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Abstract 
 

 
Free vibration analysis of a continuous beam with free-free boundary condition is carried out 

in this work. The study of vibration plays a significant role in many engineering problem. 

All mechanical systems exhibit vibrational response when exposed to disturbances. Study 

of vibration generally helps a designer to identify areas of weakness in the design or areas 

where improvement is needed. Free-free end condition is generally encountered during 

operating condition of aeroplanes, missiles, submarine etc. where the structure is not 

supported at the both ends as such they are floating in space. Two significant parameters 

associated with a vibrating body are natural frequency and mode shape. In order to design 

structure for noise and vibration applications, understanding of both natural frequency and 

mode shapes are quite necessary.   

 

 In this project, the mathematical model of a beam is developed with the help of Euler-

Bernoulli beam theory, which depicts the natural  frequency of  the beam and 

associated mode shape of the beam. Then,  bond graph model of the beam is created 

and modelling and simulation of the beam is carried out by using Symbol Sonata software 

and ANSYS 15.0 software. Moreover, experimental analysis is also performed through 

OROS software.  Results obtained through mathematical model are further compared with 

experimental model and computational model, which provide a considerable agreement with 

the other. Finally, useful conclusions are drawn from results obtained through these 

approaches and further studies are suggested. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 Introduction and motivation 
 

Problems involving vibration occur in many areas of mechanical, civil and aerospace 

engineering. All mechanical, civil and aerospace systems vibrate when exposed to s l ight 

disturbance. Any vibration phenomenon is explained with the help of very 

important parameter called natural frequency. Each system/structure vibrates with their 

own natural frequency for different modes associated with them. If the frequency of the 

external applied force matches with the natural frequency of a mode of the vibrating 

system/structure, this leads to the high amplitude of vibration and sometimes 

catastrophic failures of the system. This is called resonance in vibration term. There is, 

therefore, a great need for the vibration analysis of mechanical structure to design and 

to decrease energy loss in the system. 

 

The main reason to analyze a system for vibration so as to deviate the external 

excitation forcing frequency as far as possible from the natural frequency of the system 

to avoid the condition of resonance. There is another term frequently used while 

studying the mechanical structure vibration called the mode shape. A mode shape is a 

specific pattern of vibration shown by a mechanical system at a specific frequency. 

The mode shape defines the curvature of vibration at each points of vibrating system in 

time those magnitudes keep on changing. Natural frequency and mode shape are the 

function boundary condition and material properties of the structure. Vibration 

characteristic of a given system is affected by the boundary condition to a great extent. 

By altering the boundary condition of the structure, structure vibrates differently. If the 

structural properties changes say, Young modulus of elasticity of material (E),  then 

natural frequency changes, but the mode shape remain the same. If the boundary 

condition of the vibrating changes, both natural frequency and mode shape changes. 

Several scholars had done investigation to study the vibrational behavior of the 

structure in different kinds of boundary condition. It is important to know the dynamic 

response of the structure so that overall behavior of the structure can be predicted 

under certain condition. Modeling and simulating the dynamic behavior of the structures 

had received a lot of attention in the past few decades and many textbooks were written 

on this. Study of dynamic behavior of beam has been the subject of intense research in 
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vibration analysis. This is because that the beam is used in almost all kind of system and 

thus, is the fundamental element of engineering structures and hence, its vibration response 

needs to be understood. 

 

One of the famous examples of a structure disaster due to resonance was the 1940 

Tacoma Narrows Bridge collapse in the city of Washington, USA. Collapse of bridge took 

place due to fast moving winds that exceed speed 40mph, which results in large magnitude 

of back and forth movement of the bridge and finally result in collapse. Another example of 

the disaster due to resonance is London Millennium Bridge and was caused due to the 

swaying motion caused by people marching across it – typically 2,000 people were on the 

bridge at the time. This led to a pronounced wobbling effect in the bridge and the bridge was 

later closed. 

   

                               

                                             Figure 1.1: Tacoma Narrows Bridge 
 

One of the most reliable methods to study the vibration characteristic of a structure 

is the Experimental Modal Analysis (EMA). It is useful to obtain system’s dynamic 

response in the form of its modal parameters such as natural frequencies, mode shapes 

and damping ratio. The first step used in EMA is to obtain Frequency Response Functions 

(FRF) from different excitation method such as the impact hammer experiment and from 

shaker. After that, from these measured values of FRFs, modal parameters are calculated 

with the help of various methods and finally, the modal parameters are obtained. 

 

These natural frequencies and mode shapes of the structure can also be calculated 

successfully by using Finite Element Method (FEM) software. However, it is not possible to 

study the damping property of the material with FEM. It is usually practice to avoid 
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damping in the structure because it is the lost energy in the system which decreases the 

efficiency of the system. It is one of the most important parameter while designing and 

choosing the material for the structure.  

 

1.2 Modeling structures 
 

In order to design and analyze a mechanical system, vast knowledge of the vibration 

characteristic of the system is essential so as to make it reliable. A model of the system is a 

representation of the construction attributes and its working. The main advantage of making 

model before actually making structure is that it allows the designer to predict the behavior 

of the system under various operating condition. It should incorporate most of the salient 

features of the system.   
 

                               

                                                Actual system 

             

 

                                              Physical modelling 

                                      (Suitable approximations are made  

                                           based on engineering judgement) 

 

 

                                              

                                             Mathematical modeling 

                                              (Basic physical laws are  

                                                applied to obtain equation  

                                              of motion to be performed  

                                                   by computer software) 

 
 

 

 

                                                         Analysis 
                                          (To solve the derived equation of  

                                            motion by computer software in  

                                            order to  predict  dynamic behavior 

                                           of the system under given condition) 

 
                             Figure 1.2: Structure of computer simulation  
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Physical Modeling 

The need for the physical modelling of the system is to determine its nature, features, 

different physical components or elements involved and to study response of the physical 

system. While analyzing the results obtained by these physical models, it is necessary for the 

designer to know that the model is an approximation only with some assumption to the real 

system and hence, the actual behavior of the system may differ with respect to that obtained 

by model. 

 

       In general, ideally beam is an elastic continuum with homogenous property 

throughout the body, which has the ability to transmit or resist shear force and the bending 

moment. A simple finite element model of a beam has two-nodes at the ends with two 

degrees of freedom i.e. the rotational and the translational as shown in the figure1.3.    

 

                                                              
 
 

                  𝑀1           𝑉1                                                                                           𝑉2      𝑀2  
 
 
                                                        Figure 1.3:  Beam element 

 

            Here, ‘M’ represents moment and ‘V’ represents shear force acting at the two node of 

a simple beam. Different scholars had attempted to analyze beam in the transverse vibration 

and derived governing equation of motion for such beams. The detailed analysis and 

derivation of governing equation of motion of beam in the transverse vibration was done by 

Daniel Bernoulli in the year 1735, and the first solutions of such governing equation for 

various end conditions were suggested by Euler in the year 1744. Their approach was 

popularly known as the Euler-Bernoulli theory or thin beam theory. After that, Rayleigh 

came with beam theory of his own by considering the effect of rotary inertia in beam, 

popularly known as Rayleigh beam theory. In 1921, Stephen Timoshenko derived an 

improved theory of beam vibration by considering the effects of both shear deformation and 

rotary inertia, which was popularly known as the Timoshenko or thick beam theory. In this 

project work, the main objective is to vibrational analysis the transverse beam with the help 

of Euler-Bernoulli theory. 

 

There are two types of boundary condition of the beam. First is natural or dynamic 

boundary that tells about the moment and force balance at the boundary of the beam. Second 
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is geometric or essential boundary condition that restraint the beam due to the end condition 

of the beam.   

 

For studying a beam element having large length, beam is subdivided into number of 

small parts and assumes that these small mass parts are connected with rigid link element at 

the ends as shown in figure 1.4. The benefit of modelling such long element in this fashion is 

that, it provides an opportunity to analyze small parts of the beam individually and in later 

stage, combining these results as obtained by individual elements to predict the complete 

behavior of the entire beam. 

 

                                          

                                                               Rigid body  

                          

                                                Lump mass  

                          

                                       Connected rigid link 

                         

 
                                                                            Deformed beam 
                                                 

                                                          Figure1.4: Model of long beam 

              

 

1.3 Types of modelling  
 

1.3.1 Lumped and continuous systems 
 

The physical model of the beam can be divided into two types, continuous and lumped, 

depending upon the method used for analyzing purpose. In lumped model, the system is 

assumed to be discrete and mass of the system is assumed to be rigid and concentrated at a 

single point. The equation of motion of the discrete system is generally expressed by 

ordinary differential equations having only one independent variable involved. Continuous 

system differs from the discrete systems, in that, material properties such as elasticity, 
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damping and mass are distributed continuously throughout the system. Such systems are 

popularly known as distributed-parameter systems. Examples of continuous system include 

strings, rods, shells, beams and plates. Discrete system requires finite coordinate to specify 

its overall behavior, thus is finite degrees of freedom system, whereas continuous system 

requires infinite coordinate to specify its overall behavior, thus is infinite degrees of freedom 

system, for example infinite number of coordinates are needed to specify the magnitude of 

displacement of each and every point of the continuous system. To determine the magnitude 

of displacement of a continuous system, it requires two independent variables, namely time t 

and displacement x. As a result, the equation of motion of the continuous system is 

generally governed by partial differential equation that consists of two independent 

variable that has to be satisfied over the entire system, subjected to different initial 

conditions and boundary conditions. 
 

As a matter of choice, given system can be considered as a continuous one or as a 

discrete one, as per the requirement or objectives of the analysis. It was also found that 

b o t h  continuous and discrete systems are closely related with each other, and therefore, 

both continuous and discrete systems have their own natural frequencies and normal 

modes of vibration. The governing equation of motion of various continuous system, such 

as the longitudinal vibration of a metallic bar, transverse vibration of the tightly stretched 

cable or string, the lateral vibration of the beams, transverse vibration of the membrane, and 

torsional vibration of the rod and the shaft can be obtained by applying the Newton’s second 

law of motion to solve free body diagram of such systems. By applying the proper boundary 

conditions of the beam, the solution of governing differential equation of motion describing 

the free vibration of the system can be obtained. Continuous system gives infinite degree of 

freedom and thus, infinite distinct values of natural frequencies and the corresponding mode 

shapes with respect to each natural frequency. The free-vibration response of the both 

discrete and continuous system can be obtained as a linear superimposition of the 

mode shapes obtained at different values of natural frequency. Number of  constants 

involved in the final equation can be obtained from the known boundary condition of the 

system. 

 

Continuous systems are the real system and physical modeling done on the basis of 

continuous system gives more accurate results as compared to one which consider system as 

discrete system. Figure 1.5 (a) and (b) show discrete and continuous system. 
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(a) 
 

 
 

                                 
 
 

(b) 
 

 
                          Figure 1.5: (a) Discrete system, (b) Continuous system 

 
 

In this work, beam is being treated as continuous and its vibration response is being 

analyzed. 

 

1.3.2 Bond graph modeling   
 

In the late 1950s, H.M. Paynter of MIT was working on engineering projects of 

interdisciplinary nature including analog and digital computing, hydroelectric plant, and non-

linear dynamics. In his work, he observed that very similar types of equations were produced 

by dynamic system having wide range of domain such as mechanical, electrical and fluid. He 

introduced the idea of incorporating the energy port into his working procedure and hence, 

bond graph modelling was invented in the year 1959. The technique of bond graph theory has 

been further studied and modified by many researchers in the coming years.   

 

Bond graph modelling is a pictorial representation of a physical dynamic system, 

showing various system components connected with each other by power bonds which 

represents transfer of energy/power between different components of dynamic system.  

Power factors such as flow and effort, have different understandings in various types of 

physical domain. The power flow can be visualized between several domains of the system 

so as to make dynamic model of a system in bond graph modelling. Four groups of basic 

elements are need to be understood in bond graph modelling, that are, the three basic one port 

elements capacitance (C), resistance (R) inertance (I); two basic active source elements, 

source of effort (SE) and source of flow (SF), two port elements, gyrator (GY) and 

transformer (TF) and two junctions elements, constant flow junction (1) and constant effort 

junction (0). 
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A physical system is modelled by symbols and lines, signifying the power flow paths. 

Various lumped elements of capacitance, inertance and resistance are interconnected in the 

manner of energy conservation by junctions and bonds. The derivation of equation of system 

is in systematic manner so that it can easily be algorithmzed, with the help of the pictorial 

representation of system by bond graph technique. Whole procedure of above discussed 

technique can be modelled and simulated with the help of the available existing software such 

as  COSMO, ENPORT, Camp- G, 20sim, SYMBOL-shakti,  etc. 

 

1.4 Literature review 

The detailed review of background of various works and the literature review are briefly 

discussed in this section. There are several studies and works done by different researchers 

related to the dynamic analysis of a beam and which can further be validated by experimental 

analysis that justified their project proposal. 

 

Iglesias [4] have done a research on modal parameter estimation method both in time 

domain and frequency domain with respect to the damping ratio of the system. After 

discussing different types of estimation methods, he further linked these methods with single 

input single output set of data obtained through experiment which are represented as 

Frequency Response Functions (FRF) or in the form of Impulse Response Function (IRF). 

His work recommends that for analyzing the system, time domain methods generate better 

approximation with that of analytical data sets. 

 

 

Kumar et al. [31] have investigated the effect of mechanical properties of material on 

dynamic vibration analysis based on the natural frequency and mode shape of a Transmission 

Gearbox. Four different materials with different density value were taken. Grey cast iron has 

damping property, structural steel has high elasticity and rigidity, aluminium and magnesium 

alloys have low weight due to low density. Free vibration analysis was done to obtain the 

vibration response of the transmission casing with different material. Grey cast iron grade FG 

260, structural steel, aluminium alloy and magnesium alloy materials were studied for the 

vibration response and for the design index. Finite element simulation is used for the free 

vibration analysis of transmission casing. The vibration output characteristic of all such 

materials shows that there is variation in natural frequency and associated vibrations mode 

shapes. The vibration responses of material for first twenty modes were considered. Solid 

Edge software and Pro-E were used for model designing of gearbox transmission casing. 
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After that, finite element analysis based ANSYS 14.5 was used for doing the modal analysis. 

Vibration response transmission casing was studied in fixed- fixed boundary condition by 

constraining the hole of connecting bolts. Transmission casing was fixed on vehicle frame by 

connecting bolts. The simulation results obtained were further compared with experiment 

results. 

 

Radice J.J. [39] has discussed the effect of local boundary condition of the structure 

on the natural frequencies. He has taken eccentric pin supports, or simple supports for his 

study. Usually, simply supported boundary condition was modeled by restricting the lateral 

movement of the beam structure but permitting the free rotation at the boundaries. He had 

considered the simple supported beam as if beam is simply pinned at the mid-plane of cross 

section of the structure. Comsol finite element model is used to examine changes in the value 

of the natural frequencies of a beam obtained by varying the location of the pin supports 

through cross section of the structure. He observed that the natural frequencies of the simply 

supported beam are greatly influenced by pin support eccentricity. It was observed that by 

displacing the pin support point from the mid-plane to the bottom edge of the structure, the 

natural frequencies increases by over 55%. 

 

Baroudi et al. [34] have discussed vibration response of transverse Euler-Bernoulli 

beam carrying point mass at the center and submerged in fluid medium. They suggested an 

analytical method to determine the effects of adding point masses on the natural frequency 

and mode shape of Euler-Bernoulli beam with concentrated point mass at a given point while 

submerged in a fluid medium. A fixed-fixed beam is taken with concentrated point mass. The 

mathematical approach used in Euler-Bernoulli theory was used to determine the different 

natural frequency of a beam. The frequency equation of fixed-fixed beam is derived and 

solved analytically. The finite element method is further used to obtain vibration response 

and then, results are compared with those obtained by analytical method for the purpose of 

validation and reasonable results were obtained. Orthogonality principle of trigonometric 

function and variable separation technique were also discussed to deal with the difficulty 

arising in predicting the effects of fluid on the overall behavior of the beam. Method 

suggested in this paper can be directly used in almost all boundary condition of an Euler 

Bernoulli beam with an infinite number of mass points.   

 

Han et al. [18] have studied the dynamics behavior of transversely vibrating beam 

with the help of four engineering theories i.e. Euler-Bernoulli, Shear, Rayleigh and 
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Timoshenko. First, a detailed description of each beam model was done. The frequency 

equations for four types of end conditions were obtained, that is 1) Free-free 2) hinged-

hinged 3) clamped-free (cantilever) 4) clamped-clamped. After that, the orthogonality 

principle of the eigen functions that is mode shape and the detailed procedure to obtain the 

vibration response by using the method of eigen function expansion was explained. Then, the 

frequency equations were solved to obtain the roots in terms of eigen value numbers. These 

eigen value numbers are obtained for the set of six end conditions. For various engineering 

application, these numbers were expressed as a function of the slenderness ratio of the given 

beam to obtain the natural frequencies of the beam directly for given geometrical and 

physical properties. After that, the comparisons between the natural frequencies of the beam 

and the dimensionless normalized numbers obtained from these models were made. It was 

observed from the above procedure, that the mathematical difference between the Euler-

Bernoulli beam model and the other beam models decreases monotonically as the slenderness 

ratio increases as obtained by the ratio of length to the cross-section dimension of the beam. 

It is also concluded from the work that the shear is far more significant than the rotary effect 

in cross-section for given geometry and material. The shear model of beam gives reasonable 

results for very less complexity. 

 

Rao et al. [45] have discussed analytical and experimental modal analysis procedure 

of the welded structure used for identification of damage in vibration. Firstly, an 

experimental modal analysis was done on an undamaged welded structure to identify damage 

in structure. The test structure was fixed to the electro dynamic vibration shaker that excites 

the structure. Then, frequency response functions for the structure were obtained from the 

measured applied input value and output response of a structure with the help of 

accelerometers. With the help of these frequency response functions, the peak points were 

identified and value of natural frequency of the structure was obtained. Finite element modal 

analysis was done using ANSYS 11.0 software and natural frequencies and mode shapes 

were obtained. By comparing these two methods, it was observed that the values of natural 

frequencies of the welded structure obtained from the ANSYS software 11.0 and 

experimental modal analysis showed a good acceptable consistency. 

 

Palej et al. [33] have done the modal analysis of multi-degree of freedom system. 

Modal analysis of multi-degree of freedom system consisting of n identical masses and 

coupled with the springs. The resultant stiffness matrix of the multi-degree of freedom system 

took the form of symmetric matrix of 𝑛𝑡ℎ order. The eigenvalue problem for multi-degree of 
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freedom system was described by using calculated values of eigenvalues and corresponding 

eigenvectors associated with each eigenvalue. This technique of solving a problem 

eigenvalue approach can also be applied for a finite number of degrees of freedom fully 

coupled system and also for the systems in which the point masses are entirely connected 

with the nearest point mass. Depending upon the nature of eigenvectors obtained, two types 

of the solution have been discussed to the initial value or boundary value problem.  

 

Luay [47] evaluated the natural frequency and corresponding mode shape of a 

stepped cantilever beam. Three different models for the beam were used to determine the 

natural frequency of stepped cantilever beam with changing diameter. These models were 

Finite elements model (ANSYS model), Rayleigh model, and modified Rayleigh model. 

Rayleigh model determined the stiffness of the stepped cantilever beam at each and every 

point of the beam. Modified Rayleigh model was more similar to the ANSYS beam model as 

compared to the Rayleigh model. The comparison between these three methods was also 

discussed by Luay in his work. He stated the effect of the length of small and large part of 

stepped beam, the width for large and small part of stepped beam. It was observed that 

natural frequency of a stepped beam was increased by increasing the ratio of width of large 

and small parts of the beam. When the modified Rayleigh model or ANSYS model were 

used, it was observed that the natural frequency of the stepped beam can also be increased by 

increasing the length of large width section until it reached the value of 0.52 m and then 

decreased with further increasing the length. The natural frequency of  any beam depends to a 

great extent on the stiffness of beam  which further is dependent on the type of constrain in 

the beam. In general, the stiffness of a stepped cantilever beam depends upon width and 

length of the small part of beam and large part of beam in addition to the young modulus of 

elasticity of beam material. When the ratio (𝑊𝑙𝑎𝑟𝑔𝑒/𝑊𝑠𝑚𝑎𝑙𝑙) or (𝐼𝑙𝑎𝑟𝑔𝑒/𝐼𝑠𝑚𝑎𝑙𝑙) was increased, 

the rate of stiffness also increased. While the natural frequency was increased until reaches to 

the range of (0.042-0.63) m, it decreased for any value of width. 

 

1.4.1 Summary and research gap in literature review 

Han et al. [18] have discussed four engineering theories that can be used for studying 

dynamics vibration behavior of a transversely vibrating beam and made an important 

conclusion that vibration response of a vibrating beam is greatly influenced by the boundary 

condition of the beam. Rao et al [45] have discussed in detail experimental modal analysis 

procedure of a structure using impact hammer test. He discussed the method of obtaining 
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frequency response function of a vibrating beam from measured value of input force and 

output response using accelerometer. Luay [47] evaluates the natural frequency of stepped 

cantilever beam using ANSYS software, Rayleigh model and modified Rayleigh model and 

made the conclusion that the natural frequency of a beam depends on  the value of stiffness or 

boundary condition of the beam. 

 

It has been found that very limited studies were conducted to evaluate the natural 

frequencies and mode shape for the Euler-Bernoulli beam, which has been further validated 

by computational and experimental studies. In this work, an analytical model of Euler-

Bernoulli beam are being examined and bond graph model and experimental validation are 

also being carried out. 
 

  

1.5 Problem statement 
 

In the present work, a simple bar of mild steel with free-free boundary condition is taken 

and its dynamic vibration behavior is studied. The main objective of this research work is to 

create a mathematical and computational model of the beam in free-free end condition and 

further validation of these results obtained with the experimental model. Free-free boundary 

conditions are generally encountered in various areas of mechanical and aerospace 

applications such as during operation of a missiles, aeroplane, spacecraft, submarine 

etc.  

 

1.6 Objective of research work 
 

 

The main objectives of this research work are: 
 

 To make a mathematical model of the free-free beam. 
 

 To develop a FEM model of beam on ANSYS 15.0 software.

 To create a dynamic model of beam in free-free boundary condition through bond 

graph and conduct a simulation on SYMBOLS SONATA software.

4. To explore the experimental possibilities for validation of computational model. 

 

1.7 Organization of the thesis 
 

 

This thesis comprises of seven chapters. Introduction and motivation of the project is 

discussed along with continuous system, literature review, problem statement and objectives 

of the work in first chapter. In second chapter, mathematical model of the transverse 

vibration of the beam is evaluated with application of Euler-Bernoulli theorem. In third 
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chapter, finite element analysis and modeling and simulation results as obtained by 

ANSYS 15.0 software are discussed. In fourth chapter, bond graph modelling and 

simulation technique is discussed and the natural frequency is obtained. In fifth chapter, 

basic theory about the experimental modal analysis and experimental procedure is studied. 

In sixth chapter, a comparison is made with the results obtained numerically and 

experimentally. Conclusion of the thesis is represented and future scope is suggested in 

seventh chapter. 
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                                                                                                                                                CHAPTER 2 

                                                   MATHEMATICAL MODELLING 

 

2.1 Introduction  
 

A mathematical model of a system is defined as a set of equations that represents dynamics of 

the system accurately or at least, fairly well. A mathematical model is not unique to a given 

mechanical system. A system may be represented in many different ways and therefore may 

have many mathematical models, depending on one’s perspective.  The dynamics of a 

mechanical system can be described in terms of differential equations. Such differential 

equations may be obtained by using physical laws governing particular system, for example, 

Newton’s laws are used in case of a mechanical system. Mathematical models may assume 

many different forms. Depending on the particular system and the particular circumstances, 

one mathematical model may be better suited than other models. Once a mathematical model 

of a system is obtained, various analytical and computer tools can be used for analysis and 

synthesis purposes. 
 

This chapter presents the mathematical modeling of a beam using Euler-Bernoulli 

theory. In Euler-Bernoulli theory, the rotary inertia as well as shear deformation of the beam 

can be neglected. 

 

2.2 Euler-Bernoulli theorem 

It was recognized by the early research that the bending effect is the most important factor 

in the study of the transversely vibrating beam. Early researchers proven that the bending 

effect is the most important factor in a transverse vibrating beam. The Euler-Bernoulli 

model considers the strain energy due to the bending and the kinetic energy of a beam due 

to the lateral displacement. Jacob Bernoulli was the first to discover that the curvature of an 

elastic beam at any point is directly proportional to the bending moment at that point. 

Bernoulli- Euler  beam  theorem,  is  commonly  used  because  it  is  simple  and  provides  

practical engineering approximations for many problems. The Euler-Bernoulli model tends 

to slightly predict the natural frequencies to a higher value. 
 

Euler–Bernoulli beam theory or classical beam theory is a generalization of the 

theory of elasticity, which provide an opportunity to calculate the load-carrying deflection 

of  beams. It takes into consideration the small deflection of a beam when subjected to only 

https://en.wikipedia.org/wiki/Theory_of_elasticity
https://en.wikipedia.org/wiki/Deflection_%28engineering%29
https://en.wikipedia.org/wiki/Deflection_%28engineering%29
https://en.wikipedia.org/wiki/Beam_%28structure%29
https://en.wikipedia.org/wiki/Beam_%28structure%29
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lateral loads. It was not applied successfully on to a large scale until 19th century. However, 

following its successful demonstrations, it became popular in various field of engineering. 

 

Analysis tools have been introduced in coming decades such as finite element  

analysis, but the ease of Euler-Bernoulli beam theory makes it very important tool in the  

field of mechanical and  structural engineering. 

 

Assumptions used in the Euler Bernoulli model: 
 

 

1) The beam is prismatic and has a straight centroidal axis.  
 

2) The beam cross-section has an axis of symmetry.  
 

3) All transverse loading acts on the plane of symmetry.  
 

4) Plane sections perpendicular to the centroidal axis remain plane after deformation.  
 

5) The material is homogeneous and isotropic and elastic.  
 

6) Transverse deflection of the beam is small.  

 

2.2.1 Mathematical formulation: 

             

                                                    

                                      Figure 2.1: A beam under transverse vibration. 

 

Consider a cantilever beam subjected to a transverse load as shown in a figure 2.1. The free 

body diagram of an element of the beam is as shown in figure 2.1. Here, M (x, t) is the 

bending moment, V (x, t) is the shear force and f (x, t) is external load per unit length of the 

beam.Inertia force acting on the element of the beam is 𝜌𝐴(𝑥)𝑑𝑥
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
. 

 

 

 

 

https://en.wikipedia.org/wiki/Finite_element_analysis
https://en.wikipedia.org/wiki/Finite_element_analysis
https://en.wikipedia.org/wiki/Finite_element_analysis
https://en.wikipedia.org/wiki/Structural_engineering
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                             Figure 2.2: Free body diagram of a section of a beam in 

transverse vibration 

 

balancing the forces in z -direction gives 

 

                      - (V + dV ) + f (x, t)dx +V=𝜌𝐴(𝑥)𝑑𝑥
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
                                  (2.1) 

 

where ρ is the mass density of the element of the beam and A(x) is the cross section area of 

the beam element.  

The moment equation about the y axis leads to 

 

                            (M + dM) – (V +dV) +f(x, t)dx
𝑑𝑥

2
 – M=0                                      (2.2) 

By writing 

 

                                                  dV = 
𝜕𝑉

𝜕𝑥
dx     and dM =

𝜕𝑀

𝜕𝑥
 dx                                             (2.3) 

 

and disregarding terms involving second power in dx , the above equations can be written as 

 

                          -
𝜕𝑉(𝑥,𝑡)

𝜕𝑥
 + f (x, t) = 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
                                     (2.4)                   

 

𝜕𝑀(𝑥,𝑡)

𝜕𝑥
 – V(x, t) = 0                                                  (2.5) 
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Using the relation 

                                                           V =  
𝜕𝑀

𝜕𝑥
                                                    (2.6) 

 

From above two equations 

 

                             
𝜕2𝑀(𝑥,𝑡)

𝜕𝑥2
+ 𝑓(𝑥, 𝑡) = 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
                                     (2.7)                      

                                           

From the theory of bending of the beam, the relation between the bending moment and the 

deflection can be expressed as 

                                           M (x, t) =EI(x) 
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2                                          (2.8) 

 

where I(x) is area moment of inertia of the beam, E is the young modulus of the beam 

material.  

 

From the above equations, we obtain the equation of motion for the forced transverse 

vibration of the non- uniform beam [51] 

 

                 
𝜕2

𝜕𝑥2
[𝐸𝐼(𝑥)

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
] + 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡)                           (2.9) 

                                        

For uniform cross section beam above equation can be reduced to 

 

                            𝐸𝐼
𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
+ 𝜌𝐴(𝑥)𝑑𝑥

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡)                                    (2.10) 

 

For free vibration f (x, t) =0 and above equation becomes 

  

                                       𝑐2 𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4 +
𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 = 0                                            (2.11) 

 

            Where                                 C=√(
𝐸𝐼

𝜌𝐴
)                                                          (2.12) 

 

 



18 

 

 

Eigen value approach 

The solution of the free vibration problem can be found using the method of separation of 

variable        

                                                         w (x, t) =W (x)T(t)                                                     (2.13) 

 

where w (x, t) is variation of displacement of the element with spatial coordinate and time 

W(x) is variation of displacement of the element with spatial coordinate only and T(t) is 

variation of displacement of the element with time only. 

 

Substituting this equation in the final equation of motion and rearranging leads to 

 

                                        
𝑐2𝑑4𝑤(𝑥)

𝑤(𝑥)𝑑𝑥4 =
1

𝑇(𝑡)

𝑑2𝑇(𝑡)

𝑑𝑡
= 𝑎 = 𝜔2                     (2.14)                        

 

Where a=𝜔2 is a positive constant. 

 

Above equation can be written as 

 

                                                      
𝑑4𝑤(𝑥)

𝑑𝑥4 − β4w(x) = 0                                           (2.15) 

 

                                             
𝑑2𝑇(𝑡)

𝑑𝑡2 + 𝜔2𝑇(𝑡) = 0                                           (2.16) 

Where 

 

 

                                                𝛽4 =
𝜔2

𝑐2 =
𝜌𝐴𝜔2

𝐸𝐼
                                          (2.17) 

 

The solution to time dependent equation can be expressed as 

 

                                           T (t) = A cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡                                                   (2.18) 

 

where, A and B are constant that can be determined from the initial conditions. 
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For the solution of displacement dependent equation we assume, 

 

                                                      𝑊(𝑥) = 𝐶𝑒𝑥𝑥                                                               (2.19) 

 

where C and s are constant, and solve the auxiliary equation as: 

 

                                           𝑠1,2 = ±𝛽,                     𝑠1,2 = ±𝑖𝛽                                            (2.20) 

 

Hence the solution of the equation becomes: 

 

                                 𝑊(𝑥) = 𝐶1𝑒𝛽𝑥 + 𝐶2𝑒𝛽𝑥 + 𝐶3𝑒𝑖𝛽𝑥 + 𝐶4𝑒−𝑖𝛽𝑥                                  (2.21) 

 

where 𝐶1,𝐶2,𝐶3,𝐶4, are constant. Above equation can also be expressed as: 
 

 

                𝑊(𝑥) = 𝐶1 sin(𝛽𝑥) + 𝐶2 cos(𝛽𝑥) + 𝐶3 sinh(𝛽𝑥) + 𝐶4 cosh(𝛽𝑥)                   (2.22) 

 

The constant 𝐶1,𝐶2,𝐶3,𝐶4,can be found out from boundary conditions. The natural frequencies 

of the beam can be computed from: 

 

                                                      𝜔2 =
𝐸𝐼

𝜌𝐴
𝛽4                                                                (2.23) 

 

The function W (x) is normal mode or characteristic function of the beam and ω is the natural 

frequency of vibration. For a given beam, there is infinite number of normal modes with each  

natural frequency associated with normal mode. The unknown constant𝐶1,𝐶2,𝐶3,𝐶4,  and value 

of 𝛽 can be determined from the boundary conditions of the beam.  

 

Free-Free boundary condition  
 

 

The spatial part can be written as: 

 

                   𝑊(𝑥) = 𝐶1 sin(𝛽𝑥) + 𝐶2 cos(𝛽𝑥) + 𝐶3 sinh(𝛽𝑥) + 𝐶4 cosh(𝛽𝑥)                  (2.24) 

 

For a Free-Free beam, the boundary conditions are (vanishing of moment and force) 

 

                         𝑤′′(0) = 0, 𝑤′′′(0) = 0, 𝑤′′(𝐿) = 0, 𝑤′′′(𝐿) = 0                                    (2.25) 
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One obtains 

                                                  −𝐶2 + 𝐶4 = 0                                                                   (2.26) 

                                                  −𝐶2 + 𝐶4 = 0                                                                   (2.27) 

               −𝐶1 sin(𝛽𝐿) − 𝐶2 cos(𝛽𝐿) + 𝐶3 sinh(𝛽𝐿) + 𝐶4 cosh(𝛽𝐿) = 0                         (2.28) 

                −𝐶1 cos(𝛽𝐿) − 𝐶2 sin(𝛽𝐿) +𝐶3 cosh(𝛽𝐿) + 𝐶4 sinh(𝛽𝐿) = 0                         (2.29) 

 

By using the equations (2.26) & (2.27), the eq. (2.28) & (2.29) can be arranged in matrix 

form: 

[
sinh(𝛽𝐿) − sin(𝛽𝐿) cosh(𝛽𝐿) − cos(𝛽𝐿)

cosh(𝛽𝐿) − cos(𝛽𝐿) sin(𝛽𝐿) + sinh(𝛽𝐿)
] [

𝐶1

𝐶2
] = [

0

0
] 

                                        

For non-trivial solution, the determinant of a matrix has to be vanished to obtain: 
 

                                        cosh(𝛽𝐿) cos(𝛽𝐿) = 1                                                               (2.30) 

 

The above transcendental equation has an infinite number of solutions, it may be solved 

numerically, the first five values are written: 

 

                                       Table 2.1: Value of 𝜷𝒏𝒍 with various mode order 

 

Mode order n 𝛽𝑛𝐿 

1 4.73 

2 7.85 

3 10.99 

4 14.13 

5 17.27 
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Putting these values in above eq. gives the mode shapes corresponding to the natural 

frequency 𝜔 that can be calculated from the characteristic Eq. The mode shapes are given by 

the following expression: 

  

   W(x)= [cos(𝛽𝑛𝑥) + cosh(𝛽𝑛𝑥)] −
cos(𝛽𝑛𝑙)−cosh(𝛽𝑛𝑙)

sin(𝛽𝑛𝑙)−sinh(𝛽𝑛𝑙)
[sin(𝛽𝑛𝑥) + sinh(𝛽𝑛x)]  

                                                                                                                                            (2.31) 

                               

                

               Figure 2.3: Mode shapes of beam with free-free boundary condition 

 

2.3 Summary of the chapter 

 
In this chapter, a mathematical model of free-free beam is derived and the expression of 

natural frequency and mode shape are obtained. In next chapter, finite element method is 

discussed and detailed procedure of FEM is also studied.   
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                                                                                                                                                CHAPTER 3 

                                                        FINITE ELEMENT ANALYSIS 
 

3.1 Introduction  

The finite element analysis (FEA) also called as finite element method (FEM), is based on the 

concept of building a complex object with simple parts, or, dividing a complicated object into 

smaller and pieces. Application of this idea is found everywhere in everyday life, as well as 

in engineering. For example, children playing with LEGO toys by using many smaller pieces, 

each of very simple geometry, to form various objects such as ships, trains, or buildings. 

With more and more small number of pieces, these objects will look more realistic. 

 

In mathematical term, this is a simple use of the concept, that is, to approach or 

represent a smooth object with a finite number of simple small pieces and increasing the 

number of such pieces in order to improve the accuracy of this representation. In engineering 

terms, the finite element method is a technique of obtaining an approximate solution to 

boundary value problems for ordinary as well as partial differential equations. FEM divides a 

large sized problem into number of small and simple parts, known as finite elements. The 

simple equations for these finite elements are then assembled into a large equation that 

models the entire problem. Finite element method uses various techniques from the calculus 

to obtain an approximate solution by way of minimizing an error function commonly known 

as a residual function. Rapid engineering analyses can be done because the structure is 

represented using the known properties of geometric shapes, that is finite elements. Efficient, 

general-purpose computer codes exist with suitable matrix assembler and equation solvers for 

calculating the following structural properties: 

  

a) Natural frequencies and mode shapes.  

  

b) Static displacement and static stress.  

  

c) Random forced response, random dynamic stress.  

  

d) Transient dynamic stress.  

  

e) Forced harmonic response amplitude and dynamic stress. 
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     In first step of FEM, an approximate function is considered that tries to approximate 

the governing differential equation of the system. Error obtained by approximating the 

function is known as residual through this process. To explain the meaning of this 

approximation in the process, FEM is commonly represented as a Galerkin method. The 

Galerkin method takes an integral of the product of the weighted function and the residual 

and then set the value of integral to zero. This process tries to remove all deviation from the 

governing differential equations, thus approximate the PDE locally with 

  

 a set of  algebraic equation for  steady state problem,  

 

 a set of  ordinary differential equation for  transient problem. 

  

    These sets of equation are called the element equation. These equations are called 

linear if the differential equation is linear, and vice versa. Set of ordinary differential equation 

that arises in the transient problems can be solved with the help of numerical integration such 

as Euler’s method and the Runge-Kutta method whereas algebraic equations in case of the 

steady state problems can be solved by using various numerical linear algebra methods.  

 

3.2 Finite Element Applications in Engineering  

The finite element method (FEM) can be suitable in solving the mathematical models of 

many engineering problems such as stress analysis of frame and truss structures or 

complicated machines, to that of the dynamic response of automobiles, trains, or airplanes 

under different types of mechanical, thermal, electromagnetic loading. There are many 

applications of finite element in industries, ranging from automotive ,defense, aerospace, 

consumer products, and industrial equipment to energy, construction and  transportation, as 

shown by some examples in Table . The applications of the FEA have been also extended to 

material science, geophysics, biomedical engineering, and many other emerging fields in 

recent past. Examples of engineering applications using FEA: 
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                                                       Table 3.1: Application areas of FEA 

Study Field Engineering Applications Examples 

 

Heat transfer 

 

 Casting modeling Electronics cooling  

 modeling, combustion engine,    

 heat-transfer analysis  

Structural and solid mechanics 

Wind turbine blade design optimization, 

vehicle crash simulation, nuclear reactor 

component integrity analysis, offshore 

structure reliability analysis      

Electrostatics or electromagnetics 

 

Field calculations in sensors & actuators, 

Performance  prediction of 

electromagnetic  interference suppression 

analysis antenna designs     

Fluid flow 

 

Aerodynamic analysis of race car 

designs, seepage analysis through porous 

media, modeling of airflow patterns in 

buildings 

 

3.3 Use of ANSYS Workbench in FEA  

In the last decade, different commercial programs are available for solving finite element 

problem. Among a widespread range of finite element simulation solution given by many 

leading CAE companies, ANSYS Workbench is a user friendly designed to integrate ANSYS, 

Inc.’s suite of advanced engineering simulation technology. It gives bidirectional approach to 

major CAD systems. The Workbench environment has improved productivity and it is easy 

to use for engineering teams. It has evolved as a vital tool for product development at a 

increasing number of companies, finding applications in many different engineering fields. 

 

3.4 General Procedure for FEA  

For FEA problems, the following procedure is required: 

 

 Divide the geometric model into pieces to generate a “mesh” (a collection of elements 

having nodes)  

 

 Define the behavior of the physical quantities on each and every element.  

 

 Connect the elements at the nodes to obtain the system of equations for the entire 

model.  

 

 Specify the load and the boundary conditions.  
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 Solve the system of equations constituting unknown quantities at the nodes (such as 

the displacements).  

 Calculate the required quantities (e.g. strains and stresses) at each elements or nodes. 

 

3.5 Overview of ANSYS  
 

ANSYS is a general purpose finite element modeling tool for mathematically solving a 

different types of mechanical problems. These problems comprise static/dynamic, structural 

analysis, fluid problems, heat transfer as well as electromagnetic and acoustic problems. 

 

Modal analysis of a beam in ANSYS software can be represented in following steps: 

 

(1) Preprocessing: defining the problem 

The steps followed in preprocessing are 

(i) to define key points, lines, area, volumes,  

(ii) to define type of element, its geometric and material properties,  

(iii) to mesh lines, areas, volumes as per requirement.  

 

(2) To assign constraints and solve 

In this step, we specify the boundary condition of the beam and then software solve the 

governing equation of the continuous beam with defined end condition. 

 

(3) Post processing 

It shows the mode shape of the beam vibrating at a particular natural frequency. 

 

3.6 Simulation Results  
 

In modal analysis of the mild steel bar by using ANSYS 15.0, different modal frequency and 

modes shapes are obtained as shown: 

 

Mode shapes obtained are as follows             
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                                                              Figure 3.1: First mode shape  
Maximum deformation observed with one mode is 116.82mm at the mid point of the bar. 

                      
                                                                Figure 3.2: Second mode shape 
Maximum deformation observed with two modes is 110.94mm 
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                                                                    Figure 3.3: Third mode shape 
Maximum deformation observed with three modes is 111.31mm.                

                          
                                                                     Figure 3.4: Fourth mode shape  
Maximum deformation observed with four modes is 111.21mm. 
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                                                                     Figure 3.5: Fifth mode shape 
Maximum deformation observed with four modes is 111.54mm 

 

                                          Table 3.2: Natural frequency obtained by ANSYS 15.0 

Mode order Natural Frequency (Hz) 

1 497.89 

2 1362.9 

3 2647.3 

4 4326.3 

5 6367.6 

 

3.7 Summary of the chapter 

In this chapter, finite element method is discussed and computational model of a free-free 

beam is analyzed using ANSYS 15.0 software. Natural frequency and mode shape of the 

beam are obtained using ANSYS. In next chapter, bond graph modelling technique for the 

beam is discussed. 
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                                                                                          CHAPTER 4              

ANALYSIS THROUGH BOND GRAPH MODELLING AND 

SIMULATION 

 
4.1 Introduction  

Bond graph modeling is a pictorial representation of the physical dynamic system, which is 

quite similar in external feature to a better known block diagram and flow chart, with a main 

difference that in bond graph modelling, the arc represents the bi-directional exchange of 

information in the form of power/ energy, whereas those in block diagrams and flow chart 

represents the uni-directional flow of information. The main advantage of bond graph 

modelling is that multi-energy domain such as mechanical, electrical, hydraulic, etc. can be 

solved by bond graph modelling and therefore called domain neutral, which means that a 

multiple domains can be incorporated in bond graph modelling of the physical system. 

  

Bond graph model is made up of the “bonds” that connects two physical elements of 

the system. Bond links together “single port” element, “double port” element and “multi-

port” elements. Each of these connecting bonds represents the instantaneous flow of 

information between different parts of the system in terms of energy or power (dE/dt). The 

flow of information in each bond is represented by a pair of power variables i.e. effort and 

flow whose product gives the instantaneous power transfer between two connected elements. 

Let us take the case of electrical system, the bond in an electrical system shows the 

instantaneous flow of electrical energy between various elements of the system and the power 

variables in this case would be current and voltage, whose product gives us the power. Each 

domain's power variables in bond graph model are broken into two power variable “effort” 

and “flow” A flow multiplied by effort gives us power, thus these are termed as power 

variable. Every bond is the pair of power variables having corresponding effort and flow 

variable. Examples of effort include force, torque, voltage, pressure, while examples of flow 

include velocity, current and volumetric flow. The table 4.1 shows various energy domains 

found in various system and the corresponding "effort” and “flow".  

 

A bond graph model has two distinct features also. One is the “half-arrow” sign 

convention, which represents the assumed direction of information flow between elements of 

the system. As in electrical circuit diagrams and free-body diagrams, the choice of positive 

direction is taken as arbitrary. The other feature is the “causal stroke”. Causal stroke in bond 

graph model is a vertical line positioned only at one end of the bond and it is not taken 



30 

 

arbitrary. In bond graph model, any element attached to the bond will tell about either 

“effort” or “flow” given or taken by its causal stroke. The causal stroke attached at the end of 

the bond specifies the direction flow of effort variable between the elements of the system. In 

similar way, port opposite to causal stroke denotes the direction of flow variable between two 

connecting elements of system.     

                         

                                 Table 4.1: Power variables in some energy domains 

System Effort (e) Flow (f) 

 

Mechanical 

 

Force (F) 

 

Torque (t) 

Velocity (v) 

 

Angular velocity (𝜔) 

Hydraulic 

 
Pressure (P) Volume flow rate (dQ/dt) 

Electrical 

 
Voltage (V) Current (i) 

Chemical 

 
Chemical potential (m) Mole flow rate (dN/dt) 

Thermal 

 
Temperature (T) Entropy change rate 

(ds/dt) 
Magnetic 

 
Magneto-motive force (e) 

Magnetic flux (f) 

 
Enthalpy (h) 

 
Mass flow rate (dm/dt) 

Mass flow rate (dm/dt) 

 

 

4.2 Basic of Bond graph modeling     

As discussed, in bond graph modelling information in term of power is transferred between 

connected elements by the combination of effort variable and flow variable in the system. 

Referring to the above table 4.1, effort and flow in different types of domains can easily be 

determined. For example, if a power producing engine is connected through a shaft to the 

wheel, the power is transferred in the rotational domain, which implies that the effort variable 

and the flow variable are torque (t) and angular velocity (ω) respectively. In term of bond 

graph, this system will look like: 

 

                         Engine           
𝜏

𝜔
           Wheel                        
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A half-arrow has to be used in bond graph model, as per sign convention. If the 

engine is providing power to the wheel that means power is transmitted by the engine to the 

wheel, then the diagram of power stroke will be:   

 

To show a measurement, full arrow can be used and referred to as a signal bond, 

because the sum total of power flowing through such bond become insignificant. However, 

this may be useful with respect to certain physical system to be designed. For example, the 

power required by a relay to come to start condition is of magnitude which is smaller than the 

power itself flowing through the relay, thus making it able to transfer only when the switch is 

on. 

                               Wheel                    Tachometer 

 

4.2.1 Junctions used in bond graph modeling  

Two power bond showing instantaneous power transfer intersects at two types of junctions in 

bond graph modelling, that is, a 0 junction or a 1 junction. 

 

 In a 0 junction, the efforts variable at each connecting bond is equal and the flow 

variable between them sum to zero. This corresponds to a mechanical system where 

overall equivalent forces are equal at a node in an electrical circuit. 

 In a 1 junction, the flows variable at each connecting bond is equal and the efforts 

variable between them sum to zero. This corresponds to concurrent system of forces 

and their resultant being zero i.e. the force balance at a point mass in a mechanical 

system.  

Let us consider an example of a 1 junction, that is, a resistor in series,  

                                      𝑣1               R           𝑣2 

                                      𝑖1                             𝑖2 = 𝑖1 

 

In the above situation, the flow variable that is current is same at all the points of the domain 

of interest according to electrical laws, and the efforts between the two ends of the resistor 

sum to zero. Power can be calculated at each of the point 1 and 2, however, some power will 

be dissipated in resistor due to hindrance to the current flow. Bond graph model of the system 

is as follow: 

                       Engine          
𝜏

𝜔
           Wheel                                 
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                                                     R 

                                        𝑣1                        𝑣2 

                                                                              1 

                                                             𝑖1                            𝑖2 

 

It will be useful to consider the 1 junction as a joining point between the bonds. Bond 

graph modeling begins with identification of 1 and 0 junctions associated with identification 

of efforts variable and flows variable in the system. After that the dissipative (R), storage 

elements (I and C) and power sources are identified. Then bonds are drawn which signifies 

the flow of the information or power between the sources, junctions, and storage or 

dissipative components. After that, the sign conventions (arrow heads) are shown to specify 

the direction of flow of power between components, and then the causality are given. Finally 

the governing equations of the system which describes the overall behavior of a system are 

derived by bond graph model. 

  

4.3 Concept of causality in bond graph modeling  

A notion of causality is used in bond graph modelling that determines at which side of bond 

is the instantaneous effort variable is coming in or going out and the instantaneous flow 

variable is coming in or going out. Whenever deriving the dynamic equations for the system 

which tells us the overall behavior of the system, causality to each element used in modeling 

is assigned. Analysis of a very complex system model becomes quite easy by assigning the 

causality to the various elements in bond graph modelling. In a bond graph, complete causal 

assignment allows designer to detect a modeling situation. For example consider a case of 

capacitor connected to a battery in series configuration. To charge a capacitor in no time, any 

element connected with a capacitor in parallel configuration should have the same voltage 

across it as that applied across the capacitor. In a similar way, an inductor cannot change flux 

instantly in a circuit, therefore any electrical component connected with an inductor in series 

should have the same flow as that of inductor. Causality basically defines a systematic and 

well organized relationship between two connected elements of the system. Whenever one 

side of the bond creates effort, the other side must create flow in the bond. Source elements 

such as force, velocity, an ideal voltage or current are also causal in bond graph model. In a 

bond graph modelling notation, a causal stroke at the end of the power bond indicates that 

effort is coming to the causal stroke element and flow is going away from causal stroke 
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element. Let us consider already discussed example, a motor which is giving power to a 

wheel is treated as a source of effort (SE) element, represented as:   

 

                         motor SE          
𝜏

𝜔
           wheel                                 

 

 

It should be cleared understood that only one end of a power bond defines the effort 

variable while other the flow variable, therefore clearing the concept of causality. Let us take 

the example of two components, Capacitance and inertance, who have only one kind of 

causality. An inertance component defines flow and a capacitance component defines effort. 

The only configuration for inertance (I) and capacitance (C) element f or a junction (J) is:  

 

                   J                  I                  and             J                  C 

 

Let us consider a case of a resistor which has time independent behavior, therefore in 

case of resistor a flow can be applied to obtain a voltage, or otherwise, voltage can be applied 

to obtain flow instantly. So, a resistive element can have either of the two ends of a causal 

bond.    

 

Transformers are the passive element, neither energy storing nor energy dissipating 

element, so the causality can be assigned as shown as per the system:   

 

                                            TF                         or                           TF  

 

A gyrator converts flow to effort and effort to flow, so if flow is caused on the one 

side, then effort must be caused on other side and vice versa. Causality of Gyrator element is 

as shown:   

 

                                              GY                         or                        GY   
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4.4 Junction and Causality  

In a 0-junction, efforts are equal and flow summation is zero whereas, in a 1-junction, flows 

are equal and effort summation is zero. With the causal bond, only one can carry in the effort 

information in a 0-junction and only one bond can carry in the flow information in a 1-

junction. Therefore, if the causality in any one of the power bond at the junction is known, 

the causality can be easily assigned to the other power bonds. That one bond is popular 

known as the strong bond   

 

              Strong bond                                 0               

 

 

Using the basic rules of causality, one is able to assign the causality to the different 

elements of the system. If in any bond graph model, there is violation of causality principle, it 

means it is not physically valid and some energy law is violated in that system. For example, 

consider an example of inductor in series with a current source which is a practically 

impossible condition and the bond graph model of such system would look like:   

 

                                            SF            1             I 

 

Now, assigning causality to the source element of the system, one get   

 

                                          SF              1             I 

 

Assigning the causal stroke to the junction as  

 

                                         SF                1             I 

 

But now assigning causality to the inductor element (I),   

 

                                        SF                 1             I 

  

            As per causality rule, causal stroke on the right bond is invalid i.e. violate the 

causality principle. This technique to automatically identify impossible condition in the 

system is a major advantage of bond graph modelling.  
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4.5 Bond Graph modeling  

Bond graph model of a given dynamic system starts with the development and joining of 

different bond graph element of the system. Bond graph model is a graphical representation 

of how energy is flowing between various interacting energy domains. Each power bond of 

bond graph denotes a pair of information in terms of effort and flow variable, represented 

instantaneous power of the bond as a whole. In case of a mechanical system, effort and flow 

is related to force and velocity respectively. The energy storing element in the bond graph 

modelling represents the number of state variables actually present in the dynamic system 

and by using various conventional mathematical methods in bond graph modelling, equations 

of state variables can also be derived in the bond graph.  

 

4.5.1 Bond graph model of a beam   

A beam has continuous mass elements distributed throughout the volume. When its dynamic 

behavior is studied, mass element interconnects with translating and rotating with one 

another. Bond graph model accounts appropriately for the kinematics behavior of the beam. 

The bond graph modelling technique is suitable for analyzing such problem.  

 

Bond graph model of the beam in free-free boundary condition is made through 

Euler-Bernoulli theory. Firstly, a beam is reticuled into number of small parts and then bond 

graph model is made. An interface shear force is represented by corresponding 0- junction in 

bond graph model. The 1-junction at the upper half of the bond graph denotes the 

instantaneous velocities of the mass points of the reticules and inertia elements of the beam 

are connected to 1-junction. The 1-junctions at the lower part of the bond graph model 

represents interface rotations between masses of the beam. The C elements attached to the 0-

junctions in the lower part of bond graph represent the flexural stiffness of the reticle mass of 

the beam. 
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                                                           SE:          I:𝜌𝐴𝑖∆𝑥𝑖 

 

 

                 SF:0                         0                            1                          0                          SF:0 

  

 

 

                                              TF: 
2

∆𝑥𝑖−1+∆𝑥𝑖
                              TF:

2

∆𝑥𝑖+1+∆𝑥𝑖
 

 

   

                                               1                       0                          1                                                                                 

                

                               

                       

                             C:
𝐸𝐼

∆𝑥𝑖−1
                             C:

𝐸𝐼

∆𝑥𝑖
                             C:

𝐸𝐼

∆𝑥𝑖+1
  

 

 
                                  Figure 4.1: Bond Graph model of a Euler-Bernoulli beam  

 

4.6 Simulation study  

Computer simulation is useful in predicting the overall performance of a system in few 

minutes of computer running time as compared to years. Technique of computer simulation 

model is reasonably flexible and is very easily to account for the changing working 

environment of the system to the real situation. There is large number of applications, in 

which the computer simulation technique cannot be used economically and reliable as the 

degree of complexity of the real world problem increases. Many of the computer simulated 

models are prepared by using differential equations. In the present work, a beam is analyzed 

by using bond graphs    technique and the Symbols- Sonata simulator is used to simulate.   

 

4.6.1 Simulation environment  
 

Simulator is the post-processing module and therefore, is able to simulate the beam in free-

free boundary condition and obtain simulation results.  
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4.6.2 Symbols Sonata software  
 

 

Symbols Sonata software is used for analyzing the dynamic behavior of the system with the 

help of bond graph modeling technique. It is modeling and simulation software which is very 

useful in solving various engineering scientific and applications. It is one of the very 

powerful research tools which avoid unaffordable, sophisticated fabrications. It provides the 

user to know precisely the response output of the system. As is discussed, model in Symbols 

Sonata software is made by joining different element of bond graph and also with the help of 

capsules. Even entire model can also be created by using only capsules with suitable source 

element. These capsules can easily be drawn from the capsules library of bond graph or can 

also be created by the modeler. User can organize various capsules made by him in the 

capsule library present in the software.  

 

Main characteristics of symbols sonata software are:  

 

 Create the bond graph model with the help of various modelling element.  

 Elements used in bond graph model of a given system are numbered at the bonds and 

power direction is specified.  

 Causality is assigned to the elements of bond graph model.  

 Bond graph’s integrity is checked so as to know some error.  

 Governing differential equations involving state variable are derived. 

 Formation of non-integrated variable detectors.  

 Derivation of various mathematical expressions.  

 Building of Capsules and used these capsules while making a bond graph model of 

the system.  

 Analysis of model for faults.  

 Export designed model to different external simulation software.  

 Generating models for control and simulator modules.  

 Incorporating to external simulation environment.  

 Many intelligent entry mode. 

 Easily access control panels.  

 Online resume, pause, stop and plotting option.  

 Online check for variation of parameters by slider during simulation.  

 Provision of extension of simulation.  
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 Simultaneous simulation of different interdisciplinary systems at the same time 

instant. 

 Option of Post simulation display and plotting.  

 Various integration methods for solving governing differential equations.  

 Coding of editing and compilation.  

 Facility of multiple run with discrete and interpolated parameter values.  

 

4.7 Simulation properties  

To simulate and study the beam in Symbol sonata software, Runge-Kutta method is used. 

Runge-kutta method solves the generated differential equations of the state variable of the 

system and shows the results as output. 

 

4.7.1 Runge-Kutta method  

 A Runge-Kutta method solves the differential equation and generates the solution over an 

interval of interest with the help of several Euler- steps, which involves solving the state 

variable at steps. After that, comparing the results with the well-known Taylor series 

expansion up to a predefined higher order. This method solve each and every step in soving 

differential equation in a similar way as per mathematical algorithm. Any point along the 

course of solving the governing differential equation of the system can serve as an initial 

point.  

 

4.8 Simulation results  

 

                         Figure 4.2: Frequency acceleration curve by Bond graph modelling 
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Natural frequency of the beam with free-free boundary condition as obtained by bond graph   

is approximately 500Hz.   

 

 

                                        Figure 4.3: Variation of Momentum of point  mass with time. 

 

Fig. 4.3 shows variation of momentum of the distributed mass of the beam with time . 

                      

                

                                     Figure 4.4: Variation of displacement of rotational  lumped mass   with time. 

 

Fig. 4.4 shows variation of rotational lumped mass with time. 
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4.9 Summary of the chapter 

In this chapter, bond graph model of free-free beam is made and simulated in SYMBOL 

SONATA software to obtain natural frequency of the beam. Next chapter will present 

experimental procedure for analyzing the beam.  
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                                                                                          CHAPTER 5 

                                                                 EXPERIMENTAL STUDY  

 
5.1 Introduction 
 

This chapter deals with the theories related to experimental and modal parameter estimation 

methods. For modal parameter estimation method, the brief introduction and summary of the 

methods used is presented. Assumptions followed in experiment modal analysis are: 

  

 The structure is a linear system which means the system can be represented with the 

help of the set of linear, second order differential equation.  

 

 The structure is observable. This means that the system characteristics defining the  

dynamic properties can be measured, in other words, there are numbers of sensors to 

describe the input and output characteristics of the system. A linear system is 

observable only if the initial state is determined from a finite interval of the output 

signals.  

 

 The structure is time invariant during the dynamic process. This means that the 

coefficients involved in the linear and second order differential equation are constant 

with respect to time.  

 

 The structure satisfies Maxwell’s reciprocity theorem. This means that if we measure  

the frequency response function between two points p and q by exciting the point p 

and measuring the response at point q, the same frequency response function can be 

measured by exciting at point q and measuring the response at point p which means 

 

                                                   𝐻𝑝𝑞 = 𝐻𝑞𝑝   

 

Experimental Modal Analysis is an experimental approach to determine the modal 

parameters like eigenfrequencies, damping factors, modal vectors etc. of a system under the 

assumptions discussed above. The modal parameters determined experimentally serve for 

future evaluations such as structural modifications. Experimental modal analysis is used to 

explain dynamic problems such as vibration or acoustic that is not obvious from the 

analytical models. It is important to remember that most vibration problems are a function of 

both the force functions, initial conditions and the system characteristics defined by the 
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modal parameters. As a result, the experimental modal analysis can be summarized as two 

steps: Experimental Data Acquisition and Data Processing. Here the details about the theories 

related to experiment and modal parameter estimation methods are presented. 

 

5.2 Experiment Structure 
 

In experimental modal analysis, following steps are followed: 

                 

 

 

                            Discretize structure and define nodes.  

 

 

 

                                              Either use roving sensor (and  

                                         fixed  actuator) or roving actuator  

                                                  (and fixed sensor). 

 

 

 

                                              Excite the structure using impact  

                                 hammer or shaker as actuator.  

 

                                                

                                              Excite the structure using impact  

                                     hammer or shaker as actuator.  

 

 

                                   Measurement of all input and  

                                            output signals 

 

 

                                                                                               Calculate frequency response function  
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5.3 Basics of Experimental Modal Analysis  
 

Experimental modal analysis involves determination of modal parameters, such as natural 

frequencies, damping characteristics and mode shapes of a structure through experiments. 

This is considered as a significant area requiring expert knowledge, but with the advent of 

personal computers and the development of inexpensive, user-friendly software packages for 

obtaining modal parameter, as well as signal processing software and hardware, it has grown 

into a common tool readily available in vibration toolboxes and accessible to most test 

engineers. 

 

In any experimental modal analysis procedure, modal parameters are estimated from 

the measured frequency response functions (FRFs), i.e. from the output response and input 

force data and the quality of an experimental modal model is only as good as the quality of 

the FRFs. Hence, several important experimental aspects are to be considered while 

conducting modal tests in order to obtain valid modal data. Choice of excitation of the 

structure, in terms of excitation location and mechanism, excitation signal, frequency range 

and amplitude of the excitation force, fixing and mounting of test structure so as to minimize 

exciter/test structure interaction are to be looked into. Besides, selection of appropriate 

transducers and their positioning and mounting, as well as aspects related to signal 

processing, have to be considered and are described in this chapter. Some of the important 

practical aspects to be considered in modal analysis are the boundary conditions of the test 

structure, minimisation of exciter/test structure interaction, choice of exciters/shakers, 

problems in the measurement of excitation force, difficulties encountered in impact testing, 

sensing techniques and boundary condition as well as choice of excitation signals for modal 

testing. 

 

5.4 Obtaining FRF with true random excitation  
 

The measurement of an FRF as has been described involves measurement of the input force 

and output response as a function of frequency with all the phase information intact. In any 

modal testing involving single or multipoint excitation, the former is simpler, while the latter 

method has far-reaching implications due to the flexibility it offers in terms of the 

combination of orientation and position of the exciter. The input force may be imparted 

through a shaker or an impact hammer. FRF measurements have to be made at a sufficiently 

large number of DOFs to get accurate mode shapes. All modal parameters are extracted from 

these FRFs and are therefore only as good as the FRFs, even if very elegant parameter 
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estimation techniques are used. Modal parameters are subsequently extracted from the FRFs 

using any of the curve-fitting techniques available. 

 

5.5 Modal Parameter Estimation Methods  

Modal parameter estimation methods are discussed in this section. Methods can be divided 

into two methods frequency domain and time domain methods. Time domain and frequency 

domain methods can be subdivided into indirect (or modal) and direct methods. The former 

implies the identification of the FRF based on the modal model. The latter means that the 

identification is based on the spatial model. In this respect, Single degree of freedom and 

Multi degree of freedom analyses can be sort out. In time domain only MDOF analysis is 

applied. Direct methods are applied to MDOF analysis. The figure shows a diagram with the 

various types of methods used. 

 

                                                           Modal parameter  

                                                           estimation method 

 

 

         Time domain method                                                    Frequency domain method 

 

 

       

Indirect methods               Direct methods                        Indirect methods       Direct methods 

 

 

 

 

 

MDOF                                   MDOF                             SDOF             MDOF              MDOF 

 

 

 

 

SISO                                      SISO                                SISO                SISO                 SISO 

SIMO                                    MIMO                              MIMO             SIMO                MIMO 

MIMO                                                                                                     MIMO 

 
                      Figure 5.1: Classification of modal analysis method 

SISO-Single input single output 

SIMO-Single input multiple output 

MIMO-Multiple input multiple output 
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5.5.1 Single Input (or SIMO) Testing  
 

The most commonly used type of modal testing is with either a single static input or a single 

static output. A moving hammer impact test using a single static motion transducer is a 

mutual example of single reference testing. The single static output is called the allusion in 

this case. When a single static input is used, this is termed as SIMO (Single Input Multiple 

Output) analysis. In this case, the single static input is called the reference. 

 

 

              Input                                                                                                        n outputs             

                                                    System 

                                                                                                                          
                                          

                                                Figure 5.2: System configuration for SIMO 

 

 

5.5.2 Multiple Input (or MIMO) Testing  
 

When two or more static inputs are used, FRFs is considered between each input and multiple 

outputs then, FRFs as of multiple columns of the FRF matrix are found. This is termed as 

Multiple Reference or MIMO (Multiple Input Multiple Output) analysis. The inputs are the 

references in this case. 

 

                    m inputs                                                                                      n outputs             

                                                                                                                    

                                                    System 

                                                                                                                          

 

                              Figure 5.3: System configuration for MIMO testing 
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In this project, vibration analysis of a continuous beam with free fee boundary conditions has 

been done using Vibration Analyzer OROS 36, which operates with NV Gate 8.30 version 

software, and records the signals of the beam in the form of acceleration, velocity and 

displacement. 

 

                                 

                                 Figure 5.4: Experimental equipment for vibration analysis 

 

5.6 About Equipment used for experiment 
 

OROS36 is made for high channel count capacity without comprising the analyzer 

geographies. All the channels are handled in real time: FFT, 1/3
rd

 Octave, CPB or 

Synchronous order analysis. OR36 & OR38 keep these real-time capabilities upto 20 kHz. 

There are LCD screen controls on the OR36 and OR38 hardware that allow you torun, stop 

the analyzer, change the fan speed etc. 

 

Basic procedures of NV Gate follow a simple sequence: 

  

 Input connection to the plug-in analyzers.  

 

 Format of Front-end and plug-in analyzers.  

 

 Range of results to be displayed and/or saved.  

 

 Result management (manager) and report generation.  
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5.6.1 NV Gate software 

NV Gate platform offer a comprehensive sets of tools for noise and vibration acquisition, 

recording and analysis. 

                          

                      

                                      Figure 5.5: Graphic User Interface of NV Gate 

 

 

5.6.2 Specifications  

Description of OROS Hardware 
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                Input 

 

1 to 16 Dynamic Inputs DC 

 

                     

                Output 

 

       Generators 1& 2 

                       

 

                   Ext. 

 

 

      External Sync.1&2 

                   

                 Aux. 

 

        Auxiliary connectors       

               1 to 4 

                                                                                                          

                                    Figure 5.6: OROS hardware specification 

 

5.6.3 Accelerometer 

An accelerometer is an instrument that produces an electric charge directly proportional to 

the applied acceleration. A model of an accelerometer is shown in Figure 5.7. Mass is 

supported on a piece of piezoelectric crystal, which is attached to the frame of the transducer 

body. Piezoelectric material has a property that if it is compressed, they proportional to the 

amount of compression. As the frame experiences an upward acceleration, it experiences a 

displacement also. As the mass is attached to the frame through the piezoelectric element, the 

resultant displacement it experiences is of different amplitude and phase than that of the 

displacement of the frame. This relative magnitude of displacement between the frame and 

mass leads piezoelectric crystal to be compressed, that gives a voltage proportional to the 

acceleration of the frame. 
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                                       Figure 5.7: Basic model of accelerometer 

 
 

                                    Table 5.1: Accelerometer specification 

      Transducer Type Accelerometer Sensor 

 

       Unit /Magnitude Acceleration (m/𝑠2) 

           Identifier PCB-78534 

            Model 356A16 

           Coupling ICP 

          Sensitivity 1× 10−2𝑉/𝑔 

 

5.6.4 Hammer 
 

                                          Table 5.2: Hammer Specification 

      Transducer Type Force Sensor 

 

       Unit /Magnitude Force (N) 

           Identifier PCB  

            Model SN-25679 

           Coupling ICP 

          Sensitivity 2.25× 10−3𝑉/𝑁 
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                            Figure 5.8: Integrated Component of OROS 

 

5.6.5 Beam specification 

 

                                       Table 5.3: Specimen specification 

Length (L) 

 
30 cm 

Diameter (d) 

 
3 cm 

Material 

 
Mild Steel 

Density (𝜌) 

 
7850 kg/𝑚3 

Young Modulus of 

elasticity (E) 

 

210GPa 

Poisson Ratio(𝜗) 

 
0.3 
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5.7 Dynamic analysis using OROS software 

Dynamic analysis is a process, by which the structure can be described in terms of its  

characteristics such as frequency, damping and mode shapes i.e. its dynamic properties. FRF 

based modal testing started in the early 1980’s with the commercial accessibility of the digital 

FFT analyzer. 

 

                                     Figure 5.9: Working of OROS Software 

 

5.8 Operating deflection shape (ODS)  

In modal analysis, we frequently encountered a term operating deflection shape. ODS 

analysis is a method used for visualization of the vibration pattern of a machine or structure 

that is influenced by external operating forces. An ODS can also be defined as the deflection 

of a structure at a specific vibration frequency. ODS is a great tool to visualize dynamically 

the vibration deflection shape of the mechanical components during their normal operation. It 

offers rapid visual feedback on the behavior of a structure in both time and frequency 

domain. This is as opposed to the study of the vibration pattern of a machine under an 

external force analysis, which is modal analysis. Stimulating the motion of two or more 

points indicates the shape of the vibrating system.  
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Operating deflection shape consists of the overall vibration for two or more DOFs of a 

structure. An ODS contains both forced and resonant (free) vibration components whereas a 

mode shape describes only the resonant vibration at two or more than two DOFs. Real 

continuous structures have an infinite number of degree of freedoms and an infinite number 

of modes. From the testing point of view, a real structure can be modelled spatially as many 

DOFs as desired but there will be a limitation when looking at smaller structures. The more 

spatially the sample is, more the surface of the structure can be measured within the 

limitations, the more definition we will give to its ODS as less interpolation will be required 

between measured points. 

 

5.9 Experimental setup and procedure 

Here the accelerometer is placed on the bar as shown in Figure to measure the vibration 

response of the system. 

                   

                                              Figure 5.10: Experimental setup 

The OROS set up is placed and the accelerometer is rigidly fixed on the bar with the help of a 

adhensive material. The bar is freely hanging at the end point with the help of elastic cable. 

Accelerometer measure the vertical vibrations which are generated on bar. 
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                                                   Figure 5.11: OROS setup (Rear view) 

                        

                                           Figure 5.12: OROS Setup (Front View) 
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Steps to be followed in the experimental modal analysis are:  

 

1. A bar of a particular material (mild steel) with dimensions (L, r) and transducer (i.e., 

measuring device, accelerometer) was chosen. 

  

2. Both ends of the bar are given specific boundary condition (i.e. free-free condition).  

  

3. An accelerometer (having magnetic base) was placed at the centre of the bar to observe the 

free vibration response. (i.e. acceleration).  

  

4. An initial deflection was given to the bar and is allowed to oscillate on its own. To get the 

higher frequency it is advised to give initial displacement at an arbitrary position (e.g. at the 

mid span). This can also be done by bending the bar from its equilibrium position by 

application of a small static force at the centre of the bar and suddenly releasing it, so that the 

bar oscillates on its own without any external applied force during the oscillation.  

  

5. The data obtained from the accelerometer is recorded in the form of graph showing 

variation of the vibration response with time.  

  

6. The procedure was repeated for 5 to 10 times to check the repeatability of the experiment.  

 

7. The whole set of data was recorded in a data base to obtain the desired result. 
 

5.10 Experimental Results  

Good agreement between the theoretically calculated natural frequency and the experimental 

one is found. The above theoretical calculation is based upon the assumption that both ends 

of the bar is in free-free condition. However, in actual practice it could not be always the case 

because of the elasticity and flexibility in support. 

   

                                                                   Figure 5.13: OROS software results      
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5.11 Summary of the chapter   

This section of the work, free-free beam is analyzed with the help of OROS software and 

useful vibration characteristics are obtained. Next chapter will present the overall results and 

discussion.                                       
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                                                                                          CHAPTER 6 

                                                           RESULTS AND DISCUSSION 

 
6.1 Introduction 
 

A comparison is made between the values of natural frequency obtained by analytical model, 

computational model and experimental model in this section. As discussed in chapter 2, the 

mathematical equation for  calculating the natural frequency of the beam eq. (2.23) with free-

free boundary condition is as follows: 

 

                                                  𝜔𝑛
  2 =

𝐸𝐼

𝜌𝐴
𝛽4                                                           (6.1) 

 

Where 𝜔𝑛= natural frequency of vibration of the beam in 𝑛𝑡ℎ  mode 

           ρ (rho)=density of material  

            E=Young modulus of elasticity of material     

            L=length of the beam  

            A=cross section area of beam    

            I=Area moment of inertia of the beam            

Theoretical value of parameter 𝛽 can be found out from frequency equation (2.30) of free-

free beam.  

 

Let us compare frequency-acceleration figure (4.2) & figure (5.12) obtained by 

SYMBOL Sonata software and OROS software, respectively that give us the value of natural 

frequency of the free-free beam. 
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                                  Figure 6.1: Frequency acceleration curve given by OROS software 

        

 

                  

                           Figure 6.2: Frequency acceleration curve given by Symbol sonata 

 

It can be seen from figure 6.1 and 6.2,  that in OROS software, acceleration at mode 1 

is around 0.165 𝑚/𝑠2  whereas in case of Symbol sonata software corresponding value of 

acceleration is uniform up to certain portion and at mode 1, acceleration is about 0.15 𝑚/𝑠2   

which is quite same. 
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Comparison between mode shape obtained analytically and those obtained by ANSYS 

software can also be done. Mode shape obtained analytically by eq. (2.31) and shown by 

Figure 2.3 is 

                                        
                                                     Figure 6.3: Mode shape of free- free beam  
 

Mode shapes given by ANSYS 15.0 software are: 

        

                      Figure 6.4: First mode                                              Figure 6.5: Second mode 
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                      Figure 6.6:  Third mode                                            Figure 6.7: Fourth mode 

                          

                                                                            Figure 6.8:  Fifth mode 

 

It can be observed from the above figures that mode shape are quite similiar obtained 

by mathmatical model andd ANSYS 15.0 software and for 𝑛𝑡ℎ mode vibrating in its own 

natural frequency, beam has  n-1 zero crossing and n extremum.  
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                     Figure 6.9: Variation of displacement of rotational lumped mass 1 with time 

 

It is concluded from the above graph that displacement of rotational lumped mass 

with time is almost zero which proves that rotational movement is neglected in Euler-

Bernoulli theorem as compared to translational movement. 
 

Compare between the value of natural frequency obtained analytically, experimentally 

and by ANSYS 15.0 software can be made: 

                                Table 6.1: Value of  natural frequencies  
    

                                                       obtained by different methods  
 

Mode 

order 

Analytical natural 

frequency(Hz) 

Experimental natural 

frequency (Hz) 

Computational (ANSYS) 

natural frequency (Hz) 

  
Measured 

value 

Percentage 

Error 

Measured 

value 

Percentage 

Error 

1 498.80 500.20 0.27 497.90 0.19 

2 1374.00 1380.80 0.49 1362.90        0.80 

3 2693.97 2740.60 1.72 2647.30 1.69 

4 4453.33 4549.80 2.15 4326.30 2.84 

5 6652.47 6450.7 3.04 6376.30 4.14 
 

It is observed that as the order of mode increases, there is large variation between the 

values of natural frequency obtained by experimental model and natural frequency obtained 

by mathematical model or by ANSYS 15.0 software. This may be due to the fact that as 
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frequency is increased, range on which software have to operate rises. As ANSYS works on 

approximate method (FEM) which in turn increases the chances of error in the measured 

value over wide operating range.  As for the case in OROS software, structural damping may 

the reason for the error to exist in higher mode. 

      

 

                       Figure 6.10: Graphical representation of natural frequency values  
 

 

The value of fundamental natural frequency of the free-free beam obtained with the 

help of bond graph model is nearly 500 Hz and ANSYS 15.0 software is nearly 497.89 Hz 

which suggests the reliability on these two softwares present. 

 

6.2 Summary of the chapter 

In this chapter, comparison between the mathematical model, computational model and 

experimental model of free-free beam is done, which shows considerable agreement with 

each other, thus, signifying the adaptability of these methods. Next chapter will present 

conclusion and future scope of the project. 
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                                                                                          CHAPTER 7 

                                          CONCLUSIONS AND FUTURE SCOPE 

 
7.1 Conclusion 
 

Modal analysis of a free-free beam is done and its vibration characteristics parameters such as 

the natural frequency and the mode shape are discussed.  

 

Following conclusion can be made: 

  

 Simulation results were compared with experimental data through OROS system.  

 Boundary  condition  plays  a very predominant  role  in controlling the  overall 

vibration response of the beam. 

 Error between value of natural frequency obtained by ANSYS and experimental is 

because ANSYS assume beam material to be perfectly homogenous, elastic and 

isotropic which is not the case with a real beam.  

 Error observed in the value of experimental model and mathematical is because thin 

cable which is used for supporting purpose must have some value of elasticity, 

therefore giving some small force at the ends. 

 

7.2 Future Scope  

Future scope proposed for further study: 

  

 Work  can  be  done  by  considering  different  boundary  conditions of the beam and  

corresponding value of natural frequency and mode shape  can be determined. 

 Applications of free-free boundary conditions are observed practical in aerospace 

industry such as in spacecraft, aeroplane, submarine, missile etc. during their 

operating condition.  

 Future research work can be done by considering the problem non-linearly instead of 

a linear one. 

 Instead of Euler-Bernoulli beam theory, Rayleigh beam theory orTimoshenko beam 

theory can be used for analysis purpose. 

 Structure can be studied including damping in it. 
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                                                                                        APPENDIX A    
 

 

State equations of free-free beam  
 

Please note that 'd' represents the time derivative of the state variable within the first 

parenthesis. 

  

d(P14)= a*(K1*Q1+K2*Q2)+b*(K2*Q2+K3*Q3)+SE9  

d(Q12)= b*(-P4/M4+SF11)  

d(Q13)= a*(SF10-P4/M4)+b*(-P4/M4+SF11)  

d(Q9)= a*(SF10-P4/M4) 
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                                                                                        APPENDIX B   
 

   

Various expression used in a Euler-Bernoulli beam modeling 

   

L1    (double)  

L2     (double)  

a        (double) a = 2/(L1+L2); 

L3     (double)  

b        (double) b = 2/(L2+L3); 

E       (double)  

d        (double)  

K1      (double) K1 = (E*3.14*d*d*d*d)/(64*L1); 

K2      (double) K2 = (E*3.14*d*d*d*d)/(64*L2); 

K3      (double) K3 = (E*3.14*d*d*d*d)/(64*L3); 

M4     (double) M4 = (7850*3.14*d*d)/4; 

SE9    (double) SE9 = .4; 

SF10  (double) SF10 = 0; 

SF11  (double) SF11 = 0; 
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