
IMPROVED APPROACH FOR INVARIANT 

AIRCRAFT TYPE RECOGNITION 

 

A Dissertation submitted in partial fulfillment of the requirement for the 

Award of degree of 

MASTER OF TECHNOLOGY 

IN 

COMPUTER SCIENCE & ENGINEERING 

By 

ASHWINI KUMAR 

Roll No. –2K11/CSE/02 

Under the esteemed guidance of 

Mrs. MRIDULA VERMA 

 

 

Department of Computer Engineering 

Delhi Technological University 

2012-2013 



DEDICATION 
 

 

 

 

 

 

 

 

 

 

To my mother: my first and best teachers. 

To my friends who encouraged me. 

To my God who gives me strength, knowledge, and wisdom. 

 

 

 

 

 

 

 

 

 



ACKNOWLEDGEMENTS 
 

 I would like to express my special gratitude and thanks to Mrs. Daya Gupta 

(Head of Department, CSE, DTU) for giving me such an opportunity to work on 

the project. 

 First and foremost, I feel privileged to offer sincere thanks and deep sense of 

gratitude to Mrs. Mridula Verma, project guide for expressing her confidence in 

me by letting me work on a project of this magnitude and using the latest 

technologies and providing their support, help & encouragement in implementing 

this project. 

This thesis could not have been written without the help and inspiration of 

my parents and colleagues specially Ravi and Gaurav with whom I have had the 

pleasure to work. 

 I would like to express my gratitude towards many individuals and the staff 

of Delhi Technological University for their kind co-operation and encouragement 

which helped me in completion of this project. 

 

 

 

(ASHWINI KUMAR) 

Master of Technology, 

Department of Computer Engineering, 

DELHI TECHNOLOGICAL UNIVERSITY. 

 

 

 



TABLE OF CONTENTS 

TITLE           PAGE NO. 

CERTIFICATE ………………………………………………………... (ii) 

DEDICATION ……………………………..………………………..… (iii) 

ACKNOWLEDGEMENT ………………….….……………………… (iv) 

ABSTRACT …………………….………………………………..……. (v) 

LIST OF FIGURES …………………………………..……………….. (ix) 

Chapter 1: Introduction .……..………………………………………. 1 

1.1 Motivation and Objective. …….……………………………………….. 1 

1.2 Related Work ………….……………………………………..………… 1 

1.3 Problem Statement ……….…………………………………..………… 3 

1.4 Scope of the Worked Approach ………….…………………..………… 4 

1.5 Organization of the Dissertation ………………………….….………… 4 

Chapter 2: Literature Review ………………………………………… 6 

2.1 Pattern recognition ……………………………….…………..………… 6 

• Supervised Learning ……………………….……………….. 8 

• Unsupervised Learning ….………………………………….. 9 

• Semi-supervised Learning …..……………………..……….. 10 

2.2 Aircraft Recognition …..……………………………………..………… 11 

2.3 Preprocessing Techniques .………………………………….. ………… 13 

2.3.1 Binarization and Noise Removing ………………...……….. 14 

2.3.2 Orientation Estimation …………………………….……….. 15 

2.3.3 Size  Normalization ………………………………..……….. 16 

2.4 Ring Projection ………………………………………............………… 16 

2.4.1 Introduction …………………..…………………………….. 16 

2.4.2 Dimensionality reduction of 2-D Pattern ………….……….. 17 

2.5 Dual Tree Complex Wavelet Transformation ……………….…………. 20 

2.6 Feature Extraction ……………………………………..……..………… 28 

Chapter 3: Aircraft Recognition ……………………………………... 29 

3.1 Reasons for automatic aircraft recognition …………………………….. 31 

3.2 Factors that affect detection, recognition, and identification …............... 33 

3.3 Early aircraft recognition and identification …………………………… 33 



3.4 Development of automatic aircraft recognition system ………………… 34 

Chapter 4: Proposed System ………………………………………… 37 

4.1 Binarisation and Noise Removing ……………………………………… 38 

4.2 Size Normalization ………….………………………………………….. 41 

4.3 Ring Projection ………………………………………………………… 42 

• Dimensionality reduction of 2-D pattern …………………… 43 

4.4 Dual Tree Complex Wavelet Transformation .……………… ………… 45 

• Dual Tree Frame Work ……………..……………..………… 45 

Chapter 5: Result ………………………………….…………………. 51 

Chapter 6: Conclusion and Future work …………………………….. 57 

References ………………………………………………….………….. 59 

 

 

 

 

 

 

 

 

 



LIST OF FIGURES: 

FIG. NO. TITLE OF THE FIGURE    PAGE NO. 

Fig.1  details of preprocessing stage ….…………………... (14) 

Fig. 2   Original image and result after binarisation ………... (15) 

Fig. 3  An illustration of the ring-projection for letter “A” ... (19) 

Fig. 4   plot to illustrate difference between DWT and CWT  (23) 

Fig. 5   plots to illustrate high sensitivity to  

translations of the signal …………………………………… (24)   

Fig. 6  Descriptor for the Patterns in the Pattern Database ... (39) 

Fig. 7  Descriptor for the Recognizing the Unknown Pattern ... (40) 

Fig. 8  comparing original image and result after binarisation …... (41) 

Fig. 9   An illustration of how a 1-D signal is obtained using 

 the ring-projection for letter “A” …………………………………..... (44)   

Fig.10  Analysis FB for the dual-tree discrete CWT ……….. (46) 

Fig. 11  Synthesis FB for the dual-tree CWT ………………… (47) 

Fig. 12  The test database used in the experiment …………... (53) 

Fig. 13  The rotated images with four rotation angles ……… (53) 



Fig. 14  The noisy patterns with different SNR’s …………... (54) 

Fig. 15  The correct classification rates with different rotation 

 angles at SNR=10 …………………………………….….... (54)   

Fig. 16  The correct classification rates with different rotation  

angles at SNR=5 …..………………………………….…….. (55)   

Fig. 17  The correct classification rates with different rotation 

angles at SNR=3 ………….………………………….…….. (55)   

Fig. 18  The correct classification rates with different rotation 

angles at SNR=1 …………………………………….……… (56)   

 

 

 

 

 



ABSTRACT 

Despite a great deal of efforts to automate the aircraft recognition process aircraft 

recognition remains a challenging problem. The majority of the aircraft recognition methods 

assume the successful isolation of the aircraft portrait from the background, and only a few have 

actually addressed real world concerns, such as clutter and shadows. In this thesis, I present an 

automatic aircraft recognition system, which shows improved performance because of ring 

projection and dual tree complex wavelet. This system assumes from the start that the image 

could possibly be degraded, contain clutter, shadows and blurring. 

Feature extraction is a crucial step in invariant pattern recognition. Among all existing 

feature extraction techniques, ring-projection has been selected for invariant pattern recognition 

in [28]. This is because it is invariant to translation and scale of the patterns. In addition, the 

ring-projection transforms the feature space from 2-D to 1-D, which reduces the processing time 

substantially. This makes it suitable practical approach in real-time applications.  

The dual-tree complex wavelet transform is applied to the ring-projection signal in order 

to extract shift invariant features at different resolution scales. The reason why we choose the 

dual-tree complex wavelet transform is because it has the approximate shift-invariant property, 

which is very important for pattern recognition. 

Figures 4-7 show the correct recognition rates of the descriptor and the Fourier transform 

for different rotation angles at SNR=10, 5, 3, 1, respectively. From these figures, it can be seen 

that this descriptor is much better than the Fourier transform especially for high noise levels. If 



more representative templates (not only 4 templates) are used to represent an aircraft type, the 

three failure cases will be tackled well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1:   INTRODUCTION 

1.1: MOTIVATION AND OBJECTIVE: 

In air traffic safety, ability to reliably identify aircraft is an important aspect. Civilian air 

traffic controllers need to be constantly updated on the status of aircraft moving through the local 

airspace and in military aircraft systems it is very rigorous to reliably identify aircraft, since 

erroneous identification could easily result in a heavy damage. So objet recognition can be a 

crucial technique to identify an aircraft. Also we can identify two different aircrafts of same type 

(model).  

There is quite necessary to build a system which is not only able to identify the traffic 

precisely, it must be efficient also. Here I am going to introduce a descriptor which can identify 

different vehicles in an efficient manner.  

1.2: RELATED WORK: 

I worked on satellite images, their great advantage that these images can be captured 

without any constraints by time, weather, country boundary, and other environmental factors. 

Because of this advantage, many researchers who shown their interest to utilize satellite images 

for developing different applications like water and climate observation, land cover 

classification, energy exploration, etc. Especially, invigilating through satellite images is another 

important application for military needs and environment protection. There are many different 

detection schemes proposed for detecting various targets from satellite images such as bridges, 

vehicles, airports, roads, etc. [14-17]. For example, Nevatia and Babu[14] proposed a line edge 



detector to detect all line-like structure s. Gruen and Li[15] used wavelet transform s to sharpen 

road boundaries. Moreover, Shi and Zhu[16] proposed a line matching method to extract road 

networks from high-resolution satellite images. In addition to line detection, Pesaresi and 

Benediktsson[17] used several morphologic al operations and the techniques of multi-scale 

analysis to segment different buildings from satellite images.  

All the methods mentioned above, focus only on detecting objects and do not further 

recognize these objects, since these objects in satellite images are very small,. These methods 

described below are popular methods for recognizing objects in the past. Many techniques [18-

20] are proposed for this task but they require that the target objects should be large enough for 

feature extraction. For example, some procedures are proposed to identify a 3-D object from 2-D 

images using moments and Fourier descriptors by Reeves et al[18]. and Wallace et al[19] is 

proposed. In addition, to recognize aircraft in images, Tien and Chai[20] utilized the 

characteristics of non-uniform rational B-splines and cross-ratios. However, all these methods 

will fail to work when recognizing the targets in satellite images, since the analyzed targets are 

very small and polluted by shadows, different dazzle paints, and by noise.  

In this paper, I used a novel recognition system for recognizing various objects from 

satellite images using ring projection and dual tree complex wavelet transform. Since images of 

aircrafts in satellite images may have different sizes, orientations, textures, and even dazzle 

paints. Therefore before recognition process, I image first employed pre-processing techniques to 

reduce all the above variations to minimum as much as possible. The preprocessing process 

includes the following tasks: noise removal, image quality enhancement, and automatic 

binarisation. However, an aircraft may have longer wings, shadows, fragments, and other noise. 

The moment -based method fail due to all these factors to normalize an aircraft having a correct 



orientation. However, for an aircraft its symmetry still maintains whether that aircraft image has 

been fragmented, polluted, and occluded by shadows or noise,. Thus, the moment-based method 

is less robust, effective, and accurate to correct the orientation of an aircraft than the symmetry-

based method. Then, the distinguishable features are extracted for aircraft recognition which are 

derived from the characteristics exhibited by aircraft. 

Dual tree complex wavelet transform is used here for driving features. These features are 

used here to define the aircraft in an image. For classify aircrafts different features used. 

Different features of these aircrafts have different discrimination abilities. A learning scheme, in 

order to integrate these features together, is used to determine suitable weights from training 

sample s for improving the accuracy of aircraft recognition. All input aircraft can be recognized 

very accurately based on weights and features.  

From experimental results, the proposed method indeed achieves great improvements in 

terms of accuracy, robustness, and effectiveness in recognizing aircraft in satellite images. 

1.3. Problem Statement: 

Given: 

o A satellite image from which we have to identify the aircraft images, and 

o a test database containing given aircraft images, 

 Our aim is to recognize and allocate the aircrafts in the query image, to their particular 

class. 

 



1.4. Scope of the worked approach: 

 The objective of this thesis is to design a new aircraft recognition algorithm based on ring 

projection and dual tree complex wavelet transform that can work effectively and accurately to 

extract the most desirable features from the images. This approach is capable of providing 

efficient aircraft recognition.  

This approach has been applied on the test database. The goal of aircraft recognition is to 

identify the images present in image against a large database of images to recognize it.  

Researchers have presented a lot of techniques for aircraft recognition [28]. These 

techniques can be categorized into many classes. In this thesis we will focus on ring projection 

and dual tree complex wavelet. There are some difficulties in the odd/even filter approach for 

dual tree. Therefore, we used a Q-shift dual-tree [34] where all the filters beyond level 1 are even 

length. 

The performance analysis supports our theory when compared to some already 

implemented face recognition technique. The scope of this work can be summarized as: 

• To develop an efficient aircraft recognition system.  

• This system can be used by military and civilians both.  

1.5. Organization of the Dissertation: 

 Rest of work is organized as follows:  

 

 



Chapter 2:  Literature review: 

This section provides literature review for aircraft recognition. It provides the evolution 

of aircraft recognition techniques. It also provides the classification and details of various 

techniques used so far for aircraft recognition. 

Chapter 3:   Aircraft Recognition 

It explains our model for aircraft recognition problem, approaches we have used to solve 

aircraft recognition problem, parameters setting for the approaches and their algorithms.  

Chapter 4:  Proposed Approach: 

This chapter deals with the strategy applied to recognizing an aircraft from a given 

image. It also provides the basic knowledge of various challenges associated with it and how we 

can overcome those challenges with the help of suitable techniques.  

Chapter 5: Results: 

This section talks about the experimental setup we used to tackle the aircraft recognition 

problem and the results we have obtained from various approaches, we developed for the 

problem.   

Chapter 6:  Conclusion and Future Scope: 

In this section the conclusion of the thesis work and the future scope of the work are 

presented.  

References: 

 This section gives the reference details of the thesis. 



CHAPTER 2:        LITERATURE REVIEW 

There are many areas and applications where aircraft recognition plays tremendous role 

like air traffic safety, military applications and applications for Civilian air traffic controllers. It 

is very important to reliably identifying an aircraft in these areas because any irrelevant or wrong 

results can cause a serious damage and also we can prevent mishaps. The civilian air traffic 

controllers, they need to be constantly updated about the status of their aircrafts, so that they 

would be aware of their exact positions. In air traffic safety, ability to reliably identify aircraft is 

an important aspect and in military aircraft systems it is very rigorous to reliably identify aircraft, 

since erroneous identification could easily result in a heavy damage. So objet recognition can be 

a crucial technique to identify an aircraft. Also we would be able to identify two different 

aircrafts which are of same type (model).  

Results for these applications must be veracious and exact. To achieve this level of 

accuracy an automatic system became necessary which have less or a little human interference 

and this automatic system must be efficient and fast. For this kind of applications, data reside as 

objects in images; these images are received in real time and can be captured from various 

sources like from radar, satellites etc. objects from these images can be extracted in a means of 

object recognition. 

2.1 PATTERN RECOGNITION: 

The precise definition of pattern recognition in machine learning is the assignment of a 

label to a given input value. Classification of objects is an example of pattern recognition, which 



attempts to assign each input value to one of a given set of classes for example, classifying an 

email as "spam" or "non-spam".  

In pattern recognition is a general problem and it also encloses other types of output. 

Other examples are regression, which assigns a real-valued output to each input; sequence 

labeling, which assigns a class to each member of a sequence of values (for example, part of 

speech tagging, which assigns a part of speech to each word in an input sentence); and parsing, 

which assigns a parse tree to an input sentence, describing the syntactic structure of the sentence 

[35]. 

Generally the aim of pattern recognition algorithms is to provide a logical and reasonable 

result for all possible inputs and by taking their statistical variation in consideration, "most 

likely" matching of the inputs can be recognized or found. It looks for exact matches in the input 

with pre-existing patterns, hence it is opposit to pattern matching algorithms. regular expression 

matching is a common example of a pattern-matching algorithm, which looks for patterns of a 

given sort in textual data and is included in the search capabilities of many text editors and word 

processors. In contrast to pattern recognition, pattern matching is generally not considered a type 

of machine learning, although pattern-matching algorithms (especially with fairly general, 

carefully tailored patterns) can sometimes succeed in providing similar-quality output to the sort 

provided by pattern-recognition algorithms. 

This task to spot existing or emerging patterns is one of the most (if not the most) critical 

skills in intelligent decision making, though we are unaware that we do it all the time. In many 

fields, including psychology, psychiatry, ethology, cognitive science, traffic flow and computer 

science, pattern recognition has its applications. Combining past experience, intuition, and 

common sense, the ability to recognize patterns gives us the ability to predict what will happen 



next with some degree of accuracy. The better able we are to predict what will happen, the more 

intelligent we become. So, you might say that the purpose of intelligence is prediction. 

The type of learning procedure used to generate the output value is generally used to 

categorize different pattern recognition mechanisms. These categories are: 

a) Supervised learning: 

In supervised learning, it is assumed that a set of training data (the training set) has been 

provided, which consist of a set of instances that have been properly labeled by hand with the 

correct output. A model is then generated by a learning procedure that attempts to meet two 

sometimes conflicting objectives: 

• Perform as well as possible on the training data, and 

• generalize as well as possible to new data. 

 Usually, this means being as simple as possible, for some technical definition of 

"simple", in accordance with Occam's Razor. 

 For Supervised learning some of the approaches and algorithms are: 

• Artificial neural network: 

 Technically an artificial neural network, often just named a neural network, is a 

mathematical model inspired by biological neural networks. A neural network consists of 

an interconnected group of artificial neurons, and it processes information using a 

advance approach to computation. 

• Decision tree learning: 

  Decision tree learning, used in statistics, data mining and machine learning, uses a 

decision tree as a predictive model which maps observations about an item to conclusions 



about the item's target value. More descriptive names for such tree models are 

classification trees or regression trees. In these tree structures, leaves represent class 

labels and branches represent conjunctions of features that lead to those class labels. 

• Nearest Neighbor Algorithm: 

In pattern recognition, the k-nearest neighbor algorithm (k-NN) is a non-parametric 

method for classifying objects based on closest training examples in the feature space. k-

NN is a type of instance-based learning, or lazy learning where the function is only 

approximated locally and all computation is deferred until classification. 

b) Unsupervised learning: 

On the other hand in the unsupervised learning, it is assumed that training data that can 

then be used to determine the correct output value for new data instances. Where training data 

has not been hand-labeled, and attempts to find inherent patterns in the data. 

Approaches to unsupervised learning include: 

• clustering (e.g mixture models, hierarchical clustering),  

• blind signal separation using feature extraction techniques for dimensionality reduction 

(e.g., Principal component analysis, Independent component analysis, Non-negative 

matrix factorization, Singular value decomposition). 

 Among neural network models, the self-organizing map (SOM) and adaptive resonance 

theory (ART) are commonly used unsupervised learning algorithms.  

The SOM is a topographic organization in which nearby locations in the map represent 

inputs with similar properties.  



The ART model allows the number of clusters to vary with problem size and lets the user 

control the degree of similarity between members of the same clusters by means of a user-

defined constant called the vigilance parameter. 

c) Semi-supervised learning: 

 A semi-supervised learning technique is the combination of the two techniques that have 

recently been explored, which uses a combination of labeled and unlabeled data (typically a 

small set of labeled data combined with a large amount of unlabeled data). In cases of 

unsupervised learning, there may be no training data at all to speak of. In other words, the data to 

be labeled is the training data. 

Sometimes similar terms corresponding supervised and unsupervised learning procedures 

for the same type of output are also have different names. For example, the unsupervised 

equivalent of classification is normally known as clustering, based on the common perception of 

the task as involving no training data to speak of, and of grouping the input data into clusters 

based on some inherent similarity measure e.g. the distance between instances, considered as 

vectors in a multi-dimensional vector space, rather than assigning each input instance into one of 

a set of pre-defined classes. Note also that in some fields, the terminology is different: For 

example, in community ecology, the term "classification" is used to refer to what is commonly 

known as "clustering". 

The piece of input data for which an output value is generated is formally termed an 

instance. The instance is formally described by a vector of features, which together constitute a 

description of all known characteristics of the instance. (These feature vectors can be seen as 

defining points in an appropriate multidimensional space, and methods for manipulating vectors 

in vector spaces can be correspondingly applied to them, such as computing the dot product or 



the angle between two vectors.) Typically, features are either categorical (also known as 

nominal, i.e., consisting of one of a set of unordered items, such as a gender of "male" or 

"female", or a blood type of "A", "B", "AB" or "O"), ordinal (consisting of one of a set of 

ordered items, e.g., "large", "medium" or "small"), integer-valued (e.g., a count of the number of 

occurrences of a particular word in an email) or real-valued (e.g., a measurement of blood 

pressure). Often, categorical and ordinal data are grouped together; likewise for integer-valued 

and real-valued data. Furthermore, many algorithms work only in terms of categorical data and 

require that real-valued or integer-valued data be discretized into groups (e.g., less than 5, 

between 5 and 10, or greater than 10). 

2.2 AIRCRAFT RECOGNITION: 

If we want to capture images with no constraint by time, weather, country boundary, and 

other environmental factors. We can go for satellite images, since satellites don’t have any 

restrictions and can reach any location in the world. Taking this as an advantage, there have been 

many researchers who devoted themselves to utilize satellite images for developing different 

applications like water and climate observation, land cover classification, energy exploration, 

etc. Especially, surveillance through satellite images is another important application for military 

needs and environment protection. Therefore, in the literature[14], there have been many 

different detection schemes proposed for detecting various targets from satellite images such as 

bridges, airports, roads, streets, buildings, etc. For example, Nevatia and Babu[14] proposed a 

line edge detector to detect all line-like structures. Gruen and Li[15] used wavelet transforms to 

sharpen road boundaries. Moreover, Shi and Zhu[16] proposed a line matching method to extract 

road networks from high-resolution satellite images. In addition to line detection, Pesaresi and 



Benediktsson[17] used several morphological operations and the technique of multi-scale 

analysis to segment different buildings from satellite images.  

However, since the objects in satellite images are very small, all the above methods focus 

only on detecting objects and do not further recognize these objects. For recognizing objects, in 

the past, there have been many methods[18-24] proposed for this task and requiring that the 

targets should be large enough for feature extraction. For example, Reeveset al.[18] and 

Wallaceet al.[19]proposed procedures to identify a 3-D object from 2-D images using moments 

and Fourier descriptors. In addition, Tien and Chai [20] utilised the characteristics of non-

uniform rationalB-splines and cross-ratios to recognise aircraft in images. Greenberg and 

Guterman[21]used multi-layer neural networks to recognize different targets from aerial images 

according to the features of Zernike moments. Moreover, Moldovan and Wu[23] used a 

symbolic approach to recognise hierarchically aeroplanes if all features of an aeroplane were 

well extracted. However, when recognising the targets in satellite images, all these methods will 

fail to work since the analysed targets are very small and polluted by different dazzle paints, 

shadows, and other noise. In this paper, we propose a novel recognition system for recognising 

various aircraft in satellite images using a hierarchical boosting algorithm. Since each aircraft in 

satellite images has different orientations, sizes, textures, and even dazzle paints, before 

recognition, image preprocessing techniques are first employed to reducing all the above 

variations to a minimum. The preprocessing tasks include image quality enhancement, noise 

removal, auto-matic binarisation, and the adjustments of aircraft scaling and translation. For 

rotation correction, we propose a novel method to use the symmetrical property of an aircraft to 

estimate its optimal orientation. In the past, the common method to estimate an object’s 

orientation was through a moment-based analysis[24]. However, an aircraft may have longer 



wings, shadows, fragments, and other noise. All these factors will make the moment-based 

method fail to normalise an aircraft having a correct orientation. However, for an aircraft that has 

been fragmented, polluted, and occluded by shadows or noise, its symmetry still maintains. Thus, 

the symmetry-based method can perform more robustly, effectively, and accurately to correct the 

orientation of an aircraft than the moment-based method. Then, distinguishable features derived 

from the character-istics exhibited by aircraft are extracted for aircraft recognition. Four features 

are used here and derived, respectively, from wavelet transform, Zernike moment, distance 

transform, and the bitmap itself. Different features have different discrimination abilities to 

classify aircrafts. In order to integrate these features together, a novel learning scheme is 

proposed to determine suitable weights from training samples for improving the accuracy of 

aircraft recognition. Based on these two ingredients, i.e. weights and features, all input aircraft 

can be recognised very accurately. From experimental results, the proposed method indeed 

achieves great improvements in terms of accuracy, robust-ness, and effectiveness in recognising 

aircraft in satellite images. 

2.3 PREPROCESSING TECHNIQUE: 

 Noise may pollute each aircraft in a satellite image and has different orientations, sizes, 

and textures. Therefore, before recognition, image preprocessing techniques such as binarisation, 

orientation adjustment, and noise removing should be first applied to overcoming these 

variations. In what follows, details of these techniques are described. These techniques are 

applied in a flow as described the figure 1 below:  



 

Fig. 1 Details of preprocessing stage 

 Following are preprocessing techniques which are used for normalizing the pattern in an 

image: 

1. Binarisation and noise removing 

2. Orientation estimation and normalization 

a. Orientation estimation by moments 

b. Orientation estimation through symmetry comparison 

1. Binarisation and noise removing: 

 To binaries each input region, a ‘minimum within-group variance’ dynamic thresholding 

method[24] is applied. Figure 2 shows an example of automatic binarisation using this algorithm. 

A conventional labeling technique is applied after binarisation to locate each connected 

component from the binarised aircraft image. For each connected region, if its size is less than a 

threshold, it will be considered as noise and then filtered out. 



 

Fig. 2 Original image and result after binarisation 

(a) Original aircraft image 

(b) Result after binarisation 

2. Orientation estimation: 

 The orientations of different aircrafts which appears in same or different satellite images 

each aircraft will have different orientation. The definition of orientation can be made as a set of 

parameters that relates the angular position of a frame to another reference frame. Therefore it 

should be normalized to a fixed orientation in order to recognize this aircraft more accurately and 

robustly, i.e. the northern direction. There are numerous methods for describing this relation. 

Some are easier to visualize than others are. Each has some kind of limitations. Among the 

several methods there are two methods used here for orientation estimation and normalization, 

one is moment-based method and the other is symmetry-based method, are described for 

estimating an optimal orientation of an aircraft for this normalization. First method is simpler 

and more efficient than the second. However, when there is noise, the symmetry-based (second) 



method works more robustly and effectively than the first one. In what follows, details of the 

moment-based method are first described and then the symmetry-based one is proposed. 

3. Size normalization: 

For all images submitted to the image enhancement process: a desired mean value of 

zero, and a variance of one are used for normalization. Therefore, each image is normalized to a 

predetermined level before proceeding on to the subsequent stages.  

 In addition to an orientation adjustment, before feature extraction, the size and centre of 

each processed aircraft also require normalising to a regular size and the original, respectively. In 

this paper, the regular size is defined as 24*32. 

 The normalization of an object is done by performing translation and scale operations on 

the image. Image translation is the process of redefining the co-ordinate system or reference 

frame for the image. It is useful when we want to define a image in reference of the other image. 

Image scaling is the process of resizing a digital image. Scaling is a non-trivial process that 

involves a trade-off between efficiency, smoothness and sharpness. As the size of an image is 

reduced or enlarged, the pixels which comprise the image become increasingly visible, making 

the image appear "soft" if pixels are averaged, or jagged if not. 

 

2.4. RING PROJECTION: 

INTRODUCTION: 

One of the highly growing research areas in recent years is wavelet analysis and its 

applications[29]. There are numerous applications in areas like signal processing are found 



through advanced research[30]. As compared to the 2-D, 1-D is better. Therefore, through 

mathematically sound derivations, reduce the problem of 2-D patterns into that of 1-D ones [28]. 

When patterns are extracted from the image, they are often rotated due to 

experimentation constraints or errors. This raises the need of a pattern recognition method that 

must be invariant to rotations. In 1991, Tang [27] first proposed a method “ring projections”. It is 

a method of transforming 2-D patterns into 1-D patterns. The 1-D pattern obtained from ring-

projection is invariant to rotations because the projections are done in the form of rings. 

DIMENSIONALITY REDUCTION OF TWO-DIMENSIONAL PATTERNS 

WITH A RING-PROJECTION METHOD: 

First, suppose that a 2-D pattern such as an alphanumeric symbol has been represented 

into a binary image. Taking letter “A” as an example, its gray-scale image, p(x,y), can be 

discretized into binary values as follows: 

𝑝(𝑥, 𝑦) = {
1 𝑖𝑓 (𝑥, 𝑦) ∈ 𝐷
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

… … … … … … … … … … … … … .2.4.1 

where domain D corresponds to the white region of letter “A”. From (2.4.1), it is readily 

noted that the corresponding density function is a uniform distribution. From this uniform mass 

distribution, we can derive the centroid of the mass, m(x0,y0 ), for the region D, and 

subsequently, translate the origin of our reference frame to this centroid. Next, we let 

 𝑀 = max
𝑁∈𝐷

| 𝑁 (𝑥, 𝑦 ) −  𝑚(𝑥0, 𝑦0 )| 



where |𝑁 (𝑥, 𝑦 ) −  𝑚(𝑥0, 𝑦0 )| represents the Euclidean distance between two points, N 

and m, on the plane. . Further, we transform the original reference Cartesian frame into a polar 

frame based on the following relations: 

{
𝑥 = 𝑟𝑐𝑜𝑠𝜃
𝑦 = 𝑟𝑠𝑖𝑛𝜃

… … … … … … … … … … … . … … . . … … (2.4.2) 

Hence, 

𝑝(𝑥, 𝑦) = 𝑝(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 

where 𝑟 ∈ [0,∞), 𝜃 ∈ (0,2𝜋 ]. For any fixed 𝑟 ∈ [0, 𝑀 ], we then compute the following 

integral: 

𝑓(𝑟) = ∫ 𝑝(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

… … … … … … … … … … … … . (2.4.3) 

The resulting f(r) is in fact equal to the total mass as distributed along circular rings, as 

shown in Fig. 1.  



 

Fig. 3. An illustration of the ring-projection for letter “A”. 

Hence, the derivation of f(r) is also termed as a ring-projection of the planar mass 

distribution. The single-variate function f (r), r∈[0,M ], sometimes also denoted as f (x), 

x∈[0,M], can be viewed as a 1-D pattern that is directly transformed from the original 2-D 

pattern through a ring-projection. Owing to the fact that the centroid of the mass distribution is 

invariant to rotation and that the projection is done along circular rings, the derived 1-D pattern 

will be invariant to the rotations of its original 2-D pattern. In other words, the ring-projection is 

rotation-invariant. 



From a practical point of view, the images to be analyzed by a recognition system are 

most often stored in discrete formats. Catering to such discretized 2-D patterns, we shall modify 

(2.4.3) into the following expression: 

𝑓(𝑟) = ∑ 𝑝(𝑟𝑐𝑜𝑠𝜃𝑘 , 𝑟𝑠𝑖𝑛𝜃𝑘)

𝑀

𝑘=0

… … … … … … … … . (2.4.4) 

 Interested readers are referred to[27] for a thorough discussion on ring-projection. In the 

following sections, we are concerned mainly with how to extract as much information as 

possible from the obtained ring-projection, i.e., a 1-D pattern, by way of wavelet transformation. 

This, as will be described later, enables us to obtain a set of wavelet transformation sub-

patterns—curves that are non self-intersecting, from which feature vectors defined over the 

curves’ fractal dimensions can easily be computed. 

2.5 DUAL-TREE COMPLEX WAVEWLET: 

In image processing, the complex wavelets can potentially offer significant performance 

improvements over the DWT. 

THE WAVELET TRANSFORM AND MULTISCALE ANALYSIS: 

The wavelet transform has been exploited with great success across the gamut of signal 

processing applications in last 20 years[10]. 

In a nutshell, the DWT replaces the infinitely oscillating sinusoidal basis functions of the 

Fourier transform with a set of locally oscillating basis functions called wavelets. In the classical 

setting, the wavelets are stretched and shifted versions of a fundamental, real-valued band-pass 

wavelet ψ(t). When carefully chosen and combined with shifts of a real-valued low-pass scaling 



function φ(t), they form an orthonormal basis expansion for one-dimensional (1-D) real-valued 

continuous-time signals[2]. That is, any finite-energy analog signal x(t) can be decomposed in 

terms of wavelets and scaling functions via: 

𝑥(𝑡) = ∑ 𝑐(𝑛)𝜙(𝑡 − 𝑛)

∞

𝑛=−∞

+ ∑ ∑ 𝑑(𝑗, 𝑛)2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑛)

∞

𝑛=−∞

∞

𝑗=0

… … … … (2.5.1) 

The scaling coefficients c(n)and wavelet coefficients d(j,n) are computed via the inner 

products: 

𝑐(𝑛) = ∫ 𝑥(𝑡)𝜙(𝑡 − 𝑛)𝑑𝑡
∞

−∞

… … … … … … … … … . . (2.5.2) 

𝑑(𝑗, 𝑛) = 2𝑗 2⁄ ∫ 𝑥(𝑡)𝜓(2𝑗𝑡 − 𝑛)𝑑𝑡
∞

−∞

… … … (2.5.3) 

They provide a time-frequency analysis of the signal by measuring its frequency content 

(controlled by the scale factor j) at different times (controlled by the time shift n). There exists a 

very efficient, linear time complexity algorithm to compute the coefficients c(n)and d(j,n)from a 

fine-scale representation of the signal (often simply N samples) and vice versa based on two 

octave-band, discrete-time FBs that recursively apply a discrete-time low-pass filter h0(n), a 

high-pass filter h1(n), and up-sampling and down-sampling operations (see Figure 24)[2,6]. 

These filters provide a convenient parameterization for designing wavelets and scaling functions 

with desirable properties, such as compact time support and fast frequency decay (to ensure the 

analysis is as local as possible in time frequency) and orthogonality to low-order polynomials 

(vanishing moments) [2].  



Why have wavelets and multi-scale analysis proved so useful in such a wide range of 

applications? The primary reason is because they provide an extremely efficient representation 

for many types of signals that appear often in practice but are not well matched by the Fourier 

basis, which is ideally meant for periodic signals. In particular, wavelets provide an optimal 

representation for many signals containing singularities. The wavelet representation is optimally 

sparse for such signals, requiring an order of magnitude fewer coefficients than the Fourier basis 

to approximate within the same error. The key to the sparsity is that since wavelets oscillate 

locally, only wavelets overlapping a singularity have large wavelet coefficients; all other 

coefficients are small. 

TROUBLE IN PARADISE: FOUR PROBLEMS WITH REAL WAVELETS: 

In spite of its efficient computational algorithm and sparse representation, the wavelet 

trans-form suffers from four fundamental, intertwined shortcomings.  

PROBLEM 1: OSCILLATIONS: 

Since wavelets are band-pass functions, the wavelet coefficients tend to oscillate positive 

and negative around singularities (see Figures 1 and 2). This considerably complicates wavelet-

based processing, making singularity extraction and signal modeling, in particular, and very 

challenging [1].  



 

FIG 4: plot to illustrate difference between DWT and CWT. 

Moreover, since an oscillating function passes often through zero, we see that the 

conventional wisdom that singularities yield large wavelet coefficients is overstated. Indeed, as 

we see in Figure 1, it is quite possible for a wavelet overlapping a singularity to have a small or 

even zero wavelet co-efficient. 

PROBLEM 2: SHIFT VARIANCE 

A small shift of the signal greatly perturbs the wavelet coefficient oscillation pattern 

around singularities (see Figure 2).  



 

FIG 5: The wavelet coefficients of a signal x(n)are very sensitive to translations of the signal. For two 

impulse signals x(n)=δ(n−60)and x(n)=δ(n−64)(a), we plot the wavelet coefficients d(j,n)at a fixed scale j(b) 

and (c). (b) shows the real coefficients computed using the conventional real discrete wavelet transform 

(DWT, with Daubechies length-14 filters). (c) shows the magnitude of the complex coefficients computed 

using the dual-tree complex discrete wavelet transform (CWT with length-14 filters from [58]). For the dual-

tree CWT the total energy at scale jis nearly constant, in contrast to the real DWT. 

Shift variance also complicates wavelet-domain processing; algorithms must be made 

capable of coping with the wide range of possible wavelet coefficient patterns caused by shifted 

singularities [38], [39], [40]. To better understand wavelet coefficient oscillations and shift 

variance, consider a piecewise smooth signal x(t−t0) like the step function  

u(t) = {
0         t < 0
1         𝑡 ≥ 0

 



analyzed by a wavelet basis having a sufficient number of vanishing moments. Its 

wavelet coefficients consist of samples of the step response of the wavelet [40]. 

PROBLEM 3: ALIASING: 

The wide spacing of the wavelet coefficient samples, or equivalently, the fact that the 

wavelet coefficients are computed via iterated discrete-time down-sampling operations 

interspersed with non-ideal low-pass and high-pass filters, results in substantial aliasing. The 

inverse DWT cancels this aliasing, of course, but only if the wavelet and scaling coefficients are 

not changed. Any wavelet coefficient processing (thresholding, filtering, and quantization) 

upsets the delicate balance between the forward and inverse transforms, leading to artifacts in the 

reconstructed signal. 

PROBLEM 4: LACK OF DIRECTIONALITY: 

Finally, while Fourier sinusoids in higher dimensions correspond to highly directional 

plane waves, the standard tensor product construction of M-D wavelets produces a checkerboard 

pattern that is simultaneously oriented along several directions. This lack of directional 

selectivity greatly complicates modeling and processing of geometric image features like ridges 

and edges.  

ONE SOLUTION: COMPLEX WAVELETS 

Fortunately, there is a simple solution to these four DWT short-comings. The key is to 

note that the Fourier transform does not suffer from these problems. First, the magnitude of the 

Fourier transform does not oscillate positive and negative but rather provides a smooth positive 

envelope in the Fourier domain. Second, the magnitude of the Fourier transform is perfectly shift 



invariant, with a simple linear phase offset encoding the shift. Third, the Fourier coefficients are 

not aliased and do not rely on a complicated aliasing cancellation property to reconstruct the 

signal; and fourth, the sinusoids of the M-D Fourier basis are highly directional plane waves. 

 What is the difference? Unlike the DWT, which is based on real-valued oscillating 

wavelets, the Fourier transform is based on complex-valued oscillating sinusoids  

𝑒𝑗Ω𝑡 = cos(Ω𝑡) + 𝑗 sin(Ω𝑡) … … … … … … . . (2.5.4) 

with j=√−1. The oscillating cosine and sine components (the real and imaginary parts, 

respectively) form a Hilbert transform pair; i.e., they are 90◦ out of phase with each other. 

Together they constitute an analytic signale 𝑒𝑗Ω𝑡 that is supported on only one-half of the 

frequency axis (Ω > 0). See “The Hilbert Transform and Analytic Signal” for more background. 

Inspired by the Fourier representation, imagine a CWT as in (2.5.1)–(2.5.3) but with a 

complex-valued scaling function and complex-valued wavelet 

𝜓𝑐(𝑡) = 𝜓𝑟(𝑡) + 𝑗𝜓𝑖(𝑡) 

Here, by analogy to (2.5.4), 𝜓𝑟(𝑡) is real and even and 𝑗𝜓𝑖(𝑡) is imaginary and odd. 

Moreover, if 𝜓𝑟(𝑡) and 𝜓𝑖(𝑡) form a Hilbert transform pair (90◦ out of phase with each other), 

then 𝜓𝑐(𝑡) is an analytic signal and supported on only one-half of the frequency axis. The 

complex scaling function is defined similarly. See Figure 1 for an example of a complex wavelet 

pair that approximately satisfies these properties.  

Projecting the signal onto 2𝑗 2⁄ 𝜓𝑐(2𝑗𝑡 − 𝑛) as in (2.5.3), we obtain the complex wavelet 

coefficient  



𝑑𝑐(𝑗, 𝑛) = 𝑑𝑟(𝑗, 𝑛) + 𝑗𝑑𝑖(𝑗, 𝑛) 

With magnitude  

|𝑑𝑐(𝑗, 𝑛)| = √[𝑑𝑟(𝑗, 𝑛)]2 + [𝑑𝑖(𝑗, 𝑛)]2 

and phase 

∠𝑑𝑐(𝑗, 𝑛) = 𝑎𝑟𝑐 tan (
𝑑𝑟(𝑗, 𝑛)

𝑑𝑖(𝑗, 𝑛)
) 

 

when |𝑑𝑖(𝑗, 𝑛)| > 0. As with the Fourier transform, complex wavelets can be used to 

analyze and represent both real-valued signals and complex-valued signals. In either case, the 

CWT enables new coherent multi-scale signal processing algorithms that exploit the complex 

magnitude and phase. In particular, as we will see, a large magnitude indicates the presence of a 

singularity while the phase indicates its position within the support of the wavelet[41].  

The dual-tree approach, which is another type of CWT, is based on two FB trees and thus 

two bases[39]. As we will see, any CWT based on wavelets of compact support can’t exactly 

possess the Hilbert transform/analytic signal properties, and this means that any such CWT will 

not perfectly overcome the four DWT shortcomings. The key challenge in dual-tree wavelet 

design is thus the joint design of its two FBs to yield a complex wavelet and scaling function that 

are as close as possible to analytic. As a result, the dual-tree CWT comes very close to mirror-

ing the attractive properties of the Fourier transform, including a smooth, non-oscillating 

magnitude (see Figure 1); a nearly shift-invariant magnitude with a simple near-linear phase 

encoding of signal shifts; substantially reduced aliasing; and directional wavelets in higher 



dimensions. The only cost for all of this is a moderate redundancy: 2×redundancy in 1-D (2 d for 

d-dimensional signals, in general). This is much less than the log 2N×redundancy of a perfectly 

shift-invariant DWT [1], [5], which, moreover, will not offer the desirable magnitude/phase 

interpretation of the CWT nor the good directional properties in higher dimensions. 

2.6 FEATURE EXTRACTION: 

I use four features to describe the characteristics of an aircraft. Some features are used for 

describing its inner properties and some feature is used for its outer properties. The four features 

include binary map, contours, moments, and wavelet coefficients, respectively. Other features 

like the ratio between the lengths of wings and body axis are also good for aircraft recognition. 

However, the ‘ratio’ is easily affected by shadows and noise and thus not considered here. 

 

 

 

 

 



CHAPTER 3:      AIRCRAFT RECOGNITION 

WHAT IS AIRCRAFT RECOGNITION? 

Aircraft Recognition is about being able to distinguish between different aircrafts. 

Military around the world invest many resources on education in aircraft recognition, so that 

their pilots and soldiers know the difference between a friend and foe. It is also in the interest of 

many civilian spotters to be able to distinguish between different planes and helicopters. 

WHY AIRCRAFT RECOGNITION? 

Aircraft recognition is nothing new; it's as old as Aviation itself. For fighter pilots, 

Aircraft Recognition became the simple difference between shooting down quite literally, a 

"friend or foe". The same is true for ground personnel trying to defend against aircraft in the air, 

with a mix of enemy and friendly aircraft engaged in combat at the same time over the battle 

area. Aircraft identification mistakes have been made by all militaries, though "IFF" capability 

(an electronic signal to "Identify Friend or Foe") has decreased the number of incidents of 

accidental shoot downs due to "Friendly Fire". 

During the attack on Pearl Harbor, land and sea gunners on defending US air bases and 

ships mistook a flight of US Navy aircraft arriving from a carrier out to sea, and shot several 

down. Radar has also helped, but in some situations, has hindered. Without IFF at the time when 

radar was new, Army observers were unable to identify the Japanese attack force inbound to 

Pearl Harbor. A flight of B-17 Flying Fortresses were inbound to Hawaii at the same 



approximate time, literally arriving in the middle of the attack, and the Japanese attacking force 

was mistaken for them. 

In the latter day case of the U.S.S. Vincennes, which was trying to identify an aircraft not 

responding to IFF, the result was a missile fired in defense of the ship, and the shoot down of a 

civilian Iran Air Airbus A-300B2-202 on July 3, 1988, with the loss of 290 people. Though 

accidental, a Libyan terrorist group later retaliated with the bombing of the Pan Am Boeing 747-

121A, "Clipper Maid of the Seas," over Lockerbie, Scotland, killing 270. A total 560 people died 

for lack of IFF and lack of visual identification.  

Altitude of the airliner would certainly have played a factor. Likewise, so would weather 

conditions. A single layer of clouds can prevent visual ID, resulting in the need for IFF or 

AWACS.  In the post-Desert Storm period, the pilot of an F-15 Eagle accidentally shot down two 

"Friendly" US Army UH-60 Blackhawk helicopters believing them to be "threat" Iraqi aircraft, 

possibly MI-24 Hinds. Although under guidance from a nearby AWACS, a series of errors 

complicated the situation, hindering the pilot's ability to identify the aircraft positively. 26 people 

died. 

While visual recognition of aircraft cannot always be accomplished, when it can, it's 

important that military personnel train in Aircraft Identification (Friend and Foe), to be able to do 

the job. Ground personnel, for example, equipped with Stinger Missiles trying to defend their 

unit from aerial attack, have a need for Aircraft Identification. Army SQT (Skill Qualification 

Testing) includes both Aircraft and Vehicle identification. The same is true of the Air Force and 

Marines. For the Navy, the identification of civil and military aircraft and vessels is paramount. 



Aircraft identification could be the difference between life and death for a squadron mate, 

and the difference between the wanton destruction of friendly aircraft and the destruction of the 

foe, in a hostile or unfriendly environment. 

CIVIL USES FOR AIRCRAFT RECOGNITION: 

The Civil World has long used aircraft identification to track type of aircraft, aircraft 

movements, change of owners, color schemes, newsmakers, modifications to aircraft, et al, often 

for News, Business, and Educational and Insurance purposes. 

Commercial Aviation and Air Traffic Control (ATC) are the primary users of Aircraft 

Recognition guides, with pilots needing to "See and be seen", to be able to identify the type of 

aircraft and (when available) the airline markings of another aircraft, while Air Traffic 

Controllers need to be able to identify aircraft by type, performance, capacity, etc. This includes 

ATC in the tower and ATC in the radar room. For example, knowing an aircraft type allows a 

controller to assign approach and en route speeds. Civil (General and Executive Aviation) also 

require this as need-to-know information, and of course, going back to the military, which 

frequently operates in Civil Airspace, they too, must know aircraft in the Civil World beyond 

"friend and foe" military aircraft over the Battlefield. 

3.1 REASONS FOR AUTOMATIC AIRCRAFT RECOGNITION: 

Following the past, the emphasis on aircraft recognition system became required for 

everyone which does it manually. Causes for this are: 

• The substitution of guided missiles for large antiaircraft guns. 

• The assumption that US forces would continue to maintain air superiority. 



• The reliance on electronic equipment for aircraft identification as hostile or 

friendly. 

The need for this kind of system in aircraft recognition has become more critical since: 

• An analysis of past military actions shows aircraft losses to air defense guns and 

small arms. It has reestablished that the soldier on the ground is capable of 

inflicting heavy losses on aircraft operating at low altitudes. 

• Continued air superiority over every battlefield is not possible. 

• Electronic identification has limitations and small units or individual soldiers do 

not always have access to these devices. 

• Visual recognition and identification of specific aircraft types and timely 

reporting provide the S2 and G2 additional information of a passive nature in the 

form of early warning, threat air capability, or information on a possible new 

tactical situation such as supply drops, defoliation, or photographic 

reconnaissance. 

The provision of large numbers of AD weapon systems to all divisional and some non-

divisional ground combat forces generate additional emphasis on the need for visual aircraft 

recognition. Crew and team members of these weapon systems depend on visual recognition and 

identification of aircraft when making engagement decisions. 

 

 



3.2 FACTORS THAT AFFECT DETECTION, RECOGNITION, AND 

IDENTIFICATION:  

This chapter covers early recognition and identification, aircraft confusion, physical 

factors, and search techniques. 

Every attempt made at visual aircraft recognition involves two events. First, an aircraft 

must be detected. Second, the aircraft must be inspected to distinguish the characteristics or 

shape that makes it recognizable as a particular aircraft. 

Since detection, identification, and recognition are all visual processes, an aircraft must 

be detected, and then recognized at the farthest range possible, to make a timely engagement 

decision and or to report the aircraft. The task requires good, corrected if necessary, eyesight. 

3.3 EARLY AIRCRAFT RECOGNITION AND IDENTIFICATION: 

The farther out an aircraft can be detected, recognized, and identified, the more time a 

gunner has to make an engagement decision. If the gunner is not going to engage the aircraft, 

then early recognition and identification will allow time to seek cover and or report the aircraft. 

The importance of early identification is demonstrated in the following illustration. 

DESCRIPTION OF AIRCRAFT: 

This chapter shows the features of aircraft that make recognition and identification 

possible, and sorts out similar and dissimilar aircraft. Additionally, it shows examples of how 

aircraft are named and or numbered. All of the possible aircraft configurations are not covered in 

this chapter. When instructing aircraft recognition, an instructor or small unit leader can follow 



the descriptive methods used in the examples and derive his own descriptions for features or 

configurations that are not covered in the text. 

AIRCRAFT RECOGNITION AND IDENTIFICATION FEATURES: 

All aircraft are built with the same basic elements: wings to provide lift, engine(s) to 

provide motive power, a fuselage to carry the payload and controls, and a tail assembly which 

usually controls the direction of flight. These elements differ in shape, size, number, and 

position. The differences distinguish one aircraft type from another. An instructor can isolate the 

individual components for description and study as separate recognition and identification 

features, but it is the composite of these features that must be learned to recognize and identify 

an aircraft. The WEFT Features illustration shows wings, engine(s), fuselage, and tail features of 

aircraft. Allied countries may teach more or fewer features of aircraft in their recognition and 

identification programs. 

3.4 DEVELOPMENT OF AUTOMATIC AIRCRAFT RECOGNITION 

SYSTEM: 

If we want to capture images with no constraint by time, weather, country boundary, and 

other environmental factors. We can go for satellite images, since satellites don’t have any 

restrictions and can reach any location in the world. Taking this as an advantage, there have been 

many researchers who devoted themselves to utilize satellite images for developing different 

applications like water and climate observation, land cover classification, energy exploration, 

etc. Especially, surveillance through satellite images is another important application for military 

needs and environment protection. Therefore, in the literature[14], there have been many 

different detection schemes proposed for detecting various targets from satellite images such as 

bridges, airports, roads, streets, buildings, etc. For example, Nevatia and Babu[14] proposed a 



line edge detector to detect all line-like structures. Gruen and Li[15] used wavelet transforms to 

sharpen road boundaries. Moreover, Shi and Zhu[16] proposed a line matching method to extract 

road networks from high-resolution satellite  mages. In addition to line detection, Pesaresi and 

Benediktsson[17] used several morphological operations and the technique of multi-scale 

analysis to segment different buildings from satellite images.  

However, since the objects in satellite images are very small, all the above methods focus 

only on detecting objects and do not further recognize these objects. For recognizing objects, in 

the past, there have been many methods[18-23] proposed for this task and requiring that the 

targets should be large enough for feature extraction. For example, Reeveset al.[18] and 

Wallaceet al.[19]proposed procedures to identify a 3-D object from 2-D images using moments 

and Fourier descriptors. In addition, Tien and Chai [20] utilised the characteristics of non-

uniform rationalB-splines and cross-ratios to recognise aircraft in images. Greenberg and 

Guterman[21]used multi-layer neural networks to recognize different targets from aerial images 

according to the features of Zernike moments. Moreover, Moldovan and Wu[23] used a 

symbolic approach to recognise hierarchically aeroplanes if all features of an aeroplane were 

well extracted. However, when recognising the targets in satellite images, all these methods will 

fail to work since the analysed targets are very small and polluted by different dazzle paints, 

shadows, and other noise. In this paper, we propose a novel recognition system for recognising 

various aircraft in satellite images using a hierarchical boosting algorithm. Since each aircraft in 

satellite images has different orientations, sizes, textures, and even dazzle paints, before 

recognition, image preprocessing techniques are first employed to reducing all the above 

variations to a minimum. The preprocessing tasks include image quality enhancement, noise 

removal, auto-matic binarisation, and the adjustments of aircraft scaling and translation. For 



rotation correction, we propose a novel method to use the symmetrical property of an aircraft to 

estimate its optimal orientation. In the past, the common method to estimate an object’s 

orientation was through a moment-based analysis[24]. However, an aircraft may have longer 

wings, shadows, fragments, and other noise. All these factors will make the moment-based 

method fail to normalise an aircraft having a correct orientation. However, for an aircraft that has 

been fragmented, polluted, and occluded by shadows or noise, its symmetry still maintains. Thus, 

the symmetry-based method can perform more robustly, effectively, and accurately to correct the 

orientation of an aircraft than the moment-based method. Then, distinguishable features derived 

from the character-istics exhibited by aircraft are extracted for aircraft recognition. Four features 

are used here and derived, respectively, from wavelet transform, Zernike moment, distance 

transform, and the bitmap itself. Different features have different discrimination abilities to 

classify aircrafts. In order to integrate these features together, a novel learning scheme is 

proposed to determine suitable weights from training samples for improving the accuracy of 

aircraft recognition. Based on these two ingredients, i.e. weights and features, all input aircraft 

can be recognised very accurately. From experimental results, the proposed method indeed 

achieves great improvements in terms of accuracy, robust-ness, and effectiveness in recognising 

aircraft in satellite images. 

 

 



CHAPTER 4:    PROPOSED WORK  

 Our proposed system identifies the aircrafts from a satellite image which may contain any 

number of aircrafts in it. These objects (aircrafts) may be small in size and can be faded by noise. 

The ring-projection transforms the feature space from 2-D to 1-D, which reduces the processing 

time substantially. This makes the proposed descriptor in this paper a practical approach in real-

time applications. Kingsbury ([31-33]) introduced the dual-tree complex wavelet transform that 

exhibits approximate shift invariant property and improved angular resolution. The success of 

the transform is due to the use of filters in two trees, a and b. Kingsbury proposed a simple delay 

of one sample between the level 1 filters in each tree, and then the use of alternate odd-length 

and even-length linear-phase filters. He pointed out that there are some difficulties in the 

odd/even filter approach. Therefore, he proposed a new Q-shift dual-tree [42] where all the filters 

beyond level 1 are even length. The filters in the two trees are just the time-reverse of each other, 

as are the analysis and reconstruction filters. The new filters are shorter than before, and the new 

transform still satisfies the shift invariant property and good directional selectivity in multiple 

dimensions.  

 The feature extraction procedures are the same for the patterns in the pattern database and 

the unknown patterns. 

 First, we need to move the centre of the pattern to its centroid and scale it to have a fixed 

size. This can make the pattern translation and scale invariant.  

 The ring-projection is then applied to the normalized pattern so that we obtain a 1-D 

signal.  



 Since the dual-tree complex wavelet transform is approximate shift-invariant, we can 

extract invariant features by applying this transform to the 1-D signal for a predetermined (J) 

decomposition scales. 

 Finally, we can classify the unknown pattern to one of the known classes by using the 

nearest neighbor classifier. 

 We can also use other existing classification techniques, such as neural networks, support 

vector machines (SVM), k-nearest neighbor classifier, etc.  

 There is difference for feature extraction between the patterns in the pattern database and 

the unknown patterns. We need to save the extracted features for the patterns in the pattern 

database. However, we need to use the extracted features to classify the unknown pattern to one 

of the known classes.  

The descriptor for the patterns in the pattern database can be summarized as follows:  

1)  Normalize the pattern f(x,y)so that it is translation and scale invariant.  

2)  Extract the ring-projection 1-D signal from the normalized pattern.  

3)  Apply the dual-tree complex wavelet transform to the ring-projection 1-D signal for Jscales.  

4)  Save the extracted features into a feature file for later use.  

The descriptor for recognizing the unknown patterns can be summarized as follows:  

1)  Normalize the unknown pattern f(x,y)so that it is translation and scale invariant.  

2)  Extract the ring-projection 1-D signal from the normalized pattern. 



3)  Apply the dual-tree complex wavelet transform to the ring-projection 1-D signal for J scales. 

4)  Classify the unknown pattern to one of the known classes by using the nearest neighbor 

classifier.  

 The main contribution of this paper is that we have combined the ring-projection with the 

dual-tree complex wavelet transform. Unlike the wavelet transform, which does not have the 

shift-invariant property, the dual-tree complex wavelet transform is approximate shift-invariant.  

 

 

 

 

 

 

 

 

 

Fig. 6 Descriptor for the Patterns in the Pattern Database: 

Start 

Normalize the pattern f(x,y) so that it is translation 

and scale invariant 

Extract the ring-projection 1-D signal from the 

normalized pattern 

Apply the dual-tree complex wavelet transform to 

the ring-projection 1-D signal for J scales. 

Save the extracted features into a feature file 
for later use. 

 

Stop 



This invariant property is very important for pattern recognition. Experimental results conducted 

in the next section will show that the proposed descriptor is better than the Fourier transform for 

recognizing noisy 2D patterns. 
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Descriptor for Recognizing the Unknown Patterns 

 So I organized the work as shown in flow chart to recognize patterns in the pattern 

database and to recognize the unknown patterns. This process takes four steps to accomplish the 

task. The first step includes noise removal and normalization.  

 

 

Start 

Normalize the unknown pattern f(x,y) so that it 

is translation and scale invariant 

Extract the ring-projection 1-D signal from the 
normalized pattern 

 

Apply the dual-tree complex wavelet transform 

to the ring-projection 1-D signal for J scales. 

Save the extracted features into a feature file 

for later use. 

Stop 



4.1 BINARISATION AND NOISE REMOVING: 

 In my work, a ‘minimum within-group variance’ dynamic thresholding method [12] is 

applied to binarising each input region. Figure shows an example of automatic binarisation using 

this algorithm. After binarisation, a conventional labelling technique is then applied to locate 

each connected component from the binarised aircraft image. For each connected region, if its 

size is less than a threshold, it will be considered as noise and then filtered out. 

 

Fig. 8  Original image and result after binarisation 

a Original aircraft image 

b Result after binarisation 

4.2 SIZE NORMALIZATION 

 In addition to an orientation adjustment, before feature extraction, the size and centre of 

each processed aircraft also require normalizing to a regular size and the original, respectively. In 

this paper, the regular size is defined as 24×32. 

 The second step in this process is to extract the ring-projection 1-D signal from the 

normalized pattern.  

 



4.3 RING PROJECTION: 

 In invariant pattern recognition, feature extraction is a most crucial step. There are many 

techniques which are frequently used for feature extraction, have their corresponding advantages 

and disadvantages. Ring-projection, among all existing feature extraction techniques, has been 

selected for invariant pattern recognition in. When patterns are extracted from the image, they 

are often rotated due to experimentation constraints or errors. This raises the need of a pattern 

recognition method that must be invariant to rotations. In 1991, Tang[28] first proposed a method 

“ring projections”. It is a method of transforming 2-D patterns into 1-D patterns. The 1-D pattern 

obtained from ring-projection is invariant to rotations because the projections are done in the 

form of rings. This is due to the reason it is invariant to translation and scale of the patterns, 

means this will give the same result if we apply ring projection to two same but having different 

size and position. In the ring-projection, we take the summation of all pixels that lie on the circle 

with radius r and centre at the centroid of the pattern: 

𝑅𝑖𝑛𝑔(𝑟) = ∫ 𝑓(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

… … … … … … … . (4.3.1) 

 where r is the radius of the ring. It is shown that Ring(r) is equal to the pattern mass 

distributed along circular rings.  

 

 

 



 4.3.1 DIMENSIONALITY REDUCTION OF TWO-DIMENSIONAL 

PATTERNS WITH A RING-PROJECTION METHOD: 

First, suppose that a 2-D pattern such as an alphanumeric symbol has been represented 

into a binary image. Taking letter “A” as an example, its gray-scale image, p(x,y), can be 

discretized into binary values as follows: 

𝑝(𝑥, 𝑦) = {
1               𝑖𝑓 (𝑥, 𝑦) ∈ 𝐷
0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

… … … … … … … … … … … … … . (4.3.2) 

where domain D corresponds to the white region of letter “A”. From (4.3.2), it is readily 

noted that the corresponding density function is a uniform distribution. From this uniform mass 

distribution, we can derive the centroid of the mass, m(x0,y0 ), for the region D, and 

subsequently, translate the origin of our reference frame to this centroid. Next, we let: 

 𝑀 = max
𝑁∈𝐷

| 𝑁 (𝑥, 𝑦 ) −  𝑚(𝑥0, 𝑦0 )| 

where |𝑁 (𝑥, 𝑦 ) −  𝑚(𝑥0, 𝑦0 )| represents the Euclidean distance between two points, N 

and m, on the plane. Further, we transform the original reference Cartesian frame into a polar 

frame based on the following relations: 

{
𝑥 = 𝑟𝑐𝑜𝑠𝜃
𝑦 = 𝑟𝑠𝑖𝑛𝜃

 

Hence, 

𝑝(𝑥, 𝑦) = 𝑝(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 

where 𝑟 ∈ [0,∞), 𝜃 ∈ (0,2𝜋 ]. For any fixed 𝑟 ∈ [0, 𝑀 ], we then compute the following 

integral: 



𝐴 = ∫ 𝑝(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃)𝑑𝜃
2𝜋

0

 

The resulting f(r) is in fact equal to the total mass as distributed along circular rings, as 

shown in Fig. 9.  

 

Fig. 9 An illustration of how a 1-D signal is obtained using the ring-

projection for letter “A”. 

 Hence, the derivation of f(r) is also termed as a ring-projection of the planar mass 

distribution. The single variate function f (r), r∈[0,M ], sometimes also denoted as f (x), 

x∈[0,M], can be viewed as a 1-D pattern that is directly transformed from the original 2-D 

pattern through a ring-projection. Owing to the fact that the centroid of the mass distribution is 

invariant to rotation and that the projection is done along circular rings, the derived 1-D pattern 



will be invariant to the rotations of its original 2-D pattern. In other words, the ring-projection is 

rotation-invariant. 

From a practical point of view, the images to be analyzed by a recognition system are 

most often stored in discrete formats. Catering to such discretized 2-D patterns, we shall modify 

(4.3.3) into the following expression: 

𝑝(𝑟) = ∑ 𝑝(𝑟𝑐𝑜𝑠𝜃𝑘 , 𝑟𝑠𝑖𝑛𝜃𝑘)

𝑀

𝑘=0

 

 Interested readers are referred to [27] for a thorough discussion on ring-projection. In the 

following sections, we are concerned mainly with how to extract as much information as 

possible from the obtained ring-projection, i.e., a 1-D pattern, by way of wavelet transformation. 

This, as will be described later, enables us to obtain a set of wavelet transformation sub-

patterns—curves that are non self intersecting, from which feature vectors defined over the 

curves’ fractal dimensions can easily be computed. 

4.4 THE DUAL-TREE COMPLEX WAVELET TRANSFORM: 

The development of an invertible analytic wavelet transform is not as straightforward as 

might be initially expected. In particular, the structure, which is usually used to implement the 

real DWT, does not lend itself to analytic wavelet transforms with desirable characteristics.  

4.4.1 DUAL-TREE FRAMEWORK: 

One effective approach for implementing an analytic wavelet transform is called the dual-

tree CWT. Like the idea of positive/negative post-filtering of real sub-band signals, the idea 

behind the dual-tree approach is quite simple. The dual-tree CWT employs two real DWTs; the 



first DWT gives the real part of the transform while the second DWT gives the imaginary part. 

The analysis and synthesis FBs(frequency bands) used to implement the dual-tree CWT and its 

inverse is illustrated in Figures 10 and 11. 

 

Fig.10 Analysis FB for the dual-tree discrete CWT. 

 

Fig. 11 Synthesis FB for the dual-tree CWT. 

 The two real wavelet transforms use two different sets of filters, with each satisfying the 

PR conditions. The two sets of filters are jointly designed so that the overall transform is 



approximately analytic. Let h0(n), h1(n)denote the low-pass/high-pass filter pair for the upper FB, 

and let g0(n), g1(n) denote the low-pass/high-pass filter pair for the lower FB. We will denote the 

two real wavelets associated with each of the two real wavelet transforms as ψh(t) and ψg(t). In 

addition to satisfying the PR conditions, the filters are designed so that the complex wavelet 

ψ(t):=ψh(t)+jψg(t) is approximately analytic. Equivalently, they are designed so that ψg(t) is 

approximately the Hilbert transform of ψh(t) [denoted ψg(t)≈H{ψh(t)}]. 

Note that the filters are themselves real; no complex arithmetic is required for the 

implementation of the dual-tree CWT. Also note that the dual-tree CWT is not a critically 

sampled transform; it is two times expansive in 1-D because the total output data rate is exactly 

twice the input data rate. 

The inverse of the dual-tree CWT is as simple as the forward transform. To invert the 

transform, the real part and the imaginary part are each inverted—the inverse of each of the two 

real DWTs are used—to obtain two real signals. These two real signals are then averaged to 

obtain the final output. Note that the original signal x(n) can be recovered from either the real 

part or the imaginary part alone; however, such inverse dual-tree CWTs do not capture all the 

advantages an analytic wavelet transform offers. 

If the two real DWTs are represented by the square matrices Fh and Fg, then the dual-tree 

CWT can be represented by the rectangular matrix: 

𝐹 = [
𝐹ℎ

𝐹𝑔
] 



If the vector x represents a real signal, then wh=Fhx represents the real part and wg=Fgx 

represents the imaginary part of the dual-tree CWT. The complex coefficients are given by 

wh+jwg. A (left) inverse of F is then given by: 

𝐹−1 =
1

2
[𝐹ℎ

−1 𝐹𝑔
−1] 

As we can clarify 

𝐹−1 ⋅ 𝐹 =
1

2
[𝐹ℎ

−1 𝐹𝑔
−1] ⋅ [

𝐹ℎ

𝐹𝑔
] =

1

2
[𝐼 + 𝐼] = 𝐼 

We can just as well share the factor of one half between the for-ward and inverse 

transforms, to obtain 

𝐹 ≔
1

√2
[
𝐹ℎ

𝐹𝑔
],             𝐹−1 ≔

1

√2
[𝐹ℎ

−1 𝐹𝑔
−1] … … … … … . . (4.4.1) 

If the two real DWTs are orthonormal transforms, then the transpose of Fh is its inverse 

𝐹𝐻
𝑡 · 𝐹𝐻 = 𝐼 and similarly for Fg. In this case, the transpose of the rectangular matrix F is also a 

left inverse𝐹𝑡 · 𝐹 = 𝐼, where we have used (4.4.1). That is, the inverse of the dual-tree CWT can 

be performed using the transpose of the for-ward dual-tree CWT; it is self-inverting in the 

terminology of [9]. The dual-tree wavelet transform defined in (4.4.1) keeps the real and 

imaginary parts of the complex wavelet coefficients separate. However, the complex coefficients 

can be explicitly computed using the following form: 

𝐹𝑐 ≔
1

2
[
𝐼 𝑗𝐼
𝐼 𝑗𝐼

] ⋅ [
𝐹ℎ

𝐹𝑔
] … … … … … … … … … . (4.4.2) 

𝐹𝑐
−1 ≔

1

2
[𝐹ℎ

−1 𝐹𝑔
−1] ⋅ [

𝐼 𝐼
−𝑗𝐼 𝑗𝐼

] … … … … … . (4.4.3) 



Note that the complex sum/difference matrix in (4.4.2) is unitary (its conjugate transpose 

is its inverse) 

1

√2
[
𝐼 𝑗𝐼
𝐼 −𝑗𝐼

] ⋅
1

√2
[

𝐼 𝐼
−𝑗𝐼 𝑗𝐼

] = 𝐼 

 (Note that the identity matrix on the right-hand side is twice the size of those on the left-

hand side). Therefore, if the two real DWTs are orthonormal transforms, then the dual-tree CWT 

satisfies 𝐹𝑐
∗ ⋅ 𝐹𝑐 = 𝐼 where ∗denotes conjugate transpose. If  

[
𝑢
𝑣

] = 𝐹𝑐 ⋅ 𝑥 

then when x is real, we have v=u∗ , so v need not be computed. When the input signal x 

is complex, then v≠u∗, so both u and v need to be computed. 

When the dual-tree CWT is applied to a real signal, the out-put of the upper and lower 

FBs in Figure 10 will be the real and imaginary parts of the complex coefficients, and they can 

be stored separately, as represented by (4.4.1). However, if the dual-tree CWT is applied to a 

complex signal, then the output of both the upper and lower FBs will be complex, and it is no 

longer correct to label them as the real and imaginary parts. For complex input signals, the form 

in (4.4.2) is more appropriate. For a real N-point signal, the form in (4.4.2) yields 2Ncomplex 

coefficients, but N of these coefficients are the complex conjugates of the other N coefficients. 

For a general complex N-point signal, the form in (4.4.2) yields 2Ngeneral complex coefficients. 

Therefore, for both real and complex input signals, the CWT is two times expansive. 



When the two real DWTs are orthonormal and the 1/√2 factor is included as in (4.4.1), 

the dual-tree CWT gains a Parseval’s energy theorem: the energy of the input signal is equal to 

the energy in the wavelet domain  

∑ (|𝑑ℎ(𝑗, 𝑛)|2 + |𝑑𝑔(𝑗, 𝑛)|
2

)

𝑗,𝑛

= ∑|𝑥(𝑛)|2

𝑛

 

The dual-tree CWT is also easy to implement. Because there is no data flow between the 

two real DWTs, they can each be implemented using existing DWT software and hardware. 

Moreover, the transform is naturally parallelized for efficient hardware implementation. In 

addition, because the dual-tree CWT is implemented using two real wavelet transforms, the use 

of the dual-tree CWT can be informed by the existing theory and practice of real wavelet 

transforms. For example, criteria for wavelet design (such as vanishing moments) and wavelet-

based signal processing algorithms (such as thresholding of wavelet coefficients) that have been 

developed for real wavelet trans-forms can also be applied to the dual-tree CWT. 

It should be noted, however, that the dual-tree CWT requires the design of new filters. 

Primarily, it requires a pair of filter sets chosen so that the corresponding wavelets form an 

approximate Hilbert transform pair. Existing filters for wavelet transforms should not be used to 

implement both trees of the dual-tree CWT. For example, pairs of Daubechies’ wavelet filters do 

not satisfy the requirement that ψg(t)≈H{ψh(t)}. If the dual-tree wavelet transform is 

implemented with filters not satisfying this requirement, then the transform will not provide the 

full advantages of analytic wavelets described previously. 

 



CHAPTER 5:             RESULTS 

In order to analyze the performance of our proposed approach, a test database containing 

48 aircraft, which come from 12 categories, was constructed. In addition, a training database 

containing 4 aircraft was adopted to train and learn proper weights for increasing the accuracy of 

aircraft recognition. Every character is represented by 64×64 pixels. During recognition, 4 

aircraft per each category were used to perform the voting technique. 

Figure 12 shows the 12 types of aircrafts built here for recognition. In this figure, each 

row includes 4 templates for enhancing the robustness and accuracy of recognition. Aircraft at 

different rows mean that they are from different categories. 

My major concern in our experiments is the performance of the proposed descriptor on 

different images and different noise levels. Standard normalization techniques can be used to 

achieve translation invariance and scale invariance [29]. For each image, I test four images (see 

Figure). The nearest neighbor classifier is used in the classification stage.  As the wavelet 

transform, the dual-tree complex wavelet transform will decompose the input signal into multi-

resolution scales. In general, features in fine decomposition scales will represent the fine features 

in the input signal, while the coarse scale coefficients will represent coarse features in the input 

signal. In order to obtain high correct recognition rates, we need to select features in a few 

intermediate decomposition scales in the dual-tree complex transform. In this work, I have 

selected features in the 3rd and the 4th decomposition scales in the proposed descriptor for 

invariant pattern recognition. We tested the performance of our proposed descriptor on noisy 



data. The noisy images with different orientations are generated by adding Gaussian white noise 

to the noise-free images. The signal-to-noise ratio (SNR) is defined as: 

𝑆𝑁𝑅 =
√∑ (𝑓𝑖,𝑗 − 𝑎𝑣𝑔(𝑓))

2
𝑖,𝑗

√∑ (𝑛𝑖,𝑗 − 𝑎𝑣𝑔(𝑛))
2

𝑖,𝑗

 

where f is the noise-free image, n is the added white noise, and avg(f) is the average 

value of the image f. figure 13 shows four rotation angles of the image. Figure 14 displays a 

image corrupted with different noise levels at SNR=10, 5, 3, and 1. Figures 15-18 show the 

correct recognition rates of the descriptor and the Fourier transform for different rotation angles 

at SNR=10, 5, 3, 1, respectively. From these figures, it can be seen that this descriptor is much 

better than the Fourier transform especially for high noise levels. This confirms that the 

descriptor is a feasible approach in pattern recognition.  



 

Fig. 12 The test database used in the experiment. 

 

 

Fig. 13 The rotated images with four rotation angles. 

 



 

Fig. 14 The noisy patterns with different SNR’s 

 

 

Fig. 15 The correct classification rates with different rotation angles at 

SNR=10 

 



 

Fig. 16 The correct classification rates with different rotation angles at SNR=5 

 

 

Fig. 17 The correct classification rates with different rotation angles at SNR=3 



 

Fig. 18 The correct classification rates with different rotation angles at SNR=1 

If more representative templates (not only 4 templates) are used to represent an aircraft 

type, the three failure cases will be tackled well. According to the above experimental results, the 

superiority of our method has been verified. 

 

 

 



CHAPTER 6:           CONCLUSIONS 

         AND FUTURE WORK 

The crucial step in invariant pattern recognition is feature extraction. Good features should have 

large inter-class variance while at the same time small intra-class variance. For the sake of good quality, 

features should be independent of the size, orientation, and location of the pattern. This independence 

can be achieved by two ways; one way is by preprocessing and another is by extracting features that are 

translation, rotation, and scale invariant.  

In my project, I have implemented an invariant descriptor for pattern recognition by using the 

ring-projection and the dual-tree complex wavelet transform. The ring-projection reduces the 2-

Dimentional pattern to a 1- Dimensional signal, which will make the recognizing process faster than 

many other descriptors. The dual-tree complex wavelet transform is selected since it has the 

approximate shift-invariant property. This property is very important in invariant pattern recognition. 

Experimental results confirm that the proposed descriptor in this paper is feasible in recognizing 

patterns especially when the noise level is high. 

Future work will be done in the following ways. We may propose new descriptors by extracting 

line moments from the 2-D patterns and applying the shift-invariant wavelet transform to the line 

moments. We may develop multi-wavelet descriptors for 2D pattern recognition because multi-wavelets 

have better properties than the scalar wavelets. We may also apply these newly proposed descriptors 

for palm print classification, fingerprint recognition, road sign recognition, key recognition, iris 

recognition, aircraft recognition, etc. 



More research needs to be done in order to develop better descriptors for pattern recognition 

and related applications. 
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