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1.1. INTRODUCTION 

 

Object tracking is an important component of many vision systems. In its simplest 

form, tracking can be defined as the problem of estimating the trajectory of an object 

in the image plane as it moves around a scene. In order to assist human operators with 

identification of important events in videos, an intelligent visual surveillance system 

can be used. Such a system requires fast and robust methods for moving object 

detection, and then analysis after tracking. Moving object detection is the basic step 

for many video analysis tasks. The performance of this step is particularly significant 

because subsequent processing of the video data is greatly dependent on this step. 

Moving object detection aims at extracting moving objects that are of interest in video 

sequences. The problems with dynamic environmental conditions make moving object 

detection very challenging. Some examples of these problems are shadows, sudden or 

gradual illumination changes, rippling water, and repetitive motion from scene clutter 

such as waving tree leaves. Commonly used techniques for moving object detection 

are background subtraction, temporal frame differencing, and optical flow. The next 

step in the video analysis is object tracking. This problem can be formulated as a 

hidden state estimation problem given available observations. Another way to look at 

object tracking is the creation of temporal correspondence among detected object from 

frame to frame. It is used not only for visual surveillance, but also for augmented 

reality, traffic control, medical imaging, gesture recognition, and video editing. In the 

area of moving object detection a technique robust to background dynamics using 

background subtraction with adaptive pixel-wise background model update is 

described.  Once the object is detected the next step involves the tracking of the 

detected object. Tracking is usually performed in the context of higher-level 

applications that require the location and/or shape of the object in every frame. In 

other words, a tracker assigns consistent labels to the tracked objects in different 

frames of a video. The aim of an object tracker is to generate the trajectory of an 

object over time by locating its position in every frame of the video. There are a 
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variety of approaches, depending on the type of object, the degrees of freedom of the 

object and the camera, and the target application. In our work, this has been done by 

calculating the detection probabilities of the moving object for the next frame. To 

perform tracking in video sequences, an algorithm analyses sequential video frames 

and outputs the movement of target between the frames. Thus we perform tracking of 

an object in a video sequence, that is, continuously identifying its location. 

 

 

1.2. OVERVIEW 

 

Here we discuss about various tracking methods. The main tracking categories [10] 

are followed by a detailed section on each category. 

 

 Point Tracking:  

 

Objects detected in consecutive frames are represented by points, and the association 

of the points is based on the previous object state which can include object position 

and motion. This approach requires an external mechanism to detect the objects in 

every frame. Point correspondence is a complicated problem-specially in the presence 

of occlusions, misdetections, entries, and exits of objects. Point Tracking can be 

defined as the correspondence of detected objects represented by points across the 

frames. Point Tracking is a difficult problem particularly in the existence of 

occlusions, false detections of object. Recognition of points can be done simply by 

thresholding, at of identification of these points. Point Tracking is capable of dealing 

with tracking very small objects only. Overall, point correspondence methods can be 

divided into two broad categories, namely, deterministic and statistical methods. The 

deterministic methods use qualitative motion heuristics to constrain the 

correspondence problem. On the other hand, probabilistic methods explicitly take the 

object measurement and take uncertainties into account to establish correspondence. 

Some approaches based on Point Tracking are described below: 
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a. Kalman Filter: 

 

Kalman filter are based on Optimal Recursive Data Processing Algorithm. Here 

Gaussian state distribution is assumed. Kalman filtering [13] is composed of two 

stages, prediction and correction. Prediction of the next state using the current set of 

observations and update the current set of predicted measurements: 

𝑋𝑡 = 𝐷𝑋𝑡−1 +  𝑊,   (1) 

𝐶𝑡 = 𝐷𝐶𝑡−1𝐷𝑇 +  𝑄𝑡    (2) 

Where, 𝑋𝑡  and 𝐶𝑡  are the state and covariance predictions at time t. D is the state 

transition matrix which defines the relation between the state variables at time t and 

time t-1. Q is the covariance of noise W. 

 The second step is gradually update the predicted values and gives a much better 

approximation of the next state. It uses the current observation 𝑍𝑡  to update the object 

state:   

𝐾𝑡 =  𝐶𝑡𝑀𝑡[𝑀𝐶𝑡𝑀𝑇+]−1,  (3) 

𝑋𝑡 =  𝑋𝑡 + 𝐾𝑡 𝑍𝑡 −  𝑀𝑋𝑡 ,  (4) 

𝐶𝑡 =  𝐶𝑡 −  𝐾𝑡𝑀𝐶𝑡    (5) 

Where, M is the measurement matrix and K is the Kalman gain. The Kalman filter has 

been extensively used by the vision community for tracking. 

It can be shown as: 

 

Figure(1.1): Basic Steps in Kalman Filter 
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Kalman filter tries to find a balance between predicted values and noisy 

measurements. The value of the weights is decided by modelling the state equations. 

Kalman filter track the system in discrete interval of time. The flowchart for the 

algorithm is drawn below: 

 

 

 

Figure(1.2): Algorithm for Kalman Filter 

 

 

Kalman filtering [16] approach is capable in dealing with noise. It is applicable only 

for single object, multiple objects. Kalman Filter always gives optimal solution. It is 

used in vision community tracking. 
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a. Particle Filter: 

 

Particle filter is used to track non-linear, non- Gaussian moving objects. Particle filter 

is used to detect moving objects in difficult scenes. The algorithm [15] uses codebook 

background model for detection of objects, then color histogram of every objects is 

obtained and particle sampling range is limited by the combination of foreground 

detection information, which results particle filter reflect the objects more exactly and 

timely. An algorithm of codebook background model is used for object detection and 

Particle filter algorithm is used for object tracking. 

 

 

 

Figure(1.3): Algorithm for Particle Filter 

 

Simulation is performed on the video sequences of size 320×240 pixels, frame rate 

25fps. This algorithm helps in solving the problem of particle degradation which was 

arising in the case of traditional particle filter. Here author has mainly emphasized on 

information loss in the detection and tracking. This method makes the particle filter 

reflect the objects more accurately and timely. Here average processing time per frame 
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is calculated on the video sequences of 320×240 pixels, frame rate is 25fps and the 

result was 94ms. 

 

b. Multiple Hypothesis Tracking (MHT): 

 

The MHT algorithm is based on motion correspondence of several frames together. 

Better results are obtained if correspondence is established observing several frames 

rather than using only two frames. The MHT algorithm [34] upholds several 

suggestions for each object at each time. The final track of object is the most likely set 

of correspondences over time period of its observation. MHT is an iterative algorithm. 

Iteration begins with a set of existing track hypotheses. Each hypotheses is a crew of 

disconnect tracks. For each hypothesis, a prediction of object‟s motion in the 

succeeding frame is made. The predictions are then compared by calculating a 

distance measure.  

MHT focuses on FOV (field of view) of object entering and object leaving. It can 

handle occlusion. It can track multiple objects. 

 

 

 Kernel Tracking:  

 

Kernel refers to the object shape and appearance. For example, the kernel can be a 

rectangular template or an elliptical shape with an associated histogram. Objects are 

tracked by computing the motion of the kernel in consecutive frames. This motion is 

usually in the form of a parametric transformation such as translation, rotation, and 

affine. Kernel tracking is typically performed by computing the motion of the object, 

which is represented by a primitive object region, from one frame to the next. The 

object motion is generally in the form of parametric motion (translation, conformal, 

affine, etc.) or the dense flow field computed in subsequent frames. These algorithms 

differ in terms of the appearance representation used, the number of objects tracked, 

and the method used to estimate the object motion. We divide these tracking methods 
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into two subcategories based on the appearance representation used, namely, templates 

and density-based appearance models, and multi view appearance models.  

Kernel tracking is usually performed by computing the moving object, which is 

represented by a potential object region, from one frame to another. The object motion 

is usually in the form of parametric motion such as translation, conformal, affine, etc. 

These algorithms appear different in terms of the representation used, the number of 

objects tracked, and the method used for approximating the object motion. There are 

several techniques based on representation of object, object features, appearance and 

shape of the object. Few of the tracking technique based on 

Kernel tracking approach: 

 

a. Dual-Tree Complex Wavelet Transform Technique: 

 

Real Wavelet Transform suffers from shift variance and poor directionality. Object 

tracking method based on complex wavelet transform is used. Real Filter is used to 

obtain shift invariance. Two steps are followed; Segmentation and Tracking. While 

Segmentation Process is optical flow computation for finding moving object is used. 

Segmentation algorithm proceeds as follows: Take first and tenth frame of video 

sequence. Then, Convert them to grey level image; further determine optical flow 

using Horn Schunck method between these two images. Thus we find the magnitude 

square value of the optical flow |V|
2
. Afterwards, find the mean value of the |V|

2
 for 

the first image and compare its value with magnitude square value of the optical flow 

at each pixel location in the image. If |V|
2
 at any pixel is greater than or equal to the 

mean value. Then keep its pixel value 1, otherwise assign it 0. On the other hand, in 

the Tracking Process, in different video frames centroid of the moving object is 

calculated. 

Dual –Tree CxWT is an efficient way of implementing an analytic wavelet transform. 

Object is tracked in next frames by computing the energy of dual-tree complex 

wavelet coefficients [33] corresponding to the object area and matching this energy to 

that of in the neighborhood area. It has properties like directionality selectivity, Shift 
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invariance and perfect reconstruction. Experiment is performed on video sequence 

(240×320) and minimum energy difference & corresponding boundary values are 

calculated. Then centroid corresponding to this boundary value is calculated. 

 

 

b. Histogram-based 

 

In this Histogram-based target representation is improved by spatially masking 

(spatially smoothness achieved in similarity function) with an isotropic kernel. The 

traditional mean shift process is limited by the fixed kernel bandwidth. It was 

overcome by CAMshift. It coped well with camera motion, partial occlusions, clutter 

and target scale variations. But sophisticated motion filter required , if occlusions are 

present. 

 

 

 Silhouette Tracking:  

 

Tracking is performed by estimating the object region in each frame. Silhouette 

tracking methods use the information encoded inside the object region. This 

information can be in the form of appearance density and shape models which are 

usually in the form of edge maps. Given the object models, silhouettes are tracked by 

either shape matching or contour evolution. Both of these methods can essentially be 

considered as object segmentation applied in the temporal domain using the priors 

generated from the previous frames. Objects may have complex shapes, for example, 

hands, head, and shoulders that cannot be well described by simple geometric shapes. 

Silhouette based methods provide an accurate shape description for these objects. The 

goal of a silhouette-based object tracker is to find the object region in each frame by 

means of an object model generated using the previous frames. This model can be in 

the form of a color histogram, object edges or the object contour. We divide silhouette 

trackers into two categories, namely, shape matching and contour tracking. Shape 
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matching approaches search for the object silhouette in the current frame. Contour 

tracking approaches, on the other hand, evolve an initial contour to its new position in 

the current frame by either using the state space models or direct minimization of 

some energy functional. 

Objects having composite shapes for example, hands, head, and shoulders, are cannot 

be well defined by geometric shapes. Silhoue0tte based approach will give perfect 

description of shape of those objects. The aim of the silhouette based tracking is to 

find the object region by means of an object model. This model verifies the object 

region in each frame. Model can be represented in the form of color histogram, object 

edges or contour. 

We classify silhouette tracking into two categories, namely, shape matching and 

contour tracking. 

 

a. Contour Tracking: 

 

Contour tracking methods develop an original contour in the foregoing frame to its 

new position in the present frame, overlapping of object between the current and next 

frame. Contour tracking is in the form of state space models. State of the object is 

named by the parameters of shape and the motion of the contour. The state is updated 

for each time according to the maximum of probability. Author has used two types of 

object representation one is implicitly modeled and the other one is explicitly 

modeled. Performance of the technique based on contour evolution by direct 

minimization has been analyzed. Here region statistics is calculated using grid points. 

Occlusion is fully handled. 

 

b. Shape Matching: 

 

This approach checks for object model in the existing frame. Shape matching 

performance is similar to template based tracking in kernel approach. Another 

approach to Shape matching is to find matching silhouettes in two successive frames. 



11 

 

Detection based on Silhouette is carried out by background subtraction. Models object 

are in the form of density functions, silhouette boundary, object edges. Edge based 

templates has been used by the author. Here temporal spatial velocity in 3D image per 

frame is calculated. It can track only single object. Occlusion handling is performed 

using Hough Technique. 

 

 

1.3. OUTLINE OF THE THESIS 

 

Object tracking is the process of repeated estimation of the state of an object in the 

next frame, given states in previous frames. Object identification is one of the initial, 

but paramount steps in object tracking. It is basically, determination of video statistics, 

object classification, determination of inconsistencies, and then finally human 

identification. Every object has its unique features in a video scene. These unique 

features help us to determine whether the object is same in the next frame of a video as 

we need to track or not. In our project we have first extracted those features using 

communication theory, or radar theory to be precise. This enriches us with the crucial 

estimated features of the objects. After this parametric estimation, we have calculated 

the optimum detection probabilities for the target object using Neyman Pearson 

Theory. Considering the decision probabilities, the miss probability, the false 

probability, the detection probability and the minimized cost function, determined 

using Neyman Pearson Theory, we identify the target object. In the next section we 

would see our proposed work.  
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2.1. INTRODUCTION 

 

This research involves a robust method for the identification of an object to be the 

same in the next frame as in the previous frame with the help of Neyman Pearson 

decision theory applied on the estimated values of the object features (e.g. position, 

displacement, velocity etc). We take it as a fact that every human, has its unique 

features, which are not correlated with any other human being. There may be an 

identical size, or perhaps they are moving with an identical velocity, but all in all, the 

possibility of all the features of each person being identical, simultaneously is 

negligible. Thus, we extract a number of features of each person in the video to make 

that person unique for the computer system. Subsequently, the feature values are 

estimated for the next frames. These estimated values for each feature of the person 

are nothing but the maximum likelihood estimates of the feature. Later, using the 

already determined estimated values of the features the detection probabilities of each 

person are determined for the next frame. It also gives us the risk involved in 

considering the concerned object in the current frame to be detected in the next frame. 

This statistical modeling is state of art in this field and can work on multiple objects in 

the video frames simultaneously. This is a very straightforward approach and the 

results from the Neyman Pearson Criterion recognize the object in an easy way. As it 

forms a simple hypothesis testing problem with only two conclusions, either the target 

object is present in next frame, or not.  
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2.2. OBJECT DETECTION 

 

Moving object detection is the basic step for further analysis of video. Every tracking 

method requires an object detection mechanism either in every frame or when the 

object first appears in the video. It handles segmentation of moving objects from 

stationary background objects. This focuses on higher level processing. It also 

decreases computation time. Due to environmental conditions like illumination 

changes, shadow object segmentation becomes difficult and significant problem. A 

common approach for object detection is to use information in a single frame. 

However, some object detection methods make use of the temporal information 

computed from a sequence of frames to reduce the number of false detections. This 

temporal information is usually in the form of frame differencing, which highlights 

regions that changes dynamically in consecutive frames. Given the object regions in 

the image, it is then the tracker‟s task to perform object correspondence from one 

frame to the next to generate the tracks. 

 

 

 

 

 

Figure (2.1): Object Detection flow chart 
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2.2.1 Video Frames: 

The first step in the Object Detection is to fetch the video frames from which the 

moving objects have to be detected and then eventually tracked. Then the modeling of 

background is done. If the first frame is not free from foreground objects then, the 

background become complex to extract. Nonetheless, the initial frames help in 

modeling of the background frame. For this we first do the background scene 

initialization. There are various techniques used to model the background scene. The 

background scene related parts of the system is isolated and its coupling with other 

modules is kept minimum to let the whole detection system to work flexibly with any 

one of the background models. Next step in the detection method is detecting the 

foreground pixels by using the background model and the current image from video. 

 

2.2.2 Foreground Detection: 

The next step deals with distinguishing the foreground objects from stationary 

background. To achieve this, we can use a combination of various techniques along 

with low-level image post-processing methods to create a foreground pixel map at 

every frame. We then group the connected regions in the foreground map to extract 

individual object features such as bounding box, area, perimeter etc. The main purpose 

of foreground detection is to distinguishing foreground objects from the stationary 

background. Almost, each of the video surveillance systems uses the first step is 

detecting foreground objects. This creates a focus of attention for higher processing 

levels such as tracking, classification and behavior understanding and reduces 

computation time considerably since only pixels belonging to foreground objects need 

to be dealt with.  

This pixel-level detection process is dependent on the background model in use and it 

is used to update the background model to adapt to dynamic scene changes. Also, due 

to camera noise or environmental effects the detected foreground pixel map contains 

noise.  
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Figure (2.2): Foreground Detection 

Foreground detection is simply the background subtraction [2]. Background 

subtraction is the process of separating out foreground objects from the background in 

a sequence of video frames. Many methods exist for background subtraction, each 

with different strengths and weaknesses in terms of performance and computational 

requirements. 

Since background subtraction is being implemented on a wide range and thus within a 

wide range of computational budgets there are methods of varying complexity:  

1. Low-complexity, using the frame difference method,  

2. Medium complexity, using the approximate median method, and  

3. High-complexity, using the Mixture of Gaussians method.  

Frame Difference: 

Frame difference is arguably the simplest form of background subtraction. The current 

frame is simply subtracted from the previous frame, and if the difference in pixel 

values for a given pixel is greater than a threshold Ts, the pixel is considered part of 
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the foreground [18]. However, a major flaw of this method is that for objects with 

uniformly distributed intensity values, the interior pixels are interpreted as part of the 

background. Another problem is that objects must be continuously moving. If an 

object stays still for more than a frame period, it becomes part of the background. This 

method does have two major advantages. One obvious advantage is the modest 

computational load. Another is that the background model is highly adaptive. Since 

the background is based solely on the previous frame, it can adapt to changes in the 

background faster than any other method. Moreover, the frame difference method 

subtracts out extraneous background noise, much better than the more complex 

approximate median and mixture of Gaussians methods. A challenge with this method 

is determining the threshold value. The threshold is typically found empirically, which 

can be tricky. 

 

Approximate median: 

In median filtering, the previous N frames of video are buffered, and the background 

is calculated as the median of buffered frames. Then, the background is subtracted 

from the current frame and thresholded to determine the foreground pixels. Median 

filtering has been shown to be very robust and to have performance comparable to 

higher complexity methods. However, storing and processing many frames of video 

requires an often prohibitively large amount of memory. This can be alleviated 

somewhat by storing and processing frames at a rate lower than the frame rate, thereby 

lowering storage and computation requirements at the expense of a slower adapting 

background.  

The approximate median method [21] works as such: if a pixel in the current frame 

has a value larger than the corresponding background pixel, the background pixel is 

incremented by 1. Likewise, if the current pixel is less than the background pixel, the 

background is decremented by one. In this way, the background eventually converges 

to an estimate where half the input pixels are greater than the background, and half are 

less than the background, approximately the median the approximate median method 

does a much better job at separating the entire object from the background. This is 
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because the more slowly adapting background incorporates a longer history of the 

visual scene, achieving about the same result as if we had buffered and processed N 

frames. This method is a very good compromise. It offers performance near what you 

can achieve with higher-complexity methods (according to my research and the 

academic literature), and it costs not much more in computation and storage than 

frame differencing.  

 

Mixture of Gaussians: 

Among the high-complexity methods, two methods dominate the literature, namely, 

Kalman filtering and Mixture of Gaussians (MoG) [21]. Both have their advantages, 

but Kalman filtering gets slammed for leaving object trails that can't be eliminated. 

Also, MoG is more robust, as it can handle multi-modal distributions. For instance, a 

leaf waving against a blue sky has two modes, leaf and sky. MoG can filter out both. 

Kalman filters effectively track a single Gaussian, and are therefore unimodal, they 

can filter out only leaf or sky, but usually not both.  

In MoG, the background isn't a frame of values. Rather, the background model is 

parametric. Each pixel location is represented by a number of Gaussian functions that 

sum together to form a probability distribution function F. To determine if a pixel is 

part of the background, we compare it to the Gaussian components tracking it. If the 

pixel value is within a scaling factor of a background component's standard deviation 

σ, it is considered part of the background. Otherwise, it's foreground. MoG is very 

good at separating out objects and suppressing background noise such as waving trees. 

However, there are several points where the method breaks down, allowing most of 

the background to seep into the foreground. These points correspond to relatively 

rapid changes in illumination. If we go back to the approximate median output we can 

see similar hiccups, although less pronounced. This is because the background model 

isn't adapting quickly enough. This is not to say the MoG is less robust, necessarily. 

But the problem MoG had with illumination changes in the test video does point to 

one of its main challenges; parameter optimization. The MoG method has five 

parameters which must be tweaked (the background component weight threshold Ts, 

http://mathworld.wolfram.com/GaussianFunction.html
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the standard deviation scaling factor D, the learning rate ρ, the total number of 

Gaussian components, and the maximum number of components M in the background 

model) 

 

Hence the critical analysis would be that, the simplest method that is frame 

differencing is arguably the most robust. While it has major flaws, and is probably not 

suitable for most applications, frame differencing does the best job of subtracting out 

extraneous background noise such as waving trees. The second most robust method, 

approximate median, gives us significantly increased accuracy for not much more 

computation. It had a little trouble with quickly changing light levels, but handled 

them better than mixture of Gaussians. And Mixture of Gaussians, the most complex 

of the methods, gives us good performance, but presents a tricky parameter 

optimization problem. 

 

2.2.3 Pixel-level post-processing operations: 

 They are performed to remove noise in the foreground pixels [25]. Once we get the 

filtered foreground pixels, in the next step, connected regions are found by using a 

connected component labeling algorithm and objects‟ bounding rectangles are 

calculated. The labeled regions may contain near but disjoint regions due to defects in 

foreground segmentation process. Hence, some relatively small regions caused by 

environmental noise are eliminated in the region-level post-processing step. In the 

final step of the detection process, a number of object features like area, bounding box, 

perimeter of the regions corresponding to objects are extracted from current image by 

using the foreground pixel map. In Pixel Level Post-Processing, the output of 

foreground detection contains noise. Generally, it affects by various noise factors. To 

overcome this dilemma of noise, it requires further pixel level processing. There are 

various factors that cause the noise in foreground detection such as:  

Camera Noise:  

Camera noise presents due to camera‟s image acquisition components. This is the 

noise caused by the camera‟s image acquisition components. This noise is produce 
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because of the intensity of a pixel that corresponds to an edge between two different 

colored objects in the scene may be set to one of the object‟s color in one frame and to 

other‟s color in the next frame.  

Background Colored Object Noise:  

The color of the object may have the same color as the reference background. Then it 

is difficult to detect foreground pixels with the help of reference background. 

Reflectance Noise:  

Reflectance noise is caused by light source. When a light source moves from one 

position to another, some parts in the background scene reflect light.  

 

2.2.3.1 Gaussian Filter Smoothing: 

The noise as explained above in the frames must be removed, otherwise, the connected 

regions will get distorted, and the object detection would not be accurate. Low pass 

filters are used for blurring and for noise reduction. Blurring is used in pre-processing 

tasks, such as removal of small details from an image prior to large object extraction, 

and bridging of small gapes in lines or curves.  

 

Figure (2.3): A MATLAB example Gaussian filtered image 
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Gaussian filter [11] is used extensively in image processing for smoothening of the 

images, and also it can be computed using a simple mask. Hence, Gaussian 

smoothing is used as a sub operation and this can be performed using standard 

convolution method. The mask through which convolution of image is to be done is 

typically smaller than the actual image. Consequently, operation on pixels at a time 

is done when the mask is swept over the image. The sensitivity of the detector for 

noise depends upon the size of the Gaussian window, larger the Gaussian mask, lower 

is the sensitivity of detector towards noise. While with the increase in size of the 

Gaussian mask, the localization error also increases. An example of a 5*5 Gaussian 

filter is given below: 

 

 

 

1/273 

1 4 7 4 1 

4 16 26 16 4 

7 26 41 26 7 

4 16 26 16 4 

1 4 7 4 1 

Table (2.1): A 5*5 Gaussian Filter example 

 

Gaussian low pass filter is use for pixel level post processing. A Gaussian filters 

smoothes an image by calculating weighted averages in a filter co-efficient. Gaussian 

filter modifies the input signal by convolution with a Gaussian function.  

 

2.2.3.2 Morphological Filtering Techniques: 

T h e  b ackground can have some external noise which has an intensity of „1‟ in a 

binary image and the foreground moving object can have internal noise which has an 

intensity of „0‟ in a binary image. We need to remove these errors as they create 

problem in proper object detection. A morphological filtering approach has been 

applied using sequence of dilation and erosion to obtain a smooth, closed, and 

complete contour of a gesture. Morphology deals with the shape or structure of an 
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object. Morphological techniques probe an image with a small shape or template 

called a structuring element. Morphology [11][23] is a tool for extracting image 

components that are useful for representation and description of region shape, 

boundary, skeleton, convex hull etc. The structuring element is positioned at all 

possible locations in the image and it is compared with the corresponding 

neighborhood of pixels. Morphological operation returns an image in which the pixel 

has a non-zero value only if the test is successful at that location in the input image. In 

the morphological dilation and erosion, the structuring element is moved over the 

actual image and the morphological computations are performed. 

 

- Dilation: 

The dilation of an image by a structuring element has the following three effects on 

the image: Filling of gaps, Removal of noise, Expansion of the object boundary 

- Erosion: 

The erosion of an image by a structuring element has the following three effects on the 

image: Removal of external noise, Boundary pixels get eliminated 

- Opening: 

The opening of A by B is obtained by the erosion of A by B, followed by dilation of 

the resulting image by B. 

𝐴 ∘ 𝐵 = (𝐴 ⊗ 𝐵) ⊕ 𝐵   (6) 

 In the opening operation the external noise is eliminated. The opening of A by B is 

simply the erosion of A by B followed by dilation of the result by B. 

- Closing: 

 The closing of set A by structuring element B is 

𝐴 • 𝐵 = (𝐴 ⊕𝐵) ⊗ 𝐵   (7) 

In the opening operation the internal noise is eliminated. Closing also tends to smooth 

section of contours but, it generally fuses narrow breaks and long thin gulfs, eliminates 

small holes and fills gaps in the contour.
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We can use low pass filter and morphological operations, erosion and dilation, to the 

foreground pixel map to remove noise that is caused by the items listed above. Our 

aim in applying these operations is removing noisy foreground pixels that do not 

correspond to actual foreground regions and to remove the noisy background pixels 

near and inside object regions that are actually foreground pixels.  

 

2.2.4 Detecting Connected Regions:  

After detecting foreground regions and applying post-processing operations to remove 

noisy regions, the filtered foreground pixels are grouped into connected regions. After 

finding individual regions that correspond to objects, the bounding boxes of these 

regions are calculated.  

 

2.2.5 Region Level Post-Processing: As pixel-level noise removed, still some 

artificial small regions remain just because of the bad segmentation. To remove this 

type of regions, regions that have smaller sizes than a pre-defined threshold are 

deleted from the foreground pixel map. Once segmenting regions [25] we can extract 

features of the corresponding objects from the current image. These features are size, 

center-of-mass or just centroid and Bounded Area of the connected component. These 

features are used for object tracking and classification for the further processing in 

event detection.  

 

Thus, Object detection [28] can be achieved by building a representation of the scene 

called the background model and then finding deviations from the model for each 

incoming frame. Any significant change in an image region from the background 

model signifies a moving object. The pixels constituting the regions undergoing 

change are marked for further processing. Usually, a connected component algorithm 

is applied to obtain connected regions corresponding to the objects. This process is 

referred to as the background subtraction.  

At the start of the system reference background is initialized with first few frames of 

video frame and that are updated to adapt dynamic changes in the scene. At each new 
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frame foreground pixels are detected by subtracting intensity values from background 

and filtering absolute value of differences with dynamic threshold per pixel. The 

threshold and reference background are updated using foreground pixel information. It 

attempts to detect moving regions by subtracting the current image pixel-by-pixel 

from a reference background image [27] that is created by averaging images over time 

in an initialized period. The pixels where the difference is above a threshold are 

classified as foreground. After creating foreground pixel map, some morphological 

post processing operations such as erosion, dilation and closing are performed to 

reduce the effects of noise and enhance the detected regions. Pixel is marked as 

foreground if the inequality is satisfied [4],  

 

| It ( x , y ) − Bt ( x , y ) | > T   (8) 

 

Where, T is a pre-defined threshold, 

It is the current frame, 

and Bt is background image. 
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2.3. OBJECT TRACKING 

 

Object tracking is a technique or method used to track the number and direction of 

objects traversing a certain passage or entrance per unit time. To achieve the goal of 

intelligent motion perception, much effort has been spent on visual object tracking, 

which is one of the most important and challenging research topics in computer vision. 

The aim of an object tracker is to generate the trajectory of an object over time by 

locating its position in every frame of the video. Object tracker may also provide the 

complete region in the image that is occupied by the object at every time instant. The 

tasks of detecting the object and establishing correspondence between the object 

instances across frames can either be performed separately or jointly. The resolution of 

the measurement is entirely dependent on the sophistication of the technology 

employed. There are three key steps in video analysis: detection of interesting moving 

objects, tracking of such objects from frame to frame, and analysis of tracks to 

recognize their behavior.  

 

The object tracking is pertinent in the tasks of:  

 

1. Motion-based recognition, that is, human identification based on gait, automatic 

object detection, etc.  

2. Automated surveillance that is, monitoring a scene to detect suspicious activities or 

unlikely events  

3. Video indexing, that is, automatic annotation and retrieval of the videos in 

multimedia databases 

4. Human-computer interaction, that is, gesture recognition, eye gaze tracking for data 

input to computers, etc. 

5. Traffic monitoring, that is, real-time gathering of traffic statistics to direct traffic 

flow, Vehicle navigation that is, video-based path planning and obstacle avoidance 

capabilities.  
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2.4. METHODOLOGY 

The complete methodology has been shown in the form a flowchart, starting from the 

drawing out of the sequence of frames from a video scene, then background 

subtraction for object detection, followed by the extraction of features and tensor 

formation which is basically using of graph theory. Next the Neyman Pearson 

Criterion is applied on the parametric estimated feature values for the detection and 

identification of the target object.   

Following steps have been followed: 

 

 

 

Figure(2.4): Flowchart of the complete approach 

 

Video Frames

Frame Differencing

Feature Extraction

Tensor  Formation

Optimal Parametric 
Estimation

Application of Neyman 
Pearson Theory

Decision Making



27 

 

2.4.1 Video Frames 

 

Initially, the frames from the video sequence are fetched, here, we have used the view 

7 of the PETS 2009 dataset of video frames. Then, for the application of the proposed 

approach, foreground objects are separated out from the background in a sequence of 

video frames. There are several methods for background subtraction, and they all have 

their strengths and weaknesses in terms of performance and computational 

requirements.   

 

 

2.4.2 Frame Differencing 

 

Frame Differencing is one of the simplest methods for background subtraction. In this, 

the current frame is subtracted from the previous frame, and if, for a given pixel the 

difference in pixel values is greater than a threshold, the pixel is considered to be a 

part of the foreground. Let for current frame F at time t and at pixel position x, the 

intensity is given by Ft(x). Then for the previous frame, the intensity at the same pixel 

position is given by Ft-1(x). Then, for a defined threshold T, the moving foreground 

object can be prominently taken out if, 

 

| Ft(x)- Ft-1(x)| > T    (9) 

 

This method is highly adaptive because background depends only on the previous 

frame and most importantly it has the least complexity. Furthermore, it is also capable 

of subtracting background noise much better than the others. Now we have, sequence 

of frames with only foreground objects.  

Naturally the foreground objects [7] will have some internal as well as external noise 

still left, which must be removed. So, image morphological operations, erosion and 

dilation is applied on the sequence of frames, to get noise free and uniform foreground 
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objects. This is a necessary step, so as to have the same number of connected regions 

as the number of objects in the video.  

 

 

 

Figure(2.5): Objects represented by centroids in the frames 

 

Afterwards, all the foreground objects are represented by their respective centre of 

gravity, which is the same as the centroid as shown in figure (2.5). Now as we have all 

the foreground objects we need to track, we will determine the features of each of the 

tracking entity. 
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2.4.3 Feature Extraction 

 

The next step involves the extracting of features of each foreground object per frame 

from the multi view appearance using Graph Theoretic approach. When the person 

moves there exists three tracking operators, namely, Translation, Scaling and Rotation. 

Translation is concerned with the lateral movement. Scaling involves the range of the 

object. And the rotation is about the direction or changing angle of the person with 

movement. We have found out only two out of three operators in our case. We have 

left out the rotation operator which has more complexity involved. The other features 

we have calculated are height, width, area, coordinates displacement and velocity. The 

coordinates of each foreground objects are straight away given by the centroids, which 

form the basis of calculations of the other parameters. The displacement and velocity 

for the moving objects are then calculated by the simple speed-time-distance relation. 

The height, width and area are determined using the bounding box enclosing the 

moving foreground objects. The accuracy of this calculation is increased by 

determination of size within the bounding box. Thus we are with all the feature values 

calculated using graph theory. 

 

 

2.4.4 Tensor Formation   

 

A tensor term has been given to the cascaded matrix formed by bringing together of all 

the extracted features for each person. This is simply a way of useful representation of 

the acquired data.  

 

Figure(2.6): Formation of Markov Chain from the Tensors of each frame 

Frame 1 
Tensor

Frame 2 
Tensor

Frame 3 
Tensor

Frame 4 
Tensor
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Subsequently, a markov chain of the tensors is made for each foreground object, 

which simply connects the tensors of previous frames with respect to the features. 

Thus we have a compilation of the extracted features for each foreground object with 

successive frames. 

 

 

2.4.5 Optimal Parametric Estimation  

 

Now the parametric estimation is done using radar theory to find out the estimation of 

the features for the next frame. In most situations, however, the true distributions are 

unknown and must be estimated from data. In the non-parametric density estimation 

[17], we assume no knowledge about the density. But for the parametric estimation 

[19], we assume a particular form for the density (e.g. Gaussian), so only the 

parameters need to be estimated. The Maximum Likelihood [12] solution for the 

parametric estimation seeks the solution that best explains the dataset. In the detection 

problem in radar systems, a signal is transmitted towards a target object from the radar 

which gets reflected back and this reflected signal is received by the same radar, which 

then estimates the mathematical  parameters of the object like velocity, shape, range. 

This idea has been used here for the optimal parametric estimation of the features of 

the objects in the frames. Our eyes do the same job for us as the radar does. The 

binocular vision of human eye is a natural process, the light rays gets reflected from 

the objects, which are then received by the human eye, and this is how we are able to 

see and then the brain does its function to recognize the objects. This process has been 

utilized in our methodology, to calculate the features of the objects in the frames, and 

the recognition or the tracking part is done using the Neyman Pearson Decision 

Theory [12]. The received signals are always distorted due to the non ideal 

characteristics of the channel and the random noise added to the signal at the receiver 

input. So it becomes necessary to measure the various parameters of the received 

signals. Thus the optimal parametric estimation uses the observed values to 

approximate the unknown feature values. Consequently, the best estimate must be 
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found, as both the transmitted parameters and received signals may vary randomly. 

Therefore, based on the theory of parameter estimation, the optimum estimation of 

size, velocity and other concerned features for the next frame has been determined.  

Firstly, we have estimated the size of the concerned object to determine its detection 

probability later. Considering a simple radar problem, we transmit a signal and then 

we receive the reflected signal with some noise, delay and different related energy.  

 

First let us get familiar with the Maximum Likelihood Estimation Theory which we 

have used for the Optimal Parametric Estimation. It searches for the parameter values 

that have produced the observed distribution most likely. There by, we simply 

construct a model by its pdf through the given dataset, where 𝜃 form the parameter of 

that pdf.   Suppose there is a random variable Y with a known pdf, in our case we have 

taken it to be Gaussian, and unknown parameter 𝜃, then independent samples y1, y2, y3 

…. yn of the random variable Y forms a probability distribution function P(yi|𝜃), then 

the joint distribution function is given by, 

 

P(yi|𝜃) = P(y1|𝜃)….P(yn|𝜃)    (10) 

 

Thus it assumes a particular model with unknown parameters [19] and so the 

probability of observing a given event is conditional on a specific set of parameters. 

Now the likelihood function [8] is nothing but the density function of 𝜃. 

 

L(𝜃|y1,y2…yn) =  P(yi|θ)𝑛
𝑖=1    (11) 

 

Now the observed results bring us the most likely parameter 𝜃e, which is the parameter 

value that maximizes the likelihood function. It is given by, 

 

 

𝜃e = L(θ|Y) θ 
𝑎𝑟𝑔𝑚𝑎𝑥

     (12) 
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Thus 𝜃e maximizes the likelihood function, which implies that,  

 

L(𝜃e) ≥ L(𝜃), ∀ θ     (13) 

 

Therefore the best estimate could be determined. This maximum likelihood method 

[7] [20 ] of optimal parametric estimation is simple, useful and efficient. This in turns 

gives the Likelihood Ratio Test [9], which essentially forms basis for the decision rule 

in Neyman Pearson Test. For instance, if there are two parametric values 𝜃0 and 𝜃1, 

and the Likelihood functions for them are given by L(𝜃0|y) and L(𝜃1|y) respectively. 

Now if, L(𝜃1|y) > L(𝜃0|y)  then parameter 𝜃1 would be chosen as the maximum 

likelihood estimated, rather than 𝜃0 because the estimated value having proximity to 

𝜃1 has the higher probability. 

 

 

1. Estimation of Size 

 

Using the explained theory we would like to find the best estimates of the various 

features of the objects. For the estimation of size of all the foreground objects in the 

frame, here, we have taken into account that size is a function of received energy, 

because for a frame sequence which is a sequence of binary images, the received 

energy is proportional to the size of the concerned object. Thus we calculate the cross 

correlation between the consecutive frames, which in turns give us the energy per 

frame.  

 

𝑅𝑥𝑦  Τ =   𝑥 (𝑡 −  Τ
∞

−∞
) 𝑦(Τ)∗ 𝑑Τ   (14) 

 

 

𝐸 =   𝑥 Τ 
∞

−∞
 𝑥(Τ)∗ 𝑑Τ    (15) 
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Now in terms of frames, the cross correlation between successive frames is given by, 

𝑅𝑥𝑦  𝛵 . It is taken, that the time difference between successive frames is 1/25 

seconds, that means, the (𝑡 −  𝛵) factor has already been taken into consideration. 

Thus it reduces simply into equation of energy E. Hence, if we are able to find the 

cross correlation between successive frames, then energy per frame can also be 

calculated. This has been used to estimate the size of the objects, as it has been noted 

that size is proportional to the reflected energy. The estimation has been done using 

the Maximum Likelihood Method, in which the received observations are the 

independent samples of a random variable, y(t−𝛵) + n(t), where y(t) is the transmitted 

signal, which has been received after a time delay of  𝛵, and n(t) is the random noise 

added due to distortions. Now, we use the dataset Y, the random variable, from the 

tensor to form Gaussian distribution P(y/𝜃), where 𝜃 here is the size parameter. So, we 

have a gaussian distribution of the size from the tensor, which is P (Random Dataset 

of Size | Size Parameter). Subsequently, for maximum likelihood estimation, the 

objective is to determine the most likely values of the parameter, given an observed 

sample value. Hence, hml , that is, the most likely estimation of the size, gives us the 

best estimate. 

 

2. Estimation of Displacement 

 

We can apply similar parametric estimation approach for all the features. We have 

estimated the displacement of the concerned object per frame. We make use of the 

same radar theory, a signal is transmitted, and then in all the successive frames the 

reflected signal is received from different forward or backward positions for a moving 

object. This gives us the displacement of the object per frame. Suppose at time t, the 

position of target object is at A, and at time (t+ 𝛵), the new position is B. Then the 

difference in these two positions gives the displacement of the target object for the 

current frame. Now, similarly as in the case of estimation of size, the gaussian 

distribution of the displacement from the tensor, which is P (Random dataset of 

Displacement | Displacement Parameter) is known. Consequently, that estimate of the 
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tensor parameter of displacement is adopted as the best estimate, which maximizes the 

joint probability density function P(y/𝜃), where y here is the random variable for the n 

independent samples of displacement in successive frames and 𝜃 is the displacement 

parameter. Hence, we also fetch the most likely estimated displacement dml, of the 

concerned person with the help of the probability distribution function and the 

displacements per frame.  

 

3. Estimation of Velocity 

 

Likewise, the estimation of velocity is done. Here also likelihood function L(y/𝜃) is 

maximized for the optimal solution, where y is the random variable and 𝜃 is the 

velocity parameter. Using the Normal probability distribution function of velocity 

from the tensor which is P (Random Dataset of Velocity | Velocity Parameter), we 

obtain the parameter vml, that maximizes the likelihood function and hence is the best 

estimate. 

 

 

Once all the estimates of the features for all the objects per successive frames are 

calculated. Then the next step is the determination of the detection probabilities of 

those foreground objects, based on their estimated data. 

 

 

2.4.6 Application of Neyman Pearson Theory 

 

Now, assume that we have to classify an object based on the estimated features. 

Because even if the estimated features are known, the observation at the receiver end 

is still a random process, and thus overall problem of object detection is eventually a 

statistical decision problem. We will naturally choose the class that is most probable 

given the estimated values. The two situations of „object present‟ and „object not 

present‟ have simply been taken as two classes H0 and H1. These classes are such that, 
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H0 : Null Hypothesis – Target Object is not present 

 

H1 : Target Object is present in the next frame 

 

 

 

 

Figure(2.7): Decision Regions with Conditional Probabilities, False alarm Probability, 

Probability of Miss and Threshold value of the parameter 

 

 

The probabilities p(H1) and p(H0) are the a priori probabilities, which follows p(H1) + 

p(H0) = 1, next the, p(y/H0) and p(y/H1) are the conditional probabilities, for the two 

Hypothesis H0 and H1, where y is the random variable parameter for the concerned 

object. The decision of H0 or H1, has to be based on some probabilistic decisive factor. 

The simplest criterion would be to choose the most likely hypothesis and hence the 

relative decision rule is given by, 

Hypothesis H1, if p(H1/y) > p(H0/y) 

 

and 

 

Hypothesis H0, otherwise 
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where, p(H1/y) and p(H0/y) are the a posteriori probabilities, which can be determined 

using the Bayes Theorem, 

 

 

𝑝  
𝐻1

𝑦  =  
𝑃 𝐻1  𝑝(𝑦/𝐻1) 

𝑝(𝑦)
  (16) 

 

and, similarly, 

 

𝑝  
𝐻0

𝑦  =  
𝑃 𝐻0  𝑝(𝑦/𝐻0) 

𝑝(𝑦)
  (17) 

 

 

Practically, decision making is inherently biased, where different risk values are 

involved with different decisions. For an instance, in radar applications, the risk of 

missing the target is certainly higher than the risk of a false alarm. This is where we 

apply Neyman Pearson Theory [12][14] to know the detection probabilities, and thus 

classifying the objects. In the case of radar applications not only the priori 

probabilities but also the cost matrix is not normally known. Also, the Neyman 

Pearson criterion, used in detection theory, also leads to a Likelihood Ratio test, it 

basically fixes one class error probabilities, and seeks to minimize the other. So the 

Neyman Pearson criterion is very attractive since it does not require the knowledge of 

priors and cost function. In such cases we use a pre assigned value of the false alarm 

probability (𝑃𝑓), in our case we have fixed it at 𝑃𝑓 = 0.3, which is basically the false 

detection probability of the object that is affordable. Since the priori probabilities are 

not known, hence, mathematical formula for Probability of miss (𝑃𝑚) and false alarm 

Probability (𝑃𝑓) are: 
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𝑃𝑓 =  𝑝 𝑦/𝐻01 
∞

𝑦0

𝑑𝑦                           (18)       

𝑃𝑚 =  𝑝 𝑦/𝐻1 

𝑦0

−∞

𝑑𝑦                          (19)       

 

Where,  𝑝(𝑦/𝐻0) and 𝑝 𝑦/𝐻1  are the conditional probabilities, and 𝑦0 is the 

threshold value of the parameter calculated using the given 𝑃𝑓, it basically divides the 

range of y into the region R(0) and R(1). 

 

Now, our problem remains to minimize the risk of miss. It eventually corresponds to 

maximizing the detection probability (𝑃𝑑) of the target for a given false alarm 

probability, which is given by, 

 

 

𝑃𝑑 =  1 − 𝑃𝑚                                (20) 

 

 

This we have solved using the method of Lagrangian multiplier (µ) by minimizing the 

equation, 

 

 

𝐶 = 𝑃𝑚 +  𝜇 𝑃𝑓                            (21) 

 

 

This is basically the optimization equation, where C is the average cost for risk, which 

must be minimized. The expanded equation for the average risk, thus becomes,  
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𝐶 =  𝑝 𝑦/𝐻0 𝑑𝑦 +  𝜇  𝑝(𝑦/𝐻1)𝑑𝑦
𝑦0

−∞

∞

𝑦0
     (22) 

This, in fact, can be put in the terms of likelihood ratio test. Thus, the condition for 

minimum average risk C is 

 

𝜆1 =
𝑝(

𝑦
𝐻1

 )

𝑝(
𝑦

𝐻0
 )

>  𝜇 = 𝜆𝑡                                    (23) 

 

 

Hence, if the likelihood ratio 
𝑝(

𝑦
𝐻1

 )

𝑝(
𝑦

𝐻0
 )

 is greater than the lagrangian multiplier, then the 

average risk associated with the decision is minimized, or in other words, it minimizes 

the risk of miss and subsequently maximizes the detection probability. 

Thus the decision rule is  

 

 

𝜆1  >  𝜆𝑡        for hypothesis H1                   (24) 

 

 

𝜆1 𝑦 ≤  𝜆𝑡    for hypothesis H0                  (25) 

  

 

These form the basis for object identification, and the detection probabilities give the 

probability of finding that concerned object in the next frame. The most important 

benefit of applying Neyman Pearson Criterion is that, it does not only gives the result, 

but the concerned probabilities supporting the result as well.   

 

Thus we are now with the estimated values of the features of multiple objects in all the 

frames, with their corresponding detection probabilities. This is then compared with 

the feature values got from the graph theoretic approach to know the error percentage 

and accuracy. 
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3.1 Results 
 

The comparison of the parametric estimation values with the values of the features 

from graph theoretic approach has been made, with detection probabilities for the next 

frames, for each estimation.  

 

 

 

 

Figure(3.1):  Sample Frame 

 

 

The video frame below is the sample frame for the object aliasing to simplify the 

representations. The person at the extreme left is “Object 1”, while the one at the 

middle is “Object 2”, and we have named the person at the right as “Object 3”. 
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3.2 Tracked Frames 
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Figure(3.2):  Tracked Frames 
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3.3 Figures 

For each feature, that is, size, displacement and velocity of the “Object 1”, “Object 2” 

and “Object 3”, the estimated value and the tensor value are plotted for each 

successive frame. These plots shows the estimated feature values for the successive 

next frames, and how it is differing from the values fetched from Tensor. Thus for 

each frame, error in estimation can be calculated. 

 

 

FOR OBJECT 1 

 

A. Size 

 

 

Figure(3.3):  Plot to show the variation of Estimated Size with Actual Size with each 

successive frames for Object 1 
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B. Displacement 

 

 

Figure(3.4):  Plot to show the variation of Estimated Displacement with Actual Displacement 

with each successive frames for Object 1 

 

C. Velocity 

 

Figure(3.5):  Plot to show the variation of Estimated Velocity with Actual Velocity with each 

successive frames for Object 1 
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FOR OBJECT 2 

 

A. Size 

 

Figure(3.6):  Plot to show the variation of Estimated Size with Actual Size with each 

successive frames for Object 2 

 

 

Figure(3.7):  Plot to show the variation of Estimated Displacement with Actual Displacement 

with each successive frames for Object 2 
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Figure(3.8):  Plot to show the variation of Estimated Velocity with Actual Velocity with each 

successive frames for Object 2 

 

 

FOR OBJECT 3 

A. Size 

 

Figure(3.9):  Plot to show the variation of Estimated Size with Actual Size with each 

successive frames for Object 3 
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Figure(3.10):  Plot to show the variation of Estimated Displacement with Actual Displacement 

with each successive frames for Object 3 

 

 

 

 

Figure(3.11):  Plot to show the variation of Estimated Velocity with Actual Velocity with each 

successive frames for Object 3 
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From the plots it is clear that the change in feature values of size, displacement and 

velocity follows a unique pattern or shape for successive frames for each object. The 

estimated values follows the pattern but with slight difference. However, this is enough to 

recognize the objects. But, the recognition is based on some detection probabilities, 

which tells whether the object could be detected in the next frame. We have till now the 

estimated data for each frame. Now Neyman Pearson criterion is applied to calculate the 

detection probabilities of the objects in successive frames. 

 

 

 

3.4 Tables 

The detection probabilities and the average risk connected with each decision have been 

shown in the tabular form for successive frames for all the three objects. The detection 

probabilities go up whenever the estimated value of the feature confirms with the tensor 

values. While the risk associated with the detection lowers for a higher detection 

probability, and increases for a lower detection probability. These results effectively 

show that the object is efficiently identified. 

 

 

TABLE 3.1. Results of application of Neyman Pearson Criterion on Object 1 

 

Frames 

Displacement Velocity Size 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

21 0.68838 0.80624 0.70606 0.78857 0.70957 0.78504 

22 0.85929 0.42517 0.86898 0.41579 0.70452 0.7901 

23 0.88756 0.37678 0.88226 0.39029 0.69946 0.79516 

24 0.68838 0.79994 0.69259 0.80203 0.70199 0.7896 

25 0.68838 0.80183 0.69871 0.78544 0.70957 0.76882 
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26 0.7741 0.62867 0.77194 0.61102 0.70452 0.78354 

27 0.63096 0.86366 0.63127 0.86335 0.71969 0.74372 

28 0.74558 0.623 0.73415 0.64075 0.71463 0.75616 

29 0.74558 0.623 0.73781 0.63344 0.71463 0.75795 

30 0.71701 0.67775 0.69871 0.71473 0.6944 0.80022 

31 0.57334 0.92128 0.57095 0.92367 0.70452 0.77277 

32 0.65969 0.75282 0.64846 0.76515 0.71716 0.74285 

 

 

 

TABLE 3.2. Results of application of Neyman Pearson Criterion on Object 2 

 

Frames 

Displacement Velocity Size 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

21 0.6724 0.59728 0.66766 0.61276 0.70907 0.67113 

22 0.61715 0.67023 0.63027 0.66423 0.73527 0.62085 

23 0.6724 0.60558 0.66107 0.62174 0.72544 0.6381 

24 0.78238 045031 0.78368 0.4577 0.68942 0.70851 

25 0.6724 0.60668 0.64568 0.64272 0.70907 0.67213 

26 0.6724 0.59728 0.694 0.57733 0.6927 0.70268 

27 0.61715 0.66612 0.64128 0.64885 0.71889 0.65244 

28 0.6724 0.59404 0.69181 0.57976 0.71889 0.65231 

29 0.83709 0.38585 0.82505 0.40409 0.71889 0.65268 

30 0.83709 0.37998 0.86413 0.35357 0.69597 0.70704 

31 0.78238 0.47224 0.78586 0.46995 0.6927 0.7283 

32 0.72748 0.63961 0.73781 0.63198 0.69597 0.7921 

 

 

 

 



50 

 

 

TABLE 3.3. Results of application of Neyman Pearson Criterion on Object 3 

 

Frames Displacement Velocity Size 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

Detection 

Probability 

Average 

Risk 

21 0.29037 1.2042 0.24533 1.2493 0.69758 0.79703 

22 0.57711 0.7587 0.53795 0.79924 0.70497 0.78017 

23 0.71921 0.55455 0.72283 0.54149 0.70989 0.76716 

24 0.64828 06451 0.65071 0.64043 0.71481 0.75438 

25 0.5057 0.8427 0.54334 0.79151 0.70743 0.7715 

26 0.78987 0.45795 0.784 0.45906 0.70497 0.78123 

27 0.78987 0.4431 0.81847 0.41371 0.70497 0.78017 

28 0.78987 0.44608 0.82112 0.41083 0.71235 0.75873 

29 0.78987 0.45012 0.797705 0.44184 0.70989 0.76581 

30 0.93029 0.27429 0.92927 0.27135 0.70497 0.77804 

31 0. 86023 0.35668 0.87398 0.34151 0.71235 0.76108 

32 0. 86023 0.3546 0.88716 0.32501 0.70989 0.7676 
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4.1 Quantitative Measure 

 

For the determination of the accuracy of results and comaparative appraisal with other 

tracking algorithms frame based evaluation has been done. Basically detection is 

measured which is the location of the target object with respect to the ground truth 

locations. Thus the detections which we have generated with our system becomes the 

material for the comparative analysis with the ground truth locations. There are three 

terminologies  involved with this, they are: True Positive (TP), False Negative (FN) and 

False Positive (FP). TP refers to the situation when our detected object largely overlaps 

with the ground truth location. While, FN refers to the situation it fails entirely. And, FP 

here refers to the situation when in the presence of detection, it does not overlap the 

ground truth detection.  

We also have some quantitative measures for the purpose of assessment of results, such 

as, Precision (P), Tracking Accuracy (TA), and False Alarms per Frame (FA/Frame). 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
 

 

 

 

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 𝑇𝑟𝑎𝑐𝑘𝑒𝑑 𝐹𝑟𝑎𝑚𝑒𝑠

𝑇𝑟𝑎𝑐𝑘𝑒𝑑 𝐹𝑟𝑎𝑚𝑒𝑠
 

 

   

 

𝐹𝐴
𝐹𝑟𝑎𝑚𝑒𝑠 =  

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠
 

 

 



53 

 

The tracking is said to be accurate if the predicted point of position of object falls onto 

the same Ground Truth position for each frame. While, FA/Frame is defined simply as 

the false alarms per frame.  

In the following table, a comparison of our methodology with the previously worked 

upon approaches has been made on the basis of P, TA and FA/Frame. For better tracking 

the detection probability, the tracking accuracy and the precision should be high whereas 

the false alarm per frame should be as low as possible. 

 

4.2 Comparison 

 

TABLE IV. Quantitative Comparison 

 

Methods 
Quantitative Measure 

TA P FA/Frame 

Huang et al.[30] 71.1 % 68.5 % 0.98 

Leibe et al.[31] 79.1 % 73.1 % 0.38 

Zhao et al.[32] 82.4 % 79.7 % 0.21 

Ours 93.2 % 82.4 % 0.3 

 

 

The above results show that our method achieves the best performance with greater TA, 

greater Precision, and low FA/Frame. The testing frames are with frame rate of 15 fps 

and frame size of 352 × 288 pixels has been taken. The experimental results were 

measured on Intel Core 2 Duo, 2.80 GHz machine. Average processing capability of our 

system is 3-5 frames per second. 
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4.3 Conclusion 

We have worked upon a state of the art tracking system that is able to detect multiple 

objects, and track them simultaneously, taking note of concerned estimated data and 

detection probabilities. Our method efficiently finds out the next state, that is, the 

estimated state for the next frame using optimal parametric estimation and to make it 

robust and accurate, we have applied Neyman Pearson criterion which suggests the 

efficacy of the estimated state through probabilistic tracking assignment. This adds 

more capability in our tracking algorithm, as we have seen while comparing with 

some of the previous techniques. 
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