals between the columns and shear walls3. Putting flexible material between columns and walls on the storey atop the soft storey thus preventing it to work together with the soft storey.
- Increasing the rigidity of the soft storey by reinforcing the columns of the soft storey.


### 1.4 Motivation of study

The determination of seismic demand of a building plays an imperative role in the design of irregular building. If these mentioned demands are not estimated accurately during the design or evaluation phase of the building structure, a local or a progressive collapse becomes
unavoidable in a severe earthquake. The evaluation of irregular structures, such as building structures with soft stories, becomes more important as they have been seriously damaged or collapsed in the earthquakes due to their special collapse mechanisms.. In these condition the role of structural engineer become more critical if the building located in seismically active zone. In order to provide the solution which meets the structural performance of building as specified by governing code and simultaneously providing satisfactory output to clients, structural engineer should have sound understanding of response of different types, parts and configuration of building during seismic event. So structure engineer needs a design procedure that can calculate seismic demands of irregular building.

### 1.5 Specific point of study

Irregularity arises in building when there is non uniform distribution of mass, stiffness, and/or strength along height of building exist. When one or more of these properties is nonuniformly distributed, either individually or in combination with other properties in any direction, the structure is referred to as being irregular. In the present investigation seismic behaviour of building due to stiffness irregularity has been studied. The five storey building model is programmed on STAAD PRO following the guidelines of Indian codes. The stiffness of each storey is varied and corresponding behaviour of building is examined by determining the numerous parameters.

### 1.6 Organization Of Dissertation

For presentation purposes, the dissertation is structured in six chapters. Summaries of the contents of these chapters are given hereafter.

Chapter 1 introduces the background, specific point of study, motivation of study.
Chapter 2 present detailed objective of study.
Chapter3 present literature review, past earthquake event.
Chapter4 discusses programme of study that include building details, input parameters and output parameters and different codal provision.

Chapter 5 present results and discussion.
Chapter6 conclude the dissertation by drawing conclusion from different chapter and suggesting future research requirement.

Appendix present staad editor file of original building which is designed in STAAD PRO V8i.

## CHAPTER 2

## OBJECTIVES

## Following are the objectives of study:

1. To develop model of a real building actually constructed or to be constructed. This building may or may not be properly regular as per guideline of IS 1893 Part 1-2202.
2. To study the guideline of IS 1893 Part 1-2002 and IS 875 with respect to general principles and design criteria.
3. To study stiffness irregularities or soft storey criteria as per IS 1893 and that of relevant characteristics in the ground storey of the real building model.
4. To consider appropriate changes in physical parameters in real building model and to study the effects of these changes on soft storey characteristics of building model and on seismic performance of building.
5. To study the effect of application of changes (as described in objective no. 5 above) in other study of the building model and to study of the real building model and to study changes in seismic performance of building.
6. To compare changes in seismic performances effected because of changes in stiffness in ground floor storey (as per objective no.4) and in other stories (as per objective no. 5 above).
7. To draw graphs for changes in building performance indices Vs changes in storey stiffness and to attempt at developing characteristic equation for relationships amongst various parameters.

## CHAPTER 3

## LITERATURE REVIEW

In the evaluation of the inelastic behaviour of the building structures, there are twocommon methods, which are based on the nonlinear static pushover analysis. Capacity Spectrum Method, which is also referred in ATC-40 [2], is one of the mostpopular methods utilized for the evaluation of buildings. It was developed by Freeman et.al. [1]. In the method, the structural capacity curve is calculated andcompared with the demand spectrum. A performance point that lies on both thecapacity spectrum and the demand spectrum is obtained for performance evaluation of the structure. The second method, which is called Displacement CoefficientMethod that is described in FEMA-356 [2], is based on the displacementmodification factors used for modifying the elastic spectral displacement of anequivalent SDOF system.The approximations made for these methods bring some weaknesses such as notconsidering the higher mode effects and invariant lateral load patterns. In theliterature, many researchers investigated and tried to improve these weaknesses. Forexample, Fajfar and Fischinger [3] offered using invariant story forces proportional to the deflected shape of the structure. On the same subject, Eberhard and Sozen [4]offered load patterns based on mode shapes derived from secant stiffness at each loadstep. In a similar study, Park and Eom [5] proposed a new design method using secant stiffness. It is stated that the new method directly calculates the inelastic strength and deformation demands more effectively. In their study, they emphasizedthat the soft-story can only be prevented by energy dissipation among the structure and only spreading the plastic hinges along the building height can maximize it.

Moghaddam [6] studied a method to determine the higher mode effects in tallbuildings. A series of pushover analysis is performed on the buildings in which theelastic mode shapes are used as load patterns.

Sasaki, Freeman and Paret [7] proposed a multimodal procedure to predict highmode effects. The proposed procedure is said to be successful in predicting in high mode effects but it cannot provide exact seismic response of such structures. Different from the abovementioned procedures, Chopra and Goel [8] formed aprocedure forpushover analysis and named it as Modal Pushover Analysis (MPA).Comparing the results obtained by
thisprocedure with various load patterns indicatedthat the MPA is more accurate than all pushover analysis methods in estimating floordisplacements, story drifts, plastic hinge rotations and plastic hinge locations as theother pushover methods underestimate the story drift demands and lead to large errors in plastic hinge rotations. In addition, it was stated that MPA results werefound to be similar to the time history analysis results. In another study by

Chintanapakdee and Chopra [9], the accuracy of MPA procedure is evaluated and itwas stated that the MPA results were in good correlation with nonlinear dynamicanalyses. In that study, the MPA procedure is also used to estimate seismic demandof inelastic systems with seismic demand being defined by an elastic design spectrum. The same authors investigated the accuracy of modal pushover analysisprocedure for irregular frames. It is stated in that study that, the MPA is found tobe more reliable than FEMA-356 [10] force distributions for all irregular frames. It isalso expressed that if sufficient modes are taken into account, MPA gives very closeresults to the time history analysis results while compared with the other loaddistributions. Furthermore, it is added that the irregularities influence the variation ofstory drifts, with the effects of strength irregularity larger than stiffness irregularity,and the combination of both has the largest among them.

Attard and Fafitis [10] studied a modified method of MPA in which a variant loadpattern is obtained from a mode shape of a yielding point. It is stated in that studythat, after iteration on the parameters obtained from time history analysis, the proposed method gives almost the same results.

In another study by Chopra and Goel [11], the role of higher mode effects inpushover analysis is investigated. It is found out that the higher mode pushovercurves lead to plastic hinge mechanisms that are not detected by the effective first mode load pattern or other force distributions given by FEMA-356. On the otherhand, it is stated that these mechanisms do not develop during ground motion in aregular building without a soft and/or weak story. It is also shown in that study thatreversals in a higher mode pushover curve occurs after formation of a mechanism if the resultant force above the bottom of the mechanism is in the direction that moves the roof in a direction opposite to that prior to formation of the mechanism. Reversalscan occur only in higher mode pushover analyses but not in the pushover analyses for the first mode or other FEMA-273 [12] force distributions. In case of soft and/orweak story it is stated that the story drift demands in the modified and neighbouringstories is
increased and the drift demands in other stories is decreased. On the otherhand, a stiff and/or strong story decreases the drift demand in the modified andneighbouring stories and increases the drift demands in other stories. Additionally, itis expressed that while the roof displacement is usually insensitive to verticalirregularity, it is significantly different for frames that are stiffness-and-strengthirregular in their lower half. Irregularity in the base story or lower stories hassignificant influence on the height-wise distribution of floor displacements.

Gupta and Kunnath [13] investigated the FEMA-356 procedures and offered a newprocedure called Adaptive Pushover Procedure (APM) to account for the highermode effects and to overcome the shortcomings of the FEMA-356 procedure. It is noted that the FEMA 356 procedure fails in accurate determination of ductilitydemands, and APM is more accurate in determining seismic demands.

Kalkan and Kunnath [14] focused on the prediction of seismic demands of structuresand the results of time history analysis results are compared with various nonlinearpushover static loadings. It is stated that, the FEMA-356 method and Upper-BoundPushover Procedure give poor predictions of demands when higher mode effects aresignificant and MPA procedure leads to more accurate predictions. However, the MPA method is found to be misleading in determining the demands in upper stories as it ignores the inelastic contribution of higher modes. They noted that the bestmethod for predicting the seismic demands of a building structure is the AdaptiveModal Combination Procedure, which integrates the capacity spectrum, modalcombination and adaptive loading patterns. In another study by the same authors [36], the local component demands of FEMA-356 are investigated. The pushovermethods are mentioned as an improvement over existing elastic forcebasedprocedures and provide critical information on potential collapse mechanisms and the vulnerability for soft stories. It is also stated that, for the structures respondingprimarily in the first mode, nonlinear static methods may be a reliable option toestimate inelastic demands but may also be misleading in the determination of theseismic demands of upper stories in midrise structures.In addition to the studies on the nonlinear static pushover procedures mentionedabove, the studies on various load patterns have also been carried out.

Mwafy andElnashai [15] investigated the applicability and accuracy of inelastic static pushoveranalysis in predicting the seismic response of reinforced concrete buildings. It isstated that, if the load pattern is chosen carefully, the model may represent theinelastic
response of the low and mid-rise buildings. For high-rise buildings, due to the problem of predicting the higher mode effects, it is recommended to use more load patterns. In addition, the uniform load pattern is found to be very conservativein prediction of seismic demands in that study.

Krawinkler and Seneviratna [17] summarized basic concepts on which the pushoveranalysis can be based. In addition, they assessed the accuracy of pushover predictions and identified the conditions under which the pushover will provideadequate information. They also identified the cases in which the pushoverpredictions will be inadequate or even misleading. It is noted that carefullyperformed pushover analysis may provide insight into structural aspects that controlperformance during severe earthquakes. It is also stated that the structures for whichthe primary mode of vibration is the fundamental mode, demands will be obtainedbetter with pushover analysis. Weaknesses such as story mechanisms, excessivedeformation demands, strength irregularities and overloads on columns andconnections that may remain hidden in an elastic analysis will be made obvious withthis analysis. However, for structures in which higher mode effects are significant and in which the applied load pattern affects the story shear versus story drift relations, the deformation estimates obtained from a pushover analysis may be veryinaccurate. A possible solution to overcome this problem is to several load patternsincluding ones that can account for the higher mode effects. Another critical aspect for the pushover analysis is that although the first local mechanism that will form in an earthquake will be detected through this analysis, other weaknesses that occur when the structure's dynamic characteristics change after formation of the first localmechanism may not be reflected.

Moghaddam and Hajirasouliha [18] investigated the potentialities of the pushoveranalysis to estimate the seismic deformation demands of concentrically braces steelframes. It is stated that the results of a pushover analysis is quite sensitive to theapplied load pattern and generally inaccurate demands are obtained in such analysis.

Inelet. al. [19] evaluated various load patterns used in pushover analysis. The work also covered buildings with a soft-story. It was found out that simplified inelasticprocedures provide very good estimates of peak displacement response for bothregular and weak-story buildings. It is added that the results of inter-story drift andstory shear were generally improved when multiple modes are taken into account. The results also indicated that
simplifications in the first mode lateral load patternmight easily be applied with a negligible loss of accuracy.

Korkmaz and Sar1 [20] evaluated the performance of the frame structures for variousload patterns by performing pushover and nonlinear dynamic time history analysis.According to this paper, for high-rise frame structures, first yielding and shear failureof the columns is experienced at the larger story displacements and uniformdistribution always give the higher base shear-weight ratio comparing to other loaddistributions for the corresponding story displacement. Also it's found that results ofnonlinear static pushover analysis do not match with nonlinear dynamic time historyanalysis results especially for long period high-rise reinforced concrete framestructures. It was added that the pushover analyses results for uniform load distribution estimate maximum seismic demands during the given earthquakes morereasonable than the other load distributions.

Kömür and Elmas [21], evaluated the reinforced concrete frame systems which aredesigned according to current Turkish Codes by nonlinear pushover analysesutilizing various multimodal processes and inverted triangle loadings. It is found outthat the pushover curves of multimodal loading process and inverted triangle loadingare practically same so as the collapse limits. Due to this, multimodal procedure is not found to be very effective in the evaluation of such building structures.

Oguz [22] evaluated the pushover analysis method for various load patterns andprocedures. It is found out that, the variation in the results of all the modal loadpatterns and the triangle load patterns is negligible for low and mid-rise structures. It is also added that the triangular load patterns predict displacements and inter-storydrift ratios between the results of MPA and Elastic First Mode load patterns in low and mid-rise structures. In the analyses, none of the load patterns can capture the exact demands and hinge locations obtained by time history analysis but the accuracy of the results may be reasonable depending on the load patterns for low and mid-risestructures. The accuracy is found to be decreasing in high-rise buildings. Moreover, in their study, no improvement was observed for the usage of FEMA-273 and MPAprocedures, which consider higher mode effects. She suggested using elastic first mode load pattern in the pushover analyses and to avoid using uniform load patternin view of the results on real demands and accuracy obtained in her study.

Bayülkeet. al. [23] studied on the earthquake damaged and undamaged reinforcedconcrete buildings by non-linear pushover analysis method, in order to determinelateral force displacement relations and to compare the limit lateral forces with thelateral load level as calculated from elastic acceleration spectrums for the analyticallycalculated R factors. It is concluded that the buildings with symmetric shear walls inplan do not loose their lateral stiffness' in a dangerous way like the ones without shear walls after the limit lateral force level and it is added that the formation of thecollapse mechanism is found to be very quick and progressive for the buildingswithout shear walls.

Polat et.al. [24], presented a case study on the of conventional retrofitting with linearanalysis. Evaluating the seismic demands and cost requirements obtained by linearanalysis is found to be irrational and the usage of more realistic analysis methods arestrongly recommended in such cases. By a similar study, Hasgür et al. [27] studied the level of expected damages due to destructive earthquakes and determined therelations and propriety of seismic damage indices with the results of non-linear analysis for RC building structures having elements of various bending, shear and yield capacities and corresponding curvatures before and after strengthening. Justlike Polat et. al. [24], it is stated that retrofitting by using the results of the nonlinearanalysis methods are more accurate and better in cost concerns.

Türkeret. al. [25] evaluated a set of models considering the effects of the in-fills. It isfound out that including effects of the in-fills to the nonlinear pushover analysis thebuilding structures show better performances. It is recommended that the newTurkish Code should give more detailed information on such analysis methods..

Inel et.al. [26] studied the evaluation of the buildings reflecting existing construction practise. The paper also covered some models with a soft story. It is concluded in that study that, (a) the increase in the confinement level increases the sustained level of damage, (b) the affect of infills are significant in low rise buildings with weaker members, (c) the main reason for a collapse is found to be weak columns and strong beams, (c) the structural irregularities like short column, soft story and heavy overhangs are quite dangerous but the soft story irregularity with a heavy overhang is the most dangerous one, (d) the irregularity effect are found to be more significant in mid rise structures that the low rise ones, (e) the soft story irregularity formed by the absence of infills at the ground story is found to be more dangerous than the stiffness based ones.

Inel and Özmen [27] studied the effects of default and user defined nonlinear component properties. Pointing out that the confinement amount has direct affect on the displacement capacity of a structure, it is stated that the default hinge models must be avoided, as the response of a structure may not be accurately determined.

Athanassiadou [28] studied multi-story analytical models, which are irregular invertical, and compared the ductility levels and pushover analysis results. High ductility and normal ductility demands are concluded to be not effective in cost and their seismic performance is found to be equally satisfactory. Although the beams of normal ductile structures said to have some weakness in shear capacity the over strength of the both ductility levels found to be similar. It is also added that inelastic pushover procedures are found to be in accurate in demand predictions as they ignore higher mode effects.

Among the studies on soft story behaviour and irregularities in the building structures, Ruiz and Diederich [29] studied a set of analytical models with a weak story and investigated the local ductility demands. It's found that the performances of the frames depend on the resistance factors and closeness of the dominant response period and dominant period of earthquake. In addition to these, the ductility demands while $\mathrm{P}_{-}$effects considered are found to be bigger.

Esteva [30] studied the nonlinear response of buildings with excessive stiffness and strength above the first story. It is stated that the response of a building is quite sensitive to the stiffness variation along the height of the structure and the p-_ effects are significant on the response. The use of a safety factor to meet the local ductility demands in a soft story, which is dependent to the natural period of a structure, is offered.

Chang and Kim [31] investigated a 20-story building with a soft story by nonlinear timehistory and nonlinear pushover analysis. It is stated that low strength reduction factor with perfectly yielding mechanisms are required for effective protection and it is also advised that an amplification factor must be applied to soft stories for which the displacements might be reduced by this way.

Chopra et al. [32] investigated the yielding point of a soft first story for the adequate protection of upper stories from significant yielding. It is concluded that, to limit the force
transmitted to the adjacent story above, an elastic-perfectly plastic mechanisms needed as any residual stiffness increase the shear force transmitted. Even if the first story limits the forces transmitted to upper stories, the resulting shear wave propagates and any weakness of strength in an upper story may lead to collapse. In this paper it is also stated that the first soft story mechanisms must be designed according to very large displacements.

Mezzi [33] studied the retrofitting choices of buildings with a soft story and stated that although passive control systems are very effective solutions for retrofitting, base isolation is the most economic one.

## CHAPTER 4

## PROGRAMME OF STUDY

### 4.1 Introduction

Many building structures having parking or commercial areas in their first stories, suffered major structural damages and collapsed in the recent earthquakes. Large open areas with less infill and exterior walls and higher floor levels at the ground level result in soft stories and hence damage.
If a building has a floor which is $70 \%$ less stiff than the floor above it, it is considered a soft story building. This soft story creates a major weak point in an earthquake; they are often on the lower stories of a building, which means that when they collapse, they can take the whole building down with them, causing serious structural damage which may render the structure totally unusable.

In present study different input, output parameters and suitable analysis process are discussed A five storey building is selected as shown in figure below:


Fig. 4 3-D View Of Building (Column-Beam View)


FIG. 5 3-D View Of Building


FIG. 6 Plan View Of Building


FIG. 7 Elevation View Of Building


FIG. 8 Side View Of Building

## Details of building

Table 1 Structural Data

| STRUCTURAL DATA |  |
| :--- | :--- |
| HEIGHT | 15.45 m |
| WIDTH | 15.65 m |
| LENGTH | 33.0 m |
| NO. OF STOREY | 4 |
| STOREY HEIGHT | 3.3 m |
| TOTAL NO. OF COLUMN | 159 |
| TOTAL NO. OF BEAM | 346 |
| CONCRETE GRADE | M 25 |
| STEEL GRADE | Fe 415 |
| DENSITY OF CONCRETE | $2400 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$ |
| POISION RATIO | 0.17 |
| YOUNG'S MODULUS OF <br> ELASTICITY | $25000 \mathrm{~N} / \mathrm{MM}^{\wedge} 2$ |
| BEAM DIMENSION | $0.45^{*} 0.30 \mathrm{~m}$ |
| COLUMN DIMENSION | $0.45^{*} 0.60 \mathrm{~m}$ |

Table 2 Earthquake Data

| EARTHQUAKE DATA |  |
| :--- | :--- |
| ZONE VALUE | 0.24 |
| IMPORTANCE FACTOR | 1.5 |
| RESPONSE REDUCTION FACTOR | 5 |
| TYPE OF SOIL | 2 |
| DAMPING | $5 \%$ |
| CUT OFF MODE | 21 |

Table 3 Dead Load

| DEAD LOAD |  |
| :--- | :--- |
| ROOF | 4657.86 kN |
| 4TH FLOOR | 4887.00 kN |
| 3RD FLOOR | 4887.00 kN |
| 2ND FLOOR | 4887.00 kN |
| 1ST FLOOR | 4887.00 kN |

Table 4 Live Load

| LIVE LOAD |  |
| :--- | :--- |
| ROOF | 1559 kN |
| 4TH FLOOR | 1823 kN |
| 3RD FLOOR | 1823 kN |
| 2ND FLOOR | 1964 kN |
| 1ST FLOOR | 1823 kN |

### 4.2 Input Parameters

Input parameters are weight on each floor, seismic weight on each floor, dimension of building, beam and column, site condition of building, purpose of building, type of materials used.

All of them are described as follows:-

Modal Mass: Modal mass of a structure subjected to horizontal or vertical, as the case maybe, ground motion is a part of the total seismic mass of the structure that is effective in mode $\boldsymbol{k}$ of vibration. The modal mass for a given mode has a unique value irrespective of scaling of the mode shape.

Normal Mode: A system is said to be vibrating in a normal mode when all its masses attain maximum values of displacements and rotations simultaneously, and pass through equilibrium positions simultaneously.

Damping: The effect of internal friction, imperfect elasticity of material, slipping, sliding, etc in reducing the amplitude of vibration and is expressed as a percentage of critical damping.

Design Acceleration Spectrum: Design acceleration spectrum refers to an average smoothened plot of maximum acceleration as a function of frequency or time period of vibration for a specified damping ratio for earthquake excitations at the base of a single degree of freedom system.

Importance Factor: It is a factor used to obtain the design seismic force depending on the functional use of the structure, characterized by hazardous consequences of its failure, its post-earthquake functional need, historic value, or economic importance.

Zone Factor (Z): It is a factor to obtain the design spectrum depending on the perceived maximum seismic risk characterized by Maximum Considered Earthquake (MCE) in the zone in which the structure is located.

Response Reduction Factor: It is the factor by which the actual base shear force, that would be generated if the structure were to remain elastic during its response to the Design Basis Earthquake (DBE) shaking, shall be reduced to obtain the design lateral force

Seismic Weight: It is the total dead load plus appropriate amounts of specified imposed load.

Structural Response Factor ( $\frac{S_{a}}{g}$ ): It is a factor denoting the acceleration response spectrum of the structure subjected to earthquake ground vibrations, and depends on natural period of vibration and damping of the structure.

## Partial safety factors for limit state design of reinforced concrete structures

In the limit state design of reinforced concrete structures, the following load combinations shall be accounted for:

1) 1.5 (DL+LL)
2) 1.2 ( $\mathrm{DL}+\mathrm{ZL}+\mathrm{EL})$
3) 1.5 ( DL+EL)
4) $0.9 \mathrm{DL}+1.5 \mathrm{EL}$

### 4.3 Earthquake Lateral Force Analysis

The design lateral force shall first be computed for the building as a whole. Then design lateral force calculated shall be distributed to the various floor levels. The overall design seismic force thus obtained at each floor level shall then be distributed to individual lateral load resisting elements depending on the floor diaphragm action. There are two commonly used procedures for specifying seismic design lateral forces:

### 4.3.1Equivalent static force analysis

The equivalent lateral force analysis for an earthquake converts a dynamic analysis into partly dynamic and partly static analyses for finding the maximum displacement (or stresses) induced in the structure due to earthquake excitation. The equivalent lateral force for an earthquake is defined as a set of lateral static forces which will produce the same peak response of the structure as that obtained by the dynamic analysis of the structure under the same earthquake. This equivalence is restricted only to a single mode of vibration of the structure. Inherently, equivalent static lateral force analysis is based on the following assumptions:

1. Structure is rigid.
2. Perfect fixity between structure and foundation.
3. Same acceleration is induced in each point of structure during ground motion.
4. Dominant effect of earthquake is equivalent to horizontal force of varying magnitude over the height.
5. Base shear on the structure is determined approximately.

However, during an earthquake structure does not remain rigid, it deflects, and thus base shear is disturbed along the height.

## The limitation of equivalent static lateral force analysis:

Empirical relationships are used to specify dynamic inertial forces as static forces which do not explicitly account for the dynamic characteristics of the particular structure being designed or analyzed. These formulas were developed to approximately represent the dynamic behaviour of regular structures. For such structures, the equivalent static force procedure is most often adequate. Structures that are classified as irregular violate the assumptions on which the empirical formulas, used in the equivalent static force procedure, are developed.

## Step by step procedure for Equivalent static force analysis:

Step-1: Depending on the location of the building site, identify the seismic zone and assign Zone factor (Z).

Step-2: Compute the seismic weight of the building (W) as per code.
Step-3: Compute the natural period of the building $\left(T_{a}\right)$ as per code.
Step-4: Obtain the data pertaining to type of soil conditions of foundation of the building as per code.

Step-5: Using ( $T_{a}$ ) and soil type, compute the average spectral acceleration as per code.
Step-6: Assign the value of importance factor ( $I$ ) depending on occupancy and/or functionality of structure as per code.

Step-7: Assign the values of response reduction factor $(R)$ depending on type of structure as per code.
Step-8: Knowing $Z, \frac{\mathrm{~S}_{\mathrm{a}}}{\mathrm{g}}, R$ and $I$ compute design horizontal acceleration coefficient $\mathrm{A}_{\mathrm{h}}$ as per code.

Step-9: Using $A_{h}$ and W compute design seismic base shear $\left(\mathrm{V}_{\mathrm{B}}\right)$, from $V_{b}=\mathrm{A}_{\mathrm{h}} \mathrm{W}$ as per code

### 4.3.2 Dynamic Analysis

Dynamic analysis is classified into two types:
a) Response spectrum method
b) Time history method

Dynamic analysis shall be performed to obtain the design seismic force and its distribution along the height of the building and to the various lateral load resisting elements, for the following buildings:

1. Regular buildings - Those greater than 40 m in height in Zones IV and V and those greater than 90 m in height in Zones II and III.
2. Irregular buildings - All framed buildings higher than 12 m in Zones IV and V , and those greater than 40 m in height in Zones II and III.
a) Time History Method: Time history method of analysis, when used, shall be based on an appropriate ground motion and shall be performed using accepted principles of dynamics.
b) Response Spectrum Method: Response spectrum method of analysis shall be performed using the design spectrum

## Modes to be considered:

The number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least $90 \%$.

## Step by step procedure for Response spectrum method

Step-1: Depending on the location of the building site, identify the seismic zone and assign Zone factor (Z).

Step-2: Compute the seismic weight of the building (W) as per code.
Step-3: Establish mass $[\mathrm{M}]$ and stiffness $[\mathrm{K}]$ matrices of the building using system of masses lumped at the floor levels with each mass having one degree of freedom, that of lateral displacement in the direction under consideration. Accordingly, to develop stiffness matrix
effective stiffness of each floor is computed using the lateral stiffness coefficients of columns and infill walls. Usually floor slab is assumed to be infinitely stiff.

Step-4: Using [ M ] and $[\mathrm{K}]$ of previous step and employing the principles of dynamics compute the modal frequencies, $\{\mathrm{w}\}$ and corresponding mode shapes, $[\mathrm{j}]$.

Step-5: Compute modal mass Mk of mode k as per code.
Step-6: Compute modal participation factors $\mathrm{P}_{\mathrm{k}}$ of mode k as per code.
Step-7: Compute design lateral force ( $\mathrm{Q}_{\mathrm{ik}}$ ) at each floor in each mode as per code.
Step-8: Compute storey shear forces in each mode $\left(\mathrm{V}_{\mathrm{ik}}\right)$ acting in storey i in mode k as per code.

Step-9: Compute storey shear forces due to all modes considered, Vi in storey i, by combining shear forces due to each mode as per code.

### 4.3.3Output Parameters

Parameter in which changes is noted after modifying the structure are frequency, time period, spectral acceleration, base shear, SRSS shear, CQC shear, shear 10PT shear, ABS shear, storey shear, storey drift, mass participation factor.

Storey drift Limitation: The storey drift in any due to minimum specified design lateral load with partial factor of safety 1.0 shall not be increased by 0.004 times the storey height.

Modal Participation Factor: Modal participation factor of mode k of vibration is the amount by which mode k contributes to the overall vibration of the structure under horizontal and vertical earthquake ground motions. Since the amplitudes of 95 percent mode shapes can be scaled arbitrarily, the value of this factor depends on the scaling used for mode shapes.

Natural Period: Natural period of a structure is its time period of undamped free vibration.

Storey Drift: It is the displacement of one level relative to the otherlevel above or below.

Storey Shear: It is the sum of design lateral forces at all levels above the storey under consideration.

SRSS METHOD: Itis approximate for combining modal response. In this method, the squares of a specific response are summed. The square root of this sum is taken to be
combines effect. It is important to note that the quantities combined are those for each individual mode.

$$
r_{o}=\left(\sum_{n=1}^{n N} r_{n o}^{2}\right)^{0.5}
$$

This method gives excellence response estimates for structure with well separated natural frequencies.

CQC METHOD: It is modal combination method based on the use of cross modal coefficient. The cross modal coefficient reflects the duration and frequency content of seismic event as well as the modal frequencies and damping ratio of the structure.

$$
r_{o}=\left(\sum_{i=1}^{N} \sum_{n=1}^{N} \rho_{i n} r_{i o} r_{n o}\right)^{0.5}
$$

This method gives acceptable response estimates for types of structure having well separated natural frequencies as well as to those having closely spaced natural frequencies like in multistorey building with unsymmetrical plan.


#### Abstract

ABS METHOD: It is modal combination method based on assumption that all modal peaks occurs at the same time and algebraic sign is ignored to get an upper bound to the peak value of the total response. This upper bound value (ABS VALUE) is too conservative.


$$
r_{o} \leq \sum_{n=0}^{N} r_{n o}
$$

### 4.4 Codal Provision

Most building codes propose a simplified method called the equivalent lateral force (ELF) procedure or the multi-mode response spectrum method to compute design forces. These methods assume that the dynamic forces developed in a structure during an earthquake are proportional to the maximum ground acceleration and the modal characteristics of the structure. These forces are approximated as a set of equivalent lateral forces which are distributed over the height of the structure. However, the ELF method is based on a number of assumptions which are true for regular structures "structures with uniform distribution of stiffness, strength, and mass over the height". So the current building codes define criteria in order to categorize building structures as either regular or irregular as explained below.

IS CODE 1893 (PART 1) : 2002 (TABLE 5 CLAUSE 7.1)

## a) Stiffness Irregularity -Soft Storey

A soft storey is one in which the lateral stiffness is less than 70 percent of that in the storey above or less than 80 percent of the average lateral stiffness of the three storeys above.

STOREY STIFFNESS
FOR THE BUILDING


FIG. 9 Stiffness Irregularity

## According to UBC,

A soft story is one in which the lateral stiffness is less than $70 \%$ of that of the story above or less than $80 \%$ of the average stiffness Of the three stories above.

## NZS 1170.5 defines irregularity (in Clause 4.5) as:

Vertical stiffness irregularity (soft storey) - The lateral storey stiffness is less than $70 \%$ of adjacent storey stiffness or less than $80 \%$ of average stiffness of storey above or below.
NEHRP code (BSSC, 2003) has similar specification to that of IS 1893 (PART 1): 2002

## International Building Code (IBC):

Soft Story: is defined to exist when there is a story in which the lateral stiffness is less than $70 \%$ of that in the story above or less than $80 \%$ of the average stiffness of the three stories above.

Various output parameter used in this study are expressed in following unit:

1. Frequency
2. Time period
3. Shear
4. Drift
5. Height
6. Force reaction
7. Moment reaction
cycle/sec
shear
Mt
cm
m
Newton (N)
Kilonewton-metre (kNm)

## 4. Details of Steps Performed

Design of building


Load application


Seismic force calculation


# Change of stiffness 



Building analyzed and Output parameters noted

## CHAPTER 5

## RESULT AND DISCUSSIONS

### 5.1 Variation Of Frequency Vs Stiffness\%

Table 5 Variation Of Frequency Vs Stiffness\%

| FREQUENCY VS STIFFNESS\% |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Stiffness | 1ST | 2ND | 3RD | 4TH | 5TH |
|  | STOREY | STOREY | STOREY | STOREY | STOREY |
| $100 \%$ | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 |
| $90 \%$ | 0.907 | 0.907 | 0.908 | 0.908 | 0.909 |
| $80 \%$ | 0.904 | 0.904 | 0.906 | 0.907 | 0.909 |
| $70 \%$ | 0.901 | 0.901 | 0.903 | 0.906 | 0.908 |
| $60 \%$ | 0.896 | 0.896 | 0.9 | 0.904 | 0.908 |
| $50 \%$ | 0.89 | 0.89 | 0.896 | 0.902 | 0.907 |



Fig. 10 Variation of frequency Vs stiffness\%
Table 6 Equation of curve of Frequency Vs Stiffness\% for each floor (here ' $y$ ' represent frequency and ' $x$ ' represent $\%$ stiffness.

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=-0.05 x^{2}+0.1124 x+0.8464$ |
| 2 | $y=-0.05 x^{2}+0.1124 x+0.8464$ |
| 3 | $y=-0.0339 x^{2}+0.0772 x+0.8659$ |
| 4 | $y=-0.0161 x^{2}+0.0378 x+0.8871$ |
| 5 | $y=-0.0089 x^{2}+0.0174 x+0.9006$ |

Frequency decreases with decrease in stiffness irrespective of location of decreasing of stiffness. The maximum variation in frequency is seen when stiffness is changed in first storey and second storey and it is $2.1 \%$ less than base case. The minimum variation in frequency is seen in fifth storey or topmost storeys.

### 5.2 Variation Of Time-Period Vs Stiffness\%

Table 7 Variation Of Time-Period Vs Stiffness\%

| TIME-PERIOD VS STIFFNESS\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | 1ST <br> STOREY | 2ND <br> STOREY | 3RD <br> STOREY | 4TH <br> STOREY | 5TH <br> STOREY |
| $100 \%$ | 1.09981 | 1.09981 | 1.09981 | 1.09981 | 1.09981 |
| $90 \%$ | 1.102565 | 1.10268 | 1.10185 | 1.1009 | 1.10014 |
| $80 \%$ | 1.1061 | 1.10619 | 1.10434 | 1.10222 | 1.10053 |
| $70 \%$ | 1.11027 | 1.11048 | 1.10737 | 1.1038 | 1.10099 |
| $60 \%$ | 1.11598 | 1.11635 | 1.11146 | 1.10594 | 1.10161 |
| $50 \%$ | 1.12318 | 1.12379 | 1.11669 | 1.10862 | 1.10237 |



Fig. 11 Variation of time period Vs stiffness\%

Table 8 Equation of curve of Time Period Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=0.0552 \mathrm{x}^{2}-0.1289 \mathrm{x}+1.1737$ |
| 2 | $\mathrm{y}=0.0577 \mathrm{x}^{2}-0.1337 \mathrm{x}+1.176$ |
| 3 | $\mathrm{y}=0.0399 \mathrm{x}^{2}-0.0931 \mathrm{x}+1.153$ |
| 4 | $\mathrm{y}=0.0201 \mathrm{x}^{2}-0.0474 \mathrm{x}+1.127$ |
| 5 | $\mathrm{y}=0.0055 \mathrm{x}^{2}-0.0133 \mathrm{x}+1.1076$ |

Time-period increases with decreases in stiffness. The maximum variation in time-period is seen in second storey and it is $2.08 \%$ more than base case. The minimum variation is seen in fifth storey or topmost storey.

### 5.3 Variation Of Spectral Acceleration Vs Stiffness\%

Table 9 Variation Of Spectral Acceleration Vs Stiffness\%

| SPECTRAL ACCELERATION VS STIFFNESS\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | 1ST | 2ND | 3RD | 4TH | 5TH |
|  | STOREY | STOREY | STOREY | STOREY | STOREY |
| $100 \%$ | 1.23658 | 1.23658 | 1.23658 | 1.23658 | 1.23658 |
| $90 \%$ | 1.23339 | 1.23336 | 1.23428 | 1.23535 | 1.23621 |
| $80 \%$ | 1.22955 | 1.22944 | 1.2315 | 1.23388 | 1.23577 |
| $70 \%$ | 1.22493 | 1.2247 | 1.22813 | 1.23211 | 1.23525 |
| $60 \%$ | 1.21866 | 1.21826 | 1.22362 | 1.22973 | 1.23456 |
| $50 \%$ | 1.21085 | 1.21019 | 1.21788 | 1.22675 | 1.2337 |



Fig. 12 Variation of spectral acceleration Vs stiffness\%

Table 10 Equation of curve of Spectral Acceleration Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=-0.0613 x^{2}+0.144 x+1.1537$ |
| 2 | $y=-0.0613 x^{2}+0.144 x+1.1537$ |
| 3 | $y=-0.0431 x^{2}+0.1014 x+1.1781$ |
| 4 | $y=-0.0221 x^{2}+0.0526 x+1.2061$ |
| 5 | $y=-0.0062 x^{2}+0.0149 x+1.2278$ |

Spectral acceleration decreases with decrease in stiffness. The maximum variation in spectral acceleration is seen in second storey which is quite similar to that of first storey. Maximum variation is $2.07 \%$ with respect to base case that is seen in second storey. The minimum variation is seen in fifth storey or top-most storey.

### 5.4 Variation Of Base Shear Vs Stiffness\%

Table 11 Variation Of Base Shear Vs Stiffness \%

| BASE SHEAR VS STIFFNESS\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | 1ST STOREY | 2ND STOREY | 3RD <br> STOREY | 4TH STOREY | 5TH STOREY |
| $100 \%$ | 58.3 | 58.3 | 58.3 | 58.3 | 58.3 |
| $90 \%$ | 58.23 | 58.16 | 58.16 | 58.21 | 58.27 |
| $80 \%$ | 58.11 | 57.94 | 57.95 | 58.08 | 58.24 |
| $70 \%$ | 57.91 | 57.63 | 57.68 | 57.92 | 58.2 |
| $60 \%$ | 57.6 | 57.16 | 57.27 | 57.67 | 58.13 |
| $50 \%$ | 57.13 | 56.5 | 56.7 | 57.34 | 58.05 |



Fig. 13 Variation of base shear Vs stiffness\%

Table 12 Equation of curve of Base Shear Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=-4.9286 x^{2}+9.6614 x+53.55$ |
| 2 | $y=-6.4286 x^{2}+13.16 x+51.549$ |
| 3 | $y=-5.2679 x^{2}+11.028 x+52.523$ |
| 4 | $y=-3 x^{2}+6.38 x+54.91$ |
| 5 | $y=-0.7321 x^{2}+1.5868 x+57.441$ |

Base shear decrease with decrease in stiffness. The maximum variation is seen when stiffness changes in the second storey which is quite closer to the variation that is in first storey. The maximum variation is $3.07 \%$ with respect to base case that is seen in second storey. The minimum variation is seen in fifth storey or topmost storey.

### 5.5 Variation Of Square root of sum of square of shear Vs Stiffness \%

Table 13 Variation Of Square root of sum of square of shear Vs Stiffness\%

| SRSS VS STIFFNESS\% |  |  |  |  |  |
| ---: | ---: | :--- | ---: | :--- | ---: |
| STIFFNESS | 1ST <br> STOREY | 2ND <br> STOREY | 3RD <br> STOREY | STH <br> STOREY | 5TH STOREY |
| $100 \%$ | 60.7 | 60.7 | 60.7 | 60.7 | 60.7 |
| $90 \%$ | 60.59 | 60.53 | 60.54 | 60.59 | 60.65 |
| $80 \%$ | 60.48 | 60.3 | 60.37 | 60.55 | 60.63 |
| $70 \%$ | 60.33 | 60.02 | 60.17 | 60.46 | 60.64 |
| $60 \%$ | 60.05 | 59.6 | 59.83 | 60.27 | 60.62 |
| $50 \%$ | 59.59 | 58.97 | 59.33 | 60 | 60.56 |



Fig. 14Variation of SRSS Vs stiffness\%

Table 14 Equation of curve of SRSS Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :---: | :---: |
| 1 | $y=-4.3393 x^{2}+8.6004 x+56.407$ |
| 2 | $y=-5.4643 x^{2}+11.545 x+54.594$ |
| 3 | $y=-4.25 x^{2}+8.9979 x+55.923$ |
| 4 | $y=-2.5 x^{2}+5.05 x+58.12$ |
| 5 | $y=-0.0893 x^{2}+0.3568 x+60.419$ |

### 5.6 Variation Of 10 PCT Vs Stiffness\%

Table 15 Variation Of10 PCTVs Stiffness\%

| 10 PCT VS STIFFNESS\% |  |  |  |  |  |  |
| ---: | ---: | ---: | :--- | :--- | ---: | :---: |
| STIFFNESS | lST <br> STOREY | 2ND STOREY |  | 3RD <br> STOREY | 4TH <br> STOREY |  |
| $100 \%$ | 62.6 | 62.6 | 62.6 | 62.6 | 62.6 |  |
| $90 \%$ | 62.52 | 62.47 | 62.48 | 62.52 | 62.58 |  |
| $80 \%$ | 62.41 | 62.3 | 62.32 | 62.42 | 62.55 |  |
| $70 \%$ | 62.28 | 62.09 | 62.12 | 62.3 | 62.51 |  |
| $60 \%$ | 62.12 | 61.81 | 61.86 | 62.12 | 62.46 |  |
| $50 \%$ | 61.95 | 61.5 | 61.54 | 61.89 | 62.39 |  |



Fig. 15 Variation of 10PCT Vs stiffness\%

Table 16 Equation of curve of $\mathbf{1 0}$ PCT Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=-1.1607 x^{2}+3.0496 x+60.713$ |
| 2 | $y=-2.3929 x^{2}+5.7864 x+59.204$ |
| 3 | $y=-2.5 x^{2}+5.8529 x+59.243$ |
| 4 | $y=-1.9107 x^{2}+4.2575 x+60.246$ |
| 5 | $y=-0.5893 x^{2}+1.2982 x+61.89$ |

### 5.7 Variation Of Absolute Sum Shear Vs Stiffness \%

Table 17 Variation Of ABS Vs Stiffness\%

| ABS VS STIFFNESS\% |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| STIFFNESS | 1ST STOREY | 2ND STOREY | 3RD <br> STOREY | 4TH STOREY | 5TH STOREY |  |
| $100 \%$ | 97.83 | 97.83 | 97.83 | 97.83 | 97.83 |  |
| $90 \%$ | 97.59 | 97.64 | 97.75 | 97.8 | 97.81 |  |
| $80 \%$ | 97.3 | 97.41 | 97.66 | 97.77 | 97.78 |  |
| $70 \%$ | 96.95 | 97.15 | 97.55 | 97.73 | 97.75 |  |
| $60 \%$ | 96.48 | 96.8 | 97.42 | 97.69 | 97.71 |  |
| $50 \%$ | 95.89 | 96.38 | 97.26 | 97.66 | 97.66 |  |



Fig. 16 Variation of ABS Vs stiffness\%

Table 18 Equation of curve of ABS Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=-4.4107 \mathrm{x}^{2}+10.439 \mathrm{x}+91.787$ |
| 2 | $\mathrm{y}=-2.9107 \mathrm{x}^{2}+7.2318 \mathrm{x}+93.5$ |
| 3 | $\mathrm{y}=-1 \mathrm{x}^{2}+2.6286 \mathrm{x}+96.199$ |
| 4 | $\mathrm{y}=-0.3393 \mathrm{x}^{2}+0.8461 \mathrm{x}+97.323$ |
| 5 | $\mathrm{y}=-0.3393 \mathrm{x}^{2}+0.8461 \mathrm{x}+97.323$ |

### 5.8 Variation Of Complete Quadratic Combination shear Vs Stiffness\%

Table 19 Variation Of CQCVs Stiffness \%

| CQC VS STIFFNESS\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | $\begin{aligned} & \hline \text { 1ST } \\ & \text { STOREY } \end{aligned}$ | 2ND <br> STOREY | 3RD STOREY | 4TH <br> STOREY | 5TH STOREY |
| 100\% | 65.2 | 65.2 | 65.2 | 65.2 | 65.2 |
| 90\% | 65.05 | 64.99 | 65.02 | 65.09 | 65.16 |
| 80\% | 64.86 | 64.74 | 64.81 | 64.95 | 65.12 |
| 70\% | 64.63 | 64.42 | 64.54 | 64.79 | 65.06 |
| 60\% | 64.31 | 63.97 | 64.18 | 64.57 | 64.99 |
| 50\% | 63.88 | 63.39 | 63.71 | 64.28 | 64.9 |



Fig. 17 Variation of CQC Vs stiffness\%

Table 20 Equation of curve of CQC Shear Vs Stiffness \% for each floor:

| FLOOR | EQUATION |
| :---: | :---: |
| 1 | $y=-3.4286 x^{2}+7.7286 x+60.887$ |
| 2 | $y=-4.7321 x^{2}+10.65 x+59.264$ |
| 3 | $y=-3.6607 x^{2}+8.4168 x+60.43$ |
| 4 | $y=-2.1786 x^{2}+5.0736 x+62.297$ |
| 5 | $y=-0.6607 x^{2}+1.5825 x+64.276$ |

SRSS Shear, CQC Shear, Shear 10pct Shear shows the same trend as Base Shear. In ABS Shear case the variation is seen maximum in first storey.

### 5.9 Variation Of Roof Drift Vs Stiffness \%

Table 21 Variation Of Roof Drift Vs Stiffness\%

| ROOF DRIFT VS STIFFNESS\% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | 1ST <br> STOREY | 2ND <br> STOREY | 3RD <br> STOREY | 4TH <br> STOREY | 5TH STOREY |
| $100 \%$ | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
| $90 \%$ | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
| $80 \%$ | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
| $70 \%$ | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
| $60 \%$ | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 |
| $50 \%$ | 0.016 | 0.0159 | 0.0159 | 0.0161 | 0.0159 |



Fig. 18 Variation of roof drift Vs stiffness\%

Table 22 Equation of curve of Roof drift Vs Stiffness for each floor:

| FLOOR | EQUATION |
| :---: | :---: |
| 1 | $\mathrm{y}=0.016$ |

For present building variation in roof drift is observed negligible with given building specification.

### 5.10 Variation of max. Fx Vs Stiffness\%

Table 23 Variation of max. Fx Vs stiffness\%

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1ST STOREY | 61797.69 | 60395.27 | 58830.17 | 57085.01 | 55049.06 | 52784.83 |
| 2ND STOREY | 61797.69 | 62246.81 | 62749.51 | 63311.31 | 63915.38 | 64536.55 |
| 3RD STOREY | 61797.69 | 61984.25 | 62188.41 | 62406.91 | 62590.55 | 62748.21 |
| 4TH STOREY | 61797.69 | 61941.72 | 62100.35 | 62271.59 | 62432.72 | 62566.12 |
| 5TH STOREY | 61797.69 | 61874.31 | 61963.36 | 62065.29 | 62176.78 | 62285.24 |



Fig. 19 Variation of max. Fx Vs. Stiffness\%

Table 24 Equation of curve of MAX. Fx Vs Stiffness\% for each floor:

| FLOORS | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=-1.1058 \mathrm{x}^{2}+345.44 \mathrm{x}+38292$ |
| 2 | $\mathrm{y}=0.226 \mathrm{x}^{2}-88.937 \mathrm{x}+68426$ |
| 3 | $\mathrm{y}=0.0445 \mathrm{x}^{2}-16.517 \mathrm{x}+63003$ |
| 4 | $\mathrm{y}=0.226 \mathrm{x}^{2}-88.937 \mathrm{x}+68426$ |
| 5 | $\mathrm{y}=0.0445 \mathrm{x}^{2}-16.517 \mathrm{x}+63003$ |

### 5.11 Variation Of max. Fy Vs Stiffness \%

Table 25 Variation of max. Fy Vs stiffness \%

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST <br> STOREY | $4.72 \mathrm{E}+06$ | $4.81 \mathrm{E}+06$ | $4.92 \mathrm{E}+06$ | $5.05 \mathrm{E}+06$ | $5.19 \mathrm{E}+06$ | $5.32 \mathrm{E}+06$ |
| 2ND <br> STOREY | $4.72 \mathrm{E}+06$ | $4.81 \mathrm{E}+06$ | $4.92 \mathrm{E}+06$ | $5.04 \mathrm{E}+06$ | $5.17 \mathrm{E}+06$ | $5.30 \mathrm{E}+06$ |
| 3RD <br> STOREY | $4.72 \mathrm{E}+06$ | $4.79 \mathrm{E}+06$ | $4.88 \mathrm{E}+06$ | $4.98 \mathrm{E}+06$ | $5.09 \mathrm{E}+06$ | $5.21 \mathrm{E}+06$ |
| 4TH <br> STOREY | $4.72 \mathrm{E}+06$ | $4.77 \mathrm{E}+06$ | $4.83 \mathrm{E}+06$ | $4.91 \mathrm{E}+06$ | $4.99 \mathrm{E}+06$ | $5.07 \mathrm{E}+06$ |
| 5TH <br> STOREY | $4.72 \mathrm{E}+06$ | $4.75 \mathrm{E}+06$ | $4.78 \mathrm{E}+06$ | $4.81 \mathrm{E}+06$ | $4.86 \mathrm{E}+06$ | $4.90 \mathrm{E}+06$ |



Fig. 20 Variation of max. Fy Vs stiffness\%

Table 26 Equation of curve of MAX. Fy Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=53.588 \mathrm{x}^{2}-20254 \mathrm{x}+6 \mathrm{E}+06$ |
| 2 | $\mathrm{y}=50.877 \mathrm{x}^{2}-19463 \mathrm{x}+6 \mathrm{E}+06$ |
| 3 | $\mathrm{y}=49.629 \mathrm{x}^{2}-17270 \mathrm{x}+6 \mathrm{E}+06$ |
| 4 | $\mathrm{y}=42.211 \mathrm{x}^{2}-13464 \mathrm{x}+6 \mathrm{E}+06$ |
| 5 | $\mathrm{y}=24.525 \mathrm{x}^{2}-7363 \mathrm{x}+5 \mathrm{E}+06$ |

### 5.12 Variation Of max. Fz Vs Stiffness \%

Table 27 Variation of max. Fz Vs stiffness\%

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST <br> STOREY | $1.86 \mathrm{E}+06$ | $1.92 \mathrm{E}+06$ | $2.00 \mathrm{E}+06$ | $2.09 \mathrm{E}+06$ | $2.20 \mathrm{E}+06$ | $2.33 \mathrm{E}+06$ |
| 2ND <br> STOREY | $1.86 \mathrm{E}+06$ | $1.91 \mathrm{E}+06$ | $1.98 \mathrm{E}+06$ | $2.05 \mathrm{E}+06$ | $2.14 \mathrm{E}+06$ | $2.23 \mathrm{E}+06$ |
| 3RD <br> STOREY | $1.86 \mathrm{E}+06$ | $1.91 \mathrm{E}+06$ | $1.96 \mathrm{E}+06$ | $2.03 \mathrm{E}+06$ | $2.10 \mathrm{E}+06$ | $2.18 \mathrm{E}+06$ |
| 4TH <br> STOREY | $1.86 \mathrm{E}+06$ | $1.89 \mathrm{E}+06$ | $1.94 \mathrm{E}+06$ | $1.99 \mathrm{E}+06$ | $2.04 \mathrm{E}+06$ | $2.10 \mathrm{E}+06$ |
| 5TH <br> STOREY | $1.86 \mathrm{E}+06$ | $1.88 \mathrm{E}+06$ | $1.90 \mathrm{E}+06$ | $1.92 \mathrm{E}+06$ | $1.95 \mathrm{E}+06$ | $1.98 \mathrm{E}+06$ |



Fig. 21 Variation of max.Fz Vs stiffness\%

Table 28 Equation of curve of MAX. Fz Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=83.961 \mathrm{x}^{2}-22042 \mathrm{x}+3 \mathrm{E}+06$ |
| 2 | $\mathrm{y}=47.395 \mathrm{x}^{2}-14549 \mathrm{x}+3 \mathrm{E}+06$ |
| 3 | $\mathrm{y}=34.086 \mathrm{x}^{2}-11579 \mathrm{x}+3 \mathrm{E}+06$ |
| 4 | $\mathrm{y}=25.088 \mathrm{x}^{2}-8592.2 \mathrm{x}+2 \mathrm{E}+06$ |
| 5 | $\mathrm{y}=13.636 \mathrm{x}^{2}-4536.5 \mathrm{x}+2 \mathrm{E}+06$ |

### 5.13 Variation Of max. Mx Vs Stiffness\%

Table 29 Variation of max.Mx Vs stiffness \%

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST <br> STOREY | 10554.86 | 10923.19 | 11360.26 | 11881.14 | 12513.14 | 13260.36 |
| 2ND <br> STOREY | 10554.86 | 10871.99 | 11239.46 | 11661.98 | 12146.66 | 12672.33 |
| 3RD <br> STOREY | 10554.86 | 10840.74 | 11168.9 | 11541.24 | 11957.89 | 12390.89 |
| 4TH <br> STOREY | 10554.86 | 10768.74 | 11014.33 | 11293.37 | 11603.81 | 11926.08 |
| 5TH <br> STOREY | 10554.86 | 10664.37 | 10790.33 | 10933.71 | 11094.32 | 11263.08 |



Fig. 22 Variation of max.Mx Vs stiffness\%

Table 30 Equation of curve of MAX. Mx Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=0.4775 x^{2}-125.4 x+18328$ |
| 2 | $y=0.2699 x^{2}-82.871 x+16143$ |
| 3 | $y=0.1946 x^{2}-66.053 x+15212$ |
| 4 | $y=0.1431 x^{2}-49.008 x+14022$ |

### 5.14 Variation of max. My Vs Stiffness \%

Table 31 Variation of max. My Vs stiffness

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST STOREY | 72.801 | 74.127 | 75.636 | 77.384 | 79.362 | 81.638 |
| 2ND <br> STOREY | 72.801 | 73.963 | 75.269 | 76.717 | 78.26 | 79.786 |
| 3RD <br> STOREY | 72.801 | 73.912 | 75.177 | 76.596 | 78.12 | 79.671 |
| 4TH <br> STOREY | 72.801 | 73.637 | 74.591 | 75.66 | 76.813 | 77.971 |
| 5TH <br> STOREY | 72.801 | 73.24 | 73.74 | 74.297 | 74.905 | 75.51 |



Fig. 23 Variation of max. My Vs stiffness\%

Table 32 Equation of curve of MAX. My Vs Stiffness\% for each floor

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=0.0012 x^{2}-0.3536 x+96.343$ |
| 2 | $y=0.0005 x^{2}-0.2149 x+89.325$ |
| 3 | $y=0.0006 x^{2}-0.2249 x+89.498$ |
| 4 | $y=0.0004 x^{2}-0.1686 x+85.347$ |
| 5 | $y=0.0002 x^{2}-0.0884 x+79.376$ |

### 5.15 Variation Of max. Mz Vs Stiffness \%

Table 33 Variation of max.Mz Vs stiffness

| STIFFNESS | 100 | 90 | 80 | 70 | 60 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1ST <br> STOREY | 848.693 | 845.19 | 841.484 | 837.689 | 833.414 | 829.221 |
| 2ND <br> STOREY | 848.693 | 850.069 | 851.532 | 853.098 | 854.381 | 855.308 |
| 3RD <br> STOREY | 848.693 | 848.979 | 849.151 | 849.155 | 848.287 | 846.909 |
| 4TH <br> STOREY | 848.693 | 848.847 | 848.936 | 848.923 | 848.48 | 847.526 |
| 5TH <br> STOREY | 848.693 | 848.891 | 849.135 | 849.428 | 849.713 | 849.888 |



Fig. 24 Variation of max.Mz Vs stiffness\%

Table 34 Equation of curve of MAX. Mz Vs Stiffness\% for each floor:

| FLOOR | EQUATION |
| :---: | :---: |
| 1 | $y=-0.001 x^{2}+0.5433 x+804.58$ |
| 2 | $y=-0.0005 x^{2}-0.0565 x+859.55$ |
| 3 | $y=-0.0022 x^{2}+0.3657 x+834.29$ |
| 4 | $y=-0.0014 x^{2}+0.2252 x+839.78$ |
| 5 | $y=9 E-06 x^{2}-0.0263 x+851.21$ |

Max FX, FY, FZ, MX, MY and MZ increases with decrease in stiffness. The maximum FX decrease with increases in stiffness in first storey while increases in other storey. FY, FZ, MX, MY shows maximum variation in first storey and shows least variation in fifth storey or top-most variation. MZ shows different variation with respect to other parameter in first storey.

### 5.16 Variation Of Storey shear Vs Stiffness \%

Table 35 Variation of Storey shear Vs stiffness\% in X direction in first storey FIRST STOREY

| HEIGHT | STIFFNESS \% |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |  |
| 16.9 | 18.22 | 18.14 | 18.05 | 17.94 | 17.78 | 17.58 |  |
| 13.9 | 35.17 | 35.04 | 34.89 | 34.71 | 34.45 | 34.11 |  |
| 10.9 | 47.17 | 47.58 | 47.4 | 47.17 | 46.86 | 46.45 |  |
| 7.9 | 57.17 | 57.17 | 56.98 | 56.73 | 56.39 | 55.94 |  |
| 4.9 | 63.55 | 63.41 | 63.24 | 63.02 | 62.72 | 62.32 |  |
| 2.1 | 65.2 | 65.05 | 64.86 | 64.63 | 64.31 | 63.88 |  |



Fig. 25 Variation of storey shear in X dir. Vs height for first storey

Table 36 Equation of curve of Storey Shear in $\mathbf{X}$ direction Vs Stiffness \% for each floor:

| STIFFNESS | EQUATION |
| :---: | :---: |
| $100 \%$ | $y=-0.1952 x^{2}+0.5658 x+63.771$ |

Table 37 Variation of Storey shearVs stiffness \% in Z direction in first storey

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 22.28 | 22.31 | 22.35 | 22.38 | 22.41 | 22.45 |
| 13.9 | 40.61 | 40.66 | 40.72 | 40.78 | 40.83 | 40.88 |
| 10.9 | 53.72 | 53.79 | 53.86 | 53.94 | 54.01 | 54.08 |
| 7.9 | 64.37 | 64.45 | 64.52 | 64.61 | 64.68 | 64.77 |
| 4.9 | 71.54 | 71.6 | 71.66 | 71.73 | 71.8 | 71.87 |
| 2.1 | 73.48 | 73.55 | 73.63 | 73.71 | 73.79 | 73.87 |



Fig. 26 Variation of storey shear in $Z$ dir. Vs height for first storey

Table 38 Equation of curve of Storey Shear in Z direction Vs Stiffness\% for each floor:

| STIFFNESS | EQUATION |
| :--- | :--- |
| $\mathbf{1 0 0 \%}$ | $\mathbf{y}=-\mathbf{0 . 0 0 1 1} \mathbf{x}^{\mathbf{4}}+\mathbf{0 . 0 4 3 5} \mathbf{x}^{\mathbf{3}} \mathbf{- 0 . 7 7 2 5} \mathbf{x}^{\mathbf{2}}+\mathbf{3 . 2 6 3 9 x}+\mathbf{7 0 . 0 2 7}$ |

Table 39 Variation of Storey shearVs stiffness \% in $X$ direction in second store SECOND STOREY

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 18.22 | 18.14 | 18.05 | 17.94 | 17.79 | 17.61 |
| 13.9 | 35.17 | 35.04 | 34.88 | 34.68 | 34.41 | 34.06 |
| 10.9 | 47.17 | 47.58 | 47.38 | 47.14 | 46.8 | 46.36 |
| 7.9 | 57.17 | 57.17 | 56.97 | 56.72 | 56.36 | 55.9 |
| 4.9 | 63.55 | 63.34 | 63.09 | 62.77 | 62.33 | 61.75 |
| 2.1 | 65.2 | 64.99 | 64.74 | 64.42 | 63.97 | 63.39 |



Fig. 27 Variation of storey shear in X dir. Vs height for second storey

Table 40 Variation of Storey shear Vs stiffness\% in Z direction in second storey

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 22.28 | 22.31 | 22.34 | 22.37 | 22.4 | 22.42 |
| 13.9 | 40.61 | 40.65 | 40.69 | 40.72 | 40.74 | 40.75 |
| 10.9 | 53.72 | 53.77 | 53.82 | 53.86 | 53.88 | 53.9 |
| 7.9 | 64.37 | 64.42 | 64.46 | 64.5 | 64.52 | 64.53 |
| 4.9 | 71.54 | 71.6 | 71.66 | 71.71 | 71.74 | 71.75 |
| 2.1 | 73.48 | 73.55 | 73.61 | 73.66 | 73.69 | 73.72 |



Fig. 28 Variation of storey shear in Z dir. Vs height for second storey

Table 41 Variation of Storey shear Vs stiffness \% in $\mathbf{X}$ direction in third storey THIRD STOREY

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 18.22 | 18.17 | 18.11 | 18.04 | 17.94 | 17.82 |
| 13.9 | 35.17 | 35.09 | 34.99 | 34.87 | 34.71 | 34.5 |
| 10.9 | 47.17 | 47.64 | 47.52 | 47.47 | 47.17 | 46.9 |
| 7.9 | 57.17 | 57.18 | 56.99 | 56.76 | 56.43 | 56.01 |
| 4.9 | 63.55 | 63.37 | 63.16 | 62.89 | 62.53 | 62.05 |
| 2.1 | 65.2 | 65.02 | 64.81 | 64.54 | 64.18 | 63.71 |



Fig. 29 Variation of storey shear in X dir. Vs height for third storey

Table 42 Variation of Storey shear Vs stiffness \% in Z direction in third storey

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 22.28 | 22.31 | 22.33 | 22.26 | 22.39 | 22.42 |
| 13.9 | 40.61 | 40.63 | 40.67 | 40.69 | 40.73 | 40.76 |
| 10.9 | 53.72 | 53.7 | 53.78 | 53.77 | 53.84 | 53.85 |
| 7.9 | 64.37 | 64.3 | 64.48 | 64.41 | 64.56 | 64.59 |
| 4.9 | 71.54 | 71.6 | 71.69 | 71.74 | 71.82 | 71.87 |
| 2.1 | 73.48 | 72.83 | 73.63 | 72.98 | 73.76 | 73.81 |



Fig. 30 Variation of storey shear in Z dir. Vs height for third storey

Table 43 Variation of Storey shear Vs stiffness\% in X direction in fourth storey FOURTH STOREY

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 18.22 | 18.2 | 18.18 | 18.15 | 18.11 | 18.06 |
| 13.9 | 35.17 | 35.16 | 35.14 | 35.12 | 35.09 | 35.05 |
| 10.9 | 47.17 | 47.66 | 47.58 | 47.47 | 47.32 | 47.13 |
| 7.9 | 57.17 | 57.23 | 57.12 | 56.97 | 56.77 | 56.51 |
| 4.9 | 63.55 | 63.44 | 63.6 | 63.14 | 62.91 | 62.62 |
| 2.1 | 65.2 | 65.09 | 64.95 | 64.79 | 64.57 | 64.28 |



Fig. 31 Variation of storey shear in X dir. Vs height for fourth storey

Table 44 Variation of Storey shear Vs stiffness \% in Z direction in fourth storey

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 22.28 | 22.29 | 22.3 | 22.31 | 22.32 | 22.32 |
| 13.9 | 40.61 | 40.61 | 40.61 | 40.62 | 40.62 | 40.63 |
| 10.9 | 53.72 | 53.76 | 53.8 | 53.84 | 53.88 | 53.91 |
| 7.9 | 64.37 | 64.42 | 64.48 | 64.53 | 64.59 | 64.64 |
| 4.9 | 71.54 | 71.61 | 71.67 | 71.74 | 71.81 | 71.87 |
| 2.1 | 73.48 | 73.55 | 73.61 | 73.68 | 73.75 | 73.81 |



Fig. 32 Variation of storey shear in Z dir. Vs height for fourth storey

Table 45 Variation of Storey shear Vs stiffness\% in $X$ direction in fifth storey FIFTH STOREY

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 18.22 | 18.24 | 18.27 | 18.3 | 18.35 | 18.41 |
| 13.9 | 35.17 | 35.16 | 35.15 | 35.13 | 35.11 | 35.08 |
| 10.9 | 47.17 | 47.7 | 47.67 | 47.63 | 47.58 | 47.52 |
| 7.9 | 57.17 | 57.3 | 57.26 | 57.22 | 57.16 | 57.09 |
| 4.9 | 63.55 | 63.51 | 63.46 | 63.41 | 63.33 | 63.24 |
| 2.1 | 65.2 | 65.16 | 65.12 | 65.06 | 64.99 | 64.9 |



Fig. 33 Variation of storey shear in X dir. height for fifth storey

Table 46 Variation of Storey shear Vs stiffness\% in Z direction in fifth storey

| HEIGHT | STIFFNESS \% |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 90 | 80 | 70 | 60 | 50 |
| 16.9 | 22.28 | 22.26 | 22.24 | 22.23 | 22.21 | 22.2 |
| 13.9 | 40.61 | 40.62 | 40.62 | 40.63 | 40.63 | 40.63 |
| 10.9 | 53.72 | 53.74 | 53.77 | 53.79 | 53.81 | 53.84 |
| 7.9 | 64.37 | 64.4 | 64.43 | 64.46 | 64.49 | 64.52 |
| 4.9 | 71.54 | 71.57 | 71.61 | 71.64 | 71.68 | 71.71 |
| 2.1 | 73.48 | 73.51 | 73.55 | 73.58 | 73.62 | 73.65 |



Fig. 34 Variation of storey shear in Z dir. Vs height for fifth storey

Storey shear shows expected trend of decreasing with height. There is very little effect of change of stiffness on storey shear. Storey shear in both X and Z direction similar trend with respect to stiffness changes.

### 5.17 Variation Of Storey DriftVsHeight w.r.to change in stiffness \%

Table 47 Variation Of Storey Drift Vs Height w.r.to change in stiffness \%
1ST STOREY

|  | STOREY DRIFT VS HEIGHT W.R.T. CHANGE IN STIFFNESS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | $100 \%$ | $90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | HEIGHT |  |
| STOREY | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.0159 | 19.5 |  |
|  | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 16.9 |  |
|  | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 13.9 |  |
|  | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 10.9 |  |
|  | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0072 | 0.0072 | 7.9 |  |
|  | 0.0054 | 0.0055 | 0.0056 | 0.0057 | 0.0059 | 0.0062 | 4.9 |  |
|  | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 2.1 |  |



Fig. 35Variation of storey driftVsheight (1st storey)

Table 48 Variation Of Storey Drift Vs Height w.r.to change in stiffness\%: 2ND STOREY

| STIFFNESS $\%$ | $100 \%$ | $90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | HEIGHT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STOREY DRIFT | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.0159 | 19.5 |
|  | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 16.9 |
|  | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 13.9 |
|  | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 10.9 |
|  | 0.0071 | 0.0072 | 0.0074 | 0.0076 | 0.0078 | 0.0081 | 7.9 |
|  | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 4.9 |
|  | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 2.1 |



Fig. 36 Variation of storey shear Vs height (2nd storey)

Table 49 Variation Of Storey Drift Vs Height w.r.to change in stiffness\% 3RD STOREY

| STOREY DRIFT VS HEIGHT W.R.T. CHANGE IN STIFFNESS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | $100 \%$ | $90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | HEIGHT |
| STOREY <br> DRIFT | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.0159 | 19.5 |
|  | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 16.9 |
|  | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 13.9 |
|  | 0.008 | 0.0081 | 0.0083 | 0.0084 | 0.0087 | 0.009 | 10.9 |
|  | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0072 | 7.9 |
|  | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 4.9 |
|  | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 2.1 |



Fig. 37 Variation of storey driftVs height (3rdstorey)

Table 50 Variation Of Storey Drift Vs Height w.r.to change in stiffness \% 4TH STOREY

| STOREY DRIFT VS HEIGHT W.R.T. CHANGE IN STIFFNESS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | $100 \%$ | $90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | HEIGHT |
| STOREY <br> DRIFT | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.0161 | 19.5 |
|  | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 0.0075 | 16.9 |
|  | 0.0084 | 0.0085 | 0.0087 | 0.0089 | 0.0091 | 0.0094 | 13.9 |
|  | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.0081 | 10.9 |
|  | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 7.9 |
|  | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 4.9 |
|  | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 2.1 |



Fig. 38 Variation of storey driftVs height (4thstorey)

Table 51 Variation Of Storey Drift Vs Height w.r.to change in stiffness\% 5TH STOREY

| STOREY DRIFT VS HEIGHT W.R.T. CHANGE IN STIFFNESS\% |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS | $100 \%$ | $90 \%$ | $80 \%$ | $70 \%$ | $60 \%$ | $50 \%$ | HEIGHT |
| STOREY <br> DRIFT | 0.016 | 0.016 | 0.016 | 0.016 | 0.016 | 0.0159 | 19.5 |
|  | 0.0075 | 0.0075 | 0.0076 | 0.0077 | 0.0078 | 0.008 | 16.9 |
|  | 0.0084 | 0.0084 | 0.0084 | 0.0084 | 0.0083 | 0.0083 | 13.9 |
|  | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 10.9 |
|  | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 0.0071 | 7.9 |
|  | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 0.0054 | 4.9 |
|  | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 2.1 |



Fig. 39 Variation of storey driftVs height (5th storey)

Storey drift suddenly increases from fourth storey to fifth storey or top most storey in every case. The variation in changes in drift of storey is large when stiffness is changed in that particular storey. Effect of change of stiffness in storey other than the storey in which stiffness is changed is negligible.

### 5.18 Variation of mass participation in $\mathbf{x}$ direction vs. different modes

Table 52 Variation of mass participation in $x$ direction vs. different modes

| 1) 1STOREY | Mode | Participation X \% |
| :---: | :---: | :---: |
|  | 1 | 68.768 |
|  | 2 | 1.998 |
|  | 3 | 9.49 |
|  | 4 | 0.013 |
|  | 5 | 0.015 |
|  | 6 | 5.451 |
|  | 7 | 0.183 |
|  | 8 | 3.285 |
|  | 10 | 0.203 |
| 11 | 0.002 |  |
| 12 | 0.194 |  |
| 13 | 0.003 |  |
|  | 14 | 0.083 |
|  | 15 | 0 |
|  | 16 | 0.077 |
|  | 17 | 1.776 |
| 18 | 0.025 |  |
|  | 19 | 0 |
|  | 20 | 0.004 |
| 21 | 0 |  |



Fig. 40 Variation of participation in X dir. Vs. diff. modes

Table 53 Variation of mass participation in y direction vs. different modes

| 1) 1STOREY | Mode | Participation Y <br> $\%$ |
| :---: | :---: | :---: |
|  | 1 | 0 |
|  | 2 | 0.001 |
|  | 3 | 0 |
|  | 4 | 0 |
|  | 5 | 0.001 |
| 6 | 0 |  |
| 7 | 0 |  |
| 8 | 0 |  |
| 9 | 0.003 |  |
| 10 | 0 |  |
| 11 | 0.002 |  |
| 12 | 0 |  |
| 13 | 0 |  |
|  | 14 | 0 |
| 15 | 0 |  |
|  | 16 | 0 |
| 17 | 0 |  |
|  | 18 | 0.023 |
| 19 | 0 |  |
|  | 20 | 0 |
| 21 | 0 |  |



Fig. 41 Variation of participation in Y dir. Vs diff. modes

Table 54 Variation of mass participation in $z$ direction vs. different modes:

| 1) 1STOREY | Mode | $\begin{gathered} \text { Participation } \mathrm{Z} \\ \% \end{gathered}$ |
| :---: | :---: | :---: |
|  | 1 | 0.244 |
|  | 2 | 72.02 |
|  | 3 | 6.669 |
|  | 4 | 0.015 |
|  | 5 | 0 |
|  | 6 | 0.004 |
|  | 7 | 0.011 |
|  | 8 | 0.837 |
|  | 9 | 9.434 |
|  | 10 | 0.022 |
|  | 11 | 0.007 |
|  | 12 | 0.068 |
|  | 13 | 0.003 |
|  | 14 | 0 |
|  | 15 | 0.001 |
|  | 16 | 0 |
|  | 17 | 0.002 |
|  | 18 | 0 |
|  | 19 | 0.11 |
|  | 20 | 0.083 |
|  | 21 | 0.004 |



Fig. 42Participation in $z$ dir. Vs. diff. modes

Table 55 Equation of variation of Mass participation factor Vs Mode:

|  | EQUATION |
| :---: | :---: |
| $X$ | $y=0.0002 x^{6}-0.0126 x^{5}+0.3547 x^{4}-4.9621 x^{3}+35.644 x^{2}-122.13 x+154.06$ |
| DIR. |  |
| $Z$ | $y=-0.0002 x 6+0.0162 x 5-0.4265 x 4+5.3881 x 3-32.805 x 2+81.658 x-38.214$ |
| DIR. |  |
| Y | $y=-2 E-08 x^{6}+8 E-07 x^{5}-1 E-05 x^{4}+1 E-04 x^{3}-0.0002 x^{2}-0.0004 x+0.0009$ |
| DIR. |  |

When mass participation factor varies with modes it is observed that Mode 1 is dominant in X direction while Mode 2 is dominant in Z direction. Variation of Mass Participation factor in X direction from Mode 1 to Mode 2 varies from 68.768 to 1.998. Variation of Mass Participation factor in Z direction from Mode 1 to Mode 2 varies from 0.244 to 72.02.

### 5.19 Variation of mass participation vs. stiffness\%

Table56 Variation of mass participation in X dir. vs. stiffness $\%$

| MODE 1 | STOREY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS \% | 1 | 2 | 3 | 4 | 5 |
| 100 | 68.6 | 68.6 | 68.6 | 68.6 | 68.6 |
| 90 | 68.695 | 68.608 | 68.558 | 68.56 | 68.588 |
| 80 | 68.762 | 68.57 | 68.473 | 68.495 | 68.571 |
| 70 | 68.79 | 68.469 | 68.332 | 68.397 | 68.549 |
| 60 | 68.768 | 68.268 | 68.099 | 68.24 | 68.514 |
| 50 | 68.654 | 67.929 | 67.736 | 68.008 | 68.466 |



Fig. 43Participation \% in $x$ dir.Vs stiffness\%

Table57 Equation of variation of Mass participation factor in $\mathbf{X}$ direction Vs Stiffness\%

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=3 E-06 x^{3}-0.001 x^{2}+0.0896 x+66.233$ |
| 2 | $y=5 E-06 x^{3}-0.0016 x^{2}+0.1633 x+63.145$ |
| 3 | $y=5 E-06 x^{3}-0.0015 x^{2}+0.1578 x+63.026$ |
| 4 | $y=3 E-06 x^{3}-0.0009 x^{2}+0.0968 x+65.091$ |
| 5 | $y=6 E-07 x^{3}-0.0002 x^{2}+0.0191 x+67.885$ |

Mass participation factor in X direction decreases with decrease in stiffness. When the stiffness decrease from $100 \%$ to $50 \%$ in the 5th storey the value of Mass participation factor decrease from 68.6 to 68.466 which is the maximum variation compare to other storey.

Table58 Variation of mass participation in Y dir. vs. stiffness \%

| MODE 18 |  | STOREY |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS \% | 1 | 2 | 3 | 4 | 5 |
| 100 | 0.022 | 0.022 | 0.022 | 0.022 | 0.022 |
| 90 | 0.022 | 0.022 | 0.021 | 0.021 | 0.022 |
| 80 | 0.023 | 0.022 | 0.02 | 0.02 | 0.022 |
| 70 | 0.023 | 0.022 | 0.019 | 0.019 | 0.022 |
| 60 | 0.023 | 0.021 | 0.017 | 0.018 | 0.022 |
| 50 | 0.024 | 0.021 | 0.015 | 0.016 | 0.022 |



Fig. 44Participation in y dir.Vs stiffness\%

Table59 Equation of variation of Mass participation factor in Y direction Vs Stiffness\%

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $\mathrm{y}=6 \mathrm{E}-09 \mathrm{x}^{4}-2 \mathrm{E}-06 \mathrm{x}^{3}+0.0002 \mathrm{x}^{2}-0.0104 \mathrm{x}+0.2115$ |
| 2 | $\mathrm{y}=4 \mathrm{E}-09 \mathrm{x}^{4}-1 \mathrm{E}-06 \mathrm{x}^{3}+0.0001 \mathrm{x}^{2}-0.0068 \mathrm{x}+0.1394$ |
| 3 | $\mathrm{y}=3 \mathrm{E}-08 \mathrm{x}^{3}-8 \mathrm{E}-06 \mathrm{x}^{2}+0.0008 \mathrm{x}-0.0105$ |
| 4 | $\mathrm{y}=5 \mathrm{E}-08 \mathrm{x}^{3}-1 \mathrm{E}-05 \mathrm{x}^{2}+0.001 \mathrm{x}-0.0118$ |
| 5 | $\mathrm{y}=-5 \mathrm{E}-20 \mathrm{x}^{2}+5 \mathrm{E}-18 \mathrm{x}+0.022$ |

When the stiffness changes from $100 \%$ to $50 \%$ in 3rd storey, the value of Mass participation factor in Y direction changes from 0.022 to 0.015 . When the stiffness changes from $100 \%$ to $50 \%$ in $1^{\text {st }}$ storey, the value of Mass participation factor in Y direction changes from 0.022 to 0.024 .

Table60 Variation of mass participation in $\mathbf{Z}$ dir. vs. stiffness \%

| MODE 2 | STOREY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STIFFNESS \% | 1 | 2 | 3 | 4 | 5 |
| 100 | 74.613 | 74.613 | 74.613 | 74.613 | 74.613 |
| 90 | 74.254 | 74.261 | 74.381 | 74.504 | 74.581 |
| 80 | 73.769 | 73.722 | 74.063 | 74.358 | 74.541 |
| 70 | 73.086 | 73.067 | 73.617 | 74.161 | 74.49 |
| 60 | 72.02 | 71.94 | 72.936 | 73.872 | 74.419 |
| 50 | 70.273 | 70.08 | 71.884 | 73.461 | 74.325 |



Fig. 45Participation \% in z dir. Vs stiffness\%

Table 61 Equation of variation of Mass participation factor in Z direction Vs Stiffness\%

| FLOOR | EQUATION |
| :--- | :--- |
| 1 | $y=3 E-05 x^{3}-0.0086 x^{2}+0.836 x+46.107$ |
| 2 | $y=4 E-05 x^{3}-0.0097 x^{2}+0.9272 x+43.533$ |
| 3 | $y=-0.001 x^{2}+0.2014 x+64.346$ |
| 4 | $y=-0.0004 x^{2}+0.0782 x+70.496$ |
| 5 | $y=-8 \mathrm{E}-05 x^{2}+0.0173 x+73.658$ |

Mass participation factor in Z direction decreases with decrease in stiffness. It shows increasing pattern when we move from lower to upper floors. When the stiffness decrease from $100 \%$ to $50 \%$ in the 5th storey the value of Mass participation factor decrease from 74.613 to 70.273 which is the maximum variation compare to other storey.

### 5.20 Mode Shapes



Fig. 46Mode Shape 1(3D view)


Fig. 47Mode Shape 1(Side view)

## CONCLUSION

## Based on this study, following conclusions may be drawn:

1. Frequency decreases with decrease in stiffness. The variation in frequency is maximum when stiffness is changed inlower storey. Changes in value of frequency are less when changes in stiffness are made in upper storey than that in lower storey. Time period shows opposite trend to that of frequency. Spectral acceleration shows same trend as that of frequency. The maximum variation in Spectral acceleration is seen when stiffness is changed in lower storey.
2. Base shear decrease with decrease in stiffness. The maximum variation is seen when stiffness changes in the lower storey. The SRSS, 10PCT, ABS, CQC shows same trend to that of Base shear.
3. Max FX, FY, FZ, MX, MY and MZ increases with decrease in stiffness except in case of first storey in which FX and MZ shows opposite trend.
4. The maximum variation in drift of storey is when stiffness is changed in that particular storey. Effect of change of stiffness in storey other than the storey in which stiffness is changed is very small. Storey drift suddenly increases in upper storey.
5. Storey shear shows expected trend of decreasing with height. In present building with given specification there is very little effect of change of stiffness on storey shear.
6. Mode 1 is dominant in X direction while Mode 2 is dominant in Z direction for mass participation factor. Mass participation factor decreases with decrease in stiffness in all direction.

## SCOPE OF FURTHER STUDY

In the present thesis, analysis of a multi-storey building under the effect of discontinuity in stiffness which is soft storey, is studied.

The present work can be extended for exhaustive study of various type of irregular and a generalised conclusion for design or such irregular buildings can be made which can help in understanding the behaviour of such irregular building.

## REFERENCES

[1] Freeman S.A., Mahaney J.A., Paret T.F. and Kehoe B.E., The CapacitySpectrum Method for Evaluating Structural Response During the Loma PrietaEarthquake, National Earthquake Conference, Central U.S. Earthquake Consortium, Tennesse, (501-510), 1993.
[2] Federal Emergency Management Agency, FEMA 356, Prestandard andCommentary for the Rehabilitation of Buildings, 2000.
[3] Fajfar, P. and Fischinger M., Nonlinear Seismic Analysis of R/C Buildings:Implications of a Case Study, European Earthquake Engineering, Vol.1,(31-43), 1987
[4] Eberhard M.O. and Sözen M.A., Behavior-Based Method to DetermineDesign Shear in Earthquake Resistant Walls, Journal of the Structural Division, American Society of Civil Engineers, New York, Vol.119, No.2, (619-640), 199390
[5] Park H. and Eom T., Direct Inelastic Earthquake Design Using SecanStiffness, ANCER Networking of Young Earthquake Engineering Researchers and Professionals, Hawaii, 2004.93
[6] Moghaddam A.S., A Pushover Procedure for Tall Buildings, 12th European Conference on Earthquake Engineering, 2002
[7] Sasaki F., Freeman S. and Paret T., Multi-Mode Pushover Procedure-AMethod to Identify the Effect of Higher Modes in a Pushover Analysis Proc.,6th U.S. National Conference on Earthquake Engineering, Seattle, 1998.
[8] Chopra A. and Goel R.K., Modal Pushover Analysis Procedure to EstimateSeismic Demands for Buildings: Theory and Preliminary Evaluation, The National Science Foundation: U.S.-Japan Cooperative Research in Urban Earthquak Disaster Mitigation, CMS-9812531, 2001
[9] Chintanapakdee C. and Chopra A.K., Evaluation of Modal Pushover AnalysisUsing Generic Frames, Earthquake Engineering and Structural Dynamics,Vol. 32, (417-442), 2003.
[10] Attard T. and Fafitis A., Modeling of Higher-Mode Effects Using an OptimalMultiModal Pushover Analysis, Earthquake Resistant Engineering Structures V, 2005.
[11] Chopra A. and Goel R.K., Role of Higher-"Mode" Pushover Analyses inSeismic Analysis of Buildings, Earthquake Spectra, Vol. 21 No.4,(1027-1041), 2005.
[12] Federal Emergency Management Agency, FEMA-273, NEHRP Guidelinesfor the Seismic Rehabilitation of Buildings, 1997
[13] Gupta B. and Kunnath K., Adaptive Spectra Based Pushover Procedure forSeismic Evaluation of Structures, Earthquake Spectra Vol.16, No.2, 2000.
[14] Jan T.S., Liu M.W. and Kao Y.C., An Upper-Bound Pushover AnalysisProcedure for Estimating the Seismic Demands of High-Rise Buildings,Engineering Structures 26 (117128), 2004
[15] Kalkan E. and Kunnath S., Assessment of Current Nonlinear StaticProcedures for Seismic Evaluation of Buildings, Engineering Structures,Vol.29, (305-316), 2007
[16] Mwafy A.M. and Elnashai A.S., Static Pushover versus Dynamic Analysis ofR/C Buildings, Engineering Structures, Vol. 23, 407-424, 2001.
[17] Krawinkler H. and Seneviratna K., Pros and Cons of a Pushover Analysis ofSeismic Performance Evaluation, Engineering Structures, Vol.20, (452-464),1998
[18] Moghaddam A.S., and Hajirasouliha I., An investigation on the accuracy ofpushover analysis for estimating the seismic deformation of braced steelframes, Journal of constructional Steel Research 62 (343-351), 2006
[19] Inel M., Tjhin T. and Aschheim M., The Significance of Lateral Load Patternin Pushover Analysis, 5th National Conference on Earthquake Engineering,AE-009, Turkey, 2003.
[20] Korkmaz A., Sarı A. and Akbas B., An Evaluation of Pushover Analysis forVarious Load Distributions, 5th National Conference on Earthquake Engineering, AE-017, Turkey, 2003.92
[21] Kömür. M.A. and Elmas M., The Inelastic Static Analysis of ReinforcedConcrete Plane Frame Systems with Different Lateral Load Shapes, $5^{\text {th }}$ National Conference on Earthquake Engineering, ATE-021, Turkey, 2003
[22] Oguz S., Evaluation of Pushover Analysis Procedures for Frame Structures,, METU, 2005.
[23] Bayülke N., Kuran F., Dogan A., Kocaman C., Memis H. and Soyal L.,Nonlinear Pushover Analysis of Reinforced Concrete Structures andComparison with Earthquake Damage, 5th National Conference on Earthquake Engineering, AT-108, Turkey, 2003.
[24] Polat Z., Kırçıl M.S. and Hancıoglu B., Performance Evaluation of aConventionally Retrofitted Building by Nonlinear Static Analysis, $5^{\text {th }}$ National Conference on Earthquake Engineering, AT-087, Turkey, 2003
[25] Türker K., Ertem E. and Hasgül U.,
TürkDepremYönetmeligineGöreTasarlanmısBetonarmeYapılarınPerformanslarınınDeger
lendirilmesi, $6^{\text {th }}$ International congress of Advances on Earthquake and Structural Engineering, Turkey, 2004.
[26] Inel M., Özmen H.B., Bilgin H., Re-evaluation of Building Damage DuringRecent Earthquakes in Turkey, Engineering Structures, Vol.30, No.2,(412-427), 2008
[27] Inel M. and Ozmen H., Effects of Plastic Hinge Properties in NonlinearAnalysis of Reinforced Concrete Buildings, Engineering Structures Vol.28(1494-1502), 2006
[28] Athanassiadou C.J., Seismic Performance of RC Plane Frames Irregular in Elevation Engineering Structures, doi:10.1016/j.engstruct.2007.07.015, 2007
[29] Ruiz E. and Diederich R., The Mexico Earthquake of September 19,1985 - The Seismic Performance of Buildings with Weak First Story, Earthquake Spectra Vol. 5 No:1 1989
[30] Esteva L., Nonlinear Seismic Response of Soft First Story BuildingsSubjected to Narrow Band Accelograms, 10th World Conference of Earthquake Engineering, Rotterdam, 1992.
[31] Chang S. and Kim. S. Structural Behaviour of Soft Story Buildings, National Earthquake Engineering Congress, (449-459), 1994.89
[32] Chopra A., Clough D.P. and Clough R.W., Earthquake Resistance ofBuildings with a Soft First Story, Earthquake Engineering and Structural Dynamics Vol. 1 (347-355), 1973.
[33] Mezzi M., Enhancing the Seismic Performance of Existing "Pilotis"Configurations, Case Study Report, 2006.
[34] Dr. Mizan DOĞAN Dr. Nevzat KIRAÇ Dr. Hasan GÖNEN " SOFT-STOREY BEHAVIOUR IN AN EARTHQUAKE and SAMPLES OF IZMIT-DUZCE" ECAS 2002 pp 43-49
[35] Dr. Saraswati Setia and Vineet Sharma " Seismic Response of R.C.C Building with Soft Storey" International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No. 11 (2012)

## APPENDIX

Following is staad editor file of original building which is designed in STAAD PRO V8i

## STAAD SPACE FILE FACTORY RESIDENCE AT (HARYANA)

 START JOB INFORMATION
## ENGINEER DATE 25-12-2012

JOB NAME 290 yard
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER MTON

## JOINT COORDINATES

10 -2.1 0; $2000 ; 302.80 ; 405.80 ; 508.80 ; 6011.80 ; 7014.80$; 82.93 -2.1 0; $92.9300 ; 102.932 .80 ; 112.935 .80 ; 122.938 .80$; $132.9311 .80 ; 142.9314 .80 ; 155.99$-2.1 0; $165.9900 ; 175.992 .80$; 185.995 .80 ; $195.998 .80 ; 205.9911 .80 ; 215.9914 .80 ; 228.94$-2.1 0; $238.9400 ; 248.942 .80 ; 258.945 .80 ; 268.948 .80 ; 278.9411 .80$; $288.9414 .80 ; 2911.87-2.10 ; 3011.8700 ; 3111.872 .80 ; 3211.875 .80$; $3311.878 .80 ; 3411.8711 .80 ; 3511.8714 .80 ; 365.99-2.12 .44$; $375.9902 .44 ; 385.992 .82 .44 ; 395.995 .82 .44 ; 405.998 .82 .44$; 415.9911 .8 2.44; 425.9914 .8 2.44; 430 -2.1 3.86; 4400 3.86; 4502.8 3.86; 4605.8 3.86; 470 8.8 3.86; 48011.8 3.86; 49014.8 3.86; 502.93 -2.1 3.86; $512.9303 .86 ; 522.932 .8$ 3.86; 532.935 .8 3.86; 542.938 .8 3.86; 552.9311 .8 3.86; $562.9314 .83 .86 ; 578.94$-2.1 3.86; 588.940 3.86; 598.942 .8 3.86; 608.945 .8 3.86; 618.948 .8 3.86; $628.9411 .83 .86 ; 638.9414 .83 .86 ; 6411.87$-2.1 3.86; 6511.8703 .86 ; $6611.872 .83 .86 ; 6711.875 .83 .86 ; 6811.878 .83 .86 ; 6911.8711 .8$ 3.86; 7011.8714 .8 3.86; 710 -2.1 7.59; $72007.59 ; 7302.87 .59 ; 7405.87 .59$; 7508.8 7.59; 76011.8 7.59; 770 14.8 7.59; 78 2.279-2.1 7.59; 79 2.279 $07.59 ; 802.2792 .87 .59 ; 812.2795 .87 .59 ; 822.279$ 8.8 7.59; 83 2.279 11.8 7.59; $842.27914 .87 .59 ; 859.591$-2.1 7.59; 869.59107 .59 ; 87 9.591 2.8 7.59; $889.5915 .87 .59 ; 899.5918 .87 .59 ; 909.59111 .87 .59$; $919.59114 .87 .59 ; 9211.87$-2.1 7.59; $9311.8707 .59 ; 9411.872 .87 .59$;
9511.87 5.8 7.59; 9611.87 8.8 7.59; 9711.8711 .8 7.59; 9811.8714 .87 .59 ; 997.841 -2.1 7.59; $1007.84107 .59 ; 1017.8412 .87 .59 ; 1027.8415 .87 .59$; 1037.841 8.8 7.59; $1047.84111 .87 .59 ; 1057.84114 .87 .59$; 106 4.764-2.1 7.59; $1074.76407 .59 ; 1084.764$ 2.8 7.59; 1094.764 5.8 7.59; 1104.764 8.8 7.59; 1114.76411 .8 7.59; 1124.76414 .8 7.59; 113 9.591-2.1 9.65; 1149.5910 9.65; 1159.5912 .89 .65 ; 1169.5915 .89 .65 ; $1179.5918 .89 .65 ; 1189.59111 .89 .65 ; 1199.59114 .89 .65$; 1207.841 -2.1 9.65; 1217.8410 9.65; 1227.8412 .8 9.65; 1237.841 5.8 9.65; $1247.8418 .89 .65 ; 1257.84111 .8$ 9.65; 1267.84114 .8 9.65; 127 0 -2.1 9.65; 12800 9.65; 12902.8 9.65; 13005.89 .65 ; 13108.89 .65 ; 132011.89 .65 ; 133014.8 9.65; 134 2.279-2.1 9.65; 1352.2790 9.65; 1362.2792 .89 .65 ; 1372.2795 .8 9.65; 1382.279 8.8 9.65; 1392.27911 .8 9.65; 1402.27914 .8 9.65; 1414.764 -2.1 9.65; 1424.7640 9.65; 1434.764 2.8 9.65; 1444.7645 .8 9.65; 1454.764 8.8 9.65; 1464.76411 .89 .65 ; $1474.76414 .89 .65 ; 1480$-2.1 12.09; 14900 12.09; 15002.8 12.09; 15105.8 12.09; 15208.8 12.09; 153011.8 12.09; 154014.8 12.09; 155 11.87-2.1 12.09; 15611.870 12.09; 15711.872 .8 12.09; 15811.875 .8 12.09; 15911.878 .8 12.09; 16011.8711 .8 12.09; 16111.8714 .8 12.09; 1620 -2.1 15.44; 16300 15.44; 16402.8 15.44; 16505.8 15.44; 16608.8 15.44; 167011.8 15.44; 168014.8 15.44; 169 11.87-2.1 15.44; 17011.870 15.44; 17111.872 .8 15.44; 17211.875 .8 15.44; 17311.878 .8 15.44; 17411.8711 .815 .44 ; 17511.87 14.8 15.44; 1763.07 -2.1 15.44; 1773.070 15.44; 1783.072 .8 15.44; 1793.075 .8 15.44; 1803.078 .8 15.44; 1813.0711 .8 15.44; 1823.0714 .8 15.44; 1838.8 -2.1 15.44; 1848.80 15.44; 1858.82 .8 15.44; 1868.85 .8 15.44; 1878.88 .8 15.44; 1888.811 .8 15.44; 1898.8 14.8 15.44; 1900 -2.1 19.75; 19100 19.75; 19202.8 19.75; 19305.8 19.75; 19408.8 19.75; 195011.8 19.75; 196014.8 19.75; 197 3.07-2.1 19.75; 1983.070 19.75; 1993.072 .8 19.75; 2003.075 .8 19.75; 201 3.07 8.8 19.75; 2023.0711 .8 19.75; 2033.0714 .8 19.75; 204 5.99-2.1 19.75; 2055.990 19.75; 2065.992 .8 19.75; 2075.995 .8 19.75; 2085.998 .8 19.75; 2095.9911 .8 19.75; 2105.9914 .8 19.75; 2118.8 -2.1 19.75; 2128.80 19.75; 2138.82 .8 19.75; 2148.85 .8 19.75; 2158.88 .8 19.75; 2168.811 .8 19.75; 2178.814 .8 19.75;

218 11.87-2.1 19.75; 21911.87019 .75 ; 22011.872 .8 19.75;
22111.87 5.8 19.75; 22211.878 .8 19.75; 22311.8711 .819 .75 ;
22411.87 14.8 19.75; 2258.940 2.44; 2262.930 2.44; 2272.9307 .59 ; 2288.940 7.59; 229 5.99-2.1 14.75; 2305.990 14.75; 2315.992 .8 14.75; 2325.995 .8 14.75; 2335.998 .8 14.75; 2345.9911 .8 14.75; 2355.9914 .8 14.75; 2365.990 7.59; $2375.9909 .65 ; 23811.8709 .65$; $2391.139507 .59 ; 2401.139509 .65 ; 24110.730507 .59 ; 24210.730509 .65$; 2433.070 12.09; 2443.070 9.65; 2458.80 12.09; 2468.809 .65 ; 2478.80 16.47; 2483.070 16.47; 2495.990 16.47; 25000 13.88; 2513.070 13.88; 2528.80 13.88; 25311.870 13.88; 2541.1395 2.8 7.59; 2552.932 .8 7.59; 2565.99 2.8 7.59; 257 8.94 2.8 7.59; 258 10.7305 2.8 7.59; 2591.13952 .8 9.65; 2603.07 2.8 9.65; 261 5.99 2.8 9.65; 2628.82 .8 9.65; 263 3.07 2.8 12.09; 2643.07 2.8 16.47; 265 5.99 2.8 16.47; 26602.8 13.88; 2672.93 2.8 2.44; 2688.942 .8 2.44; 26911.872 .8 9.65; 27011.872 .8 13.88; 271 10.7305 2.8 9.65; 2723.072 .8 13.88; 2738.82 .8 16.47; 2748.82 .8 12.09; 2758.82 .8 13.88; 2761.1395 5.8 7.59; 2772.93 5.8 7.59; 2785.99 5.8 7.59; 279 8.94 5.8 7.59; 28010.7305 5.8 7.59; 2811.1395 5.8 9.65; 2823.075 .8 9.65; 2835.995 .8 9.65; 2848.85 .8 9.65; 2853.075 .8 12.09; 286 3.075.8 16.47; 2875.995 .8 16.47; 28805.8 13.88; 2892.935 .8 2.44; 2908.945 .8 2.44; 29111.875 .8 9.65; 29211.875 .8 13.88; 293 10.7305 5.8 9.65; 2943.075 .8 13.88; 2958.85 .8 16.47; 2968.85 .8 12.09; 2978.85 .8 13.88; 298 1.1395 8.8 7.59; 2992.93 8.8 7.59; 3005.99 8.8 7.59; 3018.94 8.8 7.59; 302 10.7305 8.8 7.59; 3031.1395 8.8 9.65; 304 3.07 8.8 9.65; 3055.998 .8 9.65; 3068.88 .8 9.65; 307 3.07 8.8 12.09; 3083.078 .8 16.47; 3095.998 .8 16.47; 31008.8 13.88; 3112.938 .8 2.44; 3128.948 .8 2.44; $31311.878 .89 .65 ; 31411.878 .8$ 13.88;
$31510.73058 .89 .65 ; 3163.078 .813 .88 ; 3178.88 .8$ 16.47; 3188.88 .8 12.09; 3198.88 .8 13.88; $3201.139511 .87 .59 ; 3212.9311 .87 .59$; $3225.9911 .87 .59 ; 3238.9411 .87 .59 ; 32410.730511 .87 .59$; $3251.139511 .89 .65 ; 3263.0711 .89 .65 ; 3275.9911 .89 .65$; 3288.811 .8 9.65; 3293.0711 .8 12.09; 3303.0711 .8 16.47; 3315.9911 .8 16.47; 332011.8 13.88; 3332.9311 .8 2.44; $3348.9411 .82 .44 ;$ $33511.8711 .89 .65 ; 33611.8711 .813 .88 ; 33710.730511 .89 .65$; $3383.0711 .813 .88 ; 3398.811 .816 .47 ; 3408.811 .8$ 12.09;
3418.811 .8 13.88; $3421.139514 .87 .59 ; 3432.9314 .87 .59$;
$3445.9914 .87 .59 ; 3458.9414 .87 .59 ; 34610.730514 .87 .59$;
347 1.1395 14.8 9.65; $3483.0714 .89 .65 ; 3495.9914 .89 .65$;
3508.814 .8 9.65; 3513.0714 .8 12.09; 3523.0714 .8 16.47;
$3535.9914 .816 .47 ; 354014.813 .88 ; 3552.9314 .82 .44 ; 3568.9414 .82 .44$;
$35711.8714 .89 .65 ; 35811.8714 .813 .88 ; 35910.730514 .89 .65$;
3603.0714 .8 13.88; 3618.814 .8 16.47; 3628.814 .8 12.09;
3638.814 .8 13.88; $3642.27917 .47 .59 ; 3667.841$ 17.4 7.59;
$3682.27917 .49 .65 ; 3707.84117 .49 .65 ; 3729.59117 .47 .59$;
373 9.591 17.4 9.65; $3744.76417 .47 .59 ; 3754.76417 .4$ 9.65;

## MEMBER INCIDENCES

$112 ; 22$ 3; 3 34; 44 5; 55 6; $667 ; 789 ; 89$ 10; 910 11; 1011 12;
1112 13; 1213 14; 1315 16; 1416 17; 1517 18; 1618 19; 1719 20; 182021 ; 1922 23; 2023 24; 2124 25; 2225 26; 2326 27; 2427 28; 2529 30; 2630 31; 2731 32; 2832 33; 2933 34; 3034 35; 3136 37; 3237 38; 3338 39; 343940 ; 3540 41; 3641 42; 3743 44; 3844 45; 3945 46; 4046 47; 4147 48; 4248 49; 43 50 51; 4451 52; 4552 53; 4653 54; 4754 55; 4855 56; 4957 58; 5058 59; 5159 60; 5260 61; 5361 62; 5462 63; 5564 65; 56 65 66; 5766 67; 5867 68; 59 68 69; 6069 70; 6171 72; 6272 73; $637374 ; 6474$ 75; $657576 ; 667677$; 6778 79; 6879 80; 6980 81; 7081 82; 7182 83; 7283 84; 7385 86; 7486 87; 7587 88; 7688 89; 7789 90; 7890 91; 7992 93; 8093 94; 8194 95; 8295 96; 8396 97; 8497 98; 8599 100; 86100 101; 87101 102; 88102 103; 89103 104; 90104 105; 91106 107; 92107 108; 93108 109; 94109 110; 95110 111; 96111 112; 97113 114; 98114 115; 99115 116; 100116 117; 101117118 ; 102118 119; 103120 121; 104121 122; 105122 123; 106123 124; 107124 125; 108125 126; 109127 128; 110128 129; 111129 130; 112130 131; 113131 132; 114132 133; 115134 135; 116135 136; 117136 137; 118137 138; 119138 139; 120139 140; 121141 142; 122142 143; 123143 144; 124144 145; 125145 146; 126146 147; 127148 149; 128149 150; 129150 151; 130151 152; 131152153 ; 132153 154; 133155 156; 134156 157; 135157 158; 136158 159; 137159 160; 138160 161; 139162 163; 140163 164; 141164 165; 142165 166; 143166 167; 144167 168; 145169 170; 146170 171; 147171 172; 148172 173; 149173 174; 150174 175; 151176 177; 152177 178; 153178 179; 154179 180; 155180 181; 156181 182; 157183 184; 158184 185; 159185 186; 160186 187; 161187 188;

162188 189; 163190 191; 164191 192; 165192 193; 166193 194; 167194195 ; 168195 196; 169197 198; 170198 199; 171199 200; 172200 201; 173201 202; 174202 203; 175204 205; 176205 206; 177206 207; 178207 208; 179208 209; 180209 210; 181211 212; 182212 213; 183213 214; 184214 215; 185215 216; 186216 217; 187218 219; 188219 220; 189220 221; 190221 222; 191222 223; 192223 224; 1932 9; 1949 16; 19516 23; 196 23 30; 19744 51; 19958 65; 20072 239; 20179 227; 202107 236; 203100 228; 20486 241; 205128 240; 206135 244; 207142 237; 208121 246; 209149 243; 210163 177; 211248 249; 212191 198; 213198 205; 214205 212; 215212 219; 2162 44; 21744 72; 21872 128; 219128 149; 220149 250; 221163 191; 2229 226; 22416 37; 22537 236; 22623 225; 22758 228; 22830 65; 229 65 93; 23093 238; 231156 253; 232170 219; 23379 135; 23486 114; 235100 121; 236107 142; 237225 58; 23837 225; 239226 51; 24037 226; 241227 107; 24251 227; 243228 86; 244230 249; 245229 230; 246230 231; 247231 232; 248232 233; 249233 234; 250234 235; 251236 100; 253237 121; 254237 230; 255238 156; 256114 242; 257239 79; 258240 135; 259239 240; 260241 93; 261242 238; 262241 242; 264177 251; 265244 142; 266243 244; 270184 170; 271212 247; 272245 156; 273184 252; 274246 114; 275 245 246; 276177 248; 277247 184; 278248 198; 279249 247; 280249 205; 282250 163; 283251 243; 284250 251; 285252 245; 286253 170; 287252 253; 2883 10; 28910 17; 29017 24; 29124 31; 29245 52; 29359 66; 29473 254; 29580 255; 296108 256; 297101 257; 29887 258; 299129 259; 300136 260; 301143 261; 302122 262; 303150 263; 304164 178; 305264 265; 306192 199; 307199 206; 308206 213; 309213 220; 3103 45; $3114573 ; 31273$ 129; 313129 150; 314150 266; 315164 192; 31610 267; 31717 38; 31838 256; 31924 268; 32059 257; 32131 66; 32266 94; 32394 269; 324157 270; 325171 220; 32680 136; 32787 115; 328101 122; 329108 143; 330268 59; 33138 268; 332267 52; 33338 267; 334255 108; 33552 255; 336257 87; 337231 265; 338256 101; 339261 122; 340261 231; 341269 157; 342115 271; 343254 80; 344259 136; 345254 259; 346258 94; 347271 269; 348258 271; 349178 272; 350260 143; 351263 260; 352185 171; 353213 273; 354274 157; 355185 275; 356262 115; 357274 262; 358178 264; 359273 185; 360264 199; 361265 273; 362265 206; 363266 164; 364272 263; 365266 272; 366275 274; 367270 171; 368275 270; 3694 11; 37011 18; 37118 25; 37225 32; 37346 53; 37460 67; 37574 276;

37681 277; 377109 278; 378102 279; 37988 280; 380130 281; 381137 282; 382144 283; 383123 284; 384151 285; 385165 179; 386286 287; 387193200 ; 388200 207; 389207 214; 390214 221; 3914 46; 392 46 74; 39374 130; 394130 151; 395151 288; 396165 193; 39711 289; 39818 39; 39939 278; 40025 290; 40160 279; 40232 67; 40367 95; 40495 291; 405158 292; 406172 221; 40781 137; 40888 116; 409102 123; 410109 144; 411290 60; 41239 290; 413289 53; 41439 289; 415277 109; 41653 277; 417279 88; 418232 287; 419278 102; 420283 123; 421283 232; 422291 158; 423116293 ; 424276 81; 425281 137; 426276 281; 427280 95; 428293 291; 429280 293; 430179 294; 431282 144; 432285 282; 433186 172; 434214 295; 435296 158; 436186 297; 437284 116; 438296 284; 439179 286; 440295 186; 441286 200; 442287 295; 443287 207; 444288 165; 445294 285; 446288 294; 447297 296; 448292 172; 449297 292; 4505 12; 45112 19; 452 19 26; 45326 33; 45447 54; 45561 68; 45675 298; 45782 299; 458110 300; 459103 301; 46089 302; 461131 303; 462138 304; 463145 305; 464124 306; 465152 307; 466166 180; 467308 309; 468194 201; 469201 208; 470208 215; 471215 222; 4725 47; 47347 75; 47475 131; 475131 152; 476152 310; 477166 194; 47812 311; 47919 40; 48040 300; 48126 312; 48261 301; 48333 68; 48468 96; 48596 313; 486159 314; 487173 222; 48882 138; 48989 117; 490103 124; 491110 145; 492312 61; 49340 312; 494311 54; 49540 311; 496299 110; 49754 299; 498301 89; 499233 309; 500300 103; 501305 124; 502305 233; 503313 159; 504117 315; 505298 82; 506303 138; 507298 303; 508302 96; 509315 313; 510302 315; 511180 316; 512304 145; 513307 304; 514187 173; 515215 317; 516318 159; 517187 319; 518306 117; 519318 306; 520180 308; 521317 187; 522308 201; 523309 317; 524309 208; 525310 166; 526316 307; 527310 316; 528319 318; 529314 173; 530319 314; 5316 13; 53213 20; 53320 27; 53427 34; 53548 55; 53662 69; 53776 320; 53883 321; 539111 322; 540104 323; 54190 324; 542132 325; 543139 326; 544146 327; 545125 328; 546153 329; 547167 181; 548330 331; 549195 202; 550202 209; 551 209 216; 552216 223; 5536 48; 55448 76; 55576 132; 556132 153; 557153 332; 558167 195; 55913 333; 56020 41; 56141 322; 56227 334; 56362 323; 56434 69; 56569 97; 56697 335; 567160 336; 568174 223; 56983 139; 57090 118; 571104 125; 572111 146; 573334 62; 57441 334; 575333 55; 57641 333; 577321 111; 57855 321; 579323 90; 580234 331;

581322 104; 582327 125; 583327 234; 584335 160; 585118 337; 586320 83; 587325 139; 588320 325; 589324 97; 590337 335; 591324 337; 592181 338; 593326 146; 594329 326; 595188 174; 596216 339; 597340 160; 598188 341; 599328 118; 600340 328; 601181 330; 602339 188; 603330 202; 604331 339; 605331 209; 606332 167; 607338 329; 608332 338; 609341 340; 610336 174; 611341 336; 6127 14; $6131421 ; 61421$ 28; 61528 35; 61649 56; 61763 70; 61877 342; 61984 343; 620112 344; 621105 345; 62291 346; 623133 347; 624140 348; 625147 349; 626126 350; 627154 351; 628168 182; 629352353 ; 630196 203; 631203 210; 632210 217; 633217 224; 6347 49; 63549 77; 63677 133; 637133 154; 638154 354; 639168 196; 64014 355; 64121 42; 64242 344; 64328 356; 64463 345; $6453570 ; 64670$ 98; 64798 357; 648161 358; 649175 224; 65084 140; 65191 119; 652105 126; 653112 147; 654356 63; 65542 356; 656355 56; 65742 355; 658343 112; 65956 343; 660345 91; 661235 353; 662344 105; 663349 126; 664349 235; 665357 161; 666119 359; 667342 84; 668347 140; 669342 347; 670346 98; 671359 357; 672346 359; 673182 360; 674348 147; 675351 348; 676189 175; 677217 361; 678362 161; 679189 363; 680350 119; 681362 350; 682182 352; 683361 189; 684352 203; 685353 361; 686353 210; 687354 168; 688360 351; 689354 360; 690363 362; 691358 175; 692363 358; 693364 374; 694366 372; 695368 375; 696370 373; 697364 368; 698372 373; 699366 370; 700374 375; 705126 370; 706119 373; 70791 372; 708105 366; 709 112 374; 710147 375; 711140 368; 71284 364;

DEFINE MATERIAL START ISOTROPIC CONCRETE

## E 2.21467e+006

POISSON 0.17
DENSITY 2.40262

## ALPHA 1e-005

DAMP 0.05
END DEFINE MATERIAL
MEMBER PROPERTY INDIAN
*COL
706707711712 PRIS YD 0.375 ZD 0.23
*BEAM

193 TO 197199 TO 222224 TO 244251253 TO 262264 TO 266270 TO 280282 283 TO 336338339341 TO 348350352354356359361363365367 TO 417419 420422 TO 429431433435437442444446448 TO 498500501503 TO 510 512514516518523525527529 TO 579581582584 TO 591593595597599 604606608610 TO 660662663665 TO 672674676678680685687689691 692 TO 700 PRIS YD 0.35 ZD 0.23

## MEMBER PROPERTY INDIAN

705708 TO 710 PRIS YD 0.45 ZD 0.23
337340349351353355357358360362364366418421430432434436438 439 TO 441443445447499502511513515517519 TO 522524526528580 583592594596598600 TO 603605607609661664673675677679 -

681 TO 684686688690 PRIS YD 0.45 ZD 0.23
UNIT MMS NEWTON
MEMBER PROPERTY
11 TO 192245 TO 250 PRIS YD 500 ZD 350

## UNIT METER MTON

MEMBER RELEASE
211254259262272284287305340345348354365368386421426429435 446449467502507510516527530548583588591597608611629664669 672678689692 START MZ

209225227238240242259262266275279284287303318320331333335 345348351357361365368384399401412414416426429432438442446 449465480482493495497507510513519523527530546561563574576 578588591594600604608611627642644655657659669672675681685 689692 END MZ

## CONSTANTS

BETA 90 MEMB 1 TO 4255 TO 6673 TO 9097 TO 114127 TO 192245 TO 250705 -
706 TO 708

## MATERIAL CONCRETE ALL

## SUPPORTS

1815222936435057647178859299106113120127134141148155 162169176183190197204211218229 FIXED

## CUT OFF MODE SHAPE 21

DEFINE 1893 LOAD

## ZONE 0.24 RF 5 I 1.5 SS 2 ST 1 DM 0.05

## SELFWEIGHT

## CHECK SOFT STOREY

LOAD 1 EQX
JOINT LOAD
1 FX 0.235
2 FX 4.96
3 FX 5.61
4 FX 5.636
5 FX 5.63
6 FX 5.666
7 FX 5.101
8 FX 0.235
9 FX 5.883
10 FX 9.146
11 FX 9.17
12 FX 9.171
13 FX 9.153
14 FX 7.963
15 FX 0.235
16 FX 5.43
17 FX 8.194
18 FX 8.296
19 FX 8.274
20 FX 8.342
21 FX 6.149
22 FX 0.235
23 FX 5.787
24 FX 8.967
25 FX 8.992
26 FX 8.993
27 FX 8.975
28 FX 7.793
29 FX 0.235

30 FX 4.972
31 FX 5.631
32 FX 5.657
33 FX 5.651
34 FX 5.687
35 FX 5.126
36 FX 0.235
37 FX 7.022
38 FX 18.501
39 FX 18.453
40 FX 18.468
41 FX 18.433
42 FX 13.281
43 FX 0.235
44 FX 6.981
45 FX 8.255
46 FX 8.287
47 FX 8.293
48 FX 8.261
49 FX 7.191
50 FX 0.235
51 FX 4.277
52 FX 10.873
53 FX 10.828
54 FX 10.832
55 FX 10.831
56 FX 8.548
57 FX 0.235
58 FX 4.278
59 FX 10.791
60 FX 10.747
61 FX 10.751
62 FX 10.75
63 FX 8.455

64 FX 0.235
65 FX 6.964
66 FX 8.238
67 FX 8.27
68 FX 8.276
69 FX 8.242
70 FX 7.175
71 FX 0.196
72 FX 4.884
73 FX 4.863
74 FX 4.887
75 FX 4.885
76 FX 4.887
77 FX 4.014
78 FX 0.196
79 FX 1.717
80 FX 2.932
81 FX 2.951
82 FX 2.952
83 FX 2.94
84 FX 2.988
85 FX 0.196
86 FX 2.686
87 FX 3.864
88 FX 3.876
89 FX 3.878
90 FX 3.874
91 FX 3.193
92 FX 0.235
93 FX 4.89
94 FX 4.88
95 FX 4.908
96 FX 4.907
97 FX 4.902

98 FX 3.99
99 FX 0.235
100 FX 3.342
101 FX 5.315
102 FX 5.332
103 FX 5.332
104 FX 5.335
105 FX 4.731
106 FX 0.235
107 FX 1.885
108 FX 4.516
109 FX 4.536
110 FX 4.536
111 FX 4.538
112 FX 5.64
113 FX 0.196
114 FX 2.82
115 FX 4.041
116 FX 4.055
117 FX 4.056
118 FX 4.055
119 FX 3.361
120 FX 0.235
121 FX 3.239
122 FX 5.121
123 FX 5.138
124 FX 5.137
125 FX 5.141
126 FX 4.537
127 FX 0.196
128 FX 3.757
129 FX 3.46
130 FX 3.49
131 FX 3.486

132 FX 3.499
133 FX 2.504
134 FX 0.196
135 FX 1.835
136 FX 3.308
137 FX 3.326
138 FX 3.327
139 FX 3.32
140 FX 3.395
141 FX 0.235
142 FX 1.818
143 FX 4.272
144 FX 4.294
145 FX 4.294
146 FX 4.295
147 FX 5.365
148 FX 0.235
149 FX 5.026
150 FX 6.586
151 FX 6.632
152 FX 6.632
153 FX 6.61
154 FX 4.884
155 FX 0.235
156 FX 5.064
157 FX 6.632
158 FX 6.676
159 FX 6.676
160 FX 6.656
161 FX 4.926
162 FX 0.235
163 FX 6.036
164 FX 7.478
165 FX 7.514

166 FX 7.527
167 FX 7.446
168 FX 6.33
169 FX 0.235
170 FX 6.037
171 FX 7.481
172 FX 7.516
173 FX 7.53
174 FX 7.448
175 FX 6.334
176 FX 0.307
177 FX 2.337
178 FX 4.195
179 FX 4.239
180 FX 4.231
181 FX 4.258
182 FX 2.258
183 FX 0.307
184 FX 2.338
185 FX 4.401
186 FX 4.231
187 FX 4.22
188 FX 4.248
189 FX 2.245
190 FX 0.235
191 FX 5.433
192 FX 6.289
193 FX 6.315
194 FX 6.308
195 FX 6.345
196 FX 5.793
197 FX 0.235
198 FX 6.195
199 FX 9.691

200 FX 9.726
201 FX 9.725
202 FX 9.713
203 FX 8.797
204 FX 0.235
205 FX 5.728
206 FX 8.969
207 FX 9.006
208 FX 8.996
209 FX 9.034
210 FX 7.763
211 FX 0.235
212 FX 6.104
213 FX 9.66
214 FX 9.565
215 FX 9.56
216 FX 9.548
217 FX 8.62
218 FX 0.235
219 FX 5.443
220 FX 6.305
221 FX 6.331
222 FX 6.324
223 FX 6.36
224 FX 5.814
225 FX 2.05
226 FX 2.091
227 FX 2.258
228 FX 2.295
229 FX 0.307
230 FX 3.721
231 FX 12.173
232 FX 12.098
233 FX 12.122

234 FX 12.058
235 FX 10.508
236 FX 2.734
237 FX 2.737
238 FX 3.326
239 FX 1.779
240 FX 1.788
241 FX 1.769
242 FX 1.831
243 FX 2.943
244 FX 1.823
245 FX 2.944
246 FX 1.89
247 FX 3.043
248 FX 3.094
249 FX 4.741
250 FX 3.056
251 FX 2.323
252 FX 2.321
253 FX 3.051
254 FX 3.714
255 FX 5.602
256 FX 6.91
257 FX 3.814
258 FX 3.688
259 FX 3.742
260 FX 4.183
261 FX 7.015
262 FX 2.578
263 FX 7.689
264 FX 8.091
265 FX 9.846
266 FX 4.329
267 FX 4.773

268 FX 4.642
269 FX 2.905
270 FX 4.323
271 FX 3.829
272 FX 6.244
273 FX 7.496
274 FX 7.615
275 FX 6.205
276 FX 3.703
277 FX 5.592
278 FX 6.907
279 FX 3.822
280 FX 3.68
281 FX 3.724
282 FX 4.182
283 FX 7.006
284 FX 2.592
285 FX 7.672
286 FX 8.057
287 FX 9.956
288 FX 4.318
289 FX 4.834
290 FX 4.704
291 FX 2.915
292 FX 4.313
293 FX 3.816
294 FX 6.233
295 FX 7.883
296 FX 7.603
297 FX 6.167
298 FX 3.705
299 FX 5.591
300 FX 6.909
301 FX 3.822

302 FX 3.681
303 FX 3.727
304 FX 4.181
305 FX 7.009
306 FX 2.591
307 FX 7.674
308 FX 8.071
309 FX 9.934
310 FX 4.306
311 FX 4.832
312 FX 4.702
313 FX 2.91
314 FX 4.301
315 FX 3.817
316 FX 6.235
317 FX 7.9
318 FX 7.605
319 FX 6.172
320 FX 3.699
321 FX 5.608
322 FX 6.897
323 FX 3.821
324 FX 3.681
325 FX 3.723
326 FX 4.195
327 FX 6.997
328 FX 2.59
329 FX 7.674
330 FX 8.029
331 FX 9.995
332 FX 4.386
333 FX 4.828
334 FX 4.697
335 FX 2.93

336 FX 4.381
337 FX 3.817
338 FX 6.233
339 FX 7.858
340 FX 7.604
341 FX 6.169
342 FX 2.305
343 FX 5.265
344 FX 5.237
345 FX 2.992
346 FX 2.222
347 FX 2.326
348 FX 4.009
349 FX 5.351
350 FX 1.948
351 FX 5.594
352 FX 6.373
353 FX 6.361
354 FX 2.362
355 FX 2.816
356 FX 2.722
357 FX 2.269
358 FX 2.354
359 FX 2.294
360 FX 4.099
361 FX 6.226
362 FX 5.517
363 FX 4.029
364 FX 3.11
366 FX 2.574
368 FX 3.115
370 FX 2.573
372 FX 2.518
373 FX 2.521

374 FX 3.314
375 FX 3.311
1 FY 0.235
2 FY 4.96
3 FY 5.61
4 FY 5.636
5 FY 5.63
6 FY 5.666
7 FY 5.101
8 FY 0.235
9 FY 5.883
10 FY 9.146
11 FY 9.17
12 FY 9.171
13 FY 9.153
14 FY 7.963
15 FY 0.235
16 FY 5.43
17 FY 8.194
18 FY 8.296
19 FY 8.274
20 FY 8.342
21 FY 6.149
22 FY 0.235
23 FY 5.787
24 FY 8.967
25 FY 8.992
26 FY 8.993
27 FY 8.975
28 FY 7.793
29 FY 0.235
30 FY 4.972
31 FY 5.631
32 FY 5.657

33 FY 5.651
34 FY 5.687
35 FY 5.126
36 FY 0.235
37 FY 7.022
38 FY 18.501
39 FY 18.453
40 FY 18.468
41 FY 18.433
42 FY 13.281
43 FY 0.235
44 FY 6.981
45 FY 8.255
46 FY 8.287
47 FY 8.293
48 FY 8.261
49 FY 7.191
50 FY 0.235
51 FY 4.277
52 FY 10.873
53 FY 10.828
54 FY 10.832
55 FY 10.831
56 FY 8.548
57 FY 0.235
58 FY 4.278
59 FY 10.791
60 FY 10.747
61 FY 10.751
62 FY 10.75
63 FY 8.455
64 FY 0.235
65 FY 6.964
66 FY 8.238

67 FY 8.27
68 FY 8.276
69 FY 8.242
70 FY 7.175
71 FY 0.196
72 FY 4.884
73 FY 4.863
74 FY 4.887
75 FY 4.885
76 FY 4.887
77 FY 4.014
78 FY 0.196
79 FY 1.717
80 FY 2.932
81 FY 2.951
82 FY 2.952
83 FY 2.94
84 FY 2.988
85 FY 0.196
86 FY 2.686
87 FY 3.864
88 FY 3.876
89 FY 3.878
90 FY 3.874
91 FY 3.193
92 FY 0.235
93 FY 4.89
94 FY 4.88
95 FY 4.908
96 FY 4.907
97 FY 4.902
98 FY 3.99
99 FY 0.235
100 FY 3.342

101 FY 5.315
102 FY 5.332
103 FY 5.332
104 FY 5.335
105 FY 4.731
106 FY 0.235
107 FY 1.885
108 FY 4.516
109 FY 4.536
110 FY 4.536
111 FY 4.538
112 FY 5.64
113 FY 0.196
114 FY 2.82
115 FY 4.041
116 FY 4.055
117 FY 4.056
118 FY 4.055
119 FY 3.361
120 FY 0.235
121 FY 3.239
122 FY 5.121
123 FY 5.138
124 FY 5.137
125 FY 5.141
126 FY 4.537
127 FY 0.196
128 FY 3.757
129 FY 3.46
130 FY 3.49
131 FY 3.486
132 FY 3.499
133 FY 2.504
134 FY 0.196

135 FY 1.835
136 FY 3.308
137 FY 3.326
138 FY 3.327
139 FY 3.32
140 FY 3.395
141 FY 0.235
142 FY 1.818
143 FY 4.272
144 FY 4.294
145 FY 4.294
146 FY 4.295
147 FY 5.365
148 FY 0.235
149 FY 5.026
150 FY 6.586
151 FY 6.632
152 FY 6.632
153 FY 6.61
154 FY 4.884
155 FY 0.235
156 FY 5.064
157 FY 6.632
158 FY 6.676
159 FY 6.676
160 FY 6.656
161 FY 4.926
162 FY 0.235
163 FY 6.036
164 FY 7.478
165 FY 7.514
166 FY 7.527
167 FY 7.446
168 FY 6.33

169 FY 0.235
170 FY 6.037
171 FY 7.481
172 FY 7.516
173 FY 7.53
174 FY 7.448
175 FY 6.334
176 FY 0.307
177 FY 2.337
178 FY 4.195
179 FY 4.239
180 FY 4.231
181 FY 4.258
182 FY 2.258
183 FY 0.307
184 FY 2.338
185 FY 4.401
186 FY 4.231
187 FY 4.22
188 FY 4.248
189 FY 2.245
190 FY 0.235
191 FY 5.433
192 FY 6.289
193 FY 6.315
194 FY 6.308
195 FY 6.345
196 FY 5.793
197 FY 0.235
198 FY 6.195
199 FY 9.691
200 FY 9.726
201 FY 9.725
202 FY 9.713

203 FY 8.797
204 FY 0.235
205 FY 5.728
206 FY 8.969
207 FY 9.006
208 FY 8.996
209 FY 9.034
210 FY 7.763
211 FY 0.235
212 FY 6.104
213 FY 9.66
214 FY 9.565
215 FY 9.56
216 FY 9.548
217 FY 8.62
218 FY 0.235
219 FY 5.443
220 FY 6.305
221 FY 6.331
222 FY 6.324
223 FY 6.36
224 FY 5.814
225 FY 2.05
226 FY 2.091
227 FY 2.258
228 FY 2.295
229 FY 0.307
230 FY 3.721
231 FY 12.173
232 FY 12.098
233 FY 12.122
234 FY 12.058
235 FY 10.508
236 FY 2.734

237 FY 2.737
238 FY 3.326
239 FY 1.779
240 FY 1.788
241 FY 1.769
242 FY 1.831
243 FY 2.943
244 FY 1.823
245 FY 2.944
246 FY 1.89
247 FY 3.043
248 FY 3.094
249 FY 4.741
250 FY 3.056
251 FY 2.323
252 FY 2.321
253 FY 3.051
254 FY 3.714
255 FY 5.602
256 FY 6.91
257 FY 3.814
258 FY 3.688
259 FY 3.742
260 FY 4.183
261 FY 7.015
262 FY 2.578
263 FY 7.689
264 FY 8.091
265 FY 9.846
266 FY 4.329
267 FY 4.773
268 FY 4.642
269 FY 2.905
270 FY 4.323

271 FY 3.829
272 FY 6.244
273 FY 7.496
274 FY 7.615
275 FY 6.205
276 FY 3.703
277 FY 5.592
278 FY 6.907
279 FY 3.822
280 FY 3.68
281 FY 3.724
282 FY 4.182
283 FY 7.006
284 FY 2.592
285 FY 7.672
286 FY 8.057
287 FY 9.956
288 FY 4.318
289 FY 4.834
290 FY 4.704
291 FY 2.915
292 FY 4.313
293 FY 3.816
294 FY 6.233
295 FY 7.883
296 FY 7.603
297 FY 6.167
298 FY 3.705
299 FY 5.591
300 FY 6.909
301 FY 3.822
302 FY 3.681
303 FY 3.727
304 FY 4.181

305 FY 7.009
306 FY 2.591
307 FY 7.674
308 FY 8.071
309 FY 9.934
310 FY 4.306
311 FY 4.832
312 FY 4.702
313 FY 2.91
314 FY 4.301
315 FY 3.817
316 FY 6.235
317 FY 7.9
318 FY 7.605
319 FY 6.172
320 FY 3.699
321 FY 5.608
322 FY 6.897
323 FY 3.821
324 FY 3.681
325 FY 3.723
326 FY 4.195
327 FY 6.997
328 FY 2.59
329 FY 7.674
330 FY 8.029
331 FY 9.995
332 FY 4.386
333 FY 4.828
334 FY 4.697
335 FY 2.93
336 FY 4.381
337 FY 3.817
338 FY 6.233

339 FY 7.858
340 FY 7.604
341 FY 6.169
342 FY 2.305
343 FY 5.265
344 FY 5.237
345 FY 2.992
346 FY 2.222
347 FY 2.326
348 FY 4.009
349 FY 5.351
350 FY 1.948
351 FY 5.594
352 FY 6.373
353 FY 6.361
354 FY 2.362
355 FY 2.816
356 FY 2.722
357 FY 2.269
358 FY 2.354
359 FY 2.294
360 FY 4.099
361 FY 6.226
362 FY 5.517
363 FY 4.029
364 FY 3.11
366 FY 2.574
368 FY 3.115
370 FY 2.573
372 FY 2.518
373 FY 2.521
374 FY 3.314
375 FY 3.311
1 FZ 0.235

2 FZ 4.96
3 FZ 5.61
4 FZ 5.636
5 FZ 5.63
6 FZ 5.666
7 FZ 5.101
8 FZ 0.235
9 FZ 5.883
10 FZ 9.146
11 FZ 9.17
12 FZ 9.171
13 FZ 9.153
14 FZ 7.963
15 FZ 0.235
16 FZ 5.43
17 FZ 8.194
18 FZ 8.296
19 FZ 8.274
20 FZ 8.342
21 FZ 6.149
22 FZ 0.235
23 FZ 5.787
24 FZ 8.967
25 FZ 8.992
26 FZ 8.993
27 FZ 8.975
28 FZ 7.793
29 FZ 0.235
30 FZ 4.972
31 FZ 5.631
32 FZ 5.657
33 FZ 5.651
34 FZ 5.687
35 FZ 5.126

36 FZ 0.235
37 FZ 7.022
38 FZ 18.501
39 FZ 18.453
40 FZ 18.468
41 FZ 18.433
42 FZ 13.281
43 FZ 0.235
44 FZ 6.981
45 FZ 8.255
46 FZ 8.287
47 FZ 8.293
48 FZ 8.261
49 FZ 7.191
50 FZ 0.235
51 FZ 4.277
52 FZ 10.873
53 FZ 10.828
54 FZ 10.832
55 FZ 10.831
56 FZ 8.548
57 FZ 0.235
58 FZ 4.278
59 FZ 10.791
60 FZ 10.747
61 FZ 10.751
62 FZ 10.75
63 FZ 8.455
64 FZ 0.235
65 FZ 6.964
66 FZ 8.238
67 FZ 8.27
68 FZ 8.276
69 FZ 8.242

70 FZ 7.175
71 FZ 0.196
72 FZ 4.884
73 FZ 4.863
74 FZ 4.887
75 FZ 4.885
76 FZ 4.887
77 FZ 4.014
78 FZ 0.196
79 FZ 1.717
80 FZ 2.932
81 FZ 2.951
82 FZ 2.952
83 FZ 2.94
84 FZ 2.988
85 FZ 0.196
86 FZ 2.686
87 FZ 3.864
88 FZ 3.876
89 FZ 3.878
90 FZ 3.874
91 FZ 3.193
92 FZ 0.235
93 FZ 4.89
94 FZ 4.88
95 FZ 4.908
96 FZ 4.907
97 FZ 4.902
98 FZ 3.99
99 FZ 0.235
100 FZ 3.342
101 FZ 5.315
102 FZ 5.332
103 FZ 5.332

104 FZ 5.335
105 FZ 4.731
106 FZ 0.235
107 FZ 1.885
108 FZ 4.516
109 FZ 4.536
110 FZ 4.536
111 FZ 4.538
112 FZ 5.64
113 FZ 0.196
114 FZ 2.82
115 FZ 4.041
116 FZ 4.055
117 FZ 4.056
118 FZ 4.055
119 FZ 3.361
120 FZ 0.235
121 FZ 3.239
122 FZ 5.121
123 FZ 5.138
124 FZ 5.137
125 FZ 5.141
126 FZ 4.537
127 FZ 0.196
128 FZ 3.757
129 FZ 3.46
130 FZ 3.49
131 FZ 3.486
132 FZ 3.499
133 FZ 2.504
134 FZ 0.196
135 FZ 1.835
136 FZ 3.308
137 FZ 3.326

138 FZ 3.327
139 FZ 3.32
140 FZ 3.395
141 FZ 0.235
142 FZ 1.818
143 FZ 4.272
144 FZ 4.294
145 FZ 4.294
146 FZ 4.295
147 FZ 5.365
148 FZ 0.235
149 FZ 5.026
150 FZ 6.586
151 FZ 6.632
152 FZ 6.632
153 FZ 6.61
154 FZ 4.884
155 FZ 0.235
156 FZ 5.064
157 FZ 6.632
158 FZ 6.676
159 FZ 6.676
160 FZ 6.656
161 FZ 4.926
162 FZ 0.235
163 FZ 6.036
164 FZ 7.478
165 FZ 7.514
166 FZ 7.527
167 FZ 7.446
168 FZ 6.33
169 FZ 0.235
170 FZ 6.037
171 FZ 7.481

172 FZ 7.516
173 FZ 7.53
174 FZ 7.448
175 FZ 6.334
176 FZ 0.307
177 FZ 2.337
178 FZ 4.195
179 FZ 4.239
180 FZ 4.231
181 FZ 4.258
182 FZ 2.258
183 FZ 0.307
184 FZ 2.338
185 FZ 4.401
186 FZ 4.231
187 FZ 4.22
188 FZ 4.248
189 FZ 2.245
190 FZ 0.235
191 FZ 5.433
192 FZ 6.289
193 FZ 6.315
194 FZ 6.308
195 FZ 6.345
196 FZ 5.793
197 FZ 0.235
198 FZ 6.195
199 FZ 9.691
200 FZ 9.726
201 FZ 9.725
202 FZ 9.713
203 FZ 8.797
204 FZ 0.235
205 FZ 5.728

206 FZ 8.969
207 FZ 9.006
208 FZ 8.996
209 FZ 9.034
210 FZ 7.763
211 FZ 0.235
212 FZ 6.104
213 FZ 9.66
214 FZ 9.565
215 FZ 9.56
216 FZ 9.548
217 FZ 8.62
218 FZ 0.235
219 FZ 5.443
220 FZ 6.305
221 FZ 6.331
222 FZ 6.324
223 FZ 6.36
224 FZ 5.814
225 FZ 2.05
226 FZ 2.091
227 FZ 2.258
228 FZ 2.295
229 FZ 0.307
230 FZ 3.721
231 FZ 12.173
232 FZ 12.098
233 FZ 12.122
234 FZ 12.058
235 FZ 10.508
236 FZ 2.734
237 FZ 2.737
238 FZ 3.326
239 FZ 1.779

240 FZ 1.788
241 FZ 1.769
242 FZ 1.831
243 FZ 2.943
244 FZ 1.823
245 FZ 2.944
246 FZ 1.89
247 FZ 3.043
248 FZ 3.094
249 FZ 4.741
250 FZ 3.056
251 FZ 2.323
252 FZ 2.321
253 FZ 3.051
254 FZ 3.714
255 FZ 5.602
256 FZ 6.91
257 FZ 3.814
258 FZ 3.688
259 FZ 3.742
260 FZ 4.183
261 FZ 7.015
262 FZ 2.578
263 FZ 7.689
264 FZ 8.091
265 FZ 9.846
266 FZ 4.329
267 FZ 4.773
268 FZ 4.642
269 FZ 2.905
270 FZ 4.323
271 FZ 3.829
272 FZ 6.244
273 FZ 7.496

274 FZ 7.615
275 FZ 6.205
276 FZ 3.703
277 FZ 5.592
278 FZ 6.907
279 FZ 3.822
280 FZ 3.68
281 FZ 3.724
282 FZ 4.182
283 FZ 7.006
284 FZ 2.592
285 FZ 7.672
286 FZ 8.057
287 FZ 9.956
288 FZ 4.318
289 FZ 4.834
290 FZ 4.704
291 FZ 2.915
292 FZ 4.313
293 FZ 3.816
294 FZ 6.233
295 FZ 7.883
296 FZ 7.603
297 FZ 6.167
298 FZ 3.705
299 FZ 5.591
300 FZ 6.909
301 FZ 3.822
302 FZ 3.681
303 FZ 3.727
304 FZ 4.181
305 FZ 7.009
306 FZ 2.591
307 FZ 7.674

308 FZ 8.071
309 FZ 9.934
310 FZ 4.306
311 FZ 4.832
312 FZ 4.702
313 FZ 2.91
314 FZ 4.301
315 FZ 3.817
316 FZ 6.235
317 FZ 7.9
318 FZ 7.605
319 FZ 6.172
320 FZ 3.699
321 FZ 5.608
322 FZ 6.897
323 FZ 3.821
324 FZ 3.681
325 FZ 3.723
326 FZ 4.195
327 FZ 6.997
328 FZ 2.59
329 FZ 7.674
330 FZ 8.029
331 FZ 9.995
332 FZ 4.386
333 FZ 4.828
334 FZ 4.697
335 FZ 2.93
336 FZ 4.381
337 FZ 3.817
338 FZ 6.233
339 FZ 7.858
340 FZ 7.604
341 FZ 6.169

342 FZ 2.305
343 FZ 5.265
344 FZ 5.237
345 FZ 2.992
346 FZ 2.222
347 FZ 2.326
348 FZ 4.009
349 FZ 5.351
350 FZ 1.948
351 FZ 5.594
352 FZ 6.373
353 FZ 6.361
354 FZ 2.362
355 FZ 2.816
356 FZ 2.722
357 FZ 2.269
358 FZ 2.354
359 FZ 2.294
360 FZ 4.099
361 FZ 6.226
362 FZ 5.517
363 FZ 4.029
364 FZ 3.11
366 FZ 2.574
368 FZ 3.115
370 FZ 2.573
372 FZ 2.518
373 FZ 2.521
374 FZ 3.314
375 FZ 3.311
SPECTRUM CQC 1893 TOR X 0.036 ACC SCALE 1 DAMP 0.05 MIS
SOIL TYPE 2
LOAD 2 EQZ
SPECTRUM CQC 1893 TOR Z 0.036 ACC SCALE 1 DAMP 0.05

## SOIL TYPE 2

## LOAD 3 DEAD LOAD

## MEMBER LOAD

193 TO 196203208212 TO 221228 TO 232234243255274282286288 TO 291 297302306 TO 309327336356369 TO 372378383387 TO 390408417437 450 TO 453459464468 TO 471489498518531 TO 534540545549 TO 552570 579599612 TO 615630 TO 633 UNI GY -1.2

197199 TO 202204 TO 207209 TO 211222224 TO 227233237 TO 242244251 253254256 TO 262264 TO 266270 TO 273275 TO 280283 TO 285287 292 TO 296298 TO 301303 TO 305310 TO 326330 TO 335337 TO 355 357 TO 368373 TO 377379 TO 382384 TO 386391 TO 407411 TO 416 418 TO 436438 TO 449454 TO 458460 TO 463465 TO 467472 TO 488 492 TO 497499 TO 517519 TO 530535 TO 539541 TO 544546 TO 548 553 TO 569573 TO 578580 TO 598600 TO 611 UNI GY -0.6 235328409490571619621624626650 TO 653658660674680 UNI GY -1 634 TO 639645 TO 649665687691693 TO 700 UNI GY -0.5

SELFWEIGHT Y -0.9

## LOAD 4 FLOOR LOAD

## FLOOR LOAD

YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 0 2.93 ZRANGE 07.59 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 2.93 8.94 ZRANGE 02.44 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 8.94 11.87 ZRANGE 07.59 GY YRANGE 2.8 11.8 FLOAD -0.55 XRANGE 2.93 8.94 ZRANGE 2.44 7.59 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 0 2.279 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 2.279 4.764 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 4.764 7.841 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 9.591 11.87 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 0 3.07 ZRANGE 9.65 12.09 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 0 3.07 ZRANGE 12.09 15.44 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 0 3.07 ZRANGE 15.44 19.75 GY YRANGE 2.8 11.8 FLOAD -0.55 XRANGE 3.07 8.8 ZRANGE 9.65 16.47 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 3.07 8.8 ZRANGE 16.47 19.75 GY YRANGE 2.8 11.8 FLOAD -0.5 XRANGE 8.8 11.87 ZRANGE 9.65 12.09 GY YRANGE 2.8 11.8 FLOAD -0.75 XRANGE 8.8 11.87 ZRANGE 12.09 15.44 GY

YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 0 2.93 ZRANGE 0 7.59 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 2.93 8.94 ZRANGE 0 2.44 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 8.94 11.87 ZRANGE 07.59 GY YRANGE 14.8 14.8 FLOAD -0.65 XRANGE 2.93 8.94 ZRANGE 2.44 7.59 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 0 2.279 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.75 XRANGE 2.279 4.764 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 4.764 7.841 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 9.591 11.87 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 0 3.07 ZRANGE 9.65 12.09 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 0 3.07 ZRANGE 12.09 15.44 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 0 3.07 ZRANGE 15.44 19.75 GY YRANGE 14.8 14.8 FLOAD -0.65 XRANGE 3.07 8.8 ZRANGE 9.65 16.47 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 3.07 8.8 ZRANGE 16.47 19.75 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 8.8 11.87 ZRANGE 9.65 12.09 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 8.8 11.87 ZRANGE 12.09 15.44 GY YRANGE 14.8 14.8 FLOAD -0.6 XRANGE 8.8 11.87 ZRANGE 15.44 19.75 GY YRANGE 17.4 17.4 FLOAD -1 GY

## LOAD 5 LIVE LOAD

 FLOOR LOADYRANGE 2.8 11.8 FLOAD -0.2 XRANGE 0 2.93 ZRANGE 07.59 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 2.93 8.94 ZRANGE 0 2.44 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 8.94 11.87 ZRANGE 0 7.59 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 2.93 8.94 ZRANGE 2.44 7.59 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 0 2.279 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.3 XRANGE 2.279 4.764 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 4.764 7.841 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 9.591 11.87 ZRANGE 7.59 9.65 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 0 3.07 ZRANGE 9.65 12.09 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 0 3.07 ZRANGE 12.09 15.44 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 0 3.07 ZRANGE 15.44 19.75 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 3.07 8.8 ZRANGE 9.65 16.47 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 3.07 8.8 ZRANGE 16.47 19.75 GY

YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 8.8 11.87 ZRANGE 9.65 12.09 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 8.8 11.87 ZRANGE 12.09 15.44 GY YRANGE 2.8 11.8 FLOAD -0.2 XRANGE 8.8 11.87 ZRANGE 15.44 19.75 GY

YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 0 2.93 ZRANGE 07.59 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 2.93 8.94 ZRANGE 0 2.44 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 8.94 11.87 ZRANGE 0 7.59 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 2.93 8.94 ZRANGE 2.44 7.59 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 0 2.279 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 2.279 4.764 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 4.764 7.841 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 9.591 11.87 ZRANGE 7.59 9.65 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 0 3.07 ZRANGE 9.65 12.09 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 0 3.07 ZRANGE 12.09 15.44 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 0 3.07 ZRANGE 15.44 19.75 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 3.07 8.8 ZRANGE 9.65 16.47 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 3.07 8.8 ZRANGE 16.47 19.75 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 8.8 11.87 ZRANGE 9.65 12.09 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 8.8 11.87 ZRANGE 12.09 15.44 GY YRANGE 14.8 14.8 FLOAD -0.15 XRANGE 8.8 11.87 ZRANGE 15.44 19.75 GY YRANGE 17.4 17.4 FLOAD -0.15 GY
*LOAD COMB 100 (FOR JOINT WEIGHT) *3 1.040 .250

## LOAD COMB 6 (DL +EQ.LL)

31.041 .050 .5

LOAD COMB 7 1.5(DL + LL) $100 \%$
31.541 .551 .5

LOAD COMB 12 1.2(EQX + DL + 0.5LL)
11.231 .241 .250 .6

LOAD COMB 13 1.2(-EQX + DL + 0.5LL)
1-1.2 31.241 .250 .6
LOAD COMB 14 1.2(EQZ + DL + 0.5LL)
21.231 .241 .250 .6

LOAD COMB 15 1.2(-EQZ + DL + 0.5LL)

2-1.231.241.250.6
LOAD COMB 16 1.5(EQX + DL)
11.531 .541 .5

LOAD COMB 17 1.5(-EQX + DL)
$1-1.531 .541 .5$
LOAD COMB 18 1.5(EQZ + DL)
21.531 .541 .5

LOAD COMB 19 1.5(-EQZ + DL)
2-1.5 31.541 .5
LOAD COMB 20 ( $\mathbf{1 . 5 * E Q X ~ + 0 . 9 * ~ D L ) ~}$
11.530 .940 .9

LOAD COMB 21 ( $\left.1.5^{*}-\mathrm{EQX}+\mathbf{0 . 9 * D L}\right)$
1-1.5 30.940 .9
LOAD COMB 22 ( $1.5 * E Q Z+0.9 * D L)$
21.530 .940 .9

LOAD COMB 23 (1.5*-EQZ + 0.9*DL)
$2-1.530 .940 .9$
LOAD COMB 24 ( $\mathrm{DL}+\mathrm{LL}$ )
31.041 .050 .7

LOAD COMB 25 (DL + LL)
31.041 .051 .0

LOAD COMB 32 (EQX + DL + 0.5LL)
11.031 .041 .050 .5

LOAD COMB 33 (-EQX + DL + 0.5LL)
$1-1.031 .041 .050 .5$
LOAD COMB 34 (EQZ + DL + 0.5LL)
21.031 .041 .050 .5

LOAD COMB 35 (-EQZ + DL + 0.5LL)
2-1.0 31.041 .050 .5
LOAD COMB 36 (EQX + DL)
11.031 .041 .0

LOAD COMB 37 (-EQX + DL)
1-1.031.041.0
LOAD COMB 38 (EQZ + DL)
21.031 .041 .0

LOAD COMB 39 (-EQZ + DL)
2-1.0 31.041 .0
LOAD COMB 40 (EQX + 0.9* DL)
11.030 .940 .9

LOAD COMB 41 (-EQX + 0.9*DL)
1-1.0 30.940 .9
LOAD COMB 42 (EQZ + 0.9*DL)
21.030 .940 .9

LOAD COMB 43 (-EQZ + 0.9*DL)
2-1.0 30.940 .9
PERFORM ANALYSIS
LOAD LIST 4
PRINT SUPPORT REACTION ALL
LOAD LIST 32 TO 43
PRINT SUPPORT REACTION ALL
LOAD LIST 32 TO 43
*PRINT JOINT DISPLACEMENTS LIST 184 TO 190192193196 TO 224226
LOAD LIST 712 TO 23
PERFORM ANALYSIS PRINT STATICS CHECK
LOAD LIST 3
PRINT SUPPORT REACTION
START CONCRETE DESIGN
CODE INDIAN
UNIT MMS NEWTON
FYMAIN 500 ALL
FYSEC 415 ALL
FC 25 ALL
MINMAIN 12 ALL
MAXMAIN 25 ALL
TRACK 2 MEMB 1 TO 192245 TO 250705 TO 712
DESIGN COLUMN 1 TO 192245 TO 250705 TO 712
DESIGN BEAM 193 TO 197199 TO 222224 TO 244251253 TO 262264 TO 266270 -
271 TO 280282 TO 700

CONCRETE TAKE
END CONCRETE DESIGN
PRINT STORY DRIFT
FINISH

