
A Dissertation

ON

Fault Tolerant Distributed File System

Submitted in partial fulfillment of the award of

MASTER OF TECHNOLOGY

Degree in

SOFTWARE ENGINEERING

By

KESHAV GUPTA

(2k11/SWE/07)

Under the guidance of

MS. DIVYASHIKHA SETHIA

2013
Department of Software Engineering,

Delhi Technological University
Delhi-110042

i

DECLARATION

I hereby declare that the thesis entitled Fault Tolerant Distributed File System which is being

submitted to the Delhi Technological University, in partial fulfillment of the requirement for the

award of degree of Master of Technology in Software Engineering is an authentic work carried

out by me.

Keshav Gupta

2K11/SWE/07

Department of Software Engineering

Delhi Technological University

Delhi – 110042

ii

CERTIFICATE

This is to certify that the thesis named Fault Tolerant Distributed File System submitted by

Keshav Gupta, roll number 2K11/SWE/07, in partial fulfillment of the requirements for the award

of degree of Master of Technology in Software Engineering, with researchers’ work duly

referenced has been carried out under my supervision.

Ms. Divyashikha Sethia

Assistant Professor

Department of Software Engineering

Delhi Technological University

Bawana Road, Delhi- 110042

iii

ACKNOWLEDGEMENT

I am glad to take this opportunity to thank my project guide Ms. Divyashikha Sethia for giving

me the chance to work in this research area along with her relentless support and

encouragement. It would not be possible to make this dissertation on run without her

consistent guidance and valuable time, data, and reference, to name a few of her contributions.

I am also thankful to Head of Department Dr. Daya Gupta and all the faculty members, my

classmates and of course all the researchers’ active in this field for their direct or indirect

support and motivation during the work.

Keshav Gupta

2K11/SWE/07

M. Tech. (Software Engineering)

Delhi Technological University, Delhi- 11004

iv

ABSTRACT

Despite distributed file systems having already been implemented for individuals and

companies, users continue to face problems in using these systems and it is a still a big

challenge for the researchers. The functionalities of a well functioned and an ideal distributed

file system would be to provide high scalability, provide shared access to the same set of files to

all its users, provide high performance, provide more storage space and more user friendliness.

Google File System answers to these problems in a very efficient way and been a source of

inspiration in development of this project. We are trying to simulate working of GFS for small

scale data set.

In this project we have implemented a Distributed File System with multiple levels of fault

tolerance. At first level we are trying to filter faulty nodes/clients before they enter into system

or we can say register with the server. At second level, to avoid failure we are maintaining

chunk replicas so that if a client possessing file chunks gets disconnected, the file can still get

downloaded.

For security purpose, DES algorithm has been used for encryption and decryption. So we are

successfully distributing and retrieving a file from a DFS in a very secure and fault tolerant

manner. Thus, helping in load balancing by distributing the file over the network and increasing

the overall system performance. Many different concepts such as transparency, fault tolerance,

scalability, reliability have been defined in this dissertation and solved them in FTDFS approach.

Various implementations and design strategies have been demonstrated by a survey along with

different distributed systems for file sharing. Testing and performance evaluation of the system

have also been carried out in this dissertation and also possible future work or the

improvements have also been discussed.

v

LIST OF FIGURE(S)

Figure 2.1: The Sun NFS Architecture 7

Figure 2.2: Google File System 8

Figure 2.3: The HDFS Architecture 10

Figure 4.1: Client server Architecture of System 19

Figure 4.2: The 0-level DFD 20

Figure 4.3: Steps for uploading file on FTDFS 25

Figure 4.4: Steps for downloading file from FTDFS 27

Figure 5.1: The Login Window 28

Figure 5.2: Client Registration form 29

Figure 5.3: Invalid email address 30

Figure 5.4: The server IP address 31

Figure 5.5: Client Window 32

Figure 5.6: System Fault Setting 33

Figure 5.7: Range error Message 33

Figure 5.8: Register error Message 34

Figure 5.9: Server Window 34

Figure 5.10: Client uploading file 35

Figure 5.11: Server after File uploads 36

Figure 5.12: Server after File downloads 37

Figure 5.13: Server after downloading file from replica 38

Figure 5.14: File download message 38

vi

LIST OF TABLE(S)

1. Test case Results 42

vii

ACRONYMS

DES - Data Encryption Standard

DFD - Data Flow Diagram

DFS - Distributed File System

FTDFS - Fault Tolerant Distributed File System

GFS - Google File System

GUI - Graphical User Interface

I/O - Input/output

IP - Internet Protocol

LAN - Local Area Network

NFS - Network File System

TCP - Transport Control Protocol

viii

TABLE OF CONTENTS

Declaration ………………………………………………………………….…………………………………………………………….i

Certificate ……….…..ii

Acknowledgement ……..… iii

Abstract ……..... iv

List of Figure(s) ………………………………………………………………………….…………………………………..………… v

List of table(s)………...………vi

Acronyms …….….…vii

Table of Contents………………………………………………………….…………………………………………………………viii

1. Introduction……………………………………………………….………………………………………………….…………...1

1.1 Overview …………………………………………………………………………………………………..…………………..1

1.2 Motivation………………………………………………………………………………………………….………………….2

1.3 Aim and Objectives…………..……………………………………………………………………….…………………..2

1.4 Thesis Outline …………………………………………………………………….…………………………………………3

2. Literature Survey…...4

2.1. Concept……………………………………………………………………….………………………………………….…….4

2.2. Fault Tolerance in DFS…………………………………………………………………………………………..……….5

2.3. Replication in DFS……………………………………………………………..…………………………………………..5

2.4. Current System Analysis……………………………………………………..…………………………………………6

2.4.1. Sun’s NFS……….6

2.4.1.1. Overview…………………………………………………………………………………………………6

2.4.1.2. Sun’s NFS Architecture…………………………………………………………………………….6

ix

2.4.1.3. Usability…………………………………………………………..……………………………………..7

2.4.2. Google File System………………………………………………………..……………………………………8

2.4.2.1. Overview…………………………………………………………..…………………………………… 8

2.4.2.2. GFS Architecture……………………………………………………..………………………………8

2.4.2.3. Usability…………………………………………………………….……………………………………9

2.4.3. HADOOP DFS……………………………………………………………………..……………………………….9

2.4.3.1. Overview………………………………………………………………..……………………………….9

2.4.3.2. Hadoop Architecture……………………………………………..………………………………10

2.4.3.3. Usability………………………………………………………………..………………………………10

2.4.4. Conclusion……………………………………………………………………..…………………………………11

3. Requirement Analysis and Feasibility Study ………………….……………..………………………………….12

3.1. Requirement Analysis………………………………………………………………………………………………….12

3.1.1. FTDFS user’s requirements……………………………………………..………………………………..12

3.1.2. FTDFS system’s requirements……………………………………………………………………………13

3.1.2.1. Functional requirements ………………………………………………………………………13

3.1.2.2. Non functional requirements ………………………………..……………………………..14

3.1.2.2.1. Operational ………………………………………………..…………………………….14

3.1.2.2.2. Performance ……………………………………………..………………………………15

3.1.2.2.3. Security ……………………………………………………………….……………………15

3.2. Feasibility Study…………………………………………………………………………….……………………………15

3.2.1. Technical Feasibility………………………………………………………….…….…………………………15

3.2.2. Operational feasibility………………………………………………….…………………………………..16

4. System Design and Algorithms ………….…………………….…………………..…………………………………..18

4.1. System Design Methodology……………………………………………………….………………………………18

x

4.1.1. Analysis and Synthesis…………………………………………………….………………………………..18

4.2. System Architecture…………………………………………………………………….………………………………19

4.2.1. Data flow diagram…………………………………………………………….………………………………20

4.2.2. Role of client….………………………………………………………………….……………………………..20

4.2.3. Role of server...…………………………………………………………………………………………………21

4.3. Algorithms Implemented……………………………………………….……………………………………………22

4.3.1. Fault tolerance policy……………………………………………………………..…………………………22

4.3.2. Replication Policy used………………………………………………………………….………………….22

4.3.3. Encryption Algorithm……………………………………………………………….…………….…………23

4.3.4. Uploading file on FTDFS…..………………………………………………….……………….…………..23

4.3.5. Downloading File from FTDFS……………………………………………………………….………….26

4.3.6. Current progress……..…………………………………………………………………….…….……………27

5. Implementation…………………………………………………..……………………………………………….……………28

5.1. Software interface prototype for Client………………………………………………….…….……………..28

5.2. Software interface prototype for Server……………………………………………………….…..………..34

5.3. Testing……………………………………………………………………………………………….……….……………….39

5.3.1. Unit Testing………………………………………………………………………………………….…………..39

5.3.1.1. Black box Testing…………………………………………………………………….…………….39

5.3.1.2. White box Testing………………………………………………………………….………………42

5.4. Performance study…………………………………………………………………………………….………………..43

6. Conclusion and Future works…………………………………………………………………………………….………44

References ………..45

1

CHAPTER 1

INTRODUCTION

1.1 Overview

These days, more resources are required by new applications than what are actually available

on an inexpensive machine and problems are faced with the business processes by the

organizations that are no longer fit on single cost effective machine. Either at home or business

computers, there is certain amount of data stored which is needed to be kept private as the

data could be sensitive. The organizations would not be able to run properly or would face a

high loss in the terms of cost and effort. A small example could be a student’s laptop containing

student’s school assignments or lecture notes. Loss of such data would result him in redoing all

the assignments and making the lecture notes from the start. Here comes the use of the

Distributed File System (DFS), which helps businesses and individuals in keeping the data or the

information important to them in a safe and secured way.

Today, everyone know about one of the most popular and most used websites such as Google

or YouTube, also the social networking phenomenon called Facebook. There are many

significant uses of these websites. Google nowadays isn’t only a search engine but it supports

other functionalities such as uploading pictures and videos. One can create an email account

provided with a few gigabytes of space. Other fascinating and attractive features introduced by

Google are Google Drive, Google Maps and also Google Earth applications. All these services are

pretty efficiently provided by Google and are heavily data intensive. Here comes a big question

to be asked that how big companies like Google, YouTube or Facebook do it. The answer to the

question above is that these big companies use Distributed File System in order to provide their

services on a high level.

2

In the creation of the Fault Tolerant Distributed File System (FTDFS) to provide an environment

where users can distribute the files among each other and the files are stored in an safe and

secured way, many technical challenges were faced which are discussed in this dissertation. In

order to create a great design of a FTDFS, it is important to be familiar with the present

Distributed File Systems and also should have a good understanding of server/ client based

architecture. Since Java is the programming language used to build this DFS, it is important to

know the characteristic of java network and object-oriented characteristic.

1.2 Motivation

A file system is the method of permanent storage of files and organizing those files so that it is

easy to find those files and access them. A distributed file system is conversely a network of file

systems, which provides the storage of the files among the commodity of connected

computers. A typical configuration of a DFS is a collection of workstations and mainframes

connected by a local area network (LAN). A DFS is implemented as part of the operating system

of each of the connected computers. One of the main drawbacks found in the prevailing file

systems is the lack of the scalability. Security and reliability is quickly becoming a mandatory

feature of data storage systems. Some of the key features of this project are Manipulation of

files using Framework, Improved Scalability, and Improved reliability (Using replication),

Security (Using cryptography), Authentication and High Performance.

1.3 Aims and Objectives

The main aim of the project is to provide a Fault Tolerant Distributed File System (FTDFS). The

DFS provides storage for secure files, high scalability, local independence and transparency that

is the migration capabilities for data.

The users are able to upload files. The uploaded file is to be first encrypted to increase security.

3

After encryption file will be divided into various chunks depending on size of file based on given

chunk size. The chunks are also replicated to increase reliability of the system. The chunks

created and replicas will be distributed among all the clients registered provided original chunk

and its replica will not be stored on same client. After a successful upload a key will be

generated and will be sent to the client which will be named including client ID and name of the

file uploaded. While downloading the file, client will send this key to the server. Server will get

client ID from the key, directly go to the path specified by the clients where chunks are stored

and fetch the chunks related to the file. If a particular chunk is missing or client is unavailable,

replicated chunks are retrieved. After that all the chunks are merged together with the help of a

Batch file which was created during the creation of chunks. The retrieved file will be decrypted

and will be sent back to the client. Avoid problems such as security problems, bad file

replication, poor scalability and slow performance. Evaluate the project on the basis of

scalability by connecting a very high number of nodes. Also checking its reliability in the

situations when 1 or more client exits.

More future enhancements could be done such as multiple servers and use of more powerful

and advanced algorithms and techniques for effective file replications and retrieval.

1.4 Thesis Outline

Chapter 1 introduces Distributed File System along with motivation, Aims and objectives of this

project. Chapter 2 presents Literature review related to distributed file systems. Chapter 3

describes the Requirement analysis and Feasibility Study in Detail. Chapter 4 presents the

system architecture of current systems and FTDFS in detail. Chapter 5 presents the

Implementation part of the project along with system testing and performance study. At last in

Chapter 6 we are summarizing thesis with Conclusion and Future Work.

4

CHAPTER 2

LITERATURE REVIEW

An extensive review of research was carried out in order to gain better understanding of the

Distributed File System and the tools and technical skills required to implement the project

requirement.

2.1 Concept

DFS is a system that supports the sharing of information through a network in the form of files.

A file service which is very well designed provides access to the stored files at a server with the

performance and reliability similar to that of the disk. In other words it can be said that a DFS

allows the users to store and access remote files like a local computer would, but from any

computer in the network. It has a capability of distributing the files from one computer to other

computers. If it is to be said in scientific terms, a Distributed File System is a distributed

implementation of the classical time sharing model which is constructed on a file system where

it allows one or many users to share the files and storage resources [2]

DFS supports the common operations effectively on the same kind of sharing resources. It

supports especially the operations for the files physically dispersed among the different sites of

a distributed system. If it is to be seen from the inheritance point of view, a DFS is a system

which is inherited from the File System and Distributed System. A DFS provides the common

files operations such as read, delete, rename, share and copy. These operations are not only

used in the certain local sites of DFS but they are also used in other sites through authorization

access. A DFS can be seen as a polymorphic subclass which accommodates its processors or the

resources distributed mechanism that is derived from Distributed System [2].

A Distributed Operating System can be seen as a collection of interconnected computers which

appears to the users or the clients as a single system. If any system doesn’t work, or crashes, it

5

won’t affect the working of the other systems interconnected. It manages the data i.e. the files

and migrate the data/file from one site to other sites.

2.2 Fault tolerance in DFS

There has been a lot of research work done recently for improving the fault tolerance of

Distributed Systems. Alexandru Costan and others provided a Fault Tolerance Approach for

Distributed Systems Using Monitoring Based Replication. They proposed an approach relying on

replication techniques and based on monitoring information to be applied in distributed

systems for fault tolerance. Their approach uses both active and passive strategies to

implement an optimistic replication protocol [3]. Marieta Nastase and others proposed a Fault

Tolerance scheme using a Front-End Service for Large Scale Distributed Systems which is based

on a set of replicated services running in a fault-tolerant container and a proxy service able to

mask possible faults, completely transparent to a client [4]. Sunil Chakravarthy, Chittaranjan

Hota proposed a Secure Resilient High Performance File System for Distributed Systems that

has the potential to cope with increasing number of participants and ensures strong file

encryption [5]. Swastisudha Punyatoya gave Generic Algorithm-Based Fault Diagnosis for

Distributed Systems which results in decrease in time and no. of messages passed in order to

diagnose the fault [6]. Ioan Petri, proposed a Quorums Systems as a Method to Enhance

Collaboration for Achieving Fault Tolerance in Distributed Systems, 2009[7]. Bharath

Balasubramanian gave a Coding-Theoretic Approach for fault tolerance in Distributed systems

which uses a fusion based fault tolerance scheme [8].

2.3 Replication in DFS

Bin Cai, Changsheng Xie, Guangxi Zhu proposed an Effective Distributed Replication File System

for Small-File and Data-Intensive Application [9]. It works with a single metadata server and

multiple storage nodes, deploys whole-file replication scheme at the file level, and tracks what

storage node a file is replicated on. Anna Hat, Xiaowei Jin, Jo-Han So0 provided a survey about

Algorithms for File Replication in a Distributed System which included File Replication by Using

6

a Single-Host Sequential Update Algorithm, File Replication by Using a Single-Host Concurrent

Update Algorithm, File Replication by Using a Multiple-Host Update Algorithm and Algorithm in

the System without File Replication[10]. Yan Chen, Randy H. Katz and John D. Kubiatowicz gave

a Dynamic Replica Placement policy for Scalable Content Delivery [11]. Gyuwon Song, Suhyun

Kimz and Daeil Seo also proposed a Replica Placement Algorithm for Highly Available Peer-to-

Peer Storage Systems[12] in which they develop a replica placement algorithm which Exploits

the availability pattern of each individual peer.

2.4 Current System Analysis

Today Sun’s NFS, Google File System and Hadoop DFS are the most commonly and widely used

systems.

2.4.1 Sun’s NFS

2.4.1.1 Overview

Sun Microsystems came with an idea of the Distributed File System in developing their NFS that

stands for Network File System for Unix-like Operating System. This DFS is mainly for the local

area networks i.e. LAN. Under UNIX, in this distributed system, it provides a transparent access

to the remote files to the clients. But today, implementation of the network file system can be

applied to almost all the operating systems even including the non-Unix systems. Some

examples of such systems are MS-DOS, Microsoft or Macintosh. Sun developed an open

protocol that specified the exact message formats that server and clients would use to

communicate. Using this approach different groups develop their own NFS servers. Companies

such as IBM or NetApp are selling such NFS servers.

2.4.1.2 Sun’s NFS Architecture

7

Talking about the protocol, the Network File System provides a set of Remote Procedure Call

that is RPC for remote file operations. It looks up for a file in the directory viewing all the files as

a root providing the transparent access to all the directories and files, manipulates the

directories and links, clients have an access to create and remove files, getting and setting file

attributes like rename, delete, write. The clients are given the access to read and write files.

Figure 2.1: The Sun NFS Architecture [13]

2.4.1.3 Usability

There are some advantages of Sun’s NFS that come along with some disadvantages as well.

Some of the advantages of Sun’s NFS are Scalability, Access transparency, Hardware and OS

heterogeneity and File Replication. These can also be thought to be the main goals of the Sun’s

NFS. Despite having a lot of advantages, it has also has some disadvantages. Mobile devices are

not fully supported by NFS since migration transparency is not fully achieved. It doesn’t support

the file replication with updates. It does not enforce a single network; therefore each client

8

sees the file system their way. Hence, location transparency is affected. NFS uses the underlying

UNIX file protection mechanism on servers for access checks. Each RPC request from a client

conveys the identity of the user on whose behalf the request being made. The server

temporarily assumes this identity, and the file accesses that occur while servicing the request

are exactly checked as if the user had logged in directly to the server.

2.4.2 Google File System

2.4.2.1 Overview

This file system was developed by Google for its data storage and other needs. Here nodes are

divided into chunk servers and 1 master node. Every file is divided into fixed size chunks which

are stored at chunk servers in replicated manner where each chunk is identified by a chunk

handler. The master node maintains all the metadata and manages all other nodes.

2.4.2.2 GFS Architecture

Figure 2.2: Google File System [1]

9

2.4.2.3 Usability

There are both advantages and disadvantages of GFS. Its advantages include high availability

with triple replication and intelligent replica placement. It delivers a very high performance

while maintaining very low cost. The management is also autonomous in nature. Talking about

the disadvantages it is suitable for data centers for searching workloads but not for small

read/write operations. Also, it is not open source software yet.

2.4.3 Hadoop

2.4.3.1 Overview

HDFS stands for Hadoop Distributed File System, provides framework from the analysis and

transformation of very large data sets. Executing application computations in parallel close to

their data, computation across many hosts and portioning of data are some of the important

characteristics of Hadoop. Regulation access to files by clients and management of the file

system namespace is managed by the Hadoop Architecture components which are NameNodes

and a master server. The storage attached to the nodes is managed by DataNodes. The file

which is allowed for the storage by the file system namespace in internally split into one or

more blocks which are stored in a set of DataNodes. Operations such as renaming of files and

directories, opening and closing of files are executed by the NameNode. The read and write

request from the client is served by the DataNodes. DataNodes are also responsible for

deletion, creation and replication upon instruction from the NameNode[14].

10

2.4.3.2 Hadoop Architecture

Figure 2.3: The HDFS Architecture [14]

2.4.3.3 Usability

Similarly, there are some advantages and disadvantages of Hadoop DFS. Starting with the

advantages first, HDFS is designed for storing large files with streaming data success patterns,

running on clusters of commodity hardware. The files with sizes in megabytes, gigabytes or

terabytes can be operated. The pattern on which the HDFS is build is the data processing

pattern which is writing-once, read-many time’s pattern. Expensive hardware is not required to

run it. It also has some disadvantages. It does not cover all the requirements although it

implements much of the functionality that our platform requires. It was originally designed for

the I/O bounds in which reading, writing and transferring data are the most time consuming

11

operations; hence it is not conservative in CPU utilization and memory usage. The technologies

of Hadoop are not very well suited for mobile devices.

2.4.4 Conclusions

Sun’s NFS is built around the idea of simple and fast recovery in the face of server failure. It

achieves this end through careful protocol design. NFS does so in a slightly ad hoc fashion which

can result in observably weird behavior. Secondly, also studying in depth about the HDFS

(Hadoop Distributed File System), I concluded that it is highly reliable and provides high

scalability. It can also run more than once processes at that same time and can store massive

amounts of data with a very high fault tolerance. GFS is designed according to the requirements

of Google and is suitable for large data sets. Also it is not open source yet.

12

CHAPTER 3

REQUIREMENT ANALYSIS AND FEASIBILITY STUDY

3.1 Requirement Analysis

A simple statement of requirement can be said that what a system must be able to do and what

characteristics it must possess. It can be divided into two types of requirements which are user

requirements which can sometimes also be called as business requirements as it mainly focuses

on user needs and system requirement. User requirements are more technical as they describe

the implementation of the system.

3.1.1 FTDFS User’s requirements

Accuracy: The stored directories or files are updated in real time in FTDFS. It ensures that

communication users can access to the current shared data while communicating.

Security: Each user has to register in order to become a client and proceed with the data

sharing. So to login, they need to provide their correct username and password. What makes

the security even higher is that the file with user’s login details never leaves the local machine.

Reliability: Even if a client with file data disconnects, the client should be able to download file.

Also, only clients with high performance measures should be able to register with the server.

Communication: All the users who are familiar with different operating environments such as

Windows, UNIX. It can be set up in most of operating systems.

Error Indication: If a user makes any mistake on file operation in FTDFS, there will be a dialog

box with system error message will appear so that the user can correct that operation.

13

Friendly GUI: Readability and Friendliness are the two main issues on which the Graphical User

Interface of FTDFS’s design concentrates. All the file operations are easy to deal with and

operate through the GUI components. User also gets to enjoy the local shared data and remote

communication by friendly platform with other computers in FTDFS.

Flexible Access: Accessing the remote shared files and directories is as easy and flexible as on a

local machine. So users are hardly aware that the file or directory that they access is on a

remote machine in FTDFS.

3.1.2 FTDFS System requirements

The requirements are usually called System requirement from the developer’s perspective.

There is no obvious distinction dividing a user requirement and a system requirement. There

are two types of system requirement viz. Functional requirement and Non Functional

requirement.

3.1.2.1 Functional Requirements

Share: On a local machine in FTDFS, a file or a directory operation can be executed. The use is

for selecting directory to be shared folder of the shared resource on local machine.

Upload: A file can be uploaded by the distributed client on the server in the LAN network.

Encrypt: The file once uploaded and sent to the server is encrypted by the server using DES

Algorithm.

Split: The uploaded file after getting encrypted is spitted into chunks before being sent to the

other clients connected to the server.

Distribute: The server distributes those chunks of encrypted data among the clients.

14

Download: Once the request to download a file is sent by the client who uploaded the file on to

the server, the server sends a random key to that client. With the help of that key, the original

file can be downloaded.

Merge: Once the key is selected by the user, the key merges those chunk sizes of data which

were distributed among several clients back together and forms the original copy of that file.

Decrypt: Once the data is merged and the file has been re-created, but in encrypted format, the

key decrypts the file before sending it to the client who requested for that file download.

Path of resource: On local machine, system feature is located which holds the responsibility for

displaying the logical path of remote shared and local shared resources.

File Permission: A system feature is addressed in local machine which is capable of showing the

permission of the remote shared file or directory at present.

3.1.2.1 Non-Functional Requirement

Operational requirements, performance requirements and security requirements are the three

types of Non-Functional requirement since they reflect the behavioral characteristic that a

system must have.

Operational Requirements

FTDFS will operate in Window, UNIX etc.

FTDFS is capable of sharing the files of different formats and large sizes such as Word

documents, HTML, Excel tables, PDF files etc.

15

Performance Requirements

In FTDFS, the response will be sent back immediately when local machine/server machine

receives a request from the remote machines/clients.

Security Requirement

Every registered client has their own unique username and password through which they can

be connected to the server.

The uploaded files on the server are protected as they get encrypted and split among the

clients and kept safely and securely.

3.2 Feasibility Study

A feasibility study includes a detailed assessment of the need, value and practically of a

proposed system development. In Software Engineering, feasibility analysis is used to define

the system and its business requirements. It also determines the vital risks connected with the

project that must be referred. Distinct project request decides distinct process and format for

the feasibility analysis, in our system, it comprises of two techniques which are Technical

feasibility and Operational feasibility.

3.2.1 Technical Feasibility

Technical feasibility is the first technique in the feasibility analysis of FTDFS. It basically focuses

on the extent, which FTDFS can be successfully designed, developed and implemented. For this

purpose, it is mandatory to examine the technical characteristic of FTDFS.

 Following the trace of conventional client server DFS, FTDFS realized the communication

along clients with server in network.

16

 FTDFS will be advanced on Java platform with Java’s object-orientated and network-

orientated application techniques.

 On the basis of conventional DFS, FTDFS will be applied on distinct operating

environment, such as Windows, UNIX. Etc.

 FTDFS also realizes portability which is one of the most important characteristic of

software engineering design. From installation to implementation, it ensures that users

feel easy and comfortable during file operations.

 Extensibility and scalability also should be considered in FTDFS. For this goal, the Java

techniques will be illustrated in the design on FTDFS.

 Because of the apparent of simultaneously data passing, Java concurrency

communication techniques application will be found in design process.

3.2.2 Operational Feasibility

Operational feasibility matches the requirements and expectations of users. For FTDFS, user

acceptance is a significant determination of operational feasibility. It requires careful

consideration of:-

 Corporate background knowledge meaning that FTDFS can run on distinct operating

system, so it is apt for distinct users who are familiar with distinct operating

environment.

 Effective communication means user can access files stored in other computers as soon

as his/her request is sent out. Vice versa, if other computers send request to the user,

user’s computer responds to the request as soon as possible.

 Free tool kit is the system which is economical to be developed. Its design environment

is on the basis of Java Runtime Environment which is free to download from Sun

company website, so is J2SDK.

 Information is stored accurately in FTDFS however the computer is on-line or not. The

users can manipulate the files operation in a friendly user interface.

17

 Security is the most significant factors in system advancement. FTDFS allocates

username and passwords to each computer in the network. Accordingly, if users want to

access the data shared in FTDFS, they must log in certain specific computer by the

authorized identity.

18

CHAPTER 4

SYSTEM DESIGN AND ALGORITHMS

This is one of the most creative steps where functions and operations are described in detail,

including screen layouts, process diagrams and other documentation. Under this chapter,

several diagrams are described in detail in order to develop the basic understanding of the

project.

4.1 System Design Methodology

This system is developed using various methodologies. Boehm Spiral model was selected for

the advancement of the system. A key benefit of this approach is that the major issues are

resolved at a very early stage. It provides the project with the versatility of a plug-in type

project, meaning the ability to have core system and various add-on parts. This way it is much

simpler to check various parts individually.

The Rapid Application Development methodology was chosen to implement the client-server

model for DFS because it also works when the work can be broken into manageable chunks like

working on various functions and classes in this project. The advantage is also that the model

work fine when the project is developed in small team.

Analysis and Synthesis

The chosen methodology requires a need of constant shift between two types of design

activity, analysis and synthesis. During analysis, the design was tested to check whether it is

meeting goals for usability and during synthesis the design was shaped by drawing on fresh

ideas born from user feedback and solutions to similar problems that have been working in the

past through observation of existing systems and review of literature on existing systems.

19

4.2 System Architecture

The figure below is main structure diagram for our system. It follows a simple Client-server

architecture. It shows how all clients are linked to each other and to the server. There can be

any number of clients connected to the server and any client can upload any no. of files into the

system subjected to the secondary storage at client nodes. Also multiple clients are able to

download files at the same time.

Figure 4.1: Client-server Architecture of system

4.2.1 Data Flow Diagram

Data flow diagrams are used to show graphical representation of flow of data in the system. It

shows what information will be input to and output from the system, from where data will

come and go and where it will be stored. A 0-level DFD for our system is shown in figure 4.2.

Server

Client 1 Client 2 Client n

20

 Register Send

 ID/pswd IP address

 Collect

 File

 Replicate

 Distribution

Figure 4.2: The 0-level DFD

4.2.2 Role of Client

First of all in order to login clients have to signup. After filling up all the required details, the

clients get a login ID and password. After successful login, system asks client for server IP

address. Client window appears after entering server IP address. Client is needed to set path

where file chunks will get stored and retrieved from. Also client is required to set fault value

which is decided from the values of various client properties like CPU speed, Signal Strength,

Battery Life etc. on a scale of 1-10. If the fault value for client is less than a particular threshold

FTDFS
Server

Registration

Login

File

Replication

Distribute File

Decrypt File

Encrypt File

Manage
Network

File

Upload

21

(5 in this case), system considers that node as faulty and it is not able to register with the

server.

After successfully registering with the server, client can upload file by first choosing that file and

clicking on upload Button. After successful upload server provides client with a unique key. In

order to download a file, client will select the respective key and send it to server. File

corresponding to that key is downloaded.

4.2.3 Role of Server

In order to access server account, one has to login with Admin authorization. After Successful

Login, server window will be opened where you can start your server. As soon as any client

gets registered with the server, it shows appropriate message in the message box. When a

client uploads a file, server generates a unique client ID for that client from system clock. Firstly

uploaded file is encrypted with the help of DES algorithm. Then it is divided into various fixed

size chunks depending on the chunks size provided. These chunks are replicated and chunks

and replicas are distributed among all the clients connected to the server. During the creation

of chunks, a batch file is created which stores all the information about the chunks created.

Also while placing the replica it is taken care that any single node may not possess both original

chunk and its replica. During the download request from client, key provided by the client is

broken down to get the corresponding ID. Server now fetches the chunks from the path

specified by the client corresponding to that ID. If a chunk is not found or client possessing that

chunk gets disconnected, the replica is selected. When all chunks are available, server merges

them with the help of batch file discussed above and we get original file but in encrypted form.

Now server decrypts that file and send the original file back to the client.

22

4.3 Algorithms Implemented

4.3.5 Fault Tolerance Policy

FTDFS provides dual level fault tolerance. At first level it tries to remove faulty nodes/clients

before they enter into the system by registering with the server. This is done by maintaining a

record of system properties of all the clients like CPU speed, Signal Strength and Battery power.

Their values are stored on a scale of 1-10. We have decided a threshold value of 5. If it is more

than threshold, clients are able to register with the server else appropriate error message is

shown. Thus in FTDFS only clients with higher reliability and availability are present. At second

level, if a client possessing file chunks gets disconnected which was registered successfully in

past, replication policy is used to get the lost chunk from some other client, so that file can be

downloaded successfully. Thus making FTDFS a highly reliable and fault tolerant distributed file

system.

4.3.2 Replication Strategy Used

In order to avoid system failures due to any client disconnection possessing file chunks,

replication policy is used. After replication, replicas are placed at different client nodes. There

are many replica placement policies [8] [9] [10] [11] which we studied in section 2.3 for

improving quality of service and availability. Here, we have chosen a random replica placement

policy because of very low overhead requirement and good performance. Many distributed

systems like FARSITE [15] also use the same replica placement policy. The drawback of random

replica placement policy to ignore node availability was also overcome by ensuring that only

clients with higher availability are able to register to the server by keeping record of system

properties of clients like CPU speed, Signal Strength and Battery power.

4.3.3 Encryption Algorithm

For the purpose of encryption/decryption, DES (Data Encryption Standard) algorithm is used. It

is a symmetric key algorithm which uses 64-bit blocks, out of which 8 bits are used for parity

23

checks (to verify the key's integrity). Each of the key's parity bits (1 every 8 bits) is used to check

one of the key's octets by odd parity, i.e. each of the parity bits is adjusted to have an odd

number of '1's in the octet it belongs to. It involves various substitutions, combinations and

permutations between the text to be encrypted and the key, while making sure the operations

can be performed in both directions (for decryption). The combination of substitutions and

permutations is called a product cipher. The main steps of this algorithm are as follows:

 Fractioning of the text into 64-bit (8 octet) blocks;

 Initial permutation of blocks;

 Breakdown of the blocks into two parts: left and right, named L and R;

 Permutation and substitution steps repeated 16 times (called rounds);

 Re-joining of the left and right parts then inverse initial permutation.

4.3.4 Uploading file on FTDFS

FTDFS is a distributed file system where a node in the network can upload a file on the system

and file will be distributed over the network in form of chunks.

Steps for uploading a file

Figure 4.3 depicts steps for uploading a file on FTDFS which are as follows:

 In the initial step the authenticity of the user is checked. Only authenticated users are
allowed to upload a file on the server. An authorized user is the one who is registered
with the server.

 In the next step, a unique ID of the client is generated using the system clock (system

clock ensures the uniqueness of the ID).

 The user uploads the file on the server using a secured TCP/IP connection (TCP + SSL +

TCP).

 The uploaded file is now encrypted using the DES algorithm.

24

 The uploaded file is then divided into fixed size chunks and a batch file is maintained to

store the information about these chunks.

 The chunks of the uploaded file are replicated and are distributed on the clients. The

replication of chunks is done in a way such that no clients hold the replica of its own

original chunks. This ensures fault tolerance within the system.

 After successful distribution of the chunks on the clients, the client is given a key file to

retrieve the file.

25

 Database

Figure 4.3: Steps for uploading file on FTDFS

Encrypt

File

Distribute

File

File

Uploaded

Split
File

Client 1

Client n

Client

Replication

Start

Clients

Register

Client 1

Client n

26

4.3.5 Downloading file from System

Figure 4.4 depicts steps for downloading a file from FTDFS which are as follows:

 In order to download a file, client will select the respective key and send it to the server.
The file corresponding to that key is downloaded.

 During the download request from client, the key provided by the client is broken down

to get the corresponding ID.

 The server now fetches the chunks from the path specified by the client corresponding

to that ID.

 If a chunk is not found or the client possessing that chunk gets disconnected, a replica is

selected.

 When all chunks are available, server merges them with the help of the batch file and

we get the original file but in encrypted form.

 Now the server decrypts that file and send the original file back to the client.

27

Figure 4.4: Steps for downloading file from FTDFS

4.3.6 Current Progress

Currently in FTDFS everything we discussed so far is working fine. Also right now we are trying

to distribute the “key” file to all the clients in FTDFS so that any client in system can download

the file.

Downloa
d request

from
Collect

File
Chunks

Merge
File

Chunks

Client 1

Client 2

Decrypt

File

Client
Requesting
Download

Client
Requesting
Download

28

CHAPTER 5

IMPLEMENTATION

This project has been implemented in core java and developed with NetBeans IDE 7.0.Here I

have developed two main packages viz. Client and Server which contains various classes

according to functions performed by client and Server.

5.1 Software Interface Prototype for Client

Figure 5.1: The Login Window

This is the login window for the client or the admin to log in. In order to log in with a login ID

and a password, the client needs to get register first. The admin here is the server itself. When

the admin logs in, it takes the admin to the server window.

29

Figure 5.2: Client registration Form

This is the Client Registration window where one can register oneself. This form is fully

validated. If the client misses a required field or enters something which is out of bounds or

invalid, it shows an appropriate error message in a dialog box.

30

Figure 5.3: Invalid email address

Here is a small example when an invalid email address is entered during the registration

process; an appropriate error message has appeared in the dialog box.

31

Figure 5.4: The Server IP

A client logs in, once the correct login ID and password is provided, a Dialog Box pops up asking

the client to enter the IP address of the server. The client needs to enter the Server’s IP address

in order to get connected to the server. In this case, since the whole process in demonstrated

on one system only the IP address of the server would be local host.

32

Figure 5.5: Client Window

This is the client window. The first text box is the Client’s IP address which is fetched

automatically and shown above. Second is the port number which should be different for all

clients. Client Path is the path where the client wants to store the encrypted files in his/her

system. Third is the Server IP address which the client needs to give once they log which in this

case is local host. Fourth is the Upload file text field where the client gives the path of the file

which they want to upload on the server. Client File Ids is the text area where the IP addresses

and the port numbers of the entire client which get registered to the server is shown. This is

just to let the client know that how many other clients are connected to the server at that time.

Set Fault is used to set various properties of client like CPU Speed, Signal Strength and Battery

Power.

33

Figure 5.6: System Fault Setting

This window is to set values of various properties for the client in a scale of 0-10. If the value

entered is not in range, it throws an error message.

Figure 5.7: Range error message

I have taken 5 as threshold value for Clients to be eligible to register to the server. The client

will not be able to register if the Fault Value is less than 5. The server considers these clients as

highly prone to fail and shows error message.

34

Figure 5.8: Register error message

5.2 Software Interface Prototype for Server

Figure 5.9: Server Window

This is the Server Window, starting with the Server Port number, Server Path, Client Count

which is the number of clients connected to the server. Client Details provide the clients with IP

addresses and the Port numbers. Server Message shows the message such as when the button

Start Server is clicked which means the server has been started. So it displays the message

35

Server has started. Next is the path of the Encrypted Files. Chunk Size is the size of the file in

Kilobytes. In the Messages text area, the messages are displayed such as when file is uploaded

on the server, it displays the message File Uploaded, when the file is encrypted, split and

distributed, or when the unique key is sent to the client. All these messages are displayed in this

text area.

Figure 5.10: Client Uploading File

36

Figure 5.11: Server after File Upload

When a file is uploaded by the client, the server encrypts the file, splits and distributes it to the

different clients and sends a unique key to the client who initiated the file upload.

37

Figure 5.12: Server after File Download

Once the key is selected the client clicks the Download button to download the file, the server

merges all the chunk data from all the clients and merges them together and re-forms the

original file and after decryption, sends it to the client.

38

Figure 5.13: Server after Downloading File from Replica

Also, if after uploading file a client having file chunks disconnects, the file is still retrieved from

replica of those chunks.

Figure 5.14: File Download Message

A message is shown in a message dialog box informing the client that the file has been

decrypted and downloaded to that client.

39

5.3 TESTING

Software testing is defined as the software product’s investigation to gather information about

the quality of the product. Testing is a vital process as its main concern is the verification that

the software is working properly. Many attempts have been made to test every component

that the system is made of. A piece of software can be tested in several ways.

The software testing methodology proposed for this project involved incremental integration

testing were the application was tested as new functionality was added. Unit testing, System

testing and Acceptance testing are the three phases the testing was split into during the

development process.

5.3.1 Unit Testing

In the software development process Unit testing plays a vital role. A unit is smallest testable

part of an application that is the classes in object orientated programming and it explores

aspect of the behavior of the class.

Black-box testing and White-box testing are the two approaches to Unit testing. Black-box

testing is the most commonly used since each class is represented as an encapsulated object.

White-box testing is based on the method specification with each class.

5.3.1.1 Black-box Testing

Black-box testing is an approach to testing where the tests are derived from the program or

component specification. The system is black box whose behavior can only be determined by

studying its inputs and the related outputs; this can be also called functional testing. The

observable behavior of software is examined by the Black-box testing strategy as evidenced by

its outputs without reference to internal functions. The system was successfully tested for 50+

clients on single machine and with 5 clients on different machines.

Test No. Testing Button Expected Reslt Actual Result Pass/ Fail

1 Distributed File

System

Login if user name and

password are correct

Logged in Pass

40

2 Cancel Exits the window Successful Pass

3 Sign Up

(Distributed File

System)

Takes user to client

registration form

Successful Pass

4 Save (Distributed

File System)

If no input is given in any

of the required text

fields, shows appropriate

error message

Successful Pass

5 Go to Login Takes the user to Login

form

Successful Pass

6 Set Fault Takes the user to System

Fault Setting window.

Successful Pass

7 Fault Details If any of the column is

left blank or value

entered is not in range,

shows appropriate error

message.

Successful Pass

8 Register(Client) If fault value is less than

threshold, shows

appropriate error

message.

Successful Pass

9 Register (Client) If no input is given in any

of the required fields,

shows appropriate error

message

Successful Pass

10 Register (Client) If wrong input is given in

any of the fields, shows

appropriate error

message

Successful Pass

41

11 Upload (Client) If file meant to be

uploaded is not specified

in the fields, shows the

appropriate error

message

Successful Pass

12 Register (client) If user tries to register to

connect the server with

the same port number,

shows error message

Successful Pass

13 Register (Client) Once all appropriate

input is given

registers/connects the

clients to the server

Successful Pass

14 Register (Client) Shows the registerd

client details such as IP

address and the port

number in the server

Successful Pass

15 Start Server

(Server)

If no input is given in any

of the required fields,

shows appropriate error

messages

Successful Pass

16 Start Server

(Server)

Once all appropriate

input is given, starts the

server

Successful Pass

17 Upload (Client) Once the file is selected

to be uploaded,

encrypts, splits and

distributes the file into

chunks of data

Successful Pass

42

18 Upload (Client) Sends the key to the

client in order to

download the file

Successful Pass

19 Download (Client) If the client ID key is not

selected, shows error

message

Successful Pass

20 Download(Client) If a client having chunks

disconnects, download

file from back up replica.

Successful Pass

21 Download (Client) Once the client ID key is

selected, downloads the

file

Successful Pass

22 Exit (Client) Exits the window Successful Pass

23 OK (Distributed

File System)

If duplicate entries of

username or email

address are made, shows

appropriate error

message

Successful Pass

24 OK (Distributed

File System)

If invalid username or

password is given, shows

error message

Successful Pass

Table 1: Test case Results

5.3.1.2 White-Box Testing

This type of testing is based on small portion of the program that needs to be tested. The full

code will be tested this time. The results are documented and need to be studied in greater

details when the testing has been completed. The outcome of such study will reveal if the

software described in the requirements, behaves in a correct way. A system can be tested at

several levels.

43

A routine can be implemented in the program to verify whether it is in working condition. This

is done by creating test data.

The system integration process begins when all the components are implemented, checked and

put together to form the final system. When this process is completed, the whole system is

checked again and again to make sure there is no error or bug left in the software. In this way,

interface problems may be discovered, as well as other types of errors.

5.4 Performance Study

Scalability: System is highly scalable as server directly fetches chunks from the path specified by

the client saving lot of time. System has already been tested for high number of clients.

Reliability: System is highly reliable as if a client possessing file chunk disconnects we can still

download file from the replicated chunk.

Security: File is encrypted with DES algorithm making it more secure.

Availability: Before clients are registered, it is ensured that they are less prone to faults via

fault value mechanism and clients in system remains available for longer period of time.

44

CHAPTER 6

CONCLUSION AND FUTURE WORK

Fault Tolerance is a very important aspect of Distributed file system. It is very necessary to

handle faults in our system with proper care. We studied various fault tolerance schemes

developed by the researchers over the time. Replication is one of the most popular techniques

where if there is any file/chunk is not available due to any reason, its replica stored at some

other location may be used for the same. In FTDFS, we are trying to minimize the occurrence of

the faults. Firstly, we are ensuring that no faulty node may be able to register to the Server in

the first place. We are determining whether a node is faulty or not on the basis of values of its

parameters like CPU speed, Signal Strength and Battery. Also we are maintaining the replicas of

the file chunks on other clients as well. So if a client possessing a file chunk gets disconnected,

we are still able to retrieve the file with the help of replica present on other machine. Thus

FTDFS is providing a dual level fault tolerance.

In Future, FTDFS can also be transformed into a system where out of n chunks, if some k chunks

are available, the original file can be created. Also, The FTDFS can also be further developed for

multiple servers in case anyone goes down the system would keep running. It might also save

the space of network by certain compression technique for multiple files transmission. This

System should use Data Mining techniques of AI to capture the shared files by varied

permission in a huge shared file warehouse.

.

45

REFERENCES

1. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” In

proceedings of the 19th ACM symposium on Operating systems principles, New York,

USA,2003, pp. 29-43.

2. Tomasz Mista, “Java Distributed File System,” M. Sc Project dissertation - COMP5200,

London,UK, 2011.

3. Alexandru Costan, Ciprian Dobre, Florin Pop, Catalin Leordeanu, Valentin Cristea, “A

fault tolerance approach for distributed systems using monitoring based replication,” In

proceedings of the 6th IEEE International Conference on Intelligent Computer

Communication and Processing, Cluj-Napoca, Romania, August 2010.

4. Marieta Nastase, Ciprian Dobre, Florin Pop, Valentin Cristea, “Fault Tolerance using a

Front-End Service for Large Scale Distributed Systems,” In proceedings of the 11th IEEE

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,

Timisoara, Romania, September 2009.

5. Sunil Chakravarthy, Chittaranjan Hota, “Secure Resilient High Performance File System

for Distributed Systems,” In proceedings of the IEEE International conference on

Computer and Communication Technology, Allahabad, India, September 2010.

6. Swastisudha Punyatoya, “GA-Based Fault Diagnosis Algorithm for Distributed Systems”,

M. Tech thesis, National Institute of Technology, Rourkela, July 2011.

7. Ioan Petri, “Quorums Systems as a Method to Enhance Collaboration for Achieving Fault

Tolerance in Distributed Systems”, Informatica Economica, Academy of Economic

Studies - Bucharest, Romania, February 2009, pp.68-75.

8. Bharath Balasubramanian, “A Coding-Theoretic Approach for fault tolerance in

Distributed systems”, UT electronic thesis and dissertation, August 2012.

9. Bin Cai, Changsheng Xie, Guangxi Zhu, “An Effective Distributed Replication File System

for Small-File and Data-Intensive Application,” In proceedings of the 2nd IEEE

46

International conference on Communication system software and middleware and

workshops, Bangalore, India, January 2007.

10. Anna Hat, Xiaowei Jin, Jo-Han So0, “Algorithms for File Replication in a Distributed

System,” In proceeding of 13 IEEE conference on local computer networks, Minnesota,

October 1988.

11. Yan Chen, Randy H. Katz and John D. Kubiatowicz, “Dynamic Replica Placement for

Scalable Content Delivery,” In proceedings of the First International Workshop, IPTPS

Revised Papers, Cambridge, MA, USA, March 2002 , pp. 306-318.

12. Gyuwon Song, Suhyun Kimz and Daeil Seo, “Replica Placement Algorithm for Highly

Available Peer-to-Peer Storage Systems,” In proceedings of the First International

Conference on Advances in P2P Systems, Sliema, Malta, October 2009.

13. Russel Sandberg, “The Sun Network Filesystem: Design, Implementation and

Experience,” Sun Microsystems,Inc. Technical Report, (1985).

14. Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, “The Hadoop

Distributed File System: Architecture and Design,” In proceedings of the 26th IEEE

Symposium on Mass Storage Systems and Technologies (MSST), Lake Tahoe, Nevada,

USA, 6 – 7 May 2010.

15. Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.

Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, Roger P. Wattenhofer, “FARSITE:

Federated, Available, and Reliable Storage for an Incompletely Trusted Environment,” In

proceedings of the 5th Symposium on Operating Systems Design and Implementation

(OSDI 2002), Boston, MA, December 2002.

