List of Figures

S.No.	Figure	Page No.
1.	Hierarchical levels in protein folding	6
2.	epresentation of a folding process by MD simulations	
3.	Schematic diagram of a folding energy landscape for a protein molecule	
4.	Structure of AMPs with unusual proportion of regular amino acids	
5.	Location of the cathelicidin gene on the human genome and its structure	13
6.	Enzymatic processing of a cathelicidin	
7.	3-dimensional structure of LL-37	
8.	Flowchart showing the general molecular dynamics protocol	18
9.	Conformational space which is partitioned into several regions corresponding to the secondary structure motif that each encompasses	
10.	Flow chart for the protocol in the CLASICO program	29
11.	Periodic boundary condition in two dimensions	30
12.	Flowchart Gromacs	31
13.	Amber MD simulation Flowchart.	
14.	Themodynamic profile plots of MD trajectory of linear LL-37 under force field AMBERff96 and AMBER ff 99.	
15.	Root mean square deviations (backbone-backbone) of LL-37 from the starting structure in case of MD ^{implicit} force field ff99 and MD ^{implicit} force field ff96 at 300K.	
16.	Evaluation of new patterns along the trajectories for LL-37 in MD ^{implicit} force field ff96 and ff999SB	44
17.	Motif abundance from MD trajectory linear LL-37 under force field ff96 and ff99.	46
18.	Classification of β turns obtained in the MD trajectory of linear LL-37 force field ff96 and ff99.	47-48

19	Progress of hydrogen bonds monitored between important residues for cathelicidin in MD ff99 trajectories.	
20.	Average Structures of linear LL-37 obtained through out 100 ns trajectory at different time intervals (A-F) under force field AMBER ff96	52-53
21.	Average Structures of linear LL-37 obtained through out 100 ns trajectory at different time intervals under force field AMBER ff99	54-55
22.	Themodynamic profile plots of MD trajectory of NMR structure of LL-37 under force field AMBERff96 and ff 99SB	56
23.	Root mean square deviations (backbone-backbone) of NMR structure of LL-37 from the starting structure in case of MD ^{implicit} force field ff 99SB and ff96 obtained at 300K.	57
24.	Evaluation of new patterns along the trajectories for NMR structure of LL-37 in MD ^{implicit} force field ff96 MD ^{implicit} force field ff 99SB	58
25.	Motif abundance from MD trajectory NMR structure of LL-37 under force field ff96 and ff99 SB.	59
26.	Classification of β turns obtained in the MD trajectory of NMR structure of LL-37 force field ff96 and ff 99SB	60-61
27.	Progress of hydrogen bonds monitored between important residues for cathelicidin in MD ff 99SB trajectories.	
28.	Progress of hydrogen bonds monitored between important residues for cathelicidin in MD ff96 trajectories.	65
29.	Average Structures of NMR structure LL-37 obtained through out 100 ns trajectory at different tine intervals under force field AMBER ff96	66-67
30.	Average Structures of NMR structure LL-37 obtained through out 100 ns trajectory at different tine intervals under force field AMBER ff96	68-69
31	Constant pressure profile plot during the 100ns MD trajectory under force field gromos96 43a1.	70
32.	Themodynamic profile plots of MD trajectory of LL-37 NMR structure.	71
33.	Root mean square deviations (backbone, main chain and C^{α}) of LL-37 from the starting structure obtained at 300K.	72
34.	Plot of change in radius of gyration over the trajectory for LL-37 in explicit solvent.	72
35.	Plot of change in solvent accessible surface area over the trajectory for LL-37 in explicit solvent	73
36.	Peptide secondary structure per residue along the trajectories of peptide configurations computed with the program DSSP	74-75
37.	Average structures of LL-37 in explicit water at different time intervals.	77-79

List of Tables

S.No.	Table legends	Page No.
1	Conditions for secondary structure definition of three consecutive residues	28
2	Definition of β -turns classified on the basis of dihedral angles	28
3	Secondary structures observed due to mainchain- mainchain hydrogen bond interactions and their percentages in trajectory of linear LL-37 under ff 96	49
4	Secondary structures observed due to mainchain- mainchain hydrogen bond interactions and their percentages in trajectory of linear LL-37 under ff 99	50-51
5	Secondary structures observed due to mainchain- mainchain hydrogen bond interactions and their percentages in trajectory MD ff 99SB	62
6	Secondary structures observed due to mainchain- mainchain hydrogen bond interactions and their percentages in trajectory MD ff 96	64

List of Abbreviations

2D	2.D
3D	3 Dimensional
AMBER	Assisted Model Building with Energy Refinement
AMPs	Antimicrobial Peptides
ARG	Arginine
ASP	Asparagine
DNA	Deoxyribonucleic Acid
DSSP	Dictionary of protein secondary structure
FS	Femto Second
GB	Generalized Born
GBSA	Generalized Born Surface Area
GLN	Glutamine
GLU	Glutamic Acid
GROMACS	GROningen MAchine for Chemical Simulations
НВ	Hydrogen Bond
ILE	Isoleucine
K	Kelvin
K CAL / MOL	Kilo Calorie per mole
LEU	Leucine
LYS	Lysine
М	Molar
MC	Monte Carlo
MD	Molecular Dynamics
MM	Molecular Mechanics
NMR	Nuclear Magnetic Resonance
NS	Nano Second
OBC	Onufriev, Bashford and Case

РВС	Periodic Boundary Conditions
PDB	Protein Data Bank
PHE	Phenylalanine
PS	Pico Second
PTRAJ	Process Trajectory
RCSB	The Research Collaboratory for Structural Bioinformatics
RMSD	Root Mean Square Deviation
SANDER	Simulated Annealing with NMR-Derived Energy Restraints
SASA	Solvent Accessible Surface Area
SPC	Simple point charge
VMD	Visual Molecular Dynamics