CERTIFICATE

It is certified that Mr. SUMIT RAJ BHATI, Roll No 2K11/STE/16, student of M.TECH., Structural Engineering, Department of Civil And Environmental Engineering, Delhi Technological University (Formerly Delhi College of Engineering), has submitted the dissertation entitled "RESPONSE OF MULTISTORIED BUILDING USING SEMI-ACTIVE MAGNETO RHEOLOGICAL (MR) DAMPER BY NEURAL NETWORK" under our guidance towards partial fulfillment of the requirements for the award of the degree of Master of Technology (Structural Engineering).

This dissertation is a bonafide record of project work carried out by him under my guidance and supervision. His work is found to be good. I wish him success in all his endeavors.

New Delhi JULY, 2013 **Prof. Nirendra Dev** Civil and Environmental Engineering Department Delhi Technological University (Formerly Delhi College of Engineering)

ACKNOWLEDGEMENT

The writing of this dissertation has been one of the most significant academic challenges I have ever had to face; without GOD's blessings and support, patience and guidance of the following people, this study would not have been completed. It is to them that I owe my deepest gratitude.

- Prof. Nirendra Dev,Civil and Environmental Engineering Department, Delhi Technological University (Formerly Delhi College Of Engineering) for their initiative in this field of research, for his valuable guidance, encouragement and affection for the successful completion of this work. His sincere sympathies and kind attitude always encouraged me to carry out the present work firmly.
- Prof. A.K Gupta, Ex-HOD Civil and Environmental Engineering Department and Prof. A Trivedi, HOD Civil and Environmental Engineering Department, Delhi Technological University (Formerly Delhi College of Engineering), New Delhi, for providing me with the best facilities in the Department and timely suggestions.
- Ms. Akshita Chaudhary Asst. Professor, Civil Engineering Department, Govt. College of Engineering, Bikaner for her Support and guidance.

SUMIT RAJ BHATI 2K11/STE/16 M.TECH. (STE) Earthquakes are considered to be the most devastating catastrophic activity. Earthquakes, as of themselves, do not cause the damages of life and property, but they affect the structures, thereby causing serious threat to life and property in the structure. The recent development in the field of structural control has enabled us to predict, as well as control the response of a structure under seismic loading, in a simplified and effective manner. The application of Artificial Neural Networks (ANN) in the field of Structural Control has further simplified the problem of prediction of responses and other control parameters. The semi-active control has emerged as a very attractive proposition of structural control in last one decade. Researchers have been investigating various semi-active devices through experimental and analytical studies. In this study the effectiveness of Magneto Rheological (MR) damper, which is one of the most effective semi-active control device has been studied. Then, an Artificial Neural Network (ANN) has been developed to predict the response of the structure.

This report investigates the feasibility of structural control systems in combination with the artificial neural networks (ANN) techniques. The objective of this study is to know the basics of neural network and in further studies compare the results of Uncontrolled and controlled (MR Dampers) by using artificial neural networks. ANN has the ability to learn and simplify from examples without knowledge of rules. In the field of "structural engineering" problems research in to artificial neural networks is growing rapidly.

List of Figures

Figure 3-1: Neural networks-input, output, adjust weights	12
Figure 3-2: An artificial network is an interconnected group of nodes	13
Figure 3-3: An artificial Neuron	13
Figure 3.4: Different types of activation function – (a) threshold, (b) piecewise linear,	
(c) Sigmoid, and (d) Gaussian	16
Figure 3.5: Feed-forward and recurrent feedback network architectures	16
Figure 4-1: Passive control systems	19
Figure 4-2: Active control system	20
Figure 4-3: Semi Active control system	21
Figure 5.1: Structural Model of the building with MR Damper	24
Figure 6-1: Neural Network Training for Loma EQ	29
Figure 6-2: Regression and Performance Curves for Loma EQ	30
Figure 6-3: Neural Network Training for El Centro EQ	31
Figure 6-4: Regression and Performance Curves for El Centro EQ	32
Figure 6-5: Neural Network Training for Loma EQ	33
Figure 6-6: Regression and Performance Curves for Loma EQ	34
Figure 6-7: Neural Network Training for El Centro EQ	35
Figure 6-8: Regression and Performance Curves for El Centro EQ	36
Figure 6-9: Time based responses of the structure Ground Motion: Loma	37
Figure 6-10: Time based responses of the structure Ground Motion: El Centro	38

Table 3-1: Types of network and its application	15
Table 7-2: Seismic Response for Loma Earth Quake	39
Table 7-2: Seismic Response for El Centro Earth Quake	39

(i) (ii) (iii) (iv) (v) (vi)	CERTIFICATE ACKNOWLEDGEMENT ABSTRACT LIST OF FIGURES LIST OF TABLES TABLE OF CONTENT	i ii iii iv v v
CHAPTER	R 1	
1.	NTRODUCTION	1
CHAPTER	R 2	
2. L	ITERATURE SURVEY	3
	2.1 Semi-active Control	3
	2.2 Neural Networks in Structural Control	6
	2.3 Scope and Objectives of the Study	11
CHAPTER	83	
3. ARTIFICIAL NEURAL NETWORKS		12
	3.1 Introduction	12
	3.2 Components of neural networks	14
	3.3 Types of neural networks and their applications	15
	3.4 Neural network architectures	15
	3.5 Advantages	17
	3.6 Disadvantages	17
CHAPTER	R 4	
4. S	EISMIC CONTROL OF STRUCTURES	18
	4.1 Introduction	18
	4.2 Types of control system	18

4.2.1	Passive control systems	19
4.2.2	Active control system	20
4.2.3	Semi-active control system	20

CHAPTER 5

5. BUILDING CONTROL USING MR DAMPER		23
5.1 li	ntroductory remarks	23
5.2 S	tructural model	23
5.3 N	lewmark's time-stepping method	25
CHAPTER 6		
6. GENERATION OF ARTIFICIAL NEURAL NETWORK		29
6.1 F	or Uncontrolled Structure	29
6.2 F	or Controlled Structure	33
6.3 C	comparison of Controlled and Uncontrolled systems	37
CHAPTER 7		
7. RESULTS A	ND DISCUSSIONS	39
CHAPTER 8		
8. CONCLUSION		40
8.1 P	Preliminary Remarks	40
8.2 N	Aain Conclusions	40
8.3 S	cope for Future Works	40

REFERENCES	41