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                                            INTRODUCTION 

 

➢ Introduction to shells 

Similar to beams and plates, in many branches of engineering, cylindrical shells are the 

practical elements of various engineering structures such as pipes and ducts, bodies of cars, 

space shuttles, aircraft fuselages, ship hulls, submarines and construction buildings. However, 

analysing the dynamic characteristics of cylindrical shells is more complicated than that of 

beams and plates. This is mainly because unlike beams or plates which are normally one or 

two dimensional structures, shells can freely vibrate in three directions. This has caused 

complicated the motions of the shell at resonance frequencies. And the equations of motion 

of cylindrical shells combined with boundary conditions are more complex. 

The literature concerning the vibration of shells is extremely extensive and readers can refer 

to Leissa [1] or more recently Amabili and Paidoussis [2] for comprehensive reviews of 

models and results presented in the literature. In the following, some studies, strictly related 

to the present study are described. 

Love [3] modified the Kirchhoff hypothesis for plates and established the assumptions used 

in the so-called classic theory of thin shells. These assumptions are now commonly known as 

Love’s approximation of the first kind. Love then subsequently formulated a shell theory 

known as Love’s first approximation theory and the assumptions he established soon became 

the foundations on which many thin shell theories were later developed, such as the Flugge 

theory [4]. 

Soedel [5] introduced a set of three closed form solutions for the natural frequencies of 

cylindrical shells and also obtained mode shape coefficients of a simply supported cylindrical 

shell by applying normal solutions to the Love theory [3]. Forsberg [6] applied energy 

methods to the Flugge theory and considered the effects of tangential inertia. 

Knowledge of the free-vibration characteristics of thin elastic shells is important both for our 

general understanding of the fundamentals of shell behaviour and for industrial applications 

of shell structures. In connection with the later, the natural frequencies of shell structures 

must be known to avoid the destructive effect of resonance with adjacent rotating or 
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oscillating equipment (such as jet and reciprocating aircraft engines, electrical machinery, 

marine tubes etc.)  

In the present study, a semi-analytical approach is proposed to investigate the free 

vibration of simply supported cylindrical shells. As cited above, in traditional analysis, 

beam functions with similar boundary conditions are used to approximate wave numbers in 

the axial direction. This method is considered as an approximate technique. The 

approximate method is used to obtain the natural frequencies based on ten different shell 

theories (Donnell-Mushtari, Love-Timoshenko, Arnold-Warburton, Houghton-Johns, 

Flugge-Byrne-Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, Kennard-Simplified and 

Soedel). 

 

➢ THIN SHELL  

A thin shell is a three dimensional body which is bounded by two closely curved surfaces, the 

distance between surfaces being small in comparison with the other dimensions. The locus of 

points which lie midway between these surfaces is called the middle surface of the shell. 

            The distance between the surfaces measured along the normal to the middle surface is the 

thickness of the shell at that point. The thickness need not to be constant in the formulation of 

a suitable theory of deformation, but constant thickness results in governing equations which 

are easier to solve; furthermore, certain manufacturing processes naturally yield shells of 

essentially constant thickness. Here the fundamental equations of thin shell theory are 

presented in their most simple, consistent form. Thus the material is assumed to be 

• linearly elastic, isotropic, and homogeneous; 

• displacement are assumed to be small, thereby yielding linear equations;  

• shear deformation and rotary inertia effects are neglected; 

• and the thickness is taken to be constant 

               The main purpose here is to present straightforward derivations of the sets of equations of 

various thin shell theories. It will be seen that differences in the theories result from slight 

differences in simplifying assumptions or the exact point in a derivation where a given 

assumption is used. Only those theories which are obtainable from Love’s postulates by using 

a differential element of the middle surface, have been derived for shells of arbitrary 

curvature, and which have been applied in the literature to shell vibration problems have been 

considered here. 
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➢ BRIEF OUTLINE OF THE THEORY OF SURFACES 

 

 

The deformation of a thin shell will be completely determined by the displacements of its 

middle surface. Certain relationships relating to the behaviour of a surface will be 

summarized in this section   

         

           
              Coordinate System 

Let the equation of the undeformed middle surface be given in terms of two independent 

parameters 𝛼 and β by the radius vector 

                             

𝑟 = 𝑟(𝛼, 𝛽)                                                      (1.1) 

                   

Equation (1.1) determines the geometric properties of the surface and yields a    method for 

finding points on the surface. Assume that the parameters 𝛼 and β always vary within a 

definite region, and that a one-to-one correspondence exists between the points of this region 

and points on the portion of the surface of interest. Denote  

𝑟,⃗⃗⃗𝛼 =
𝜕𝑟

𝜕𝛼
 

 𝑟,⃗⃗⃗𝛽 =
𝜕𝑟

𝜕𝛽
 

 

The vectors 𝑟,⃗⃗⃗𝛼 and  𝑟,⃗⃗⃗𝛽 are tangent to the 𝛼 and β curves, respectively. The length of these 

vectors will be denoted by  

                               

|𝑟,⃗⃗⃗𝛼| = 𝐴                       |𝑟,⃗⃗⃗𝛽| = 𝐵 
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Fig.1. Middle surface coordinates                     

 

First Quadratic Form  

𝑑𝑟. 𝑑𝑟 = 𝑑𝑠2 = 𝐴2𝑑𝛼2 + 2𝐴𝐵 cos 𝑥 𝑑𝛼 𝑑𝛽 + 𝐵2𝑑𝛽2 

It determines the infinitesimal lengths, the angle between the curves, and the area on the 

surface. 

Second Quadratic Form 

cos ∅

𝜌
=

𝐿 𝑑𝛼2 + 2𝑀 𝑑𝛼 𝑑𝛽 + 𝑁 𝑑𝛽2

𝑑𝑠2
 

It gives the curvatures of curves on the surface. 

Thus by using first and second quadratic form, to obtain the normal curvature of the  

curves 𝛼 and the β curves take β = constant and  𝛼 = constant respectively, thus 

        

1

𝑅𝛼
= −

𝐿

𝐴2
 

1

𝑅𝛽
= −

𝑁

𝐵2
 

 



5 

 

Principal Curvature  

 At this point assume that the curves 𝛼 = constant and β= constant are the lines of principal 

curvature of the undeformed middle surface. The coordinates 𝛼 and β are then called 

principal coordinates. 

Weatherburn shows that the necessary and sufficient condition for the parametric curves 

(𝛼 curves and β curves) to be lines of principal curvature on a surface are that   

𝑀 = 0          (Orthogonal Condition) 

cos 𝑥 = 0    (Conjugate System Condition) 

 

Gauss Characteristic Equation 

The four fundamental quantities for principal coordinates A, B, L and N are not functionally 

independent, but are connected by three differential relations. One of these, due to Gauss, is 

an expression for (LN) in terms of A and B and their derivatives, and is given by, 

         

                        
𝜕

𝜕𝛼
(

1

𝐴

𝜕𝐵

𝜕𝛼
) +

𝜕

𝜕𝛽
(

1

𝐵

𝜕𝐴

𝜕𝛽
) =  −

𝐴𝐵

𝐾
= −

𝐿𝑁

𝐴𝐵
                                (2) 

 

Mainardi-Codazzi Relations 

In addition to the Gauss Characteristic equation, there are two other independent 

relations i.e. 

 

                         
𝜕

 𝜕𝛽
(

𝐴

𝑅𝛼
) =

1

𝑅𝛽

𝜕𝐴

𝜕𝛽
                                     (3)                                                                                                                                    

                                                     
𝜕

𝜕𝛼
(

𝐵

𝑅𝛽
) =

1

𝑅𝛼

𝜕𝐵

𝜕𝛼
                                      (4) 

When A, B,𝑅𝛼, and 𝑅𝛽 are given, satisfying the Gauss  Characteristic equation and the 

Mainardi-Codazzi relations, they determine a surface uniquely, except to position and 

orientation in space. 
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 Shell coordinates and the fundamental shell element 

•  The position vector of an arbitrary point in the space occupied by a thin shell is 

defined as 

𝑅⃗⃗(𝛼, 𝛽, 𝑧) = 𝑟(𝛼, 𝛽) + 𝑧𝑖̂𝑛 

Where z measures the distance of the point from the corresponding point on the middle 

surface along normal and varies over the thickness 

(−ℎ/2 ≤ 𝑧 ≤ ℎ/2) 

 

• The magnitude of an arbitrary infinitesimal change in the vector  𝑅⃗⃗(𝛼, 𝛽, 𝑧) is 

determined by 

(𝑑𝑠)2 = 𝑑𝑅⃗⃗. 𝑑𝑅⃗⃗ = (𝑑𝑟 + 𝑧 𝑑𝑖̂𝑛 + 𝑖̂𝑛 𝑑𝑧) (𝑑𝑟 + 𝑧 𝑑𝑖̂𝑛 + 𝑖̂𝑛 𝑑𝑧) 

 

From this one obtains 

(𝑑𝑠)2 = 𝑑𝑅⃗⃗. 𝑑𝑅⃗⃗ = 𝑔1𝑑𝛼2 + 𝑔2𝑑𝛽2 + 𝑔3𝑑𝑧2 

Where, 

        

𝑔1 = [𝐴 (1 +
𝑧

𝑅𝛼
)]

2

 

𝑔2 = [𝐵 (1 +
𝑧

𝑅𝛽
)]

2

 

𝑔3 = 1 

Now Gauss equation (2) and the Mainardi-Codazzi equations (3&4) generalized for a surface 

at a distance z from the middle surface are    
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𝜕

𝜕𝛼
{

1

𝐴(1+
𝑧

𝑅𝛼
)

𝜕

𝜕𝛼
[𝐵 (1 +

𝑧

𝑅𝛽
)]} +

𝜕

𝜕𝛽
{

1

𝐵(1+𝑧/𝑅𝛽)

𝜕

𝜕𝛽
[𝐴 (1 +

𝑧

𝑅𝛼
)]} =

𝐴𝐵

𝑅𝛼𝑅𝛽
     ….. (A) 

 

                                 
1

𝐴(1+
𝑧

𝑅𝛼
)

𝜕

𝜕𝛼
[𝐵 (1 +

𝑧

𝑅𝛽
)]

𝜕

𝜕𝑧
[𝐴 (1 +

𝑧

𝑅𝛼
)]                            ..…… (B)                                                                                            

                                                                                                                     

              
1

𝐵(1+
𝑧

𝑅𝛽
)

𝜕

𝜕𝛽
[𝐴 (1 +

𝑧

𝑅𝛼
)]

𝜕

𝜕𝑧
[𝐵 (1 +

𝑧

𝑅𝛽
)] =

𝜕2

𝜕𝛽𝜕𝑧
[𝐴 (1 +

𝑍

𝑅𝛼
)]            ..……(C)           

 

Having established the coordinate system of the shell space, the fundamental three 

dimensional element of a thin shell will be defined now. The fundamental shell element is the 

differential element bounded by two surfaces dz apart at a distance z from the  

middle surface and four ruled surfaces whose generators are the normals to the middle  

surface along the parametric curves 𝛼 = 𝛼0, 𝛼 = 𝛼0 + 𝑑𝛼, 𝛽 = 𝛽0 and  𝛽 = 𝛽0 + 𝑑𝛽.  

The assumptions that the parametric curves are lines of principal curvature ensures that 

the ruled surfaces will be plane surfaces and, furthermore, that these planes intersect  

with each other at right angles.  

• The lengths of the edges of this fundamentally element are  

𝑑𝑠𝛼
(𝑥)

= 𝐴 (1 +
𝑧

𝑅𝛼
)  𝑑𝛼 

𝑑𝑠𝛽
(𝑥)

= 𝐵 (1 +
𝑧

𝑅𝛽
)  𝑑𝛽 
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Fig.2.   Notation and positive directions of stress in shell coordinates 

 

 

• And the differential areas of the edge faces of the fundamental element are 

𝑑𝐴𝛼
(𝑥)

= 𝐴 (1 +
𝑧

𝑅𝛼
)  𝑑𝛼 𝑑𝑧 

                                                        𝑑𝐴𝛽
(𝑥)

= 𝐵 (1 +
𝑧

𝑅𝛽
)  𝑑𝛽 𝑑𝑧 

• While the volume of the fundamental element is 

𝑑𝑉(𝑥) = [𝐴 (1 +
𝑧

𝑅𝛼
)] [𝐵 (1 +

𝑧

𝑅𝛽
)]  𝑑𝛼 𝑑𝛽 𝑑𝑧 

 

➢ LOVE’S FIRST APPROXIMATION 

In the classical theory of small displacement of thin shells following assumptions were made 

by Love 

•  The thickness of the shell is small compared with the other dimensions. 

• Strains and displacements are sufficiently small. 

•  The transverse normal stress is small compared with the other normal stress 

components and may be neglected 

• Normals to the undeformed middle surface remain straight and normal to the 

deformed middle surface and suffer no extension. 
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The first assumption defines what is meant by “thin shells” 

and sets the stage for the entire theory. Denoting the thickness of the shell by h and the 

smallest radius of curvature by R, then it will be convenient at various places in the 

subsequent derivation of shell theories to neglect higher powers of z/R or h/R in comparison 

with unity. The second assumption permits one to refer all calculations to the original 

configuration of the shell and ensures that the differential equations will be linear. The fourth 

assumption is known as Kirchhoff’s hypothesis and categorizes the shell theories that will be 

discussed here. 

             

As a consequence of these assumptions 

𝛾𝛼𝑧 = 0 

𝛾𝛽𝑧 = 0 

𝑒𝑧 = 0 

And therefore the transverse shear stresses 

𝜎𝛼𝑧 = 𝜎𝛽𝑧 = 0 
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                           LITERATURE REVIEW 

 

A comprehensive summary and discussion of shell theories including natural frequencies and 

mode shape information has been done by Liessa[1] in 1973. More recently, Amabili and 

Paidoussis[2], Amabili[3] and Kurylov and Amabili[4] have presented noteworthy reviews 

with a non-linear point of view. Many investigations followed the pioneering work of 

Love[5] using his first approximation theory, such as Flugge[6]. The Flugge theory is based 

on Kirchhoff-Love hypothesis for thin elastic shells. By using this theory, the strain-

displacement relations and changes of curvatures of the middle surface of a cylindrical shell 

can be obtained. The simplified Donnell’s theory would be achieved by neglecting few terms 

in Flugge equations Livanov[7] applied love’s assumption and used displacement functions 

to solve the problem of axisymmetrical vibrations of simply supported cylindrical shells. 

Rinehart and Wang[8] investigated the vibration of simply supported cylindrical shells 

stiffened by discrete longitudinal stiffeners using Donnell’s approximate theory, Flugge’s 

more exact theory and Love’s assumption for longitudinal wave numbers. Thesis theories are 

not only concerned with simply supported end conditions, but they have also applied other 

boundaries, such as cantilever cylindrical shells[9], fixed free circular cylindrical shells[10], 

clamped-clamped shells[11] and infinite length shells[12].  

Most researchers and those cited above, use beam function as an approximation for the 

simply supported boundary conditions and find natural frequencies of vibration by the 

approximate method. This approximation is also useful for finite element analysis of 

cylindrical shells by using Hermitain polynomial of beam function type[13]. In addition to 

the approximate method, there are other approaches to find natural frequencies, like the 

computer based numerical method[14],[15] to avoid cumbersome computational effort and 

the wave propagation technique [16]. More recently Farshidianfar etl.[17] used the advantage 

of acoustical excitation to find natural frequency of long cylindrical shells. 
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MATHEMATICAL FORMULATION 

 

STRAIN-DISPLACEMENT EQUATION 

•  By the use of well-known strain-displacement equations of the three-dimensional 

theory of  elasticity in orthogonal curvilinear coordinates, we get 

             𝑒𝛼 =
1

(1+𝑧/𝑅𝛼)
(

1

𝐴

𝜕𝑈

𝜕𝛼
+

𝑉

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑊

𝑅𝛼
)                               ………….(I) 

                                                                                                    

                          𝑒𝛽 =
1

(1+𝑧/𝑅𝛽)
(

𝑈

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

1

𝐵

𝜕𝑉

𝜕𝛽
+

𝑊

𝑅𝛽
)                               ………….(II) 

                          𝛾𝛼𝛽 =
𝐴(1+𝑧/𝑅𝛼)

𝐵(1+𝑧/𝑅𝛽)

𝜕

𝜕𝛽
[

𝑈

𝐴(1+𝑧/𝑅𝛼)
] +

𝐵(1+𝑧/𝑅𝛽)

𝐴(1+𝑧/𝑅𝛼)

𝜕

𝜕𝛼
[

𝑉

𝐵(1+𝑧/𝑅𝛽)
] 

                                                                                                     ………...(III) 

  

Now in order to satisfy the Kirchhoff hypothesis i.e. the fourth assumption, the class of 

displacement is restricted to the following linear relationships: 

𝑈(𝛼, 𝛽, 𝑧) = 𝑢(𝛼, 𝛽) + 𝑧𝜃𝛼(𝛼, 𝛽) 

𝑉(𝛼, 𝛽, 𝑧) = 𝑣(𝛼, 𝛽) + 𝑧𝜃𝛽(𝛼, 𝛽) 

𝑊(𝛼, 𝛽, 𝑧) = 𝑤(𝛼, 𝛽) 

                                                                                                                  ……………(IV) 

 

Where u, v, and w are the components of displacement at the middle surface in the 𝛼,  

𝛽, and normal directions, respectively, and 𝜃𝛼and 𝜃𝛽 are the rotations of the normal to  

the middle surface during deformation about the 𝛽 and 𝛼 axes, respectively; i.e.,   

                                      

                                                    𝜃𝛼 =
𝜕𝑈(𝛼,𝛽,𝑍)

𝜕𝑍
 

  

                                                    𝜃𝛽 =
𝜕𝑉(𝛼,𝛽,𝑍)

𝜕𝑍
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➢ EQUATIONS OF BYRNE, FLŰGGE, GOLDENVEIZER, LUR’YE & 

NOVOZHILOV 

•  Substituting equations (IV) into equations  (I, II, III) yields 

𝑒𝛼 =
1

(1 + 𝑧/𝑅𝛼)
(𝜖𝛼 +  𝑧𝜅𝛼) 

𝑒𝛽 =
1

(1 + 𝑧/𝑅𝛽)
(𝜖𝛽 +  𝑧𝜅𝛽) 

𝛾𝛼𝛽 =
1

(1 + 𝑧/𝑅𝛼)(1 + 𝑧/𝑅𝛽)
[(1 −

𝑧2

𝑅𝛼𝑅𝛽
) 𝜖𝛼𝛽 + 𝑧 (1 +

𝑧

2𝑅𝛼
+

𝑧

2𝑅𝛽
) 𝜏] 

                                                                                                           ….…… (V) 

•  Where 𝜖𝛼 , 𝜖𝛽, and 𝜖𝛼𝛽 are the normal and shear strains in the middle surface (z = 0) 

given by 

𝜖𝛼 =
1

𝐴

𝜕𝑢

𝜕𝛼
+

𝑣

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤

𝑅𝛼
 

𝜖𝛽 =
𝑢

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

1

𝐵

𝜕𝑣

𝜕𝛽
+

𝑤

𝑅𝛽
 

                                                      𝜖𝛼𝛽 =
𝐴

𝐵

𝜕

𝜕𝛽
(
𝑢

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(

𝑣

𝐵
)                        ..…… (VI) 

      And 𝜅𝛼 and 𝜅𝛽 are the middle surface changes in curvature and 𝜏    the midsurface 

twist, given by 

                                           𝜅𝛼 =
1

𝐴

𝜕𝜃𝛼

𝜕𝛼
+

𝜃𝛽

𝐴𝐵

𝜕𝐴

𝜕𝛽
                      ............ (VII a) 

                                         𝜅𝛽 =
𝜃𝛼

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

1

𝐵

𝜕𝜃𝛽

𝜕𝛽
                      .............. (VII b) 

             𝜏 =
𝐴

𝐵

𝜕

𝜕𝛽
(
𝜃𝛼

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(
𝜃𝛽

𝐵
) +

1

𝑅𝛼
(

1

𝐵

𝜕𝑢

𝜕𝛽
−

𝑣

𝐴𝐵

𝜕𝐵

𝜕𝛼
) +

1

𝑅𝛽
(

1

𝐴

𝜕𝑣

𝜕𝛼
−

𝑢

𝐴𝐵

𝜕𝐴

𝜕𝛽
)                                                                                                                              

  

                                                                                                      ............. (VII c) 
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➢ EQUATIONS OF LOVE AND TIMOSHENKO 

•  If in equation (V ) one neglects the terms z/𝑅𝛼 and z/𝑅𝛽 and their products as being 

small in comparison with unity one obtains 

𝑒𝛼 = 𝜖𝛼 +  𝑧𝜅𝛼 

                                                         𝑒𝛽  = 𝜖𝛽 +  𝑧𝜅𝛽 

                                                       𝛾𝛼𝛽 = 𝜖𝛼𝛽 +  𝑧𝜏 

• With strains, curvature and the twist given by equations ( VI & VII) 

 

 

➢ EQUATIONS OF REISSNER, NAGHDI, AND BERRY 

 If one make the simplification of Love and Timoshenko (i.e., z/𝑅𝛼 and z/𝑅𝛽) earlier in 

the derivation, then doing so in equation (I, II, III) reduces them to 

  

𝑒𝛼 =
1

𝐴

𝜕𝑈

𝜕𝛼
+

𝑉

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤

𝑅𝛼
 

𝑒𝛽 =
𝑈

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

1

𝐵

𝜕𝑉

𝜕𝛽
+

𝑤

𝑅𝛽
 

𝛾𝛼𝛽 =
𝐴

𝐵

𝜕

𝜕𝛽
(
𝑈

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(
𝑉

𝐵
) 

• Terms for strain, curvature remain same as in equation (VI, VII a, b),except that 

equation for midsurface twist changes to become 

𝜏 =
𝐴

𝐵

𝜕

𝜕𝛽
(
𝜃𝛼

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(
𝜃𝛽

𝐵
) 
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➢ EQUATIONS OF VLASOV 

•  Since for a shell z/𝑅𝑖 ( i =𝛼,β) is less than unity, therefore 

                                                      
1

1+𝑧/𝑅𝑖
= ∑ (−

𝑧

𝑅𝑖
)
𝑛 

∞
𝑛=0                      ………… (VIII) 

• Substituting equations (IV) and (VIII) into equations(I, II, III) 

                                                     𝑒𝛼 = 𝜖𝛼 + ∑ 𝜅𝛼𝑛𝑧𝑛∞
𝑛=1  

𝑒𝛽 = 𝜖𝛽 + ∑ 𝜅𝛽𝑛𝑧𝑛

∞

𝑛=1

 

𝛾𝛼𝛽 = 𝜖𝛼𝛽 + ∑ 𝜏𝑛𝑧𝑛

∞

𝑛=1

 

          Where 

  

𝜅𝛼𝑛 = (−
1

𝑅𝛼
)
𝑛−1

(𝜅𝛼 −
𝜖𝛼

𝑅𝛼
) 

𝜅𝛽𝑛 = (−
1

𝑅𝛽
)

𝑛−1

(𝜅𝛽 −
𝜖𝛽

𝑅𝛽
) 

𝜏𝑛 = (−1)𝑛 {(
1

𝑅𝛼
−

1

𝑅𝛽
) [(

1

𝑅𝛽
)

𝑛−1
𝐴

𝐵

𝜕

𝜕𝛽
(
𝑢

𝐴
) − (

1

𝑅𝛼
)

𝑛−1 𝐵

𝐴

𝜕

𝜕𝛼
(
𝑣

𝐵
)] −

1

𝐴𝐵
[(

1

𝑅𝛼
)

𝑛−1

+ (
1

𝑅𝛽
)

𝑛−1

] } 

 

     

 

 

 

 

 



15 

 

➢ EQUATIONS OF SANDERS 

Sanders developed an eighth order shell theory from the principle of virtual work. The 

principle is written as 

  

∫ ∫ [(
𝜕𝐵𝑁𝛼

𝜕𝛼
+

𝜕𝐴𝑁𝛽𝛼

𝜕𝛽
+ 𝑁𝛼𝛽

𝜕𝐴

𝜕𝛽
− 𝑁𝛽

𝜕𝐵

𝜕𝛼
+ 𝑄𝛼

𝐴𝐵

𝑅𝛼
)𝛿𝑢

𝛽𝛼

+ (
𝜕𝐴𝑁𝛽

𝜕𝛽
+

𝜕𝐵𝑁𝛼𝛽

𝜕𝛼
+ 𝑁𝛽𝛼

𝜕𝐵

𝜕𝛼
− 𝑁𝛼

𝜕𝐴

𝜕𝛽
+ 𝑄𝛽

𝐴𝐵

𝑅𝛽
)𝛿𝑣

+ (−𝑁𝛼

𝐴𝐵

𝑅𝛼
− 𝑁𝛽

𝐴𝐵

𝑅𝛽
+

𝜕𝐵𝑄𝛼

𝜕𝛼
+

𝜕𝐴𝑄𝛽

𝜕𝛽
)𝛿𝑤

+ (
𝜕𝐵𝑀𝛼

𝜕𝛼
+

𝜕𝐴𝑀𝛽𝛼

𝜕𝛽
+ 𝑀𝛼𝛽

𝜕𝐴

𝜕𝛽
− 𝑀𝛽

𝜕𝐵

𝜕𝛼
− 𝐴𝐵𝑄𝛼)𝛿𝜃𝛼

+ (
𝜕𝐴𝑀𝛽

𝜕𝛽
+

𝜕𝐵𝑀𝛼𝛽

𝜕𝛼
+ 𝑀𝛽𝛼

𝜕𝐵

𝜕𝛼
− 𝑀𝛼

𝜕𝐴

𝜕𝛽
+ 𝐴𝐵𝑄𝛽)𝛿𝜃𝛽

+ 𝐴𝐵 (𝑁𝛼𝛽 − 𝑁𝛽𝛼 +
𝑀𝛼𝛽

𝑅𝛼
−

𝑀𝛽𝛼

𝑅𝛽
)𝛿𝜃𝑛] 𝑑𝛼 𝑑𝛽 = 0 

 

 By the use of this equation we found that the strain-displacement equations of the sanders 

theory are given by equations (VI), (VII a and b), and 

 

                  𝜏 =
𝐴

𝐵

𝜕

𝜕𝛽
(
𝜃𝛼

𝐴
) +

𝐵

𝐴

𝜕

𝜕𝛼
(
𝜃𝛽

𝐵
) +

1

2𝐴𝐵
(

1

𝑅𝛽
−

1

𝑅𝛼
) (

𝜕𝐵𝑣

𝜕𝛼
−

𝜕𝐴𝑢

𝜕𝛽
)  
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➢ EQUATIONS OF DONNELL AND MUSHTARI 

•  The tangential displacements and their derivatives are neglected, they simplify to 

𝜅𝛼 = −
1

𝐴

𝜕

𝜕𝛼
(
1

𝐴
 
𝜕𝑤

𝜕𝛼
) −

1

𝐴𝐵2

𝜕𝐴

𝜕𝛽

𝜕𝑤

𝜕𝛽
 

𝜅𝛽 = −
1

𝐵

𝜕

𝜕𝛽
(
1

𝐵
 
𝜕𝑤

𝜕𝛽
) −

1

𝐴2𝐵

𝜕𝐵

𝜕𝛼

𝜕𝑤

𝜕𝛼
 

  

𝜏 = −
𝐵

𝐴

𝜕

𝜕𝛼
(

1

𝐵2
 
𝜕𝑤

𝜕𝛽
) −

𝐴

𝐵

𝜕

𝜕𝛽
(

1

𝐴2
 
𝜕𝑤

𝜕𝛼
) 

 

• The strains are given by strain equation of Love and Timoshenko. 

• The 𝜖𝛼 ,𝜖𝛽 and 𝜖𝛼𝛽 are given by equations(VI)                                  

 

 

After deriving strain displacement equation we form equation of motion according to 

different theories. These equation of motions are used to find out the natural free vibration of 

a thin cylindrical shell The cylindrical shell under consideration is with constant thickness h, 

mean radius R, axial length L, Poisson’s ratio , density  and Young’s modulus of 

elasticity E. Here the respective displacements in the axial, circumferential and radial 

directions are denoted by  𝑢(𝑥, 𝜃, 𝑡), 𝑣(𝑥, 𝜃, 𝑡) and 𝑤(𝑥, 𝜃, 𝑡) as shown in Figure 3. 
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Fig.3. Thin Cylindrical Shell 

 

In order to study free vibration of a cylindrical shell, the equations of motion can be written 

in matrix form as follows: 

 

                                    [
𝐿11 𝐿12 𝐿13

𝐿12 𝐿22 𝐿23

−𝐿13 −𝐿23 𝐿33

] {
𝑢(𝑥, 𝜃, 𝑡)

𝑣(𝑥, 𝜃, 𝑡)

𝑤(𝑥, 𝜃, 𝑡)
} = {

0
0
0
}                                           (1) 

                                

 

 

where 𝐿𝑖𝑗(𝑖, 𝑗 = 1,2,3) are differential operators with respect to 𝑥, 𝜃 𝑎𝑛𝑑 𝑡.  

 

Different systems of equations are used to model the vibration behaviour of circular 

cylindrical shells. In this paper ten theories namely: 1) Donnell-Mushtari[1], 2) Love-

Timoshenko[1], 3) Arnold-Warburton[1], 4)Houghton-Johns[1], 5) Flugge-Byrne-Lur’ye[1], 

6)Reissner-Naghdi-Berry[1], 7) Sanders[1], 8) Vlasov[1], 9)Kennard-Simplified[1] and 10) 

Soedel[19], are used to find natural frequencies for various boundary conditions. 

 

 

The first attempt in solving (1) is the assumption of a synchronous motion: 

                                             

         {

𝑢(𝑥, 𝜃, 𝑡) = 𝑈(𝑥, 𝜃)𝑓(𝑡)

𝑣(𝑥, 𝜃, 𝑡) = 𝑉(𝑥, 𝜃)𝑓(𝑡)

𝑤(𝑥, 𝜃, 𝑡) = 𝑊(𝑥, 𝜃)𝑓(𝑡)
  

     (2) 
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where 𝑓(𝑡) is the scalar model coordinate corresponding to the mode shapes 𝑈(𝑥, 𝜃), 𝑉(𝑥, 𝜃) 

and 𝑊(𝑥, 𝜃). 

 

The next step is to use the separation of variables method in order to separate the spatial 

dependence of the modal shape between longitudinal and circumferential directions. Hence 

the axial, tangential and radial displacements of the wall vary according to 

           

{

𝑢(𝑥, 𝜃, 𝑡) = 𝐴𝑒𝜆𝑚𝑥 sin(𝑛𝜃) cos(𝜔𝑡)

𝑣(𝑥, 𝜃, 𝑡) = 𝐵𝑒𝜆𝑚𝑥 cos(𝑛𝜃) cos(𝜔𝑡)

𝑤(𝑥, 𝜃, 𝑡) = 𝐶𝑒𝜆𝑚𝑥 sin(𝑛𝜃) cos(𝜔𝑡)

 

                                   

(3) 

in which 𝜆𝑚 and 𝑛  are the axial wave number and the circumferential wave parameter, 

respectively. 𝐴, 𝐵 and  𝐶 are the undetermined constants, and 𝜔 is the circular frequency of 

the natural vibration. 

 

Substituting (3) into (1), using any of the shell theories, leads to a set of homogenous 

equations having the following matrix form: 

                                               

                                          [

𝐶11 𝐶12 𝐶13

−𝐶12 𝐶22 𝐶23

−𝐶13 𝐶23 𝐶33

] {
𝐴
𝐵
𝐶
} = {

0
0
0
}                                                       (4) 

                                  

                                        
                                                                                                                       

in which |𝐶𝑖𝑗|(𝑖, 𝑗 = 1,2,3) are functions of  𝑛, 𝜆𝑚  and a frequency parameter 𝛺 that is 

defined as follows: 

                

                                          𝛺2 =
(1−𝜈2)𝜌

𝐸
𝜔2𝑅2                                                        (5) 

  

                                            
 

The coefficient matrix, |𝐶𝑖𝑗| for the ten shell theories is obtained as follows: 
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 Donnell-Mushtari 

                

 

          

[
 
 
 𝛺

2 + 𝜆𝑚
2 −

1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1+𝜈

2
𝑛𝜆𝑚 𝛺2 +

1−𝜈

2
𝜆𝑚

2 − 𝑛2 𝑛

−𝜈𝜆𝑚 𝑛 𝛺2 − [1 + 𝑘(𝜆𝑚
2 − 𝑛2)2]]

 
 
 
                                (6) 

    

 

                       
 

Love-Timoshenko 

 

 

[
 
 
 𝛺

2 + 𝜆𝑚
2 −

1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1+𝜈

2
𝑛𝜆𝑚 𝛺2 + (1 + 2𝑘)

1−𝜈

2
𝜆𝑚

2 − (1 + 𝑘)𝑛2 𝑛 + 𝑛𝑘(𝑛2 − 𝜆𝑚
2 )

−𝜈𝜆𝑚 𝑛 + 𝑛𝑘(𝑛2 − 𝜆𝑚
2 ) 𝛺2 − [1 + 𝑘(𝜆𝑚

2 − 𝑛2)2]]
 
 
 


 

                                     

                                                                                                                                                                      

 

Arnold-Warburton 

 

 

   

[
 
 
 𝛺

2 + 𝜆𝑚
2 −

1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1+𝜈

2
𝑛𝜆𝑚 𝛺2 + (1 + 4𝑘)

1−𝜈

2
𝜆𝑚

2 − (1 + 𝑘)𝑛2 𝑛 + 𝑛𝑘[𝑛2 − (2 − 𝜈)𝜆𝑚
2 ]

−𝜈𝜆𝑚 𝑛 + 𝑛𝑘[𝑛2 − (2 − 𝜈)𝜆𝑚
2 ] 𝛺2 − [1 + 𝑘(𝜆𝑚

2 − 𝑛2)2]]
 
 
 
                    (8)         

 

 

Houghton-Johns 

 

    

      

[
 
 
 𝛺

2 + 𝜆𝑚
2 −

1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1+𝜈

2
𝑛𝜆𝑚 𝛺2 +

1−𝜈

2
𝜆𝑚

2 − 𝑛2 𝑛 + 𝑛𝑘[𝑛2 − (2 − 𝜈)𝜆𝑚
2 ]

−𝜈𝜆𝑚 𝑛 + 𝑛𝑘[𝑛2 − (2 − 𝜈)𝜆𝑚
2 ] 𝛺2 − [1 + 𝑘(𝜆𝑚

2 − 𝑛2)2]]
 
 
 
                                  (9) 

 

 

 

 



20 

 

Flugge-Byrne-Lur’ye 

 

   

[
 
 
 
 𝛺2 + 𝜆𝑚

2 − (1 + 𝑘)
1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚 − 𝑘𝜆𝑚×[𝜆𝑚

2 + (1 − 𝜈)𝑛2]

1+𝜈

2
𝑛𝜆𝑚 𝛺2 − 𝑛2 + (1 + 3𝑘)

1−𝜈

2
𝜆𝑚

2 𝑛× [1 −
3−𝜈

2
𝑘𝜆𝑚

2 ]

−𝜈𝜆𝑚 + 𝑘𝜆𝑚×[𝜆𝑚
2 + (1 − 𝜈)𝑛2] 𝑛× [1 −

3−𝜈

2
𝑘𝜆𝑚

2 ] 𝛺2 − (1 + 𝑘) − 𝑘[(𝜆𝑚
2 − 𝑛2)2 − 2𝑛2]]

 
 
 
 

     

 

                                                                                                                                   (10) 

 

Reissner-Naghdi-Berry 

 

 

     

[
 
 
 𝛺

2 + 𝜆𝑚
2 −

1−𝜈

2
𝑛2 −

1+𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1+𝜈

2
𝑛𝜆𝑚 𝛺2 + (1 + 𝑘) (

1−𝜈

2
𝜆𝑚

2 − 𝑛2) 𝑛×[1 + 𝑘(𝑛2 − 𝜆𝑚
2 )]

−𝜈𝜆𝑚 𝑛×[1 + 𝑘(𝑛2 − 𝜆𝑚
2 )] 𝛺2 − [1 + 𝑘(𝜆𝑚

2 − 𝑛2)2]]
 
 
 

                            (11) 

 

  

Sanders 

 

 

[
 
 
 
 
 
 𝛺2 + 𝜆𝑚

2 − (1 +
𝑘

4
)
1 − 𝜈

2
𝑛2 −𝑛𝜆𝑚× [

1 + 𝜈

2
−

3𝑘(1 − 𝜈)

8
] 𝜆𝑚× (𝜈 −

1 − 𝜈

2
𝑘𝑛2)

𝑛𝜆𝑚× [
1 + 𝜈

2
−

3𝑘(1 − 𝜈)

8
] 𝛺2 − (1 + 𝑘)𝑛2 + (1 +

9𝑘

4
)
1 − 𝜈

2
𝜆𝑚

2 𝑛× [1 + 𝑘 (𝑛2 −
3 − 𝜈

2
𝜆𝑚

2 )]

𝜆𝑚 (
1 − 𝜈

2
𝑘𝑛2 − 𝜈) 𝑛× [1 + 𝑘 (𝑛2 −

3 − 𝜈

2
𝜆𝑚

2 )] 𝛺2 − [1 + 𝑘(𝜆𝑚
2 − 𝑛2)2]

]
 
 
 
 
 
 

 

 

                                                                                                                                (12) 

Vlasov 

 

 

[
 
 
 
 
 𝛺2 + 𝜆𝑚

2 −
1 − 𝜈

2
𝑛2 −

1 + 𝜈

2
𝑛𝜆𝑚 𝜆𝑚× [𝜈 − 𝑘 (

1 − 𝜈

2
𝑛2 + 𝜆𝑚

2 )]

1 + 𝜈

2
𝑛𝜆𝑚 𝛺2 +

1 − 𝜈

2
𝜆𝑚

2 − 𝑛2 𝑛×(1 −
3 − 𝜈

2
𝑘𝜆𝑚

2 )

𝜆𝑚× [𝑘 (
1 − 𝜈

2
𝑛2 + 𝜆𝑚

2 ) − 𝜈] 𝑛×(1 −
3 − 𝜈

2
𝑘𝜆𝑚

2 ) 𝛺2 − (1 + 𝑘) − 𝑘[(𝜆𝑚
2 − 𝑛2)2 − 2𝑛2]

]
 
 
 
 
 

 

 

                                                                                                                                 (13) 
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Kennard-Simplified 

 

 

[
 
 
 
 
 
 𝛺2 + 𝜆𝑚

2 −
1 − 𝜈

2
𝑛2 −

1 + 𝜈

2
𝑛𝜆𝑚 𝜈𝜆𝑚

1 + 𝜈

2
𝑛𝜆𝑚 𝛺2 +

1 − 𝜈

2
𝜆𝑚

2 − 𝑛2 𝑛× (1 +
3𝑘𝜈

2(1 − 𝜈)
(1 − 𝑛2))

−𝜈𝜆𝑚 0 𝛺2 − [1 +
2 + 𝜈

2(1 − 𝜈)
] − 𝑘 [(𝜆𝑚

2 − 𝑛2)2 −
4 − 𝜈

2(1 − 𝜈)
𝑛2]

]
 
 
 
 
 
 

 

 

                                                                                                                                 (14) 

 

   

For nontrivial solution the determinant of the coefficient matrix in (4) must be zero: 

 

                                             𝑑𝑒𝑡(|𝐶𝑖𝑗|) = 0   ;  𝑖, 𝑗 = 1,2,3     (15) 

 

The expansion of (15) will give the following two eigenvalue problems: 

• For a given value of 𝜆𝑚 there exists one or more proper values for 𝜔 so that the (15) 

vanishes. 

• For a given value of there exists one or more proper values for 𝜆𝑚 so that the (15) vanishes. 

 

Solving (15) leads to a cubic equation in terms of the non dimensional frequency 

parameter𝛺2. Thus for a fixed value of n and𝜆𝑚, three positive roots and three negative roots 

are yield for the non dimensional frequency. The three positive roots are the natural 

frequencies of the cylindrical shell that can be classified as primarily axial, circumferential or 

radial. The lowest frequency is usually associated with a motion that is primarily radial (or 

flexural). 
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➢ BEAM FUNCTION METHOD 

In general, solving the roots of the characteristic equation of (15) for 𝜆𝑚 is not possible in 

closed form. Beam functions can be used to obtain natural frequencies and approximate 

displacements for closed circular cylindrical shells. This method is an assimilation of the 

flexural vibration of cylindrical shell with a transversely vibrating beam of the same 

boundary conditions. According to the approximate method, for a simply supported shell at 

both ends and clamped-clamped shell the nature of the axial mode can be defined 

respectively as: 

𝜆𝑚 =
𝑚𝜋𝑅√−1

𝐿
 

                                                        𝜆𝑚 =
(2𝑚+1)𝜋𝑅√−1

2𝐿
 (16) 

By substituting (16) into (15), the only unknown of the characteristic equation will be the 

frequency parameter 𝛺2 for a fixed combination of m and n 

 

 

 

Fig.4. Mode shapes of cylindrical shell: (a) circumferential mode shapes; (b) longitudinal and 

radial mode shapes and; (c) nodal arrangement of a cylindrical shell for n=2 and m=4. 
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RESULTS AND DISCUSSION 

 

Since the beam function method is an approximation to obtain natural frequencies for thin 

circular cylindrical shells, it is important to check the accuracy of this method. Hence, the 

natural frequency for simply supported boundary conditions, calculated by using the beam 

functions via ten common theories of cylindrical shells has been compared with experimental 

results. 

In Table 1, results calculated by the approximate method according to the ten theories, are 

given for simply supported circular cylindrical shell and  

  

The shell investigated in Table 1 is made of aluminium with material properties;  

E=68.2GPa,  

ρ=2700 Kg/m3 and 

𝜈= 0.33 

 

 

The dimensions of the shell are: 

 L=1.7272 m, 

 R=0.0762 m and 

 h=0.00147 m. 
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For simply supported cylindrical shell 
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i-
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s(
H
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V
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v
(H

z)
 

K
en

n
ar

d
-

S
im

p
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(H
z)

 

S
o
ed

el
(H

z)
 

1 1 138.4

0 

148.6

42 
141.

668 

141.

578 

134.

151 

141.

498 

141.

623 

141.

578 

141.

407 

145.6

37 

141.

446 

1 2 190.

30 

231.

881 

176.

728 

176.

524 

167.

113 

176.

501 

176.

706 

176.

524 

176.

558 

209.1

01 

176.

692 

1 3 502.

20 

541.

841 

481.

813 

481.

722 

477.

946 

481.

733 

481.

813 

481.

722 

481.

779 

515.8

52 

481.

811 

1 4 884.

40 

983.

559 

922.

114 

922.

057 

920.

000 

922.

103 

922.

114 

922.

057 

922.

125 

956.5

39 

922.

112 

2 1 464.

70 

530.

105 

528.

121 

528.

019 

525.

944 

527.

962 

528.

064 

528.

019 

527.

860 

529.3

00 

527.

358 

2 2 310.

50 

292.

056 

249.

876 

249.

297 

242.

573 

249.

240 

249.

830 

249.

308 

249.

388 

274.4

24 

249.

663 

2 3 477.

00 

551.

332 

491.

995 

491.

632 

487.

890 

491.

632 

491.

984 

491.

644 

491.

780 

525.8

53 

491.

960 

3 2 496.

60 

458.

874 

432.

613 

431.

865 

427.

874 

431.

820 

432.

557 

431.

899 

432.

001 

447.9

32 

432.

010 

3 3 558.

90 

582.

173 

525.

615 

524.

867 

521.

295 

524.

855 

525.

592 

524.

878 

525.

150 

558.1

69 

525.

499 

4 2 679.

80 

718.

773 

701.

754 

700.

937 

698.

363 

700.

937 

701.

697 

700.

994 

701.

107 

711.9

02 

700.

852 

4 3 638.

30 

650.

082 

599.

091 

597.

912 

594.

703 

597.

923 

599.

057 

597.

957 

598.

354 

628.7

42 

598.

809 

5 3 782.

00 

764.

458 

720.

678 

719.

147 

716.

403 

719.

193 

720.

633 

719.

238 

719.

737 

746.4

63 

720.

163 

 

 

It can be seen from the results obtained that the Soedel and Kennard-Simplified theories 

revealed better results compared to other theories, when these were compared with 

experimental results. Some theories (Love-Timoshenko, Arnold-Warburton, Flugge Byrne-

Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, and Soedel) reveal same results. Dunnell-

Mushtari and Houghton-Johns theory are not precise compared to other theories. 
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  CONCLUSION 
 

 

 

              The free vibration of circular cylindrical shells with simply supported boundary conditions 

has been studied using ten different thin shell theories: Donnell-Mushtari, Love-Timoshenko, 

Arnold-Warburton, Houghton-Johns, Flugge-Byrne-Lur’ye, Reissner-Naghdi-Berry, Sanders, 

Vlasov, Kennard-Simplified and Soedel. The scope of the investigation was focused upon 

using the beam function as an approximation for boundary condition to find the natural 

frequencies of a shell. 

 

It is also concluded that some theories (Love-Timoshenko, Arnold-Warburton, Flugge Byrne-

Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, and Soedel) reveal same results. Dunnell-

Mushtari and Houghton-Johns theory are not precise compared to other theories. 

Next, in order to check the accuracy of the theories, a comparison was carried out with 

experimental results and it shows good agreement. Moreover, the approximate method based 

on the Soedel and Kennard-Simplified theories reviled better results compared to other 

theories. 
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                                   APPENDIX 

 

1. MATLAB PROGARM 

  

For Donnell-Mushtari Theory 

syms  p  E  v L R h m n x k s 

p=2700 

E=(68.2*10^9) 

v=0.33 

L=1.7272 

R= 0.0762 

h=0.00147 

m=1 

n=1 

  

x=(m*pi*R*(-1^(1/2)))/(L) 

x=0.1385996i 

k=(h^2)/(12*(R^2)) 

k= 0.0000310 

  

  

% s=(((1-(v^2))*(p)*(w^2)*(r^2))/(E))^(1/2) 

m =[((s^2)+(x^2)-(((1-v)/2)*(n^2))) -(((1+v)/2)*(n)*(x)) 

(v*x); 

      (((1+v)/2)*(n)*(x)) ((s^2)+(((1-v)/2)*(x^2))-(n^2)) n; 

       -(v*x) n ((s^2)-(1+k*((x^2)-(n^2))^2))] 

 d=(det(m)) 

 s=solve(vpa(d)) 

 z=((1-(v^2))*(p)*((R-h)^2))/(E) 

 w=solve(vpa(d))/(z^(1/2)) 

vpa (w/(2*pi)) 
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For Love-Timoshenko Theory 
 

 

 

syms  p  E  v L R h m n x k s 

p=2700 

E=(68.2*10^9) 

v=0.33 

L=1.7272 

R= 0.0762 

h=0.00147 

m=1 

n=3 

  

x=(m*pi*R*(-1^(1/2)))/(L) 

x=0.1385996i 

k=(h^2)/(12*(R^2)) 

k= 0.0000310 

  

  

% s=(((1-(v^2))*(p)*(w^2)*(r^2))/(E))^(1/2) 

m =[((s^2)+(x^2)-(((1-v)/2)*(n^2))) -(((1+v)/2)*(n)*(x)) 

(v*x); 

      (((1+v)/2)*(n)*(x)) ((s^2)+((1+(2*k))*((1-v)/2)*(x^2))-

((1+k)*(n^2))) (n+(n*k*((n)^2-(x)^2))); 

       -(v*x) (n+(n*k*((n)^2-(x)^2))) ((s^2)-(1+k*((x^2)-

(n^2))^2))] 

 d=(det(m)) 

 s=solve(vpa(d)) 

 z=((1-(v^2))*(p)*((R-h)^2))/(E) 

 w=solve(vpa(d))/(z^(1/2)) 

vpa (w/(2*pi)) 
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