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ABSTRACT 

 

Artificial Neural Network is a machine which models the way in which human 

brain perform its task of learning from new environment. Neural Network has 

been extensively used for task of learning patterns from training samples for 

purpose of classification. Pattern Classification involves mapping the given set of 

input features to two or more classes.  Formerly, completely connected neural 

network with Back Propagation learning was used to predict membership of data 

instance to particular class. But same task can be done by using the neural 

network of smaller size and less complexity. This work aims to propose a new 

paradigm to prune an artificial neural network using error back propagation 

learning algorithm. In this work, neural network is trained partially and 

redundant weights are removed. There are two issues involved in the method. 

First is when the network should be pruned? Second is heuristic to measure 

importance of weights in network. In particular performance of pruned neural 

network is compared with its completely connected version using four different 

datasets and significant increase in learning speed is observed, while maintaining 

similar generalization ability. 
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Mean Square Error (MSE), Back Propagation (BP), partially connected neural 
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Chapter 1 

 

Introduction 
 

 

1.1 Introduction 
 

Artificial neural networks are prototyped after human brain which processes nerve 

signals from input nerve cells and propagate them to other neurons. In complete 

biological nervous system, all the nerve cells may not be completely connected. This 

calls for the need of multilayered neural network structure which has only subset of all 

the relevant interconnections among its neurons.  Such networks are known as partially 

connected neural networks (PCNNs). The aim to construct PCNNs is to have a reduced 

neural network topology equivalent or better in performance than the completely 

connected model. A lesser number of connections in the network can help improve 

generalization and reduce the network complexity, hardware, and storage requirements, 

and training and testing time [1]. 

 

A host of methods for dealing with PCNNs have been proposed. Some of methods are: 

the ontogenic, the non-ontogenic, and the hybrid methods. 

In onto genic methods the topology of the neural network is modified during the learning 

phase whereas in non-onto genic methods topology of the network is defined prior to the 

learning phase and remains unchanged during the learning process Hybrid methods are 

combinations of neural networks with other artificial intelligence (AI) techniques. These 

AI techniques include: symbolic knowledge and genetic programming [1]. 

The ontogenic methods based on the back propagation algorithm can be classified into 

three groups:  growing, pruning, and the methods which combine both growing and 

pruning techniques [1].  



2 
 

Neural network pruning is defined as a process of cropping the initial assumed neural 

network architecture. One of the main goals of pruning algorithm is to arrive at optimal 

structure that can generalize well with lesser complexity. Pruning methods start by 

training a neural network with a topology bigger than needed. Due to it being oversized, 

the initial network will be less sensitive to initial conditions such as weight initialization 

and learning parameters. Thus, the initial network is expected to learn reasonably fast. 

After this, the network is trimmed until the smallest topology that correctly maps the data 

is found. Growing methods start with a small topology which increases until the neural 

network achieves a good level of performance for the given method.  

In this work, we have introduced a paradigm by which we use traditional back 

propagation based learning method to prune the neural network. Instead of training 

network completely, we leave it partially trained and remove the unnecessary weights. 

We try to figure out redundant weights before completion of training. This work 

measures the effectiveness of proposed method against the completely connected feed 

forward network trained using back propagation. 

 

 

 

1.2 Organization of Thesis 
 

The thesis is organized as follows: Chapter 2 introduces the literature survey, chapter 3 

describes techniques of pruning neural network, chapter 4 discusses proposed work, and 

chapter 5 describes implementation and results.  
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Chapter 2  

 

Literature Survey 
 

 

Pruning is defined as a cropping the size of network within the assumed initial 

architecture [2]. Variety of methods have been proposed in past to prune artificial neural 

networks.  Earlier methods were based on either the sensitivity of weight or penalty based 

methods. Sensitivity based methods modify the trained network i.e. network is trained, 

sensitivity of weights are calculated and less sensitive weights are removed. Sensitivity 

determines the importance of weight in network. Several heuristic used to determine the 

sensitivity of the network.  

Select the weight with smallest magnitude to remove, because smaller weights contribute 

less the output and thus are less sensitive for network. These are magnitude based 

pruning (MBP) methods [13].  

 E.D. Karnin (1990) proposes a method which is based on sensitivity of cost function on 

inclusion / exclusion of each weight. Thus his task is to find weight on removal of which 

there is minimum increase in error. He use shadow array to keep track of incremental 

change in weights of neural network. Array is then sorted and least sensitive weight is 

deleted [4].  

Le Cun et al. measured saliency of weight by performing second derivative of the error 

with respect to weight. This method was optimal brain damage (OBD). It prunes 

iteratively on a well trained network to a reasonable level, compute ’saliencies’, delete 

low ’saliency’ weights and resume training [5]. 
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Penalty based methods add penalty term to the cost function. Thus minimizing the cost 

function would drive useless weights to zero [6]. Weigend et al. introduces penalty term 

based on complexity of network as function of weights relative to constant wo. Role of 

this additional penalty term is controlled by parameter lambda. Very large value of 

lambda makes penalty term strong and thus weights are forced to become zero [7].  These 

methods are also called weight decay methods. 

Huynh and Setiono [8] propose cross validation method. In cross validation method the 

whole dataset is divided into two parts that is training set and cross validation set. The 

pruning criterion is still based on the magnitude of each weight but a validation step is 

additionally used to test the pruned network. If the pruned network outperforms the one 

before pruning, then the pruned network is accepted and the pruning process can be 

carried out further. Otherwise the network is restored to the size before the current 

pruning step. 

S. belciug et al. proposes yet another method which uses back propagation training to 

create partially connected neural network. It deletes those weights which don’t pass 

certain threshold value after training [9]. 

Real-world applications prefer simpler and more efficient methods. But most of methods 

are very complex to implement and less efficient also. For example the main drawback of 

the OBD is its relatively low computational efficiency. MBP methods often remove 

important weights of the network as they assume that small weights are irrelevant [13]. 
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Chapter 3 

 

Pruning Neural Network 

 

 

3.1 General Concept 
 

While building an artificial neural network the designer comes across the problem of 

choosing right architecture of neural network for task to accomplish. A problem which 

can be solved by network of given size can be solved by network of larger size also [4]. 

But using smaller size network offers several benefits: 

The cost of computation grows linearly with number of connections or weights. Smaller 

network is thus efficient in forward computation and learning both. 

Neural network training is done using finite set of training examples; larger artificial 

neural network will tend to memorize the pattern, thus leading to poor generalization [4]. 

Several researchers have thus proposed work to reduce the size of given neural network. 

Such algorithms are called as artificial neural network pruning algorithms. 

The trimmed network is of smaller size and is likely to give higher accuracy than before 

its trimming. Researchers have suggested many pruning algorithms for optimizing the 

architecture of neural networks. Based on the techniques used for pruning, the pruning 

methods can be classified as penalty term methods, cross validation methods, magnitude 

based methods and sensitivity based methods [2]. 
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3.2 Different Pruning Methods 

 

3.2.1 Sensitivity Based Methods 

 

The general idea of these methods is to train a network in performing a given task and 

then to compute how important is the existence of a connection or node. Then, the least 

important connection nodes are removed and the remaining network is retrained. In 

general, the sensitivity measurement does not interfere with training and requires an extra 

amount of computational effort. The key issue in the implementation of these techniques 

is finding a way to measure how sensitive is the solution to the removal of a connection 

or a node. Early approaches attempt to remove a connection by evaluating the change in 

the network’s output error. If the error increases too much, then the weight must be 

restored back again. More sophisticated approaches evaluate the change in error for all 

the connections on training data and then remove the one connection which produces the 

least error increment. Both approaches takes lot of time to execute in practice. 

1.  Optimal Brain Damage 

Le Cun et al. have proposed the optimal brain damage (OBD) method that approximates 

the measure of saliency of a weight by estimating the second derivative of the network 

output error with respect to that weight. In this method pruning is carried out iteratively 

on a well trained network to a reasonable level, compute saliencies, delete low saliency 

weights and resume training. Main steps are as follow: 

1. Create a neural network with larger architecture. 

2. Train the network until some stopping criterion is satisfied. 

3. After training is done, compute the second derivatives for each of the weights.  

4. Evaluate the saliencies hi iWi   for each weight and sort the weights by saliency. 

5. Delete some of the low-saliency weights.  

6. Go to 2 and repeat until some overall stopping criterion is reached. 
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This approach to weight elimination has been termed optimal brain damage [5]. 

 

  2.   Shadow Array Based Method 

E.D. Karnin [4] measures the sensitivity of error function w.r.t. to each connection and 

removes the weight with low sensitivity. Sensitivity of weight wi j is given as 

Si j = - (E (w 
f 
)
  
) – E(0) ) w 

f
 / w 

f
 - 0 

Rather than actually removing weight and calculating error they calculate S by summing   

changes in weight during training process.  

After training each weight has an estimated sensitivity and lowest sensitivity weight can 

be deleted. 

 

3.2.2. Penalty Based Methods 
 

The method modifies the error function so that back propagation function prunes the 

network by driving weights to zero. Weights may also be removed when they fall below 

certain threshold. 

Weigend et al. [7] minimizes the following cost function: 

∑     2
  +  ƛ ∑  i

2
/wo

2
)/(1+ wi

2
/wo

2
) 

Where T is set of all the training patterns and C is set of all connections. 

Second term represent the complexity of network as function of weight magnitude 

relative to constant wo. 

When lambda is large it is similar to the weight decay problems, When lambda is infinite 

it drives weight to zero. Thus it requires some tuning for this parameter and depends on 

problem at hand. 



8 
 

3.2.3 Magnitude Based Methods 
 

Magnitude based methods (MBP) assumes that small magnitude weights are less 

important than large magnitudes [13]. Thus they use magnitude of weight |w| as measure 

of saliency of weights. There is not much theoretical background behind these methods. 

These methods are more or less driven by assumptions and perform poorly in practice. 

MBP based methods sometimes remove those weights which are critical in performance 

of neural network as they think small weight are useless. 

 

3.2.4 Cross Validation Based Methods 
 

In addition to training and testing set we have third set called as cross validation set. In 

this method prior to training process whole dataset is divided to three sets- training, cross 

validation, testing. Cross validation set is used to check the performance of current state 

of pruned neural network in comparison to state before this step. Cross validation 

methods follow steps as shown below: 

- Train the network to achieve desired accuracy. 

- Prune the trained network on basis of magnitude of weights. 

- Check the performance of pruned network and compare with previous unpruned 

network. 

- If performance increases save pruned network for further steps otherwise discard 

pruned network. 

- Iterate over these steps. 

This method is proposed by Huynh and Setiono [8]. 
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Chapter 4 

 

Proposed Work 

 

 

4.1 Introduction 
 

In this chapter we have discussed traditional feed forward neural network with back 

propagation learning and proposed method.  

 

4.2 Feed Forward Neural Network With Back Propagation 

Learning. 
 

Feed forward neural network is neural network which is completely connected. It means 

every neuron in each layer is connected to every neuron in next adjacent layer. It mainly 

uses back propagation learning algorithm for training purpose. 

In feed forward neural network back-propagation learning algorithm has two phases.  

First is feed forward computation and second is backward error propagation. In feed 

forward computation, training example is presented to input layer of neural network. This 

input pattern is then passed from one layer to another layer. Finally output is generated by 

output layer when pattern reaches output layer. In backward error propagation, the output 

pattern is compared with desired pattern. If output pattern is different from desired 

pattern, difference between them is calculated and error is propagated backwards [23]. 

A neuron determines its output by first computing net weighted input as before: 
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X= ∑   
   iwi 

where n is the number of inputs, and xi is value of input, wi is weight associated with that 

input and Ѳ is the threshold applied to the neuron. Next, this weighted input value is 

passed through the activation function. However neurons in the back-propagation 

network use a sigmoid activation function: 

 

Y= sigmoid(X) 

Where sigmoid(x) is 1/ (1+e
-x

)  

The derivative of this function is easy to compute. It also guarantees that the neuron 

output is bounded between 0 and 1. 

 

  Fig. 4.1 Back propagation in three layer feed forward neural network. 

Detailed back propagation learning algorithm for feed forward is described below. 
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4.2.1 Algorithm 

 

Main Steps of the Algorithm: 

Create a feed-forward network with ninput, inputs, mhidden hidden units, and noutput output 

units. 

- Initialize all network weights to small random numbers in uniform range [-einit, +einit]. 

Where einit = 
√ 

√    √     
 

- Until the termination condition is met, do 

 For each (x, y) in training examples, do 

Propagate the input forward through the network: 

1, Input the instance (x,y) to the network and compute output for every node in network. 

Propagate the errors backward through the network: 

2. For each network output unit t, calculate its error term    

                  

3. For each neuron u in hidden layer h, calculate its error term    

                 ∑                       

4. Update each network weight wi j 

 Wi j = Wi j +       

Where  Wi j=       Xi j 

 

Flowchart for above algorithm is shown in figure 4.2. 
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        Fig. 4.2 Flowchart for BP learning algorithm for feed forward neural networks. 
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4.2.2 Stopping Criteria 

 

The training process is repeated until the Mean square error is less than 0.001 or 

predefined number of epochs is done. 

4.3 Proposed Method 
 

4.3.1 Motivation 

 

Most of the work done in area of neural network pruning is based on either training the 

neural network completely and then pruning the connections based on sensitivity of 

weights or pruning the neural network while training is going on. But training the 

network to get best accuracy and then determining the redundant weights is time 

consuming. Here, we propose the algorithm whereby we try to estimate sensitivity of the 

weights even before network is trained completely. Resultant neural network constructed 

using proposed method is SCNN as shown in fig. 4.3. SCNN has only fewer connections 

than completely connected neural network. 

 

Fig. 4.3 SCNN using Proposed Method.  
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4.3.2 Design Issues 

 

There are two major design issues in this proposed work.  

- First is after how many epochs of training should network be considered for 

pruning? 

- Other is, heuristic to find notion of less useful weights i.e. determining the criteria 

to find redundant synaptic in network. 

In order to address the first issue, we have taken in account notion of how many features 

are learnt by network before we prune it. As neural network learn features or pattern in 

training samples through weight modification, it is important not to delete useful weights. 

One of the measures of learning is change in magnitude of the weights. Weights that 

don’t undergo much change in their value are slow at learning, thus are good candidate 

for deletion. Thus we conclude that network be considered for pruning only it has learnt 

sufficient features. Measure of learning by network is Mean squared error. If MSE is less 

than some threshold value, it means network has learnt sufficient features to be 

considered for pruning. Value of the threshold depends on slope of graph b/w No of 

epochs and MSE while performing back propagation training. If slope is more, threshold 

should be more. If slope is less, threshold should be less. Reason behind this idea is, more 

slope means that network is learning very fast and threshold should be good enough so 

that pruning is done early. Whereas fewer slopes means network is learning very slow, 

thus pruning can be performed after considerable no of epochs. 

Heuristic to determine less useful weight is based on change in magnitude of weight from 

initial weight to weight after network is considered for pruning. If change in weight is 

less than some threshold value, we set the corresponding weight to zero. If all the 

incoming connection to a hidden node is zero, then we can safely remove that node also. 

This proposed algorithm works well for problem where number of input features is very 

large. The flowchart representation of proposed method is shown in fig 4.4. 
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Fig. 4.4 Flowchart for Proposed method.  
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4.3.3 Algorithm 

 

Main Steps of the Algorithm 

INPUT   The Multilayer feed forward network T with no. of layers L and n number of 

input features. Each layer l (1< l <L) contains xl number of nodes. It comprises of an 

output layer which contains number of nodes equal to number of classes. 

BEGIN 

1. Divide the input dataset to two categories: training set and testing set. Training set 

is used to train the network. Testing set is used to measure the accuracy of trained 

network. 

2. Train the neural network T until MSE (mean square error) over training set falls 

below certain threshold  . Threshold is chosen such that network has learnt 

important features. 

3. Consider this partially trained network T for pruning. 

4. For all weights wij in network T 

 4.1 Delete(set to zero) those weights which don’t change beyond a threshold α i.e. 

difference b/w initial weights and weights after partial training is less than some 

predetermined value. 

5. Retrain this pruned network until mean squared error falls down to 0.001. 

6. Determine the accuracy of trained network using test set. 

 

OUTPUT: 

 

The pruned multilayer feed forward neural network T. 
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Chapter 5 

 

Implementation and Results  
 

 

5.1 Datasets  
 

In this work we have used four different datasets. 

Description of the datasets is as follows: 

1. Pen based handwritten digit dataset: It contains 7494 sample of handwritten 

digits each of which is characterized by 16 features ranging from 0-100. Each of 

samples belongs to one of ten classes (0-9). 

 No. of Features:  16 

 No of Classes:      10 

 No. of Examples:   7494 

 

 This dataset is obtained from UCI Machine learning Repository  

 https://archive.ics.uci.edu/ml/datasets/PenBased+Recognition+of+Handwritten+Digits. 

2. SEMEION Handwritten Digit Data Set:  1593 handwritten digits from around 

80 persons were scanned, stretched in a rectangular box 16x16 in a gray scale of 

256 values. Then each pixel of each image was scaled into a Boolean (1/0) value 

using a fixed threshold. The dataset was created by Tactile Srl, Brescia, Italy and 

donated in 1994 to Semeion Research Center of Sciences of Communication, 

Rome, Italy for machine learning research.  

https://archive.ics.uci.edu/ml/datasets/PenBased+Recognition+of+Handwritten+Digits.
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This dataset is obtained from UCI Machine learning repository 

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit 

 No of features: 256 

 No of classes: 10 

 No of examples: 1593 

3. Iris dataset: Irises are classified into three classes: setosa, versicolour and 

verginica. Each category has 50 patterns and each pattern possesses four attributes 

namely sepal length, sepal width, petal length and petal width. 

This dataset is obtained from UCI Machine learning repository 

https://archive.ics.uci.edu/ml/datasets/Iris 

 No of features: 4 

 No of classes: 3 

 No of examples: 150 

4. Wisconsin Breast cancer dataset: Wisconsin cancer dataset consists of 699 

samples. It is used to diagnose breast cancer as either benign or malignant. Each 

pattern consists of 9 real value attributes as an input vector and two classes as an 

output vector. Out of 699 samples 458 are benign and 241 are malignant patterns. 

This dataset is obtained from UCI Machine learning repository 

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 

 

No of features: 9 

 No of classes: 2 

 No of examples: 699 

 

 

https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29
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5.2 Data Preprocessing 
 

Data pre-processing is a crucial step before engaging it to pattern extraction process. 

Data-gathering methods are often roughly handled, resulting in out-of-range values (e.g., 

Age: 0), impossible data combinations (e.g., Living entity: Human, Hands: 

Four), missing values, etc. Analyzing data that has not been carefully checked for such 

problems can produce misleading results. Thus, the representation and quality of data is 

first and foremost before running an analysis. 

Data pre-processing includes cleaning, normalization, transformation, feature 

extraction and selection, etc. The product of data pre-processing is the final training set. 

However, we have taken account of normalization only because all other processes have 

been taken care of by the source UCI repository itself. To normalize a set of data, the 

original data range is mapped into another scale. Normalization is needed to pre-process 

data so as to increase the efficiency of algorithm i.e. it helps to bring the data closer to the 

requirements of the algorithms. Variables can be normalized (to unit zero mean and unit 

variable, or to the interval [0, 1]), data elements can be normalized (when all their 

attributes have the same units). Following are the steps of normalizing data sets: 

. Find out the Minimum (Min) and Maximum (Max) of original datasets. 

. Decide the Minimum (MinN) and Maximum (MaxN) for normalized scale. 

. Consider a number (X) from the data set. 

. The Normalized value for the number(X) is given by the formula: 

 MinN+ (X-Min)*(MaxN-MinN)/ (Max-Min) 

 

5.3 Implementation 
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We have implemented training and testing of feed forward network with BP and 

proposed method in MATLAB R2011a. A snapshot of the implementation is shown in 

appendix B. 

For purpose of comparative analysis we set same initial weights and architecture for both 

methods. Network is trained until it converges to predetermined MSE value or reaches 

fixed number of epochs whichever is earlier. This experiment is performed for each 

dataset for ten times, each time dividing training and testing set randomly. 

 

5.3.1 Feed Forward Neural network using back propagation algorithm 

 

a) Pen based handwritten digit dataset: 

 Architecture of 16-25-10 is used i.e. input feature is 16-D vector with one hidden 

layer having 25 hidden units and one output layer having 10 output units. Training is 

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated.  Following 

parameters are used: 

 Maximum Number of Epochs: 100 

 Learning Rate:        0.1 

 Training pattern:        4996 

 Testing pattern:        2498 

  

b) SEMEION handwritten digit dataset:  

 Architecture of 256-25-10 is used i.e. input feature is 256-D vector with one 

hidden layer having 25 hidden units and one output layer having 10 output units. Training 

is stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following 

parameters are used: 
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Maximum Number of Epochs: 100 

Learning Rate:        0.1 

Training Patterns:        1062 

Testing Patterns:        531 

 

c) Iris dataset 

 Architecture of 4-10-3 is used i.e. input feature is 4-D vector with one hidden 

layer having 10 hidden units and one output layer having 3 output units. Training is 

stopped whenever MSE falls below 0.001 or 200 Epochs are iterated. Following 

parameters are used: 

Maximum Number of Epochs:  200 

Learning Rate:        0.1 

Training Patterns:        100 

Testing Patterns:        50 

 

a) Wisconsin Breast cancer dataset 

 Architecture of 4-10-2 is used i.e. input feature is 4-D vector with one hidden 

layer having 10 hidden units and one output layer having 2 output units. Training is 

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following 

parameters are used: 

Maximum Number of Epochs:  100 

Learning Rate:        0.1 

Training Patterns:        466  
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Testing Patterns:        233 

 

5.3.2 Proposed Algorithm 

 

a) Pen based handwritten digit dataset: 

 Architecture of 16-25-10 is used i.e. input feature is 16-D vector with one hidden 

layer having 25 hidden units and one output layer having 10 output units. Training is 

stopped whenever MSE falls below 0.001 or 100 Epochs are iterated.  Following 

parameters are used: 

 Maximum Number of Epochs:   100 

 Learning Rate:          0.1 

 Training pattern:          4996 

 Testing pattern:          2498 

 Threshold   for MSE for pruning   0.02 

 Threshold   for change in weights  0.05 

 

  

b) SEMEION handwritten digit dataset:  

 Architecture of 256-25-10 is used i.e. input feature is 256-D vector with one 

hidden layer having 25 hidden units and one output layer having 10 output units. Training 

is stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following 

parameters are used: 

 Maximum Number of Epochs:   100 
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 Learning Rate:          0.1 

 Training Patterns:          1062 

Testing Patterns:          531 

Threshold   for MSE for pruning   0.02 

Threshold   for change in weights   0.054 

 

c) Iris dataset 

 Architecture of 4-10-3 is used i.e. input feature is 4-D vector with one hidden 

layer having 10 hidden units and one output layer having 3 output units. Training is 

stopped whenever MSE falls below 0.001 or 200 Epochs are iterated. Following 

parameters are used: 

Maximum Number of Epochs:    200 

Learning Rate:          0.1 

Training Patterns:          100 

Testing Patterns:          150 

Threshold   for MSE for pruning   0.02 

Threshold   for change in weights   0.024 

 

 

d) Wisconsin Breast cancer dataset 

 Architecture of 4-10-2 is used i.e. input feature is 4-D vector with one hidden 

layer having 10 hidden units and one output layer having 2 output units. Training is 
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stopped whenever MSE falls below 0.001 or 100 Epochs are iterated. Following 

parameters are used: 

Maximum Number of Epochs:    100 

Learning Rate:          0.1 

Training Patterns:          466 

Testing Patterns:          233 

Threshold   for MSE for pruning   0.02 

Threshold   for change in weights   0.05 
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5.4 Results 

 

5.4.1 Performance Evaluation 

 

MSE is considered criteria for performance of network; the one with lower MSE has 

higher accuracy. So we train both proposed algorithm and feed forward neural network 

with back propagation algorithm unless MSE falls below fixed value 0.01.Thus method 

which trains the neural network faster is considered better. 

Threshold value for MSE to find when to prune can be judged from graph of MSE vs. 

No. of epochs. When the slope is less in graph, threshold value is also small and vice-

versa. This graph between MSE and no. of epochs for feed forward with BP and 

proposed method is very instructive. It indicates either proposed method takes less no. of 

epochs for learning or both take same no. of epochs. In later case proposed method 

reaches lower value of MSE. 

 

Following graphs are obtained for four different datasets 

          

Fig. 5.1 MSE vs. No. of epochs for pen based   Fig. 5.2 MSE vs. No. of epochs for 

 handwritten digit dataset.    SEMEION dataset.   
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Fig. 5.3   MSE vs. No. of epochs for Iris          Fig. 5.4 MSE vs. No. of epochs for    

dataset.       Wisconsin breast cancer dataset. 

     
 

 

Performance is based on how much time does algorithm spends in training the given 

architecture. Here we input same architecture for both learning methods, initial weights 

are also same.  Table 5.1 and Table 5.2 depict the performance of proposed method and 

feed forward with BP respectively for four different datasets. 

Dataset Initial 

Architec

ture 

No. of 

Epochs( 

training) 

Accuracy Training 

time 

 

Testing 

time 

No of 

connections 

pruned 

 

Pen based 

Handwritten 

digit 

16-25-10 47 92.2 65.9 0.52 74 

SEMEION 256-25-

10 

35 91.4 26.52 0.126 2831 

Iris 4-10-3 94 94.4 0.96 0.006 22 

Cancer 9-10-2 23 96.8 1.15 0.023 5 

Table 5.1 Performance of proposed method on different datasets. 
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Dataset Architecture No. of 

Epochs( 

training) 

Accuracy Training 

time 

Testing 

time 

Pen based 

Handwritten 

digit 

16-25-10        48      92.2     68.6    0.96 

SEMEION 256-25-10        38       91     29.08    0.27 

 Iris 4-10-3        98      94.8     1.14    0.01 

Cancer 9-10-2        23      96.7             3 

Table 5.2 Performance of feed forward with BP learning. 

Training time for both methods is compared in Fig.5.5 for each dataset. Results clearly 

indicate that proposed algorithm is faster at learning than feed forward with BP training. 

Comparison also depicts that for large datasets like Pen based handwritten digit and 

SEMEION handwritten digit dataset difference of training time is very significant.  

 

 

Fig. 5.5 Comparison of methods for training time. 
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Fig. 5.6 Comparison of methods for testing time. 

Forward computation is faster in pruned network because size of pruned network is less. 

Figure 5.6 shows the comparison of testing time of both methods for each dataset. It 

clearly shows that testing time for pruned neural network is lesser than completely 

connected feed forward neural network. Number of pruned connections in large dataset is 

high in number. Therefore, in large datasets difference in testing time is quite substantial.  

          

 
 

 

 

 

 

 

 

 



29 
 

Chapter 6 

 

Conclusion and Future Work 
 

 

Neural network are well researched and established tool for pattern classification 

problems. More commonly, fully connected neural network with back propagation 

learning are used. Neural Network is modeled after brain. Pruning such neural network 

will bring us closer to dream of modeling human brain, which contains several 

incomplete connections among its neurons. 

  This paper proposed a pruning algorithm based on back propagation 

learning. The performance of proposed learning algorithm with traditional Feed forward 

with BP is compared. In this analysis, four different datasets are used. Results shows that 

proposed algorithm is faster at learning as compared to Feed forward network with BP, 

while maintaining similar generalization ability or even sometimes better also. Resultant 

pruned network also has advantage of faster forward computation as is evident from 

results.  

Future work includes obtaining precise notion for various parameters, which can further 

improve the algorithm. 
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Appendix A 
 

Source Code 

Function Specific to particular datasets 

Function for Pen based handwritten dataset 

Pen.m 

function [ ] = pen( Numhidden ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

  

load('X.mat'); 
load('Y.mat'); 

  

X=X'; 
Y=Y'; 

  

sizeMN= size(X); 
sizeTar= size(Y); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden)); 
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden)); 

  

for i=1:10 

  

  

per= randperm(numExample); 

  

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO; 
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH; 

  

backPg(X,Y,weightIH,weightHO,per,Numhidden); 

  

prop(X,Y,weightIH,weightHO,per,Numhidden); 

  

fprintf('---------------------------------------------'); 
end 
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end 

  

 

 

Function for SEMEION based handwritten digit dataset 

SEMEION.m 

 

function [ ] = mnist( Numhidden ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

  

load('semeion.mat'); 

  

  

X=X'; 
Y=Y'; 

  

sizeMN= size(X); 
sizeTar= size(Y); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 

  

enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden)); 
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden)); 

  

for i=1:10 
per= randperm(numExample); 

  

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO; 
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH; 

  

backPg(X,Y,weightIH,weightHO,per,Numhidden); 

  

prop(X,Y,weightIH,weightHO,per,Numhidden); 

  

fprintf('--------------------------------------------'); 
end 

  

  

  



35 
 

end 

  

 

 

 

Function for Iris dataset 

 

 

function [ ] = iris( Numhidden ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

  

  

load('iris_dataset'); 

  

X=irisInputs; 
Y=irisTargets; 

  

sizeMN= size(X); 
sizeTar= size(Y); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden)); 
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden)); 

  

for i=1:10 

  

per= randperm(numExample); 

  

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO; 
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH; 

  

backPg(X,Y,weightIH,weightHO,per,Numhidden); 

  

prop(X,Y,weightIH,weightHO,per,Numhidden); 
fprintf('----------------------------------------------'); 
end 
end 
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Function for Wisconsin breast cancer dataset 

 

function [ ] = cancer( Numhidden ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

  

  

load('cancer_dataset'); 

  

X=cancerInputs; 
Y=cancerTargets; 

  

sizeMN= size(X); 
sizeTar= size(Y); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 
enitHO= sqrt(6)/(sqrt(numOutput)+sqrt(Numhidden)); 
enitIH= sqrt(6)/(sqrt(numInputs)+sqrt(Numhidden)); 

  

%for i=1:10 

  

per= randperm(numExample); 

  

weightHO= (2*rand(Numhidden,numOutput)-1)*enitHO; 
weightIH= (2*rand(numInputs,Numhidden)-1)*enitIH; 

  

backPg(X,Y,weightIH,weightHO,per,Numhidden); 

  

prop(X,Y,weightIH,weightHO,per,Numhidden); 
fprintf('-----------------------------------------------'); 
%end 
end 
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Common functions for all the datsets 

Function for back propagation algorithm: backPg.m 

function [ y,mse ] = backPg( inputs,targets,weightIH,weightHO ,per,numHidden) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 

  

tic; 

  

numEpoch=100; 
alpha= 0.1; 
%numHidden= 10; 
sizeMN= size(inputs); 
sizeTar= size(targets); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 

  

train= int32((2*numExample)/3); 
test= int32(numExample/3); 

  

%weightIH= rand(numInputs,numHidden)*0.46; 

  

%weightHO= rand(numHidden,numOutput)*0.67; 

  

InitialweightIH=weightIH; 
InitialweightHO=weightHO; 

  

% randomize the inputs 
%per= randperm(numExample); 

 

inp= zeros(size(inputs)); 
tar= zeros(size(targets)); 
 for i=1: numExample 
inp(:,per(i))= inputs(:,i); 
tar(:,per(i))=targets(:,i); 

  

end 

  

 inputs=inp; 
 targets=tar; 

  

 k=1; 
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for t=1 : numEpoch 

 

    %fprintf('Iteration %d\n',t); 

 

  for j=1: train   
%%%  calculate the output of network 

  

%numPattern=randi([1,numExample]); 

  

numPattern= j; 

  

  

hiddenVal= zeros(numHidden,1); 
for j=1 : numHidden 
    hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern)); 
    hiddenVal(j,1)=sigmoid(hiddenVal(j,1)); 
end 

  

outputVal= zeros(numOutput,1); 
for j=1 : numOutput 
    outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1)); 
    outputVal(j,1)=sigmoid(outputVal(j,1)); 
end 

  

%%%  Calculate the error in output 

  

outputError=zeros(numOutput,1); 
for i=1:numOutput 
 error(i)=   targets(i,numPattern)-outputVal(i); 
outputError(i)= outputVal(i)*(1- outputVal(i))*(targets(i,numPattern)-outputVal(i)); 
end 

 

%%%% weights changes in HO layer 

  

for i=1 : numHidden 
    for j=1 : numOutput 
        weightHO(i,j)= weightHO(i,j)+ alpha* hiddenVal(i,1)*outputError(j); 

 

         

    end 
end 
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%%%% weight change in IH layer 

  

hiddenError= zeros(numHidden,1); 

  

for i=1: numHidden 
    hiddenError(i)=0; 
    for j=1 : numOutput 
        hiddenError(i)= hiddenError(i)+ weightHO(i,j)*outputError(j); 
    end 
    hiddenError(i)=hiddenError(i)*hiddenVal(i)*(1-hiddenVal(i)); 
end 

  

for i=1: numInputs 
    for j=1: numHidden 
        weightIH(i,j)=weightIH(i,j)+ alpha*hiddenError(j)*inputs(i,numPattern); 
    end 
end 

  

     

         

        

  end 
  % end of an epoch 

   

  % Mean squared error 

  

mse(k)=  mean(error.^2)  ; 

  

  

y(k)=k; 
k=k+1; 
if(mse(k-1)<0.001)break; 
end 

   

end 
t 
fprintf('Trained Succesfully'); 
result=1; 

  

%show(weightIH,weightHO,InitialweightIH,InitialweightHO); 
figure; 
plot(y,mse,'Color','r','LineWidth', 2, 'MarkerSize', 7); 
xlabel('Number of Epochs'); 
ylabel('MSE(Mean Square Error)'); 
 



40 
 

 

toc; 

  

tic; 
%% checking for unseen values 
c=0; 

  

for j=train+1 : numExample 
   % numPattern=j; 
   numPattern=j; 

  

hiddenVal= zeros(numHidden,1); 
for j=1 : numHidden 
    hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern)); 
    hiddenVal(j,1)=sigmoid(hiddenVal(j,1)); 
end 

  

outputVal= zeros(numOutput,1); 
for j=1 : numOutput 
    outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1)); 
    outputVal(j,1)=sigmoid(outputVal(j,1)); 
end 

  

%fprintf('\nActual values'); 
for i=1: numOutput 
%fprintf(' %d ',targets(i,numPattern)); 
end 

  

%fprintf('\ntarget values'); 
for i=1: numOutput 
%fprintf(' %f ',outputVal(i,1)); 
end 

  

     

  

   [a,b]=max(targets(:,numPattern)); 
   [e,d]=max(outputVal(:,1)); 
 

    if(b==d) 
 

        c=c+1; 
    end 
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end 
acc= c*100/test; 
fprintf('\ncorrectly classified %f \n',acc); 

  

toc; 
end 

  

 

 

 

Function for proposed algorithm: prop.m 

 

function [ y,mse ] = prop( inputs,targets,weightIH,weightHO,per ,numHidden) 
%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 

  

tic; 

  

numEpoch=100; 
alpha= 0.1; 
%numHidden= 10; 
sizeMN= size(inputs); 
sizeTar= size(targets); 
numInputs=sizeMN(1); 
numExample=sizeMN(2); 
numOutput=sizeTar(1); 

  

train= int32((2*numExample)/3); 
test= int32(numExample/3); 

  

%weightIH= rand(numInputs,numHidden)*0.46; 

  

%weightHO= rand(numHidden,numOutput)*0.67; 

  

InitialweightIH=weightIH; 

  

InitialweightHO=weightHO; 

  

% randomize the inputs 
%per= randperm(numExample); 
%per 
inp= zeros(size(inputs)); 
tar= zeros(size(targets)); 
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 for i=1: numExample 
inp(:,per(i))= inputs(:,i); 
tar(:,per(i))=targets(:,i); 

  

end 

  

 inputs=inp; 
 targets=tar; 

  

 %inputs 
 %targets 
flag=1; 

  

 k=1; 
v=0; 
for t=1 : numEpoch 
  %  fprintf('Iteration %d\n',t); 
  for j=1: train   
%%%  calculate the output of network 

  

%=randi([1,numExample]); 

  

numPattern= j; 

  

  

hiddenVal= zeros(numHidden,1); 
biasVal= zeros(numHidden,1); 

  

for j=1 : numHidden 
    hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern)); %+biasVal(j,1); 
    hiddenVal(j,1)=sigmoid(hiddenVal(j,1)); 
end 

  

outputVal= zeros(numOutput,1); 
biasOutVal=zeros(numOutput,1); 

  

for j=1 : numOutput 
    outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1)) ;%+ biasOutVal(j,1); 
    outputVal(j,1)=sigmoid(outputVal(j,1)); 
end 

  

%%%  Calculate the error in output 

  

outputError=zeros(numOutput,1); 
for i=1:numOutput 
    error(i)=   targets(i,numPattern)-outputVal(i); 
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outputError(i)= outputVal(i)*(1- outputVal(i))*(targets(i,numPattern)-outputVal(i)); 
end 
%outputError(2)= outputVal(2)*(1- outputVal(2))*(targets(2,numPattern)-outputVal(2)); 

  

%%%% weights changes in HO layer 

  

for i=1 : numHidden 
    for j=1 : numOutput 
      if(weightHO(i,j)==0)continue;end 
        weightHO(i,j)= weightHO(i,j)+ alpha* hiddenVal(i,1)*outputError(j); 
    end 
end 

  

%%%% weight change in IH layer 

  

hiddenError= zeros(numHidden,1); 

  

for i=1: numHidden 
    hiddenError(i)=0; 
    for j=1 : numOutput 
        hiddenError(i)= hiddenError(i)+ weightHO(i,j)*outputError(j); 
    end 
    hiddenError(i)=hiddenError(i)*hiddenVal(i)*(1-hiddenVal(i)); 
end 

  

for i=1: numInputs 
    for j=1: numHidden 
       if(weightIH(i,j)==0)continue; end 
        weightIH(i,j)=weightIH(i,j)+ alpha*hiddenError(j)*inputs(i,numPattern); 
    end 
end 

  

     

         

   end 
  mse(k)=  mean(error.^2)  ; 
y(k)=k; 
k=k+1; 

   

    % change in weight less than threshold 
  if(mse(k-1)<0.02 && flag==1) 
     %avg= show(weightIH,weightHO,InitialweightIH,InitialweightHO); 
     %avg 
      flag=0; 
      for i=1: numInputs 
        for j=1: numHidden 
            if(weightIH(i,j)~=0&& abs(weightIH(i,j)-InitialweightIH(i,j))<0.05 ) 
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             %  biasVal(j,1)= weightIH(i,j)*inputs(i,numPattern); 
                weightIH(i,j)=0;v=v+1; 
                %fprintf('\n %d %d',i,j); 

                 

            end 
        end 
      end 

       

   for i=1 : numHidden 
    for j=1 : numOutput 
        if(weightHO(i,j)~=0 && abs(weightHO(i,j)-InitialweightHO(i,j))<0.05) 
           % biasOutVal(j,1)= weightHO(i,j)*hiddenVal(i); 
            weightHO(i,j)=0;v=v+1; 
           %fprintf('\n %d %d',i,j); 
        end 

     

    end     
   end 

   

  end 
 if(mse(k-1)<0.001)break; 
 end 

  

end 
t 
fprintf('Trained Succesfully'); 
result=1; 

  

%show(weightIH,weightHO,InitialweightIH,InitialweightHO); 
hold on; 
plot(y,mse,'Color','b','LineWidth', 2, 'MarkerSize', 7); 
hold off; 
xlabel('Number of Epochs'); 
ylabel('MSE(Mean Square Error)'); 
toc; 
fprintf('\n\nNo of weights removed %d, total weights %d \n',v,(numInputs+numOutput)*numHidden); 
%weightIH 
%weightHO 
tic; 
%% checking for unseen values 
c=0; 

  

for j=train+1 : numExample 
   % numPattern=j; 
   numPattern=j; 

  

hiddenVal= zeros(numHidden,1); 



45 
 

for j=1 : numHidden 
    hiddenVal(j,1)=sum(weightIH(:,j).*inputs(:,numPattern)); 
    hiddenVal(j,1)=sigmoid(hiddenVal(j,1)); 
end 

  

outputVal= zeros(numOutput,1); 
for j=1 : numOutput 
    outputVal(j,1)=sum(weightHO(:,j).*hiddenVal(:,1)); 
    outputVal(j,1)=sigmoid(outputVal(j,1)); 
end 

  

%fprintf('\nActual values'); 
for i=1: numOutput 
%fprintf(' %d ',targets(i,numPattern)); 
end 

  

%fprintf('\ntarget values'); 
for i=1: numOutput 
%fprintf(' %f ',outputVal(i,1)); 
end 

  

     

  

   [a,b]=max(targets(:,numPattern)); 
   [e,d]=max(outputVal(:,1)); 
 

    if(b==d) 
              c=c+1; 

       

    end 

  

  

  

 

end 
acc=c*100/test; 
fprintf('\ncorrectly classified %f \n',acc); 

  

toc; 
  end 
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Other helping functions: 

Sigmoid.m 

 

function [ output ] = sigmoid( x ) 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 

  

y=  exp(-1*x); 

  

output=  1/(1+y); 

  

end 

  

 

 

 

show.m 

 

function [ avg ] = show( theta1,theta2,initialtheta1,initialtheta2 ) 
%UNTITLED2 Summary of this function goes here 
%   Detailed explanation goes here 

  

x=size(theta1); 
hidden= x(2); 
input=x(1);  %including no bias 

  

y=size(theta2); 
output=y(2); 
sum=0; 
%fprintf('Weights IH layer'); 

  

for i=1 : hidden 
  %  fprintf('Weights for hidden unit: %d \n',i); 
    for j=1 : input 
        diff=initialtheta1(j,i)-theta1(j,i); 
        sum=sum+abs(diff); 
      %  fprintf('Hidden %d  : Before and after %d   %d   Difference  %d\n',i,initialtheta1(j,i),theta1(j,i),diff); 
    end 

     

end 
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%fprintf('Weights HO layer'); 

  

for i=1 :output 
 %   fprintf('Weights for output unit: %d \n',i); 
    for j=1 : hidden 
        diff2=initialtheta2(j,i)-theta2(j,i); 
        sum=sum+abs(diff2); 
       % fprintf('Output  %d  :Before and after %d   %d   Difference  

%d\n',i,initialtheta2(j,i),theta2(j,i),diff2); 
    end 

     

end 

  

avg= sum/(hidden*(input+output)); 

  

end 
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APPENDIX B 
 

SCREEN SHOTS 

 

Screen shot for pen based handwritten digit dataset 
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Screen shot for SEMEION digit dataset 
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Screen shot for Iris dataset 
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Screen shot for Wisconsin breast cancer dataset 

 

 

 

 


