

Pruning Artificial Neural Network using

Back Propagation Training with

Application to Pattern Classification

Sahil Singla

Department of Computer Engineering

Delhi Technological University

Shahbad Daulatpur, Bawana Road, New Delhi

Pruning Artificial Neural Network using Back

Propagation Training with Application to Pattern

Classification

Thesis submitted in partial fulfillment for the degree of

Master of Technology

in

Computer Science And Engineering

Submitted by

Sahil Singla (2K12/CSE/18)

Under the guidance of

Mr. Manoj Sethi

Department of Computer Engineering

Delhi Technological University

Shahbad Daulatpur, Bawana Road, New Delhi

 D Department of Computer Engineering

 Delhi Technological University

 Delhi-110042, Delhi, India

 Certificate

This is to certify that the work in the thesis entitled Pruning Artificial Neural Network

using Back Propagation Training with Application to Pattern Classification by Sahil

Singla is a record of an original research work carried out by him under my supervision

and guidance in partial fulfillment of the requirements for the award of the degree of

Master of Technology in Computer Science in the department of Computer Engineering,

Delhi Technological University, Delhi.

Place: Delhi Mr. Manoj Sethi
Date: July 2, 2014 Faculty, CoE Department
 Delhi Technological University

ACKNOWLEDGEMENT

 I would like to express my hearty thanks to my guide, Mr. Manoj Sethi, Department

of Computer Engineering, Delhi Technological University for his guidance, support, and

encouragement throughout the thesis work. Without his knowledge, endless efforts,

patience, and answers to my numerous questions, this thesis would have never been

possible. As my supervisor, he has constantly encouraged me to remain focused on

achieving my goal. His observations and comments helped me to establish the overall

direction of the research.

I extend my thanks to our HOD, Prof. Rajiv Kapoor for his valuable advices and

encouragement. I would also acknowledge the resources I used at the CoE department.

Finally, I would like to thank my parents and colleagues for their support and motivation

to complete this thesis work.

 Sahil Singla

 2K12/CSE/18

ABSTRACT

Artificial Neural Network is a machine which models the way in which human

brain perform its task of learning from new environment. Neural Network has

been extensively used for task of learning patterns from training samples for

purpose of classification. Pattern Classification involves mapping the given set of

input features to two or more classes. Formerly, completely connected neural

network with Back Propagation learning was used to predict membership of data

instance to particular class. But same task can be done by using the neural

network of smaller size and less complexity. This work aims to propose a new

paradigm to prune an artificial neural network using error back propagation

learning algorithm. In this work, neural network is trained partially and

redundant weights are removed. There are two issues involved in the method.

First is when the network should be pruned? Second is heuristic to measure

importance of weights in network. In particular performance of pruned neural

network is compared with its completely connected version using four different

datasets and significant increase in learning speed is observed, while maintaining

similar generalization ability.

Keywords

Mean Square Error (MSE), Back Propagation (BP), partially connected neural

network (PCNN), feed forward neural network.

Contents

Certificate

Acknowledgement

Abstract

List of Figures

List of tables

 1. Introduction ..1

 1.1 Introduction ..1

 1.2 Organization of Thesis ...2

 2. Literature Survey ...3

 3. Pruning Neural Network ..5

 3.1 General Concept ...5

 3.2 Different Pruning Methods ..6

 3.2.1 Sensitivity Based Methods ..6

 3.2.2. Penalty Based Methods ...7

 3.2.3 Magnitude Based Methods ...8

 3.2.4 Cross Validation Based Methods ...8

 4. Proposed Work ...9

 4.1 Introduction ..9

 4.2 Feed Forward Neural Network With Back Propagation Learning.9

 4.2.1 Algorithm ..11

 4.2.2 Stopping Criteria ...13

 4.3 Proposed Method ...13

 4.3.1 Motivation ...13

 4.3.2 Design Issues ...14

 4.3.3 Algorithm ..16

 5. Implementation and Results ...17

 5.1 Datasets ..17

 5.2 Data Preprocessing ...19

 5.3 Implementation ..19

 5.3.1 Feed Forward Neural network using back propagation algorithm20

 5.3.2 Proposed Algorithm ..22

 5.4 Results ...25

 5.4.1 Performance Evaluation ...25

 6. Conclusion and Future Work ...29

 References ...30

Appendix A ...33

Appendix B ...48

List of figures

Fig. 4.1 Back propagation in three layer feed forward neural network………………….10

Fig. 4.2 Flowchart for BP learning algorithm for feed forward neural networks………..12

Fig. 4.3 SCNN using Proposed Method ………………………………………………...13

Fig. 4.4 Flowchart for Proposed method ………………………………………………..15

Fig. 5.1 MSE vs. No. of epochs for pen based handwritten digit dataset………………..25

Fig. 5.2 MSE vs. No. of epochs for SEMEION dataset………………………………….25

Fig. 5.3 MSE vs. No. of epochs for Iris dataset………………………………………….26

Fig. 5.4 MSE vs. No. of epochs for Wisconsin breast cancer dataset…………………...26

Fig. 5.5 Comparison of methods for training time……………………………………….27

Fig. 5.6 Comparison of methods for testing time………………………………………..28

List of Tables

Table 5.1 Performance of proposed method on different datasets………………………26

Table 5.2 Performance of feed forward with BP learning………………………………27

Chapter 1

Introduction

1.1 Introduction

Artificial neural networks are prototyped after human brain which processes nerve

signals from input nerve cells and propagate them to other neurons. In complete

biological nervous system, all the nerve cells may not be completely connected. This

calls for the need of multilayered neural network structure which has only subset of all

the relevant interconnections among its neurons. Such networks are known as partially

connected neural networks (PCNNs). The aim to construct PCNNs is to have a reduced

neural network topology equivalent or better in performance than the completely

connected model. A lesser number of connections in the network can help improve

generalization and reduce the network complexity, hardware, and storage requirements,

and training and testing time [1].

A host of methods for dealing with PCNNs have been proposed. Some of methods are:

the ontogenic, the non-ontogenic, and the hybrid methods.

In onto genic methods the topology of the neural network is modified during the learning

phase whereas in non-onto genic methods topology of the network is defined prior to the

learning phase and remains unchanged during the learning process Hybrid methods are

combinations of neural networks with other artificial intelligence (AI) techniques. These

AI techniques include: symbolic knowledge and genetic programming [1].

The ontogenic methods based on the back propagation algorithm can be classified into

three groups: growing, pruning, and the methods which combine both growing and

pruning techniques [1].

2

Neural network pruning is defined as a process of cropping the initial assumed neural

network architecture. One of the main goals of pruning algorithm is to arrive at optimal

structure that can generalize well with lesser complexity. Pruning methods start by

training a neural network with a topology bigger than needed. Due to it being oversized,

the initial network will be less sensitive to initial conditions such as weight initialization

and learning parameters. Thus, the initial network is expected to learn reasonably fast.

After this, the network is trimmed until the smallest topology that correctly maps the data

is found. Growing methods start with a small topology which increases until the neural

network achieves a good level of performance for the given method.

In this work, we have introduced a paradigm by which we use traditional back

propagation based learning method to prune the neural network. Instead of training

network completely, we leave it partially trained and remove the unnecessary weights.

We try to figure out redundant weights before completion of training. This work

measures the effectiveness of proposed method against the completely connected feed

forward network trained using back propagation.

1.2 Organization of Thesis

The thesis is organized as follows: Chapter 2 introduces the literature survey, chapter 3

describes techniques of pruning neural network, chapter 4 discusses proposed work, and

chapter 5 describes implementation and results.

3

Chapter 2

Literature Survey

Pruning is defined as a cropping the size of network within the assumed initial

architecture [2]. Variety of methods have been proposed in past to prune artificial neural

networks. Earlier methods were based on either the sensitivity of weight or penalty based

methods. Sensitivity based methods modify the trained network i.e. network is trained,

sensitivity of weights are calculated and less sensitive weights are removed. Sensitivity

determines the importance of weight in network. Several heuristic used to determine the

sensitivity of the network.

Select the weight with smallest magnitude to remove, because smaller weights contribute

less the output and thus are less sensitive for network. These are magnitude based

pruning (MBP) methods [13].

 E.D. Karnin (1990) proposes a method which is based on sensitivity of cost function on

inclusion / exclusion of each weight. Thus his task is to find weight on removal of which

there is minimum increase in error. He use shadow array to keep track of incremental

change in weights of neural network. Array is then sorted and least sensitive weight is

deleted [4].

Le Cun et al. measured saliency of weight by performing second derivative of the error

with respect to weight. This method was optimal brain damage (OBD). It prunes

iteratively on a well trained network to a reasonable level, compute ’saliencies’, delete

low ’saliency’ weights and resume training [5].

4

Penalty based methods add penalty term to the cost function. Thus minimizing the cost

function would drive useless weights to zero [6]. Weigend et al. introduces penalty term

based on complexity of network as function of weights relative to constant wo. Role of

this additional penalty term is controlled by parameter lambda. Very large value of

lambda makes penalty term strong and thus weights are forced to become zero [7]. These

methods are also called weight decay methods.

Huynh and Setiono [8] propose cross validation method. In cross validation method the

whole dataset is divided into two parts that is training set and cross validation set. The

pruning criterion is still based on the magnitude of each weight but a validation step is

additionally used to test the pruned network. If the pruned network outperforms the one

before pruning, then the pruned network is accepted and the pruning process can be

carried out further. Otherwise the network is restored to the size before the current

pruning step.

S. belciug et al. proposes yet another method which uses back propagation training to

create partially connected neural network. It deletes those weights which don’t pass

certain threshold value after training [9].

Real-world applications prefer simpler and more efficient methods. But most of methods

are very complex to implement and less efficient also. For example the main drawback of

the OBD is its relatively low computational efficiency. MBP methods often remove

important weights of the network as they assume that small weights are irrelevant [13].

5

Chapter 3

Pruning Neural Network

3.1 General Concept

While building an artificial neural network the designer comes across the problem of

choosing right architecture of neural network for task to accomplish. A problem which

can be solved by network of given size can be solved by network of larger size also [4].

But using smaller size network offers several benefits:

The cost of computation grows linearly with number of connections or weights. Smaller

network is thus efficient in forward computation and learning both.

Neural network training is done using finite set of training examples; larger artificial

neural network will tend to memorize the pattern, thus leading to poor generalization [4].

Several researchers have thus proposed work to reduce the size of given neural network.

Such algorithms are called as artificial neural network pruning algorithms.

The trimmed network is of smaller size and is likely to give higher accuracy than before

its trimming. Researchers have suggested many pruning algorithms for optimizing the

architecture of neural networks. Based on the techniques used for pruning, the pruning

methods can be classified as penalty term methods, cross validation methods, magnitude

based methods and sensitivity based methods [2].

6

3.2 Different Pruning Methods

3.2.1 Sensitivity Based Methods

The general idea of these methods is to train a network in performing a given task and

then to compute how important is the existence of a connection or node. Then, the least

important connection nodes are removed and the remaining network is retrained. In

general, the sensitivity measurement does not interfere with training and requires an extra

amount of computational effort. The key issue in the implementation of these techniques

is finding a way to measure how sensitive is the solution to the removal of a connection

or a node. Early approaches attempt to remove a connection by evaluating the change in

the network’s output error. If the error increases too much, then the weight must be

restored back again. More sophisticated approaches evaluate the change in error for all

the connections on training data and then remove the one connection which produces the

least error increment. Both approaches takes lot of time to execute in practice.

1. Optimal Brain Damage

Le Cun et al. have proposed the optimal brain damage (OBD) method that approximates

the measure of saliency of a weight by estimating the second derivative of the network

output error with respect to that weight. In this method pruning is carried out iteratively

on a well trained network to a reasonable level, compute saliencies, delete low saliency

weights and resume training. Main steps are as follow:

1. Create a neural network with larger architecture.

2. Train the network until some stopping criterion is satisfied.

3. After training is done, compute the second derivatives for each of the weights.

4. Evaluate the saliencies hi iWi for each weight and sort the weights by saliency.

5. Delete some of the low-saliency weights.

6. Go to 2 and repeat until some overall stopping criterion is reached.

7

This approach to weight elimination has been termed optimal brain damage [5].

 2. Shadow Array Based Method

E.D. Karnin [4] measures the sensitivity of error function w.r.t. to each connection and

removes the weight with low sensitivity. Sensitivity of weight wi j is given as

Si j = - (E (w
f
)

) – E(0)) w

f
 / w

f
 - 0

Rather than actually removing weight and calculating error they calculate S by summing

changes in weight during training process.

After training each weight has an estimated sensitivity and lowest sensitivity weight can

be deleted.

3.2.2. Penalty Based Methods

The method modifies the error function so that back propagation function prunes the

network by driving weights to zero. Weights may also be removed when they fall below

certain threshold.

Weigend et al. [7] minimizes the following cost function:

∑ 2
 + ƛ ∑ i

2
/wo

2
)/(1+ wi

2
/wo

2
)

Where T is set of all the training patterns and C is set of all connections.

Second term represent the complexity of network as function of weight magnitude

relative to constant wo.

When lambda is large it is similar to the weight decay problems, When lambda is infinite

it drives weight to zero. Thus it requires some tuning for this parameter and depends on

problem at hand.

8

3.2.3 Magnitude Based Methods

Magnitude based methods (MBP) assumes that small magnitude weights are less

important than large magnitudes [13]. Thus they use magnitude of weight |w| as measure

of saliency of weights. There is not much theoretical background behind these methods.

These methods are more or less driven by assumptions and perform poorly in practice.

MBP based methods sometimes remove those weights which are critical in performance

of neural network as they think small weight are useless.

3.2.4 Cross Validation Based Methods

In addition to training and testing set we have third set called as cross validation set. In

this method prior to training process whole dataset is divided to three sets- training, cross

validation, testing. Cross validation set is used to check the performance of current state

of pruned neural network in comparison to state before this step. Cross validation

methods follow steps as shown below:

- Train the network to achieve desired accuracy.

- Prune the trained network on basis of magnitude of weights.

- Check the performance of pruned network and compare with previous unpruned

network.

- If performance increases save pruned network for further steps otherwise discard

pruned network.

- Iterate over these steps.

This method is proposed by Huynh and Setiono [8].

9

Chapter 4

Proposed Work

4.1 Introduction

In this chapter we have discussed traditional feed forward neural network with back

propagation learning and proposed method.

4.2 Feed Forward Neural Network With Back Propagation

Learning.

Feed forward neural network is neural network which is completely connected. It means

every neuron in each layer is connected to every neuron in next adjacent layer. It mainly

uses back propagation learning algorithm for training purpose.

In feed forward neural network back-propagation learning algorithm has two phases.

First is feed forward computation and second is backward error propagation. In feed

forward computation, training example is presented to input layer of neural network. This

input pattern is then passed from one layer to another layer. Finally output is generated by

output layer when pattern reaches output layer. In backward error propagation, the output

pattern is compared with desired pattern. If output pattern is different from desired

pattern, difference between them is calculated and error is propagated backwards [23].

A neuron determines its output by first computing net weighted input as before:

10

X= ∑
 iwi

where n is the number of inputs, and xi is value of input, wi is weight associated with that

input and Ѳ is the threshold applied to the neuron. Next, this weighted input value is

passed through the activation function. However neurons in the back-propagation

network use a sigmoid activation function:

Y= sigmoid(X)

Where sigmoid(x) is 1/ (1+e
-x

)

The derivative of this function is easy to compute. It also guarantees that the neuron

output is bounded between 0 and 1.

 Fig. 4.1 Back propagation in three layer feed forward neural network.

Detailed back propagation learning algorithm for feed forward is described below.

11

4.2.1 Algorithm

Main Steps of the Algorithm:

Create a feed-forward network with ninput, inputs, mhidden hidden units, and noutput output

units.

- Initialize all network weights to small random numbers in uniform range [-einit, +einit].

Where einit =
√

√ √

- Until the termination condition is met, do

 For each (x, y) in training examples, do

Propagate the input forward through the network:

1, Input the instance (x,y) to the network and compute output for every node in network.

Propagate the errors backward through the network:

2. For each network output unit t, calculate its error term

3. For each neuron u in hidden layer h, calculate its error term

 ∑

4. Update each network weight wi j

 Wi j = Wi j +

Where Wi j= Xi j

Flowchart for above algorithm is shown in figure 4.2.

12

 Fig. 4.2 Flowchart for BP learning algorithm for feed forward neural networks.

13

4.2.2 Stopping Criteria

The training process is repeated until the Mean square error is less than 0.001 or

predefined number of epochs is done.

4.3 Proposed Method

4.3.1 Motivation

Most of the work done in area of neural network pruning is based on either training the

neural network completely and then pruning the connections based on sensitivity of

weights or pruning the neural network while training is going on. But training the

network to get best accuracy and then determining the redundant weights is time

consuming. Here, we propose the algorithm whereby we try to estimate sensitivity of the

weights even before network is trained completely. Resultant neural network constructed

using proposed method is SCNN as shown in fig. 4.3. SCNN has only fewer connections

than completely connected neural network.

Fig. 4.3 SCNN using Proposed Method.

14

4.3.2 Design Issues

There are two major design issues in this proposed work.

- First is after how many epochs of training should network be considered for

pruning?

- Other is, heuristic to find notion of less useful weights i.e. determining the criteria

to find redundant synaptic in network.

In order to address the first issue, we have taken in account notion of how many features

are learnt by network before we prune it. As neural network learn features or pattern in

training samples through weight modification, it is important not to delete useful weights.

One of the measures of learning is change in magnitude of the weights. Weights that

don’t undergo much change in their value are slow at learning, thus are good candidate

for deletion. Thus we conclude that network be considered for pruning only it has learnt

sufficient features. Measure of learning by network is Mean squared error. If MSE is less

than some threshold value, it means network has learnt sufficient features to be

considered for pruning. Value of the threshold depends on slope of graph b/w No of

epochs and MSE while performing back propagation training. If slope is more, threshold

should be more. If slope is less, threshold should be less. Reason behind this idea is, more

slope means that network is learning very fast and threshold should be good enough so

that pruning is done early. Whereas fewer slopes means network is learning very slow,

thus pruning can be performed after considerable no of epochs.

Heuristic to determine less useful weight is based on change in magnitude of weight from

initial weight to weight after network is considered for pruning. If change in weight is

less than some threshold value, we set the corresponding weight to zero. If all the

incoming connection to a hidden node is zero, then we can safely remove that node also.

This proposed algorithm works well for problem where number of input features is very

large. The flowchart representation of proposed method is shown in fig 4.4.

15

Fig. 4.4 Flowchart for Proposed method.

16

4.3.3 Algorithm

Main Steps of the Algorithm

INPUT The Multilayer feed forward network T with no. of layers L and n number of

input features. Each layer l (1< l <L) contains xl number of nodes. It comprises of an

output layer which contains number of nodes equal to number of classes.

BEGIN

1. Divide the input dataset to two categories: training set and testing set. Training set

is used to train the network. Testing set is used to measure the accuracy of trained

network.

2. Train the neural network T until MSE (mean square error) over training set falls

below certain threshold . Threshold is chosen such that network has learnt

important features.

3. Consider this partially trained network T for pruning.

4. For all weights wij in network T

 4.1 Delete(set to zero) those weights which don’t change beyond a threshold α i.e.

difference b/w initial weights and weights after partial training is less than some

predetermined value.

5. Retrain this pruned network until mean squared error falls down to 0.001.

6. Determine the accuracy of trained network using test set.

OUTPUT:

The pruned multilayer feed forward neural network T.

17

Chapter 5

Implementation and Results

5.1 Datasets

In this work we have used four different datasets.

Description of the datasets is as follows:

1. Pen based handwritten digit dataset: It contains 7494 sample of handwritten

digits each of which is characterized by 16 features ranging from 0-100. Each of

samples belongs to one of ten classes (0-9).

 No. of Features: 16

 No of Classes: 10

 No. of Examples: 7494

 This dataset is obtained from UCI Machine learning Repository

 https://archive.ics.uci.edu/ml/datasets/PenBased+Recognition+of+Handwritten+Digits.

2. SEMEION Handwritten Digit Data Set: 1593 handwritten digits from around

80 persons were scanned, stretched in a rectangular box 16x16 in a gray scale of

256 values. Then each pixel of each image was scaled into a Boolean (1/0) value

using a fixed threshold. The dataset was created by Tactile Srl, Brescia, Italy and

donated in 1994 to Semeion Research Center of Sciences of Communication,

Rome, Italy for machine learning research.

https://archive.ics.uci.edu/ml/datasets/PenBased+Recognition+of+Handwritten+Digits.

18

This dataset is obtained from UCI Machine learning repository

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit

 No of features: 256

 No of classes: 10

 No of examples: 1593

3. Iris dataset: Irises are classified into three classes: setosa, versicolour and

verginica. Each category has 50 patterns and each pattern possesses four attributes

namely sepal length, sepal width, petal length and petal width.

This dataset is obtained from UCI Machine learning repository

https://archive.ics.uci.edu/ml/datasets/Iris

 No of features: 4

 No of classes: 3

 No of examples: 150

4. Wisconsin Breast cancer dataset: Wisconsin cancer dataset consists of 699

samples. It is used to diagnose breast cancer as either benign or malignant. Each

pattern consists of 9 real value attributes as an input vector and two classes as an

output vector. Out of 699 samples 458 are benign and 241 are malignant patterns.

This dataset is obtained from UCI Machine learning repository

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

No of features: 9

 No of classes: 2

 No of examples: 699

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29

19

5.2 Data Preprocessing

Data pre-processing is a crucial step before engaging it to pattern extraction process.

Data-gathering methods are often roughly handled, resulting in out-of-range values (e.g.,

Age: 0), impossible data combinations (e.g., Living entity: Human, Hands:

Four), missing values, etc. Analyzing data that has not been carefully checked for such

problems can produce misleading results. Thus, the representation and quality of data is

first and foremost before running an analysis.

Data pre-processing includes cleaning, normalization, transformation, feature

extraction and selection, etc. The product of data pre-processing is the final training set.

However, we have taken account of normalization only because all other processes have

been taken care of by the source UCI repository itself. To normalize a set of data, the

original data range is mapped into another scale. Normalization is needed to pre-process

data so as to increase the efficiency of algorithm i.e. it helps to bring the data closer to the

requirements of the algorithms. Variables can be normalized (to unit zero mean and unit

variable, or to the interval [0, 1]), data elements can be normalized (when all their

attributes have the same units). Following are the steps of normalizing data sets:

. Find out the Minimum (Min) and Maximum (Max) of original datasets.

. Decide the Minimum (MinN) and Maximum (MaxN) for normalized scale.

. Consider a number (X) from the data set.

. The Normalized value for the number(X) is given by the formula:

 MinN+ (X-Min)*(MaxN-MinN)/ (Max-Min)

5.3 Implementation

20

We have implemented training and testing of feed forward network with BP and

proposed method in MATLAB R2011a. A snapshot of the implementation is shown in

appendix B.

For purpose of comparative analysis we set same initial weights and architecture for both

methods. Network is trained until it converges to predetermined MSE value or reaches

fixed number of epochs whichever is earlier. This experiment is performed for each

dataset for ten times, each time dividing training and testing set randomly.

5.3.1 Feed Forward Neural network using back propagation algorithm

a) Pen based handwritten digit dataset:

 Architecture of 16-25-10 is used i.e. input feature is 16-D vector with one hidden

layer having 25 hidden units and one output layer having 10 output units. Training is

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

 Maximum Number of Epochs: 100

 Learning Rate: 0.1

 Training pattern: 4996

 Testing pattern: 2498

b) SEMEION handwritten digit dataset:

 Architecture of 256-25-10 is used i.e. input feature is 256-D vector with one

hidden layer having 25 hidden units and one output layer having 10 output units. Training

is stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

21

Maximum Number of Epochs: 100

Learning Rate: 0.1

Training Patterns: 1062

Testing Patterns: 531

c) Iris dataset

 Architecture of 4-10-3 is used i.e. input feature is 4-D vector with one hidden

layer having 10 hidden units and one output layer having 3 output units. Training is

stopped whenever MSE falls below 0.001 or 200 Epochs are iterated. Following

parameters are used:

Maximum Number of Epochs: 200

Learning Rate: 0.1

Training Patterns: 100

Testing Patterns: 50

a) Wisconsin Breast cancer dataset

 Architecture of 4-10-2 is used i.e. input feature is 4-D vector with one hidden

layer having 10 hidden units and one output layer having 2 output units. Training is

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

Maximum Number of Epochs: 100

Learning Rate: 0.1

Training Patterns: 466

22

Testing Patterns: 233

5.3.2 Proposed Algorithm

a) Pen based handwritten digit dataset:

 Architecture of 16-25-10 is used i.e. input feature is 16-D vector with one hidden

layer having 25 hidden units and one output layer having 10 output units. Training is

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

 Maximum Number of Epochs: 100

 Learning Rate: 0.1

 Training pattern: 4996

 Testing pattern: 2498

 Threshold for MSE for pruning 0.02

 Threshold for change in weights 0.05

b) SEMEION handwritten digit dataset:

 Architecture of 256-25-10 is used i.e. input feature is 256-D vector with one

hidden layer having 25 hidden units and one output layer having 10 output units. Training

is stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

 Maximum Number of Epochs: 100

23

 Learning Rate: 0.1

 Training Patterns: 1062

Testing Patterns: 531

Threshold for MSE for pruning 0.02

Threshold for change in weights 0.054

c) Iris dataset

 Architecture of 4-10-3 is used i.e. input feature is 4-D vector with one hidden

layer having 10 hidden units and one output layer having 3 output units. Training is

stopped whenever MSE falls below 0.001 or 200 Epochs are iterated. Following

parameters are used:

Maximum Number of Epochs: 200

Learning Rate: 0.1

Training Patterns: 100

Testing Patterns: 150

Threshold for MSE for pruning 0.02

Threshold for change in weights 0.024

d) Wisconsin Breast cancer dataset

 Architecture of 4-10-2 is used i.e. input feature is 4-D vector with one hidden

layer having 10 hidden units and one output layer having 2 output units. Training is

24

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following

parameters are used:

Maximum Number of Epochs: 100

Learning Rate: 0.1

Training Patterns: 466

Testing Patterns: 233

Threshold for MSE for pruning 0.02

Threshold for change in weights 0.05

25

5.4 Results

5.4.1 Performance Evaluation

MSE is considered criteria for performance of network; the one with lower MSE has

higher accuracy. So we train both proposed algorithm and feed forward neural network

with back propagation algorithm unless MSE falls below fixed value 0.01.Thus method

which trains the neural network faster is considered better.

Threshold value for MSE to find when to prune can be judged from graph of MSE vs.

No. of epochs. When the slope is less in graph, threshold value is also small and vice-

versa. This graph between MSE and no. of epochs for feed forward with BP and

proposed method is very instructive. It indicates either proposed method takes less no. of

epochs for learning or both take same no. of epochs. In later case proposed method

reaches lower value of MSE.

Following graphs are obtained for four different datasets

Fig. 5.1 MSE vs. No. of epochs for pen based Fig. 5.2 MSE vs. No. of epochs for

 handwritten digit dataset. SEMEION dataset.

26

Fig. 5.3 MSE vs. No. of epochs for Iris Fig. 5.4 MSE vs. No. of epochs for

dataset. Wisconsin breast cancer dataset.

Performance is based on how much time does algorithm spends in training the given

architecture. Here we input same architecture for both learning methods, initial weights

are also same. Table 5.1 and Table 5.2 depict the performance of proposed method and

feed forward with BP respectively for four different datasets.

Dataset Initial

Architec

ture

No. of

Epochs(

training)

Accuracy Training

time

Testing

time

No of

connections

pruned

Pen based

Handwritten

digit

16-25-10 47 92.2 65.9 0.52 74

SEMEION 256-25-

10

35 91.4 26.52 0.126 2831

Iris 4-10-3 94 94.4 0.96 0.006 22

Cancer 9-10-2 23 96.8 1.15 0.023 5

Table 5.1 Performance of proposed method on different datasets.

27

Dataset Architecture No. of

Epochs(

training)

Accuracy Training

time

Testing

time

Pen based

Handwritten

digit

16-25-10 48 92.2 68.6 0.96

SEMEION 256-25-10 38 91 29.08 0.27

 Iris 4-10-3 98 94.8 1.14 0.01

Cancer 9-10-2 23 96.7 3

Table 5.2 Performance of feed forward with BP learning.

Training time for both methods is compared in Fig.5.5 for each dataset. Results clearly

indicate that proposed algorithm is faster at learning than feed forward with BP training.

Comparison also depicts that for large datasets like Pen based handwritten digit and

SEMEION handwritten digit dataset difference of training time is very significant.

Fig. 5.5 Comparison of methods for training time.

28

Fig. 5.6 Comparison of methods for testing time.

Forward computation is faster in pruned network because size of pruned network is less.

Figure 5.6 shows the comparison of testing time of both methods for each dataset. It

clearly shows that testing time for pruned neural network is lesser than completely

connected feed forward neural network. Number of pruned connections in large dataset is

high in number. Therefore, in large datasets difference in testing time is quite substantial.

29

Chapter 6

Conclusion and Future Work

Neural network are well researched and established tool for pattern classification

problems. More commonly, fully connected neural network with back propagation

learning are used. Neural Network is modeled after brain. Pruning such neural network

will bring us closer to dream of modeling human brain, which contains several

incomplete connections among its neurons.

 This paper proposed a pruning algorithm based on back propagation

learning. The performance of proposed learning algorithm with traditional Feed forward

with BP is compared. In this analysis, four different datasets are used. Results shows that

proposed algorithm is faster at learning as compared to Feed forward network with BP,

while maintaining similar generalization ability or even sometimes better also. Resultant

pruned network also has advantage of faster forward computation as is evident from

results.

Future work includes obtaining precise notion for various parameters, which can further

improve the algorithm.

30

References

[1] D. Elizondo and E. Fiesler, ―A survey of partially connected neural network‖,

International Journal of Neural Systems, vol. 8, pp. 535-558, 1997.

[2] M. Gethsiyal Augasta and T. Kathirvalavakumar, ―A novel pruning algorithm for

optimizing feed forward neural network of classification problems‖, Neural Process

Letters 34:241–258, DOI 10.1007/s11063-011-9196-7, 2011.

[3] S. Haykin, Neural Networks, a comprehensive foundation (2
nd

 Edition): Prentice Hall,

1999.

[4] E.D Karnin, ―A simple procedure for pruning back-propagation trained neural

networks‖, IEEE Transactions on Neural networks, vol. 1, no. 2, 10.1109/72.80236, June

1990.

[5] Yann Le Cun, JS Denker and SA Solla, ―Optimal brain damage‖, Advances in Neural

Information Processing Systems, vol. 2, Morgan Kaufmann, San Mateo, pp. 598–605,

1990.

[6] R.Reed, ―Pruning algorithms—A survey‖, IEEE Transactions on Neural Networks,

vol. 4, no. 5, 10.1109/72.248452, September 1993.

[7] A. S. Weigend, D. E. Rumelhart and B. A. Huberman, ―Generalization by weight

elimination with application to forecasting‖, In Advances in Neural Information

Processing Systems (NIPS) - Natural and Synthetic 3 (San Mateo, California, 1991), R.

P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds., Morgan Kaufmann Publishers,

pp.875–882.

[8] TQ Huynh, R. Setiono, ― Effective neural network pruning using cross validation‖,

Proceedings of IEEE International Joint Conference On Neural Networks, vol. 2, pp.

972–977, 10.1109/IJCNN.2005.1555984, 2005.

[9] S. Belciug, E. El-Darzi, ―A partially connected neural network-based approach with

application to breast cancer detection and recurrence‖, Intelligent Systems (IS), pp.191-

196, 10.1109/IS.2010.5548358, July2010.

31

[10] J. Sietsma and R. J. F. Dow, ―Neural net pruning- why and how‖, In Proceedings

IEEE International Conference on Neural Networks, vol. 1, pp. 325–333,

10.1109/ICNN.1988.23864, 1988.

[11] Z. Reitermanov´a, ―Feedforward neural networks – architecture optimization and

knowledge extraction‖, WDS'08 Proceedings of Contributed Papers, Part I, pp. 159–164,

2008.

[12] Rudy Setiono, ―A penalty-function approach for pruning feed forward neural

networks‖, Neural Computation, vol. 9, no. 1, pp. 185-204, 10.1162/neco.1997.9.1.185,

Jan 1997.

[13] C. Bishop, ―Neural networks for pattern recognition‖, Clarendon Press, Oxford

1995.

[14] UCI machine learning repository, https://archive.ics.uci.edu/ml/datasets.htm.

[15] S. Belciug, ―A statistical comparison between an unsupervised neural network and a

partially connected neural network in the detection of breast cancer‖, Annals of the

University of Craiova-Mathematics and Computer Science Series, vol. 37, pp. 71-77, 2010.

[16] Yue-Seng Goh and Eng-Chong Tan, ―Pruning neural networks during training by

backpropagation‖, Proceedings of 1994 IEEE Region 10's Ninth Annual International

Conference, vol. 2, pp. 805-808, 10.1109/TENCON.1994.369200 ,1994.

[17] Giovanna Castellano and Anna Maria Fanelli, ―An iterative pruning algorithm for

feed forward neural networks‖, IEEE Transactions on Neural Networks, vol. 8, no. 3,

May 1997.

[18] Fangju Ai, ―A new pruning algorithm for Feedforward Neural Networks‖, Fourth

International Workshop on Advanced Computational Intelligence (IWACI), pp. 286-289,

10.1109/IWACI.2011.6160018, 2011.

[19] G. Thimm and E. Fiesler, ―Neural network pruning and pruning parameters‖,

Presented on the 1st OnlineWorkshop on Soft Computing, Nagoya, Japan, 1996.

[20] T. Kavzoglu and C. A. O. Vieira, ―An analysis of artificial neural network pruning

algorithms in relation to land cover classification accuracy‖, In Proceedings of the

Remote Sensing Society Student Conference, Oxford, UK, pp. 53-58, 1998.

[21] V. Arulmozhi, ―Classification task by using matlab neural network tool box – A

beginner’s view‖, International Journal of Wisdom Based Computing, vol. 1, August

2011.

32

[22] Christos Stergiou and Dimitrios Siganos, ―Neural networks‖,

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html.

[23] Michael Negnevitsky, Artificial intelligence: guide to intelligent systems, Second

edition.

[24] Saurabh Karsoliya, ―Approximating number of hidden layer neurons in multiple

hidden layer bpnn architecture‖, International Journal of Engineering Trends and

Technology, vol. 3, no. 6, 2012.

[25] M. Gethsiyal Augasta and T. Kathirvalavakumar, ―Pruning algorithms of neural

networks - a comparative study‖, Central European Journal of Computer Science, vol. 3,

no. 3, pp. 105-115, DOI: 10.2478/s13537-013-0109-x, 2013.

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

33

Appendix A

Source Code

Function Specific to particular datasets

Function for Pen based handwritten dataset

Pen.m

function [] = pen(Numhidden)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

load('X.mat');
load('Y.mat');

X=X';
Y=Y';

sizeMN= size(X);
sizeTar= size(Y);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden));
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden));

for i=1:10

per= randperm(numExample);

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO;
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH;

backPg(X,Y,weightIH,weightHO,per,Numhidden);

prop(X,Y,weightIH,weightHO,per,Numhidden);

fprintf('---');
end

34

end

Function for SEMEION based handwritten digit dataset

SEMEION.m

function [] = mnist(Numhidden)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

load('semeion.mat');

X=X';
Y=Y';

sizeMN= size(X);
sizeTar= size(Y);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);

enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden));
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden));

for i=1:10
per= randperm(numExample);

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO;
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH;

backPg(X,Y,weightIH,weightHO,per,Numhidden);

prop(X,Y,weightIH,weightHO,per,Numhidden);

fprintf('--');
end

35

end

Function for Iris dataset

function [] = iris(Numhidden)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

load('iris_dataset');

X=irisInputs;
Y=irisTargets;

sizeMN= size(X);
sizeTar= size(Y);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden));
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden));

for i=1:10

per= randperm(numExample);

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO;
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH;

backPg(X,Y,weightIH,weightHO,per,Numhidden);

prop(X,Y,weightIH,weightHO,per,Numhidden);
fprintf('--');
end
end

36

Function for Wisconsin breast cancer dataset

function [] = cancer(Numhidden)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

load('cancer_dataset');

X=cancerInputs;
Y=cancerTargets;

sizeMN= size(X);
sizeTar= size(Y);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden));
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden));

%for i=1:10

per= randperm(numExample);

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO;
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH;

backPg(X,Y,weightIH,weightHO,per,Numhidden);

prop(X,Y,weightIH,weightHO,per,Numhidden);
fprintf('---');
%end
end

37

Common functions for all the datsets

Function for back propagation algorithm: backPg.m

function [y,mse] = backPg(inputs,targets,weightIH,weightHO ,per,numHidden)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

tic;

numEpoch=100;
alpha= 0.1;
%numHidden= 10;
sizeMN= size(inputs);
sizeTar= size(targets);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);

train= int32((2*numExample)/3);
test= int32(numExample/3);

%weightIH= rand(numInputs,numHidden)*0.46;

%weightHO= rand(numHidden,numOutput)*0.67;

InitialweightIH=weightIH;
InitialweightHO=weightHO;

% randomize the inputs
%per= randperm(numExample);

inp= zeros(size(inputs));
tar= zeros(size(targets));
 for i=1: numExample
inp(:,per(i))= inputs(:,i);
tar(:,per(i))=targets(:,i);

end

 inputs=inp;
 targets=tar;

 k=1;

38

for t=1 : numEpoch

 %fprintf('Iteration %d\n',t);

 for j=1: train
%%% calculate the output of network

%numPattern=randi([1,numExample]);

numPattern= j;

hiddenVal= zeros(numHidden,1);
for j=1 : numHidden
 hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern));
 hiddenVal(j,1)=sigmoid(hiddenVal(j,1));
end

outputVal= zeros(numOutput,1);
for j=1 : numOutput
 outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1));
 outputVal(j,1)=sigmoid(outputVal(j,1));
end

%%% Calculate the error in output

outputError=zeros(numOutput,1);
for i=1:numOutput
 error(i)= targets(i,numPattern)-outputVal(i);
outputError(i)= outputVal(i)*(1- outputVal(i))*(targets(i,numPattern)-outputVal(i));
end

%%%% weights changes in HO layer

for i=1 : numHidden
 for j=1 : numOutput
 weightHO(i,j)= weightHO(i,j)+ alpha* hiddenVal(i,1)*outputError(j);

 end
end

39

%%%% weight change in IH layer

hiddenError= zeros(numHidden,1);

for i=1: numHidden
 hiddenError(i)=0;
 for j=1 : numOutput
 hiddenError(i)= hiddenError(i)+ weightHO(i,j)*outputError(j);
 end
 hiddenError(i)=hiddenError(i)*hiddenVal(i)*(1-hiddenVal(i));
end

for i=1: numInputs
 for j=1: numHidden
 weightIH(i,j)=weightIH(i,j)+ alpha*hiddenError(j)*inputs(i,numPattern);
 end
end

 end
 % end of an epoch

 % Mean squared error

mse(k)= mean(error.^2) ;

y(k)=k;
k=k+1;
if(mse(k-1)<0.001)break;
end

end
t
fprintf('Trained Succesfully');
result=1;

%show(weightIH,weightHO,InitialweightIH,InitialweightHO);
figure;
plot(y,mse,'Color','r','LineWidth', 2, 'MarkerSize', 7);
xlabel('Number of Epochs');
ylabel('MSE(Mean Square Error)');

40

toc;

tic;
%% checking for unseen values
c=0;

for j=train+1 : numExample
 % numPattern=j;
 numPattern=j;

hiddenVal= zeros(numHidden,1);
for j=1 : numHidden
 hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern));
 hiddenVal(j,1)=sigmoid(hiddenVal(j,1));
end

outputVal= zeros(numOutput,1);
for j=1 : numOutput
 outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1));
 outputVal(j,1)=sigmoid(outputVal(j,1));
end

%fprintf('\nActual values');
for i=1: numOutput
%fprintf(' %d ',targets(i,numPattern));
end

%fprintf('\ntarget values');
for i=1: numOutput
%fprintf(' %f ',outputVal(i,1));
end

 [a,b]=max(targets(:,numPattern));
 [e,d]=max(outputVal(:,1));

 if(b==d)

 c=c+1;
 end

41

end
acc= c*100/test;
fprintf('\ncorrectly classified %f \n',acc);

toc;
end

Function for proposed algorithm: prop.m

function [y,mse] = prop(inputs,targets,weightIH,weightHO,per ,numHidden)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here

tic;

numEpoch=100;
alpha= 0.1;
%numHidden= 10;
sizeMN= size(inputs);
sizeTar= size(targets);
numInputs=sizeMN(1);
numExample=sizeMN(2);
numOutput=sizeTar(1);

train= int32((2*numExample)/3);
test= int32(numExample/3);

%weightIH= rand(numInputs,numHidden)*0.46;

%weightHO= rand(numHidden,numOutput)*0.67;

InitialweightIH=weightIH;

InitialweightHO=weightHO;

% randomize the inputs
%per= randperm(numExample);
%per
inp= zeros(size(inputs));
tar= zeros(size(targets));

42

 for i=1: numExample
inp(:,per(i))= inputs(:,i);
tar(:,per(i))=targets(:,i);

end

 inputs=inp;
 targets=tar;

 %inputs
 %targets
flag=1;

 k=1;
v=0;
for t=1 : numEpoch
 % fprintf('Iteration %d\n',t);
 for j=1: train
%%% calculate the output of network

%=randi([1,numExample]);

numPattern= j;

hiddenVal= zeros(numHidden,1);
biasVal= zeros(numHidden,1);

for j=1 : numHidden
 hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern)); %+biasVal(j,1);
 hiddenVal(j,1)=sigmoid(hiddenVal(j,1));
end

outputVal= zeros(numOutput,1);
biasOutVal=zeros(numOutput,1);

for j=1 : numOutput
 outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1)) ;%+ biasOutVal(j,1);
 outputVal(j,1)=sigmoid(outputVal(j,1));
end

%%% Calculate the error in output

outputError=zeros(numOutput,1);
for i=1:numOutput
 error(i)= targets(i,numPattern)-outputVal(i);

43

outputError(i)= outputVal(i)*(1- outputVal(i))*(targets(i,numPattern)-outputVal(i));
end
%outputError(2)= outputVal(2)*(1- outputVal(2))*(targets(2,numPattern)-outputVal(2));

%%%% weights changes in HO layer

for i=1 : numHidden
 for j=1 : numOutput
 if(weightHO(i,j)==0)continue;end
 weightHO(i,j)= weightHO(i,j)+ alpha* hiddenVal(i,1)*outputError(j);
 end
end

%%%% weight change in IH layer

hiddenError= zeros(numHidden,1);

for i=1: numHidden
 hiddenError(i)=0;
 for j=1 : numOutput
 hiddenError(i)= hiddenError(i)+ weightHO(i,j)*outputError(j);
 end
 hiddenError(i)=hiddenError(i)*hiddenVal(i)*(1-hiddenVal(i));
end

for i=1: numInputs
 for j=1: numHidden
 if(weightIH(i,j)==0)continue; end
 weightIH(i,j)=weightIH(i,j)+ alpha*hiddenError(j)*inputs(i,numPattern);
 end
end

 end
 mse(k)= mean(error.^2) ;
y(k)=k;
k=k+1;

 % change in weight less than threshold
 if(mse(k-1)<0.02 && flag==1)
 %avg= show(weightIH,weightHO,InitialweightIH,InitialweightHO);
 %avg
 flag=0;
 for i=1: numInputs
 for j=1: numHidden
 if(weightIH(i,j)~=0&& abs(weightIH(i,j)-InitialweightIH(i,j))<0.05)

44

 % biasVal(j,1)= weightIH(i,j)*inputs(i,numPattern);
 weightIH(i,j)=0;v=v+1;
 %fprintf('\n %d %d',i,j);

 end
 end
 end

 for i=1 : numHidden
 for j=1 : numOutput
 if(weightHO(i,j)~=0 && abs(weightHO(i,j)-InitialweightHO(i,j))<0.05)
 % biasOutVal(j,1)= weightHO(i,j)*hiddenVal(i);
 weightHO(i,j)=0;v=v+1;
 %fprintf('\n %d %d',i,j);
 end

 end
 end

 end
 if(mse(k-1)<0.001)break;
 end

end
t
fprintf('Trained Succesfully');
result=1;

%show(weightIH,weightHO,InitialweightIH,InitialweightHO);
hold on;
plot(y,mse,'Color','b','LineWidth', 2, 'MarkerSize', 7);
hold off;
xlabel('Number of Epochs');
ylabel('MSE(Mean Square Error)');
toc;
fprintf('\n\nNo of weights removed %d, total weights %d \n',v,(numInputs+numOutput)*numHidden);
%weightIH
%weightHO
tic;
%% checking for unseen values
c=0;

for j=train+1 : numExample
 % numPattern=j;
 numPattern=j;

hiddenVal= zeros(numHidden,1);

45

for j=1 : numHidden
 hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern));
 hiddenVal(j,1)=sigmoid(hiddenVal(j,1));
end

outputVal= zeros(numOutput,1);
for j=1 : numOutput
 outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1));
 outputVal(j,1)=sigmoid(outputVal(j,1));
end

%fprintf('\nActual values');
for i=1: numOutput
%fprintf(' %d ',targets(i,numPattern));
end

%fprintf('\ntarget values');
for i=1: numOutput
%fprintf(' %f ',outputVal(i,1));
end

 [a,b]=max(targets(:,numPattern));
 [e,d]=max(outputVal(:,1));

 if(b==d)
 c=c+1;

 end

end
acc=c*100/test;
fprintf('\ncorrectly classified %f \n',acc);

toc;
 end

46

Other helping functions:

Sigmoid.m

function [output] = sigmoid(x)
%UNTITLED3 Summary of this function goes here
% Detailed explanation goes here

y= exp(-1*x);

output= 1/(1+y);

end

show.m

function [avg] = show(theta1,theta2,initialtheta1,initialtheta2)
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here

x=size(theta1);
hidden= x(2);
input=x(1); %including no bias

y=size(theta2);
output=y(2);
sum=0;
%fprintf('Weights IH layer');

for i=1 : hidden
 % fprintf('Weights for hidden unit: %d \n',i);
 for j=1 : input
 diff=initialtheta1(j,i)-theta1(j,i);
 sum=sum+abs(diff);
 % fprintf('Hidden %d : Before and after %d %d Difference %d\n',i,initialtheta1(j,i),theta1(j,i),diff);
 end

end

47

%fprintf('Weights HO layer');

for i=1 :output
 % fprintf('Weights for output unit: %d \n',i);
 for j=1 : hidden
 diff2=initialtheta2(j,i)-theta2(j,i);
 sum=sum+abs(diff2);
 % fprintf('Output %d :Before and after %d %d Difference

%d\n',i,initialtheta2(j,i),theta2(j,i),diff2);
 end

end

avg= sum/(hidden*(input+output));

end

48

APPENDIX B

SCREEN SHOTS

Screen shot for pen based handwritten digit dataset

49

Screen shot for SEMEION digit dataset

50

Screen shot for Iris dataset

51

Screen shot for Wisconsin breast cancer dataset

